JP2000070968A - Decomposing method of organic matter using photocatalyst for decomposition of organic matter - Google Patents

Decomposing method of organic matter using photocatalyst for decomposition of organic matter

Info

Publication number
JP2000070968A
JP2000070968A JP24381398A JP24381398A JP2000070968A JP 2000070968 A JP2000070968 A JP 2000070968A JP 24381398 A JP24381398 A JP 24381398A JP 24381398 A JP24381398 A JP 24381398A JP 2000070968 A JP2000070968 A JP 2000070968A
Authority
JP
Japan
Prior art keywords
photocatalyst
organic matter
matter decomposition
liquid
organic substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24381398A
Other languages
Japanese (ja)
Inventor
Tadahide Iwashita
肇秀 岩下
Yoshimitsu Hirooka
義光 廣岡
Yukihisa Mitani
恭久 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP24381398A priority Critical patent/JP2000070968A/en
Publication of JP2000070968A publication Critical patent/JP2000070968A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Catalysts (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a decomposing method of organic matter by using a photocatalyst for decomposition of org. matter by which the purification efficiency by the photocatalyst is improved, the time required for purification can be largely decreased even when a light source of small electric power is used, and the device can be reduced in size. SOLUTION: A transparent synthetic quartz glass tube 20 is filled with a photocatalyst 2 for decomposition of org. matter, and while the synthetic quartz glass tube 20 is irradiated with UV rays through its outer face, a liquid 22 to be treated containing harmful org. matter or the like is passed through the glass tube 20 to decompose the org. matter. In this method, before the liquid 22 is passed through the glass tube 20, hydrogen peroxide water 25 is added to the liquid and ozone 26 is blown into the liquid.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、下記1)〜4)の廃
水処理や浄水処理などの環境浄化手段として好適な有機
物分解光触媒を用いた有機物分解方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for decomposing an organic substance using a photocatalyst for decomposing an organic substance, which is suitable as an environmental purification means such as a wastewater treatment and a water purification treatment of the following 1) to 4).

【0002】近年、生活排水や産業廃水などによる水質
汚染、例えば、1)ハイテク産業やクリーニング業で使わ
れる有機溶剤による地下水や水源の汚染、2)合成洗剤な
どの生活排水による湖・河川の富栄養化や水源の汚染、
3)ゴルフ場で使用される農薬の流出による水質の汚染、
4)浄水処理に使われる塩素が被処理水中に含まれる有機
物と反応することによる有害物質の生成などによる水源
の汚染など、環境の汚染が重大な社会問題となってい
る。
In recent years, water pollution due to domestic wastewater and industrial wastewater, for example, 1) contamination of groundwater and water sources by organic solvents used in high-tech and cleaning industries, and 2) wealth of lakes and rivers due to domestic wastewater such as synthetic detergents. Nutrition and contamination of water sources,
3) Water pollution due to spillage of pesticides used in golf courses,
4) Environmental pollution has become a serious social problem, such as pollution of water sources due to the generation of harmful substances due to the reaction of chlorine used in water purification treatment with organic substances contained in the water to be treated.

【0003】[0003]

【従来の技術】従来、汚染水の有害物質の除去方法とし
て、例えば、活性汚泥法により有害物質を分解する方法
が実用化されている。この方法は、処理能力が低く、汚
泥臭の発散が避けられないという問題がある。
2. Description of the Related Art Conventionally, as a method for removing harmful substances from contaminated water, for example, a method of decomposing harmful substances by an activated sludge method has been put to practical use. This method has a problem that the processing capacity is low and the emission of sludge odor cannot be avoided.

