JP2000071378A - Breaking strain reinforced gas barrier film and its production - Google Patents

Breaking strain reinforced gas barrier film and its production

Info

Publication number
JP2000071378A
JP2000071378A JP10245957A JP24595798A JP2000071378A JP 2000071378 A JP2000071378 A JP 2000071378A JP 10245957 A JP10245957 A JP 10245957A JP 24595798 A JP24595798 A JP 24595798A JP 2000071378 A JP2000071378 A JP 2000071378A
Authority
JP
Japan
Prior art keywords
film
strain
thin film
gas barrier
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10245957A
Other languages
Japanese (ja)
Other versions
JP4196440B2 (en
Inventor
Norihito Fukugami
典仁 福上
Asaaki Yanaka
雅顕 谷中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP24595798A priority Critical patent/JP4196440B2/en
Publication of JP2000071378A publication Critical patent/JP2000071378A/en
Application granted granted Critical
Publication of JP4196440B2 publication Critical patent/JP4196440B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent generation of destruction in a glass membrane by applying compression residual strain to the glass membrane by setting the vapor deposition speed in a glass membrane forming process to a specific low speed range and increasing the breaking strain of the membrane by the quantity of the compression residual strain. SOLUTION: In producing a gas barrier film obtained by forming a glass membrane on a base material film by vapor deposition, the vapor deposition speed in a glass membrane forming process is set to a low speed range of 3-10 Å/sec to apply compression residual strain of 0.4-0.6% to the glass membrane and the breaking strain of the membrane is increased by the quantity of the compression residual strain. Otherwise, in producing the gas barrier film obtained by forming the glass membrane on the base material film by vapor deposition, a PET film is used as the base material film and the temp. of this film is raised to a high temp. of about 70-80 deg.C within a range not exceeding a glass transition point and the glass membrane is formed by vapor deposition and the heat shrinkage quantity of the base material film after membrane formation is increased.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、基材フィルム上に
ガラス薄膜が蒸着形成されてなるガスバリアフィルムと
その製造方法に関し、詳しくは、基材フィルムの破壊ひ
ずみがガラス薄膜のそれよりも大きい構成のガスバリア
フィルムに関する。ガスバリアフィルムが使用される業
界によっては、ガラス薄膜や基材の厚さの範囲には制約
があるが、本発明では、特に厚さによる適用制限は受け
ない。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas barrier film in which a glass thin film is formed on a base film by vapor deposition, and a method for manufacturing the same. Related to a gas barrier film. Depending on the industry in which the gas barrier film is used, the range of the thickness of the glass thin film or the base material is limited, but in the present invention, the application is not particularly limited by the thickness.

【0002】[0002]

【従来の技術】近年、ガラス薄膜材料は、産業の至ると
ころで広く使われている。特に食品の包装材料などに用
いられるガスバリアフィルムは、基材となるプラスチッ
クフィルムにガラス薄膜をコーティングすることによ
り、ガスバリア機能を備えた機能性フィルムであり、こ
れらは既に我々の身近に多く存在する。
2. Description of the Related Art In recent years, glass thin film materials have been widely used throughout the industry. In particular, gas barrier films used as food packaging materials are functional films having a gas barrier function by coating a plastic film serving as a base material with a glass thin film, and these are already present in many places close to us.

【0003】通常、ガスバリアフィルムは、蒸着やCV
D,スパッタリングなどの各種成膜技術により、基材フ
ィルム上にガスバリア性機能を有した薄膜を形成するこ
とにより製造される。
[0003] Usually, gas barrier films are formed by vapor deposition or CV.
It is manufactured by forming a thin film having a gas barrier function on a substrate film by various film forming techniques such as D and sputtering.

【0004】しかしながら、この様なガスバリアフィル
ムは、薄膜にクラックなどの破壊が生じると、そのガス
バリア性が低下または消滅してしまう。また、この様な
ガスバリアフィルムはそのフレキシブル性も必要なの
で、基材材料は膜厚数〜数百mmのプラスチックフィルム
を用いている。このように、ガスバリアフィルムは薄く
て柔らかいので、製造工程中や製品として市場に出た後
も、薄膜が破壊してしまうことがしばしば問題となって
いる。
[0004] However, in such a gas barrier film, when the thin film is broken or the like is broken, the gas barrier property is reduced or disappears. In addition, since such a gas barrier film needs to have flexibility, a plastic film having a thickness of several to several hundred mm is used as a base material. As described above, since the gas barrier film is thin and soft, it often poses a problem that the thin film is broken during the manufacturing process or even after the product is put on the market.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記の事情
に鑑みてなされたものであり、その目的とするところ
は、ガスバリアフィルムの製造工程中や製品として市場
に出た後に、ガラス薄膜に破壊が生じることを防止する
ことで、生産性や品質の信頼性の向上したガスバリアフ
ィルムを提供することである。これにより、製造する際
のコストダウンや、出荷後のガスバリア性の維持、例え
ば、食品などの賞味期限の大幅な延長などが期待できる
ことになる。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a glass thin film during a gas barrier film manufacturing process or after a product is put on the market. An object of the present invention is to provide a gas barrier film having improved productivity and quality reliability by preventing the occurrence of breakage. As a result, it is possible to expect a reduction in manufacturing cost, maintenance of gas barrier properties after shipment, and a significant extension of the expiration date of food and the like.

【0006】[0006]

【課題を解決するための手段】上記目的を実現するため
に、本発明が提供する手段は、ガスバリアフィルムのガ
ラス薄膜に圧縮残留ひずみを与えることにより、その破
壊ひずみを大きくするものである。
Means for Solving the Problems In order to achieve the above object, a means provided by the present invention is to increase the breaking strain by applying a compressive residual strain to a glass thin film of a gas barrier film.