【0004】そこで、半導体(例えば、酸化チタン)に
光を照射すると強い還元作用をもつ電子と、強い酸化作
用をもつ正孔が生成し、半導体に接触した分子種(有機
物)を酸化還元作用により分解する(光触媒作用とい
う)ことに着目して、光触媒作用を有する触媒として特
許第2600103号公報に記載のように、「表面に孔
径の揃った細孔を有する酸化チタン膜で表面が被覆さ
れ、かつ球状の耐熱ガラスが融着してできている光触媒
フィルター」が開示されている。この光触媒フィルター
は、電灯あるいは太陽光などの外部からの光を受けてフ
ィルター表面の酸化チタンに生成した電子と正孔の酸化
還元作用により、悪臭やNOx ,SOx などの空気中の
有害物質、あるいは水中に溶解している有機溶剤や農薬
などの環境を汚染している有機化合物を分解するもので
ある。上記の特許公報には、表面積が最も広いという観
点から、シリカゲルや耐熱ガラスの球形ペレットを基体
とし、その表面に酸化チタン薄膜を被覆した有機物分解
光触媒が好ましい旨、記載されている。
When a semiconductor (for example, titanium oxide) is irradiated with light, electrons having a strong reducing action and holes having a strong oxidizing action are generated, and molecular species (organic substances) contacting the semiconductor are reduced by the redox action. Paying attention to decomposition (referred to as photocatalysis), as described in Japanese Patent No. 2600103 as a catalyst having photocatalysis, "the surface is coated with a titanium oxide film having pores with uniform pore diameters on the surface, And a photocatalytic filter formed by fusing spherical heat-resistant glass. The photocatalytic filter, the redox action of electrons and holes generated in the titanium oxide filter surface receives light from the outside, for example, electric lights or sunlight, toxic substances in the air such as malodors or NO x, SO x Or, it decomposes organic compounds polluting the environment such as organic solvents and pesticides dissolved in water. From the viewpoint of the largest surface area, the above-mentioned patent publication describes that an organic substance decomposition photocatalyst having a spherical pellet of silica gel or heat-resistant glass as a base and a titanium oxide thin film coated on the surface thereof is preferable.

【0005】また、特開平5−253581号公報に
は、「内側に酸化チタン膜を被覆した容器に被処理水を
入れ、過酸化水素と銅イオンを添加し、光を照射する廃
水処理方法」が記載されている。
JP-A-5-253581 discloses a "method of treating wastewater in which water to be treated is placed in a container coated with a titanium oxide film on the inside, hydrogen peroxide and copper ions are added, and light is irradiated." Is described.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
ような構成を有する従来の有機物分解触媒は、光触媒フ
ィルターの表面全体に酸化チタン膜を被覆しているの
で、その酸化チタン膜により光が遮断され、その光の陰
となる部分の光触媒フィルターの酸化チタン膜は活性化
せず、大量の作業環境の空気、生活排水の処理のために
は、大量の光触媒フィルターと電力容量の大きい光源を
必要とし、しかも処理に長時間を要するという問題点が
ある。
However, in the conventional organic substance decomposition catalyst having the above structure, the entire surface of the photocatalyst filter is covered with the titanium oxide film, so that the light is blocked by the titanium oxide film. The titanium oxide film of the photocatalyst filter in the shaded area of the light does not activate, and a large amount of photocatalyst filter and a light source with a large power capacity are required to treat a large amount of work environment air and domestic wastewater. In addition, there is a problem that the processing takes a long time.

【0007】また、特開平5−253581号公報に記
載の廃水処理方法では、過酸化水素水の混合量に関係者
の健康上等の配慮に基づく制限があり、処理速度改善に
限界がある。
Further, in the wastewater treatment method described in Japanese Patent Application Laid-Open No. 5-253581, there is a limit on the amount of hydrogen peroxide mixed based on the health of concerned persons and the like, and there is a limit in improving the treatment speed.

【0008】本発明は上述の点に鑑みなされたもので、
光触媒による浄化効率を向上し、小電力の光源を用いて
も浄化に要する時間が大幅に短縮でき、しかも装置の小
型化も図れる有機物分解光触媒を用いた有機物分解方法
を提供することを目的としている。
[0008] The present invention has been made in view of the above points,
It is an object of the present invention to provide an organic matter decomposition method using a photocatalyst, which can improve purification efficiency by a photocatalyst, greatly reduce the time required for purification even with a low-power light source, and can reduce the size of the apparatus. .

【0009】[0009]

【課題を解決するための手段】上記した課題を解決する
ために本発明に係る有機物分解光触媒を用いた有機物分
解方法は、有機物分解光触媒を透明な筒体に充填し、そ
の外周面より紫外線を照射しながら前記筒体に有機物を
含有する被処理水を流通させて有機物を分解する方法で
あって、前記筒体に前記被処理液を流通する手前(上流
側)で同被処理液に、過酸化水素水を添加するととも
に、オゾンを吹き込むことを特徴とするものである。
According to the present invention, there is provided a method for decomposing an organic substance using a photocatalyst for decomposing an organic substance, wherein the photocatalyst for decomposing an organic substance is filled in a transparent cylinder, and ultraviolet light is irradiated from the outer peripheral surface thereof. A method for decomposing an organic substance by circulating water to be treated containing an organic substance through the cylindrical body while irradiating the liquid to be treated, wherein the liquid to be treated is circulated before the liquid to be treated is circulated through the cylindrical body (upstream side). It is characterized by adding hydrogen peroxide solution and blowing ozone.

【0010】詳細は後述する有機物分解光触媒を透明な
筒体(例えば、合成石英ガラス管)に充填し、その外周
面より紫外線を照射することにより前記有機物分解光触
媒を活性化する。この筒体に処理対象となる有機物を含
有する被処理液を流通し、活性化された光触媒に接する
ことにより有機物を分解するもので、この有機物分解方
法において筒体に前記被処理液を流通する手前でその被
処理液に、所定量の過酸化水素水を添加するとともに、
オゾンを吹き込む。過酸化水素水を被処理液中に添加
し、光を照射することにより、OHラジカルが効率よく
発生し、それによって前記有機物分解光触媒との相乗効
果もあり、難分解性の汚染物質が容易かつ迅速に分解さ
れる。なお、過酸化水素水の添加量は、多いほど有機物
の分解速度は促進されるが、取り扱い関係者の健康上の
理由等により混合量が被処理液に対して5%未満である
ことが法的に規制されている。そこで、本発明によれ
ば、過酸化水素水を添加するとともに、光照射により容
易に分解するオゾン(O3 )を追加することにより活性
酸素の発生を増大させて、有機物の分解速度を一層促進
し、処理時間を短縮しようとするものである。
A transparent cylindrical body (for example, a synthetic quartz glass tube) is filled with an organic substance decomposing photocatalyst described later in detail, and the organic substance decomposing photocatalyst is activated by irradiating ultraviolet rays from the outer peripheral surface thereof. The liquid to be treated containing the organic substance to be treated is circulated through the cylinder, and the organic substance is decomposed by contacting the activated photocatalyst. In the organic substance decomposition method, the liquid to be treated is circulated through the cylinder. Along with adding a predetermined amount of aqueous hydrogen peroxide to the liquid to be treated,
Inject ozone. By adding a hydrogen peroxide solution to the liquid to be treated and irradiating light, OH radicals are efficiently generated, thereby having a synergistic effect with the organic substance decomposing photocatalyst, and easily decomposing contaminants are easily generated. Decomposes quickly. Although the decomposition rate of organic substances increases as the amount of added hydrogen peroxide increases, the mixing amount should be less than 5% of the liquid to be treated for reasons such as the health of persons involved in the handling. Regulated. Therefore, according to the present invention, the generation of active oxygen is increased by adding hydrogen peroxide water and ozone (O 3 ) which is easily decomposed by light irradiation, thereby further accelerating the decomposition rate of organic substances. However, the processing time is to be shortened.

【0011】請求項2に記載の有機物分解方法に用いら
れる前記有機物分解光触媒は、棒状の透明な耐熱ガラス
ペレットを基体として、その外周面にのみ酸化チタン薄
膜光触媒層を被装し、前記基体の両端部にガラス面を露
呈させている。
The organic matter decomposition photocatalyst used in the organic matter decomposition method according to claim 2 comprises a rod-shaped transparent heat-resistant glass pellet as a substrate, and a titanium oxide thin film photocatalyst layer is provided only on the outer peripheral surface thereof. Glass surfaces are exposed at both ends.