【0007】請求項1の破壊ひずみ強化ガスバリアフィ
ルムの製造方法は、基材フィルム上にガラス薄膜が蒸着
形成されてなるガスバリアフィルムの製造にあたり、ガ
ラス薄膜の形成過程での蒸着速度を、3〜10Å/sec の
低速な範囲とすることにより、ガラス薄膜に0.4 〜0.6
%の圧縮残留ひずみ(応力にして280 〜430 MPa)を
与え、薄膜の破壊ひずみをその圧縮残留ひずみ分だけ大
きくすることを特徴とする。
[0007] In the method for producing a gas barrier film having enhanced fracture strain according to the first aspect, in producing a gas barrier film in which a glass thin film is formed by vapor deposition on a base film, the vapor deposition rate in the process of forming the glass thin film is 3 to 10 °. / Sec, the glass thin film has a thickness of 0.4 to 0.6.
% Compressive residual strain (280 to 430 MPa in terms of stress), and the breaking strain of the thin film is increased by the compressive residual strain.

【0008】請求項2の破壊ひずみ強化ガスバリアフィ
ルムの製造方法は、基材フィルム上にガラス薄膜が蒸着
形成されてなるガスバリアフィルムの製造にあたり、基
材フィルムとしてPETフィルムを用い、前記フィルム
の温度を、ガラス転移点を越えない範囲である約70〜80
℃の高温にして、ガラス薄膜を蒸着形成し、成膜後の基
材フィルムの熱収縮量を大きくするにより、ガラス薄膜
に約0.1 %の圧縮残留ひずみを与え、薄膜の破壊ひずみ
をその圧縮残留ひずみ分だけ大きくすることを特徴とす
る。
According to a second aspect of the present invention, there is provided a method for producing a gas barrier film comprising a glass thin film deposited and formed on a base film, wherein a PET film is used as the base film, and the temperature of the film is reduced. , About 70-80 which does not exceed the glass transition point
At a high temperature of ℃, a glass thin film is formed by vapor deposition, and the thermal shrinkage of the base film after film formation is increased to give a compressive residual strain of about 0.1% to the glass thin film, and the compressive residual strain of the thin film is reduced. It is characterized by increasing by the amount of strain.

【0009】請求項3の破壊ひずみ強化ガスバリアフィ
ルムの製造方法は、基材フィルム上にガラス薄膜が蒸着
形成されてなるガスバリアフィルムの製造にあたり、基
材フィルムに、その弾性範囲内(降伏点以内)のテンシ
ョンを与えてガラス薄膜を蒸着形成することを特徴とす
る。
According to a third aspect of the present invention, there is provided a method for producing a gas barrier film in which a glass thin film is formed by vapor deposition on a substrate film. The glass thin film is formed by vapor deposition by applying the tension described above.

【0010】請求項4の破壊ひずみ強化ガスバリアフィ
ルムは、上記請求項1〜3の何れかに記載の方法により
製造されることを特徴とする。
[0010] A fourth aspect of the present invention is a gas barrier film having enhanced fracture strain, which is manufactured by the method according to any one of the first to third aspects.

【0011】請求項5の破壊ひずみ強化ガスバリアフィ
ルムは、基材フィルムとして、その破壊ひずみがガラス
薄膜の破壊ひずみより大きいものを使用することを特徴
とする。
The gas barrier film having enhanced fracture strain according to claim 5 is characterized in that a substrate film having a fracture strain larger than that of a glass thin film is used as a base film.

【0012】薄膜が破壊する現象について説明する。薄
膜/基材フィルムからなる一般的な2層構造の機能性フ
ィルムで、基材フィルムの破壊ひずみが薄膜のそれより
も大きい場合に、薄膜/基材系を1方向に引っ張ったと
きに薄膜に生じるクラックについて述べる。
The phenomenon that the thin film is broken will be described. A functional film with a general two-layer structure consisting of a thin film / substrate film. When the breaking strain of the substrate film is greater than that of the thin film, the thin film / substrate system is formed into a thin film when pulled in one direction. The resulting crack will be described.

【0013】薄膜の引っ張り臨界ひずみ(以後、破壊ひ
ずみと呼ぶ)までは、薄膜・基材フィルム共に同じよう
に伸びるが、ひずみが薄膜の臨海値に達すると、薄膜の
みに引っ張り方向に垂直なクラックが生じる。
[0013] Both the thin film and the base film extend in the same manner up to the critical tensile strain of the thin film (hereinafter referred to as fracture strain). Occurs.

【0014】さらに引っ張り続けると、薄膜・基材間の
付着が残っていれば、界面でのずり応力を通して薄膜は
引っ張られ、さらなるクラックが薄膜にほぼ等間隔に生
じる。結果として、薄膜には無数の引っ張り方向に垂直
なクラックが生じることになる。(図1参照)
When the film is further stretched, if the adhesion between the film and the substrate remains, the film is pulled through the shear stress at the interface, and further cracks are generated in the film at substantially equal intervals. As a result, the thin film will have numerous cracks perpendicular to the tensile direction. (See Fig. 1)

【0015】次に、ガラス薄膜/基材フィルムからなる
ガスバリアフィルムの場合について述べる。一般的に、
ガラス薄膜の破壊ひずみの方が基材フィルムのそれより
も小さいので、上述のように、ガスバリアフィルムを1
方向に、ガラス薄膜の破壊ひずみ以上に引っ張った場
合、ガラス薄膜のみに、引っ張り方向に垂直な無数のク
ラックが生じる(図2参照)。これにより、ガスバリア
フィルムのガスバリア性はガラス薄膜にクラックが生じ
る前と比較して、大幅に低下する。
Next, the case of a gas barrier film composed of a glass thin film / base film will be described. Typically,
Since the fracture strain of the glass thin film is smaller than that of the base film, as described above,
If the glass film is pulled in the direction beyond the breaking strain of the glass thin film, countless cracks perpendicular to the pulling direction occur only in the glass thin film (see FIG. 2). Thereby, the gas barrier property of the gas barrier film is significantly reduced as compared to before the glass thin film has cracks.