【0012】酸化チタン薄膜光触媒を支持する基体とな
る棒状の耐熱ガラスペレットは、短寸で形状が円筒状、
角柱状等からなり、耐熱ガラスとして石英ガラス、ケイ
酸ガラス、アルミナケイ酸ガラス、ホウケイ酸ガラスな
どが使用される。基体は光の透過率が高いことが好まし
く、かつ、酸化チタン膜を焼成する際に500〜600
℃の温度となるからである。その棒状の基体の両端部に
は、酸化チタン膜が全く被装されておらず、透明なガラ
ス面を露呈しているため、照射光は両端のガラス面より
基体内に透過し、酸化チタン薄膜光触媒(層)を内側よ
り活性化すると共に、基体を一端から他端にわたって透
過し、他端から外部に放出され、他端側に隣接する有機
物分解光触媒に光が照射される。このようにして照射し
た光は、次々と有機物分解触媒(層)に当たり、表面に
被装された酸化チタン薄膜光触媒を活性化する。
The rod-shaped heat-resistant glass pellet serving as a substrate for supporting the titanium oxide thin-film photocatalyst is short and cylindrical in shape.
Quartz glass, silicate glass, alumina silicate glass, borosilicate glass, or the like is used as the heat-resistant glass. It is preferable that the substrate has high light transmittance, and when the titanium oxide film is fired,
This is because the temperature becomes ° C. At both ends of the rod-shaped substrate, the titanium oxide film is not covered at all, and the transparent glass surface is exposed, so that the irradiation light passes through the glass surfaces at both ends into the substrate, and the titanium oxide thin film is formed. The photocatalyst (layer) is activated from the inside, passes through the substrate from one end to the other end, is emitted to the outside from the other end, and is irradiated with light to the organic matter decomposition photocatalyst adjacent to the other end. The light thus irradiated hits the organic substance decomposition catalyst (layer) one after another, and activates the titanium oxide thin film photocatalyst coated on the surface.

【0013】請求項3に記載の有機物分解方法に用いら
れる前記有機物分解光触媒は、管状の透明な耐熱ガラス
ペレットを基体としてその外周面および内周面に酸化チ
タン薄膜光触媒層を被装し、前記基体の両端部にガラス
面を露呈させている。
The organic substance decomposition photocatalyst used in the organic substance decomposition method according to claim 3 is provided with a titanium oxide thin film photocatalyst layer on an outer peripheral surface and an inner peripheral surface of a tubular transparent heat-resistant glass pellet. Glass surfaces are exposed at both ends of the base.

【0014】本請求項で用いられる有機物分解光触媒
は、前記請求項2記載の耐熱ガラスと同様の耐熱ガラス
を使用し、形状は円管状、角管状等を問わず中空管体
(筒体)であって、短寸のペレット状に成形されてい
る。その管状の耐熱ガラスペレット(管状ペレットとも
いう)の両端部は透明なガラス面が直接露呈している。
つまり、その管状ペレットの外周面および内周面にだけ
酸化チタン薄膜光触媒を被装され、両端部にはそれを被
装していないから、酸化チタン薄膜光触媒による有機物
分解に必要な光は、外周面の酸化チタン薄膜光触媒層に
当たって活性化するとともに、管状ペレットの中空部に
両端の開口から直接に、あるいは両端のガラス面を透過
して照射され、内周面に被装された酸化チタン薄膜光触
媒層を活性化させる。これによって管状ペレットの中空
部を流通する被処理液に含有される有機物を分解する。
すなわち、外周面および内周面の両周面に酸化チタン薄
膜光触媒層を被装しているので、請求項2に記載の光触
媒に比しても酸化チタン薄膜光触媒層の面積が更に拡大
し、それに接触する被処理液の有機物の分解作用が一層
効率よく進められる。
The organic substance decomposition photocatalyst used in the present invention is made of a heat-resistant glass similar to the heat-resistant glass described in the above-mentioned claim 2, and has a hollow tubular body (cylindrical body) irrespective of a circular tubular shape or a square tubular shape. And is formed into a short pellet. At both ends of the tubular heat-resistant glass pellet (also referred to as a tubular pellet), a transparent glass surface is directly exposed.
In other words, since the titanium oxide thin film photocatalyst is coated only on the outer peripheral surface and the inner peripheral surface of the tubular pellet, and is not coated on both ends, the light necessary for the decomposition of the organic substance by the titanium oxide thin film photocatalyst is emitted to the outer periphery. The titanium oxide thin-film photocatalyst is applied to the hollow part of the tubular pellet directly from the openings at both ends or through the glass surfaces at both ends, and is activated while hitting the titanium oxide thin-film photocatalyst layer on the surface. Activate the layer. This decomposes organic substances contained in the liquid to be treated flowing through the hollow portion of the tubular pellet.
That is, since the titanium oxide thin film photocatalyst layer is covered on both the outer peripheral surface and the inner peripheral surface, the area of the titanium oxide thin film photocatalyst layer is further increased as compared with the photocatalyst according to claim 2, The decomposing action of the organic matter in the liquid to be treated coming into contact therewith is more efficiently promoted.

【0015】しかも請求項2に記載の光触媒と同様に、
基体の両端部には透明なガラス面を露呈させているた
め、照射光は両端のガラス面より中空な基体内に透過
し、酸化チタン薄膜光触媒層を内側より活性化すると共
に、中空な基体を一端から他端にわたって透過し、他端
から外部へ放出され、他端側に隣接する有機物分解光触
媒に光が照射され、次々と有機物分解光触媒に当たり、
表面に被装された酸化チタン薄膜光触媒を活性化すると
いう作用を発揮する。さらに、有機物分解光触媒を所定
の透明容器内に充填し、光を照射しながらその透明容器
内に処理対象液を通過させた際に、その液は有機物分解
光触媒の外周面の酸化チタン薄膜光触媒層に接触すると
ともに、内周面の酸化チタン薄膜光触媒層にも接触する
ことがあるので、光触媒作用は一層強力である。
Further, similar to the photocatalyst according to claim 2,
Since the transparent glass surfaces are exposed at both ends of the substrate, the irradiation light penetrates into the hollow substrate from the glass surfaces at both ends to activate the titanium oxide thin film photocatalyst layer from the inside and to remove the hollow substrate. Transmitted from one end to the other end, emitted from the other end to the outside, light is irradiated on the organic matter decomposition photocatalyst adjacent to the other end side, and hits the organic matter decomposition photocatalyst one after another,
It exerts the effect of activating the titanium oxide thin film photocatalyst covered on the surface. Furthermore, when the organic substance decomposition photocatalyst is filled in a predetermined transparent container and the liquid to be treated is passed through the transparent container while irradiating light, the liquid is applied to the titanium oxide thin film photocatalyst layer on the outer peripheral surface of the organic substance decomposition photocatalyst. The photocatalytic action is even stronger because the photocatalytic layer may come into contact with the titanium oxide thin film photocatalyst layer on the inner peripheral surface in some cases.

【0016】請求項4に記載の有機物分解方法は、前記
過酸化水素水として水を電気分解することにより製造さ
れた過酸化水素含有水を使用する。過酸化水素水は、工
業的には2−アルキルアントラキノールを自動酸化させ
て得られる。また30〜35%水溶液として市販されて
おり、3%水溶液をオキシドールとよび、消毒殺菌剤と
して使用されているが、高価であり、多量の使用には不
向きである。そこで、本発明では過酸化水素水として、
+電極として活性炭素板を、−電極としてチタン金属板
を使用して水を電気分解することにて得られる過酸化水
素含有水を使用する。これにより、安価な過酸化水素水
を多量に使用することが可能になる。
According to a fourth aspect of the present invention, in the method for decomposing an organic substance, water containing hydrogen peroxide produced by electrolyzing water is used as the hydrogen peroxide solution. Hydrogen peroxide solution is industrially obtained by autoxidizing 2-alkylanthraquinol. It is commercially available as a 30-35% aqueous solution, and a 3% aqueous solution is called oxidol, which is used as a disinfectant and disinfectant, but is expensive and unsuitable for use in large quantities. Therefore, in the present invention, as a hydrogen peroxide solution,
Hydrogen peroxide-containing water obtained by electrolyzing water using an activated carbon plate as a positive electrode and a titanium metal plate as a negative electrode is used. This makes it possible to use a large amount of inexpensive hydrogen peroxide solution.