【0016】ガラス薄膜に残留ひずみが存在する場合に
ついて述べる。ガラス薄膜の残留ひずみは2種類存在す
る。一つは引っ張り残留ひずみ、そしてもう一つは圧縮
残留ひずみである。前者は、薄膜の成長過程や後処理の
際に、薄膜が収縮しようとして、基材はそれを妨げる方
向に薄膜を引っ張る状態にある場合の残留ひずみであ
り、後者は、逆に薄膜が伸びようとして、基材はそれを
押し縮めようとする状態にある場合の残留ひずみであ
る。
A case where a residual strain exists in a glass thin film will be described. There are two types of residual strain in glass thin films. One is the tensile residual strain, and the other is the compressive residual strain. The former is the residual strain when the base film is in a state where the base film is pulling in the direction that hinders the shrinkage during the growth process or post-treatment of the base film, and the latter is the case where the base film is likely to expand. Is the residual strain when the substrate is in a state of trying to compress it.

【0017】これらの残留ひずみは、フィルムがカール
する現象として見ることが出来、(図3参照)残留ひず
みはフィルムのカールが急なほど(カールの曲率半径が
小さいほど)大きい。
These residual strains can be seen as a phenomenon of curling of the film (see FIG. 3). The residual strain increases as the curl of the film becomes steeper (as the radius of curvature of the curl becomes smaller).

【0018】ガラス薄膜に圧縮残留ひずみを与える成膜
方法について述べる。通常、ガラス薄膜/基材からなる
ガスバリアフィルムは、蒸着やCVD、スパッタリング
などの成膜方法により製造されるが、本発明において成
膜方法の制限はない。また、成膜機も巻き取り式とバッ
チ式があるが、成膜機による制限はない。
A film forming method for imparting compressive residual strain to a glass thin film will be described. Usually, a gas barrier film composed of a glass thin film / substrate is manufactured by a film forming method such as vapor deposition, CVD, or sputtering, but there is no limitation on the film forming method in the present invention. In addition, there are a winding type and a batch type as the film forming machine, but there is no limitation by the film forming machine.

【0019】薄膜の残留ひずみの原因は主に3つ考えら
れる。1つ目は成膜中の基材フィルムのテンション、2
つ目は成膜中の基材の温度、そして3つ目は成膜スピー
ドである。
There are mainly three possible causes of the residual strain of the thin film. The first is the tension of the base film during film formation, 2
The third is the temperature of the substrate during film formation, and the third is the film formation speed.

【0020】成膜中の基材フィルムのテンションは、成
膜中に、基材フィルムの降伏点以内で、意図的に基材フ
ィルムをひずませることにより、薄膜に上記した圧縮残
留ひずみが付与されることになる。
The tension of the base film during film formation is such that the above-mentioned compression residual strain is imparted to the thin film by intentionally distorting the base film within the yield point of the base film during film formation. Will be.

【0021】成膜中の基材の温度により、ガラス薄膜に
圧縮残留ひずみを与える方法について述べる。バリアフ
ィルムにおいて、一般に、基材にはPETやPEなどの
プラスチックフィルムが用いられる。これらのプラスチ
ックフィルムと薄膜とは熱膨張係数が違うので、成膜中
の温度と成膜後の温度が違うと、成膜後の薄膜には残留
ひずみが存在する。特に、成膜後の温度と成膜中の温度
差が大きいほど、この残留ひずみも大きい。つまり、成
膜中の基材フィルムの温度を大きくすることにより、成
膜後の薄膜にはより大きな圧縮残留ひずみが残る。(図
4参照)
A method for giving a compressive residual strain to a glass thin film depending on the temperature of a substrate during film formation will be described. In the barrier film, generally, a plastic film such as PET or PE is used as a substrate. Since the plastic film and the thin film have different coefficients of thermal expansion, if the temperature during the film formation is different from the temperature after the film formation, residual strain exists in the thin film after the film formation. In particular, the larger the difference between the temperature after film formation and the temperature during film formation, the larger this residual strain. That is, by increasing the temperature of the base film during film formation, a larger residual compression strain remains in the thin film after film formation. (See Fig. 4)

【0022】成膜速度により、ガラス薄膜に圧縮残留ひ
ずみを与える方法について述べる。バリアフィルムにお
いて、一般に、バリア性機能を有する薄膜は、SiO2
やMgOなどのセラミックスであり、これらは全て真空
成膜により成膜されるが、成膜中の真空チャンバー内に
は、少なからず残留ガスが存在する。
A method for giving a compressive residual strain to a glass thin film by a film forming rate will be described. In a barrier film, generally, a thin film having a barrier function is made of SiO 2
And ceramics such as MgO, all of which are formed by vacuum film formation, but there is not a small amount of residual gas in the vacuum chamber during the film formation.

【0023】蒸着により真空中に飛び出した薄膜材料と
なる蒸着粒子は、基材に衝突して成膜される。このと
き、チャンバー内の残留ガスを取り込みながら成膜する
ので、蒸着スピードが遅い方がより多くの残留ガスを取
り込むことになる。
The vapor-deposited particles that become thin-film materials that have jumped out into a vacuum by vapor deposition collide with the base material to form a film. At this time, since the film is formed while taking in the residual gas in the chamber, the slower the vapor deposition speed, the more the residual gas is taken in.