【0017】請求項5に記載の有機物分解方法は、被処
理液中に吹き込んで混合するオゾンとして、空気を例え
ば管体内に流通させながら180nm(ナノメートル)前
後の紫外線を照射して得られるオゾン含有空気を使用す
る。通常、オゾンは乾いた気体酸素中で放電して得ら
れ、また、酸素の加熱もしくは硫酸の電解等によっても
得られるが、このように、通常の、例えば180nm前後
よりも長い波長の紫外線を空気に照射する場合には、オ
ゾンの発生と同時にNOx が発生し、二次公害の問題な
どが生じるおそれがあるので好ましくない。これに対
し、本請求項の発明においては、空気に照射する紫外線
の波長を180nm前後に設定して使用するので、オゾン
とともにNOx が発生するのを確実に阻止することがで
きる。
In the organic matter decomposition method according to the present invention, as the ozone to be blown into the liquid to be treated and mixed, the ozone can be obtained by irradiating ultraviolet rays of about 180 nm (nanometer) while circulating air through a tube, for example. Use contained air. Usually, ozone is obtained by discharging in dry gaseous oxygen, and also by heating oxygen or electrolyzing sulfuric acid. In this way, ordinary ultraviolet rays having a wavelength longer than, for example, about 180 nm are exposed to air. unfavorable in the case of irradiation is generated occurs at the same time NO x ozone, there is a possibility that such secondary pollution problems arise. In contrast, in the invention of this claim, since the use by setting the wavelength of ultraviolet to be irradiated to the air around 180 nm, it is possible to reliably prevent the NO x is generated with ozone.

【0018】[0018]

【発明の実施の形態】以下、本発明に係る有機物分解触
媒を用いた有機物分解方法について各実施の形態を図面
に基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of an organic substance decomposition method using an organic substance decomposition catalyst according to the present invention will be described below with reference to the drawings.

【0019】実施例1 試験器は図1に示すように、有機物分解光触媒10を充
填する所定の透明な合成石英ガラス筒体20(内径=1
6mm、内径=13mm、長さ=500mm)と、その
下部に取り付けられた混合手段27と、合成石英ガラス
筒体20の側方に紫外線を照射する棒状光源23と、さ
らにその周囲を取り囲む乱反射鏡24とを備えている。
[0019] Example 1 tester as shown in FIG. 1, a predetermined transparent synthetic filling the organic decomposition photocatalyst 10 quartz glass cylinder 20 (inner diameter = 1
6 mm, inner diameter = 13 mm, length = 500 mm), a mixing means 27 attached to the lower part thereof, a rod-shaped light source 23 for irradiating ultraviolet rays to the side of the synthetic quartz glass cylinder 20, and a diffuse reflection mirror surrounding the periphery thereof 24.

【0020】合成石英ガラス筒体20には、有機物分解
光触媒10を100gほど充填している。有機物分解光
触媒10は公知のもので、図2に示すように、基体とし
て直径約3mmのシリカゲルで形成した球体にチタニア
ゾル溶液にディッピングし、乾燥、焼成して、その球形
の基体の表面10eの酸化チタン薄膜光触媒層3を被装
している。
The synthetic quartz glass cylinder 20 is filled with about 100 g of the organic matter decomposition photocatalyst 10. The organic matter decomposition photocatalyst 10 is a known one. As shown in FIG. 2, a sphere formed of silica gel having a diameter of about 3 mm as a substrate is dipped in a titania sol solution, dried and calcined to oxidize the surface 10e of the spherical substrate. The titanium thin film photocatalyst layer 3 is covered.

【0021】処理対象とする有機物含有試料は、メチレ
ンブルー100ppmの被処理液22に過酸化水素水2
5を流路途中に注入して混合部27にて混合して過酸化
水素量を本例では3%の濃度にすると同時に、オゾン2
6を前記混合部27付近で被処理液22に対し吹き込む
ことにより、本例では3%の濃度に混合している。な
お、被処理液22の50mlを、10ml/minの流速
で合成石英ガラス筒体20内を下方より上方に流通させ
て循環させる(循環手段はポンプ、図示せず)。
An organic substance-containing sample to be treated is prepared by adding hydrogen peroxide solution 2
5 is injected in the middle of the flow path and mixed in the mixing section 27 to reduce the amount of hydrogen peroxide to 3% in this example,
6 is blown into the liquid to be treated 22 in the vicinity of the mixing section 27, whereby the liquid is mixed to a concentration of 3% in this example. In addition, 50 ml of the liquid to be treated 22 is circulated at a flow rate of 10 ml / min through the synthetic quartz glass cylinder 20 from above to below (circulation means is a pump, not shown).