【0024】残留ガスを取り込んだ薄膜は、そのことに
より薄膜が膨張するために、薄膜には圧縮残留ひずみが
発現する。つまり、蒸着スピードが遅い方がより多くの
残留ガスを取り込み、より大きな圧縮残留ひずみを生み
出す。(図5,6参照)
In the thin film incorporating the residual gas, the thin film expands as a result, and thus the compressive residual strain appears in the thin film. In other words, a slower deposition rate takes in more residual gas and produces a larger compressive residual strain. (See Figs. 5 and 6)

【0025】上記のようにして成膜した薄膜/基材から
なるガスバリアフィルムは、薄膜に圧縮残留ひずみが存
在する。
The gas barrier film composed of the thin film / substrate formed as described above has a compression residual strain in the thin film.

【0026】そして圧縮残留ひずみが存在するフィルム
を1方向に引っ張った場合、薄膜は既に縮められている
ため、薄膜の破壊ひずみに達するまでに、より大きな量
のひずみになるまで引っ張らなければならない。従っ
て、見かけの破壊ひずみは圧縮残留応力がない場合より
も増加する。そして、この見かけの破壊ひずみは圧縮の
残留応力が大きいほど大きい。これにより、薄膜/基材
からなるガスバリアフィルムは、薄膜に圧縮残留ひずみ
を与えることにより、破壊ひずみ強化ガスバリアフィル
ムとなる。
When the film having the compressive residual strain is pulled in one direction, the thin film has already been shrunk and must be pulled to a larger amount of strain before the breaking strain of the thin film is reached. Thus, the apparent fracture strain is greater than without compressive residual stress. The apparent fracture strain increases as the residual stress of compression increases. As a result, the gas barrier film composed of the thin film / substrate becomes a gas barrier film with enhanced fracture strain by imparting compressive residual strain to the thin film.

【0027】[0027]

【発明の実施の形態】以下、本発明に係る圧縮残留ひず
みによる破壊ひずみ強化ガスバリアフィルムとその製造
方法の実施例を、図面に基づいてさらに詳細に説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of a gas barrier film having enhanced fracture toughness due to residual compressive strain and a method of manufacturing the same according to the present invention will be described in more detail with reference to the drawings.

【0028】<実施例1> 1.試料作製 試料として、蒸着速度を3〜150 Å/sec の範囲で変化
させて成膜したガスバリアフィルムについて、その残留
応力と破壊ひずみの関係を調べた。基材フィルムに厚さ
12mmのPETフィルムを用い、その片面に約100 nm(10
00Å)のSiOX 薄膜を、バッチ式電子ビーム蒸着装置
により成膜した。(試料:図7参照、装置:図12参照)
<Example 1> 1. Sample Preparation As a sample, the relationship between the residual stress and the breaking strain of a gas barrier film formed by changing the deposition rate in the range of 3 to 150 ° / sec was examined. Base film thickness
Using a 12 mm PET film, one side of which is approximately 100 nm (10
The SiO x thin film of (00) was formed by a batch type electron beam evaporation apparatus. (Sample: see Fig. 7, device: see Fig. 12)

【0029】蒸着中の真空度は2×10-3 Pa、膜厚は
水晶振動子式膜厚モニターによりモニタリングしながら
成膜する。本文中で、SiOX 薄膜と呼ぶものは、X線
電子分光測定によるXの値はほぼ2に等しいので、Si
2 と同じものと考えられる。
The degree of vacuum during the vapor deposition is 2 × 10 −3 Pa, and the film thickness is formed while monitoring the film thickness with a crystal oscillator type film thickness monitor. In the text, what is called a SiO x thin film has a value of X almost equal to 2 by X-ray electron spectroscopy.
It is considered the same as O 2 .

【0030】PETフィルムの応力−ひずみ曲線を図8
に示す。図8から分かるとおり、PETの降伏点は約2
%、その時の応力は75MPaである。つまり、成膜中の
基材フィルムに加えるテンションは、PETが降伏しな
い範囲(ひずみ2%で以下、応力で75MPa以下)にと
どめる必要がある。
FIG. 8 shows the stress-strain curve of the PET film.
Shown in As can be seen from FIG. 8, the yield point of PET is about 2
%, And the stress at that time is 75 MPa. That is, it is necessary to keep the tension applied to the base film during film formation in a range where PET does not yield (less than 2% strain and less than 75MPa stress).

【0031】2.残留ひずみ測定 作製した全ての試料は、SiOX 薄膜中に圧縮残留ひず
みが存在し、カールを生じた。(図5参照) 各試料について試料の一部を、2mm×10mmの短冊状に切
り出し、カールの曲率半径を測定した。(図9参照) SiOX 層のヤング率と試料の反り(カール)から、S
iOX 層の残留ひずみを下記の式により推定した。
2. All samples residual strain measured fabricated, compressive strain remains in the SiO X film is present, resulting in curling. (See FIG. 5) For each sample, a part of the sample was cut out into a 2 mm × 10 mm strip shape, and the radius of curvature of the curl was measured. (See FIG. 9) From the Young's modulus of the SiO X layer and the warpage (curl) of the sample, S
iO of X layer residual strain was estimated by the following equation.

【0032】[0032]

【数1】 (Equation 1)

【0033】ただし、上記の式は、異なる弾性を持つ2
層材料の曲げ変形を記述する式を元に、 Ef d<<Es b を仮定して求めた。
However, the above equation shows that 2 has different elasticity.
Based on equations describing the bending deformation of the layer material, obtained by assuming E f d << E s b.

【0034】計算により得られた残留ひずみの結果を図
6に示す。このグラフからわかるように、SiOX 薄膜
に存在する残留ひずみは、蒸着スピードが遅いほど大き
い。
FIG. 6 shows the result of the residual strain obtained by the calculation. As can be seen from this graph, the residual strain present in the SiO x thin film increases as the deposition rate decreases.

【0035】蒸着速度を3〜10Å/sec の低速な範囲で
成膜することにより、ガラス薄膜に0.4 〜0.6 %の圧縮
残留ひずみを生じさせることができた。
By forming a film at a low deposition rate of 3 to 10 ° / sec, a compressive residual strain of 0.4 to 0.6% could be generated in the glass thin film.