【0022】また、合成石英ガラス筒体20の側方よ
り、棒状光源23により照射する。棒状光源23は、本
試験では253.7nmの波長を主体として照射するUV
(紫外線)ランプを使用し、上記合成石英ガラス筒体2
0を挟んで相対向する位置に対をなして立設されてい
る。さらに乱反射板24が、合成石英ガラス筒体20を
中心に、棒状光源23の外側にあってそれらを取り囲ん
で設けられるが、乱反射板24の内周面は乱反射鏡で形
成されている。このため、一対の棒状光源(UVラン
プ)23から照射される光は、直接におよび乱反射鏡で
反射されて石英ガラス筒体20の周囲の全方向から有機
物分解光触媒10に照射される。こうして、被処理液の
光線透過率が95%以上の透明度となるまでの時間と光
源の電力量とを測定してその処理方法の有機物分解性能
の指標とした。
Further, irradiation is performed by a rod-shaped light source 23 from the side of the synthetic quartz glass cylinder 20. In this test, the rod-shaped light source 23 irradiates mainly with a wavelength of 253.7 nm.
Using an (ultraviolet) lamp, the above synthetic quartz glass cylinder 2
A pair is erected at positions opposing each other with respect to 0. Further, a diffuse reflection plate 24 is provided outside the rod-shaped light source 23 around the synthetic quartz glass tube 20 so as to surround them, and the inner peripheral surface of the diffuse reflection plate 24 is formed by a diffuse reflection mirror. For this reason, the light emitted from the pair of rod-shaped light sources (UV lamps) 23 is reflected directly and irregularly on the mirror, and is applied to the organic matter decomposition photocatalyst 10 from all directions around the quartz glass cylinder 20. In this way, the time until the light transmittance of the liquid to be treated becomes 95% or more of transparency and the electric energy of the light source were measured and used as an index of the organic substance decomposition performance of the treatment method.

【0023】この実施例1においては、棒状光源23を
500Wとした場合、光線透過率が95%となるまでの
時間は、おおむね2時間であった。
In Example 1, when the rod-like light source 23 was set to 500 W, the time required for the light transmittance to reach 95% was approximately 2 hours.

【0024】比較例1 実施例1において有機物含有試料としての被処理液22
ににオゾンを3%の濃度になるように吹き込んで添加し
たが、比較例1においては過酸化水素水を3%の濃度に
なるように添加しただけで、オゾンは一切添加していな
い。これ以外の条件は実施例1と同じとした。実験の結
果は、棒状光源23を500Wとした場合に、光線透過
率が95%になるまでにほぼ3時間を要した。
The treated as an organic substance-containing sample in Comparative Example 1 Example 1 was 22
Ozone was blown into the mixture to a concentration of 3%, but in Comparative Example 1, only hydrogen peroxide solution was added to a concentration of 3%, and no ozone was added. Other conditions were the same as in Example 1. As a result of the experiment, when the rod-shaped light source 23 was set to 500 W, it took about 3 hours until the light transmittance became 95%.