【0036】3.破壊ひずみ測定 各蒸着スピードで成膜した試料について、試料の一部
を、幅方向に1cm×巻き取り方向に10cmの短冊状に切り
出し、光学顕微鏡の下での引張り試験を行い、VTRに
記録した薄膜破壊像からクラック数を計測する。概略図
を図10に示す。
3. Breaking strain measurement With respect to the sample formed at each deposition speed, a part of the sample was cut into a strip of 1 cm in the width direction and 10 cm in the winding direction, subjected to a tensile test under an optical microscope, and recorded on a VTR. The number of cracks is measured from the thin film destruction image. A schematic diagram is shown in FIG.

【0037】各実験条件は以下の通りである。 視野:縦63mm×横82mm(CRTモニター1画面) 試験時の試料形状:約47mm(長さ) ×10mm(幅)の短冊
型 引張り速度:4.9 mm/sec
Each experimental condition is as follows. Field of view: 63 mm long x 82 mm wide (one screen of CRT monitor) Sample shape at the time of test: Approximately 47 mm (length) x 10 mm (width) strip type Pulling speed: 4.9 mm / sec

【0038】結果を図11に示す。横軸にSiOX 薄膜に
存在する圧縮残留ひずみ、縦軸にSiOX 薄膜の破壊ひ
ずみを示す。ただし、破壊ひずみとは、試料を1方向に
引っ張ったとき、SiOX 薄膜に1本目のクラックが発
生した時点のひずみの値である。
FIG. 11 shows the results. The horizontal axis shows the compressive residual strain existing in the SiO X thin film, and the vertical axis shows the fracture strain of the SiO X thin film. However, the breaking strain is a strain value at the time when the first crack occurs in the SiO x thin film when the sample is pulled in one direction.

【0039】このグラフから分かるように、SiOX
膜に存在する圧縮残留ひずみが大きいほど、SiOX
膜の破壊ひずみも大きい。また、ほぼ圧縮残留ひずみの
増加分だけ破壊ひずみも直線的に増加していることが分
かる。(図11参照)
[0039] As can be seen from this graph, as the compressive residual strain present in the SiO X film is large, greater fracture strain of SiO X film. In addition, it can be seen that the fracture strain also increases linearly almost by the increase in the residual compression strain. (See Fig. 11)

【0040】これらの結果から、蒸着スピードを3〜10
Å/sec の低速な範囲で成膜することにより、ガラス薄
膜に0.4 〜0.6 %の圧縮残留ひずみを生じさせ、おおよ
そその圧縮残留ひずみ分だけ破壊ひずみを大きくするこ
とができた。(図6,11参照)
From these results, it was found that the deposition speed was 3 to 10
By forming the film in the low speed range of Å / sec, a compressive residual strain of 0.4 to 0.6% was generated in the glass thin film, and the breaking strain could be increased by the amount corresponding to the compressive residual strain. (See Figures 6 and 11)

【0041】<実施例2> 1.試料作製 次に、成膜中の基材の温度を50〜80℃の範囲で変化させ
て蒸着を行ったバリアフィルムにおいて、残留ひずみと
破壊ひずみの関係を調べた。
<Embodiment 2> 1. Sample Preparation Next, the relationship between residual strain and breaking strain was examined for a barrier film deposited by changing the temperature of the substrate during film formation in the range of 50 to 80 ° C.

【0042】基材は、一般にはんだごてなどに用いられ
る抵抗加熱式ヒーターによりにより加熱する。また、蒸
着中の基材の温度は、放射温度計により常に測定し続け
る。
The substrate is heated by a resistance heating heater generally used for a soldering iron or the like. Further, the temperature of the substrate during the vapor deposition is constantly measured by a radiation thermometer.

【0043】ちなみに、本実施例で用いたPETフィル
ム(2軸延伸)のガラス転移点は約80℃であるので、そ
れ以下の温度で蒸着する必要がある。
Incidentally, since the glass transition point of the PET film (biaxially stretched) used in this example is about 80 ° C., it is necessary to vapor-deposit at a temperature lower than that.

【0044】本実施例においても、基材フィルムに厚さ
12mmのPETフィルムを用い、その片面に約100 nm(10
00Å)のSiOX 薄膜をバッチ式電子ビーム蒸着装置に
より成膜した。場着スピードは全て約4Å/sec 、蒸着
中の真空度は2×10-3 Paで成膜し、膜厚は水晶振動
子式膜厚モニターによりモニタリングした。
Also in this embodiment, the thickness of the base film is
Using a 12 mm PET film, one side of which is approximately 100 nm (10
The SiO x thin film of (00Å) was formed by a batch type electron beam evaporation apparatus. The deposition speed was about 4 ° / sec, the degree of vacuum during the deposition was 2 × 10 −3 Pa, and the film thickness was monitored by a crystal oscillator type film thickness monitor.

【0045】2.残留ひずみ測定 作製した全ての試料は、SiOX 薄膜中に圧縮残留ひず
みが存在し、カールを生じた。上記実施例1と同様の方
法で、カールの曲率半径から残留ひずみ測定を行った。
基材の温度と残留ひずみの結果を図13に示す。
2. All samples residual strain measured fabricated, compressive strain remains in the SiO X film is present, resulting in curling. In the same manner as in Example 1, the residual strain was measured from the radius of curvature of the curl.
FIG. 13 shows the results of the substrate temperature and residual strain.