【0025】実施例2 実施例1の有機物分解光触媒10に替えて有機物分解光
触媒1を使用した。有機物分解光触媒1は図3に斜視図
を示すように、基体が石英ガラスから形成した透明な耐
熱ガラス棒を使用した短寸で細径の丸棒状の耐熱ガラス
ペレットからなり、その外周面1aに酸化チタン薄膜光
触媒3が被装され、両端部1cに透明なガラス面4が酸
化チタン膜光触媒3が被装されずに露呈している。この
有機物分解光触媒1は、本例では直径2〜2.5mm
で、長さが2〜5mmである。有機物分解光触媒1を使
用する以外の条件は、実施例1と同じである。実験の結
果は、棒状光源23を72Wとした場合に、光線透過率
が95%になるまでに1/6時間(10分)を要した。
Example 2 An organic matter decomposition photocatalyst 1 was used in place of the organic matter decomposition photocatalyst 10 of Example 1. As shown in a perspective view in FIG. 3, the organic matter decomposition photocatalyst 1 is made of a short, small-diameter round rod-shaped heat-resistant glass pellet using a transparent heat-resistant glass rod formed of quartz glass, and has an outer peripheral surface 1a formed on the outer surface 1a. A titanium oxide thin film photocatalyst 3 is provided, and transparent glass surfaces 4 are exposed at both ends 1c without the titanium oxide film photocatalyst 3 being provided. This organic matter decomposition photocatalyst 1 has a diameter of 2 to 2.5 mm in this example.
And the length is 2 to 5 mm. The conditions other than the use of the organic matter decomposition photocatalyst 1 are the same as those in Example 1. As a result of the experiment, when the rod-shaped light source 23 was set to 72 W, it took 1/6 hour (10 minutes) until the light transmittance became 95%.

【0026】実施例3 実施例1の有機物分解光触媒10に変えて有機物分解光
触媒2を使用した。有機物分解光触媒2は図4に斜視図
を示すように、基体が石英ガラスからなる管状の透明な
耐熱ガラスペレットであって、その外周面2aおよび中
空部2dの内周面2bの両面にそれぞれ酸化チタン薄膜
光触媒3を被装し、両端部2cに透明なガラス面8が露
呈され、そこには酸化チタン膜光触媒3が被装されてい
ない。有機物分解光触媒2を使用する以外の条件は、実
施例1と同じである。実験の結果は、棒状光源23を7
2Wとした場合に、光線透過率が95%になるまでに1
/15時間(4分)を要した。有機物分解光触媒2は、
図5に示すように、図1と同一構造の合成石英ガラス筒
体20に充填して使用されている。その他の構成につい
ても共通するので、説明を省略し、同一部材は同一の符
号を用いて示す。
Example 3 An organic substance decomposition photocatalyst 2 was used in place of the organic substance decomposition photocatalyst 10 of Example 1. As shown in the perspective view of FIG. 4, the organic matter decomposition photocatalyst 2 is a tubular heat-resistant glass pellet whose base is made of quartz glass, and is oxidized on both surfaces of an outer peripheral surface 2a and an inner peripheral surface 2b of a hollow portion 2d. The titanium thin film photocatalyst 3 is covered, and the transparent glass surface 8 is exposed at both ends 2c, and the titanium oxide film photocatalyst 3 is not covered there. The conditions other than the use of the organic matter decomposition photocatalyst 2 are the same as those of the first embodiment. The results of the experiment show that the rod-shaped light source 23
In the case of 2 W, 1 is required until the light transmittance becomes 95%.
/ 15 hours (4 minutes) were required. The organic matter decomposition photocatalyst 2
As shown in FIG. 5, a synthetic quartz glass cylinder 20 having the same structure as that of FIG. Since other configurations are common, the description is omitted, and the same members are denoted by the same reference numerals.

【0027】以上記述した実施例1,実施例2、実施例
3および比較例1の有機物分解性能の指標を、表1にま
とめる。
Table 1 summarizes the indices of the organic substance decomposition performance of Examples 1, 2 and 3 and Comparative Example 1 described above.

【0028】 表1 光源の電力量 所要時間 実施例1 500W 2時間 実施例2 72W 1/6時間(10分) 実施例3 72W 1/15時間(4分) 比較例1 500W 3時間 表1に示すように、従来の有機物分解方法(比較例1)
では、光線透過率が95%の透明度に達するまでには、
500Wの棒状光源23を使用して3時間を要するが、
実施例1の有機物分解光触媒10を使用した場合には、
比較例1と同様に棒状光源23の電力量を500Wとす
れば、光線透過率が95%の透明度に達するまでの時間
が2時間に短縮された。オゾンを吹き込むことにより法
的に規制された過酸化水素水の上限(濃度5%未満)を
越えて活性酸素量が確保され、その添加量に反比例して
所要時間が短縮される。オゾンの添加量には制限がな
く、紫外線照射により完全に分解するので、コスト的に
満足される限り増量できる。