【0046】図13からわかるように、蒸着蒸着中の温度
が高いほどSiOX 薄膜に存在する残留ひずみは大き
い。これはSiOX とPETの熱膨張係数の違いによる
ものである。一般に、PETの熱膨張係数はSiO2
それよりも大きいので、蒸着後にPETの温度が室温ま
で下がると、SiO2 よりも大きな量だけ縮もうとする
ため、SiOX 薄膜に圧縮残留ひずみが生じる。この圧
縮残留ひずみは、蒸着中の基材の温度が大きいほど、大
きい。
As can be seen from FIG. 13, the higher the temperature during vapor deposition, the greater the residual strain present in the SiO x thin film. This is due to the difference in thermal expansion coefficient between SiO X and PET. In general, since the coefficient of thermal expansion of PET is larger than that of SiO 2 , when the temperature of PET drops to room temperature after vapor deposition, the PET tends to shrink by a larger amount than SiO 2 , resulting in compression residual strain in the SiO X thin film. . This compressive residual strain increases as the temperature of the substrate during vapor deposition increases.

【0047】しかしながら、実際にフィルムのカールと
して現れる薄膜の圧縮残留ひずみには、蒸着中の基材に
かかるテンションによるものや、蒸着スピードや真空度
によって生じる薄膜固有のひずみなど、その他の要因も
含まれていおり、本実施例の基材PETとSiO2 の熱
膨張係数の違いによる薄膜の圧縮残留ひずみは、薄膜に
生じる圧縮残留ひずみ全体の一部であり、支配的なもの
ではない。このことは図13のグラフにおいて各測定点を
直線近似した場合、蒸着後の温度が室温と同じ25℃の位
置では、約0.59%の圧縮残留ひずみが存在することから
も分かる。
However, the compressive residual strain of the thin film which actually appears as a curl of the film also includes other factors such as the tension due to the substrate being deposited and the intrinsic strain of the thin film caused by the deposition speed and the degree of vacuum. Therefore, the compressive residual strain of the thin film due to the difference in the thermal expansion coefficient between the base material PET and SiO 2 in this embodiment is a part of the entire compressive residual strain generated in the thin film and is not dominant. This can be understood from the fact that when the measurement points are linearly approximated in the graph of FIG. 13, a compression residual strain of about 0.59% exists at a position at 25 ° C. where the temperature after vapor deposition is the same as room temperature.

【0048】3.破壊ひずみ測定 結果を図17に示す。横軸にSiOX 薄膜に存在する圧縮
残留ひずみ、縦軸にSiOX 薄膜の破壊ひずみを示す。
このグラフから分かるように、SiOX 薄膜に存在する
圧縮残留ひずみが大きいほど、SiOX 薄膜の破壊ひず
みも大きい。また、ほぼ圧縮残留ひずみの増加分だけ破
壊ひずみも直線的に増加していることが分かる。(図17
参照)このことはは実施例1で示した通りである。
3. FIG. 17 shows the fracture strain measurement results. The horizontal axis shows the compressive residual strain existing in the SiO X thin film, and the vertical axis shows the fracture strain of the SiO X thin film.
As can be seen from this graph, as the compressive residual strain present in the SiO X film is large, greater fracture strain of SiO X film. In addition, it can be seen that the fracture strain also increases linearly almost by the increase in the residual compression strain. (Figure 17
This is as described in the first embodiment.

【0049】これらの結果から、蒸着後の室温を25℃と
した場合、蒸着中の基材PETの温度を70〜80℃の高温
で成膜することにより、ガラス薄膜に約0.1 %の圧縮残
留ひずみを生じさせ、そしてその圧縮残留ひずみ分だけ
破壊ひずみを大きくすることができた。(図13,17参
照)
From these results, when the room temperature after vapor deposition was set at 25 ° C., by forming the PET film at a high temperature of 70 to 80 ° C. during vapor deposition, about 0.1% of the compression residual Strain was generated, and the breaking strain could be increased by the compression residual strain. (See Figures 13 and 17)

【0050】<実施例3> 1.酸素透過度測定 蒸着速度 90 Å/sec で成膜した試料についてのみ、酸
素透過度測定装置(MOCON社製)を改造した、引っ
張り酸素透過度測定装置により引っ張り酸素透過度を測
定した。装置の写真及び概略図を図14に示す。この試料
のカールから測定した圧縮残留ひずみは0.15%である。
<Embodiment 3> Oxygen Permeability Measurement For only the sample formed at a deposition rate of 90 ° / sec, the tensile oxygen permeability was measured by a modified oxygen permeability measuring device (manufactured by MOCON) using a modified oxygen permeability measuring device. FIG. 14 shows a photograph and a schematic diagram of the apparatus. The compression set measured from the curl of this sample is 0.15%.

【0051】引っ張り率とクラック密度の結果を図15
に、引っ張り率と酸素透過度の結果を図16に示す。図15
からこの試料の破壊ひずみは約1.07%であることが分か
る。2つのグラフの比較からわかるように、クラックの
発生により酸素透過度が劣化していることは明らかであ
る。
FIG. 15 shows the results of the tensile rate and the crack density.
FIG. 16 shows the results of the tensile rate and the oxygen permeability. Fig. 15
This shows that the fracture strain of this sample is about 1.07%. As can be seen from the comparison between the two graphs, it is clear that the oxygen transmission rate has deteriorated due to the occurrence of cracks.

【0052】[0052]

【発明の効果】以上説明したように、本発明により、薄
膜の圧縮残留応力を増加させることが出来、破壊ひずみ
が増加させた破壊ひずみ強化ガスバリアフィルムを作製
することが可能である。これにより、例えばガスバリア
フィルムなどの機能性フィルムの製造する際の生産性が
増加し、製造コストの大幅な低下が期待できる。また、
ガスバリアフィルムは主に食品の包装材料などに使用さ
れるので、賞味期限(品質保証期間)の大幅な延長も期
待できる。
As described above, according to the present invention, the compressive residual stress of a thin film can be increased, and a fracture-strain-enhanced gas barrier film having an increased fracture strain can be produced. Thereby, for example, the productivity at the time of producing a functional film such as a gas barrier film is increased, and a significant reduction in production cost can be expected. Also,
Since gas barrier films are mainly used for packaging materials for foods, etc., it is expected that the expiration date (quality assurance period) can be greatly extended.

【0053】[0053]

【図面の簡単な説明】[Brief description of the drawings]

【図1】薄膜/基材からなる機能性フィルム(破壊ひず
みは、基材>薄膜)を一方向に引っ張った際、薄膜に生
じるクラックを示す説明図。
FIG. 1 is an explanatory view showing cracks generated in a thin film when a functional film composed of a thin film and a base material (destructive strain, base material> thin film) is pulled in one direction.

【図2】ガラス薄膜/基材からなるガスバリアフィルム
(破壊ひずみは、基材>ガラス薄膜)を一方向に引っ張
った際、薄膜に生じるクラックを示す写真。
FIG. 2 is a photograph showing cracks generated in a thin film when a gas barrier film composed of a glass thin film / substrate (destructive strain: substrate> glass thin film) is pulled in one direction.

【図3】残留ひずみ(引っ張り,圧縮)によるフィルム
のカールを示す説明図。
FIG. 3 is an explanatory view showing curling of a film due to residual strain (tensile, compressive).

【図4】成膜中の基材の温度に依存する残留ひずみによ
るフィルムのカールを示す説明図。
FIG. 4 is an explanatory diagram showing curling of a film due to residual strain depending on the temperature of a substrate during film formation.

【図5】成膜速度に依存する残留ひずみによるフィルム
のカールを示す写真と説明図。
FIGS. 5A and 5B are a photograph and an explanatory diagram showing curling of a film due to residual strain depending on a film forming speed.

【図6】成膜速度と圧縮残留ひずみとの関係を示すグラ
フ。
FIG. 6 is a graph showing a relationship between a film forming speed and a compression residual strain.

【図7】本発明の実施例でのガスバリアフィルムの構成
を示す説明図。
FIG. 7 is an explanatory diagram showing a configuration of a gas barrier film in an example of the present invention.

【図8】PETフィルム(単体)の応力とひずみとの関
係を示すグラフ。
FIG. 8 is a graph showing the relationship between stress and strain of a PET film (single).

【図9】ガスバリアフィルムのカールの曲率半径を測定
する状態を示す説明図。
FIG. 9 is an explanatory view showing a state in which the radius of curvature of the curl of the gas barrier film is measured.

【図10】実験試料(ガスバリアフィルム)を解析する
状態を示す説明図。
FIG. 10 is an explanatory diagram showing a state of analyzing an experimental sample (gas barrier film).

【図11】実験結果(SiOX 薄膜の圧縮残留ひずみと
破壊ひずみとの関係)を示すグラフ。
FIG. 11 is a graph showing experimental results (the relationship between compressive residual strain and fracture strain of a SiO X thin film).

【図12】本発明の実施例でのガスバリアフィルムの製
造装置を示す説明図。
FIG. 12 is an explanatory view showing an apparatus for manufacturing a gas barrier film in an example of the present invention.

【図13】成膜中の基材の温度と圧縮残留ひずみとの関
係を示すグラフ。
FIG. 13 is a graph showing the relationship between the temperature of a substrate during film formation and the residual compression strain.

【図14】ガスバリアフィルムの酸素透過度を測定する
装置を示す説明図。
FIG. 14 is an explanatory view showing an apparatus for measuring the oxygen permeability of a gas barrier film.

【図15】測定結果(引っ張り率とクラック密度との関
係)を示すグラフ。
FIG. 15 is a graph showing measurement results (relationship between tensile rate and crack density).

【図16】測定結果(引っ張り率と酸素透過度との関
係)を示すグラフ。
FIG. 16 is a graph showing measurement results (relation between tensile rate and oxygen permeability).

【図17】SiOX 薄膜の圧縮残留ひずみと破壊ひずみ
との関係を示すグラフ。
FIG. 17 is a graph showing the relationship between residual compressive strain and fracture strain of a SiO X thin film.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4F100 AA20 AG00B AK01A AK42A BA02 EH662 EJ372 EJ422 GB23 JA03A JD02 JK20B JL02 JM02B YY00B 4K029 AA11 AA25 BA46 BC00 CA00 CA01 EA02 EA08  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4F100 AA20 AG00B AK01A AK42A BA02 EH662 EJ372 EJ422 GB23 JA03A JD02 JK20B JL02 JM02B YY00B 4K029 AA11 AA25 BA46 BC00 CA00 CA01 EA02 EA08

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】基材フィルム上にガラス薄膜が蒸着形成さ
れてなるガスバリアフィルムの製造にあたり、ガラス薄
膜の形成過程での蒸着速度を、3〜10Å/sec の低速な
範囲とすることにより、ガラス薄膜に0.4 〜0.6 %の圧
縮残留ひずみ(応力にして280 〜430 MPa)を与え、
薄膜の破壊ひずみをその圧縮残留ひずみ分だけ大きくす
ることを特徴とする破壊ひずみ強化ガスバリアフィルム
の製造方法。
In producing a gas barrier film in which a glass thin film is formed by vapor deposition on a base film, the vapor deposition rate in the process of forming the glass thin film is set to a low range of 3 to 10 ° / sec. Giving a compressive residual strain of 0.4 to 0.6% (280 to 430 MPa in stress) to the thin film,
A method for producing a gas barrier film having enhanced strain-to-break, characterized by increasing the breaking strain of a thin film by an amount corresponding to the compression residual strain.
【請求項2】基材フィルム上にガラス薄膜が蒸着形成さ
れてなるガスバリアフィルムの製造にあたり、基材フィ
ルムとしてPETフィルムを用い、前記フィルムの温度
を、ガラス転移点を越えない範囲である約70〜80℃の高
温にして、ガラス薄膜を蒸着形成し、成膜後の基材フィ
ルムの熱収縮量を大きくするにより、ガラス薄膜に約0.
1 %の圧縮残留ひずみを与え、薄膜の破壊ひずみをその
圧縮残留ひずみ分だけ大きくすることを特徴とする破壊
ひずみ強化ガスバリアフィルムの製造方法。
2. In the production of a gas barrier film in which a glass thin film is formed by vapor deposition on a substrate film, a PET film is used as the substrate film, and the temperature of the film is set to a value within a range not exceeding a glass transition point of about 70%. By raising the temperature to ~ 80 ° C, depositing a glass thin film by vapor deposition and increasing the amount of heat shrinkage of the base film after film formation, the glass thin film is reduced to about 0.
A method for producing a gas barrier film having enhanced fracture strain, characterized in that a compressive residual strain of 1% is given and the fracture strain of a thin film is increased by the amount of the residual compressive strain.
【請求項3】基材フィルム上にガラス薄膜が蒸着形成さ
れてなるガスバリアフィルムの製造にあたり、基材フィ
ルムに、その弾性範囲内(降伏点以内)のテンションを
与えてガラス薄膜を蒸着形成することを特徴とする破壊
ひずみ強化ガスバリアフィルムの製造方法。
3. A method for producing a gas barrier film comprising a glass thin film formed on a base film by vapor deposition, by applying a tension within the elastic range (within the yield point) to the base film and forming the glass thin film by vapor deposition. A method for producing a gas barrier film having enhanced fracture strain.
【請求項4】請求項1〜3の何れかに記載の方法により
製造されることを特徴とする破壊ひずみ強化ガスバリア
フィルム。
4. A gas barrier film having an enhanced fracture strain, which is produced by the method according to claim 1.
【請求項5】基材フィルムとして、その破壊ひずみがガ
ラス薄膜の破壊ひずみより大きいものを使用することを
特徴とする請求項4記載の破壊ひずみ強化ガスバリアフ
ィルム。
5. The gas barrier film according to claim 4, wherein the substrate film has a breaking strain larger than that of the glass thin film.
JP24595798A 1998-08-31 1998-08-31 Fracture strain enhanced gas barrier film and method for producing the same Expired - Fee Related JP4196440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24595798A JP4196440B2 (en) 1998-08-31 1998-08-31 Fracture strain enhanced gas barrier film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24595798A JP4196440B2 (en) 1998-08-31 1998-08-31 Fracture strain enhanced gas barrier film and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000071378A true JP2000071378A (en) 2000-03-07
JP4196440B2 JP4196440B2 (en) 2008-12-17

Family

ID=17141372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24595798A Expired - Fee Related JP4196440B2 (en) 1998-08-31 1998-08-31 Fracture strain enhanced gas barrier film and method for producing the same

Country Status (1)

Country Link
JP (1) JP4196440B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004133109A (en) * 2002-10-09 2004-04-30 Seiko Epson Corp Method for manufacturing substrate having thin film formed thereon, method for manufacturing electrooptical device, electrooptical device, and electronic appliance

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016088382A1 (en) 2014-12-05 2016-06-09 シャープ株式会社 Organic el display device
US10159120B2 (en) 2015-06-12 2018-12-18 Sharp Kabushiki Kaisha EL display device and method for manufacturing EL display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004133109A (en) * 2002-10-09 2004-04-30 Seiko Epson Corp Method for manufacturing substrate having thin film formed thereon, method for manufacturing electrooptical device, electrooptical device, and electronic appliance

Also Published As

Publication number Publication date
JP4196440B2 (en) 2008-12-17

Similar Documents

Publication Publication Date Title
Leterrier et al. Adhesion of silicon oxide layers on poly (ethylene terephthalate). I: Effect of substrate properties on coating's fragmentation process
Leterrier et al. Adhesion of silicon oxide layers on poly (ethylene terephthalate). II: Effect of coating thickness on adhesive and cohesive strengths
Bagchi et al. A new procedure for measuring the decohesion energy for thin ductile films on substrates
JP2006281766A (en) Structure and method for thermal stress compensation
Watanabe et al. Microyielding and damping capacity in magnesium
Yanaka et al. Effects of temperature on the multiple cracking progress of sub-micron thick glass films deposited on a polymer substrate
EP3279954B1 (en) Process for producing a piezoelectric film
JP2000071378A (en) Breaking strain reinforced gas barrier film and its production
Meszaros et al. Effect of thermal annealing on the mechanical properties of low-emissivity physical vapor deposited multilayer-coatings for architectural applications
Hieber et al. Structural changes of evaporated tantalum during film growth
Leterrier et al. Internal stresses and adhesion of thin silicon oxide coatings on poly (ethylene terephthalate)
EP3576171A1 (en) Piezoelectric film and method for producing same
Leung et al. The cracking resistance of nanoscale layers and films
Machinaga et al. Effects of annealing temperature on mechanical durability of indium-tin oxide film on polyethylene terephthalate substrate
JPH0282103A (en) Gauge base incorporated with reinforcing material for strain gauge and its manufacture
JP5493743B2 (en) Transparent barrier film
Cakmak et al. Dynamics of uni and biaxial deformation and its effects on the thickness uniformity and surface roughness of poly (ether ether ketone) films
Pienkos et al. Stress development during evaporation of Cu and Ag on silicon
Chaiwong et al. Cracking of titanium nitride films grown on polycarbonate
TW201938606A (en) Piezoelectric body film, piezoelectric body film production method, and piezoelectric body device
KR101076675B1 (en) Sputtering deposition method and apparatus capable of improving thin film properties
Keckes et al. Evaluation of thermal and growth stresses in heteroepitaxial AlN thin films formed on (0 0 0 1) sapphire by pulsed laser ablation
Thomas The effect of heat treatment on silicon nitride layers on silicon
Moreno-Gobbi et al. The ultrasonic Bordoni peak in copper crystals and the kink picture
JPS5870770A (en) Coated carbon fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080922

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080528

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees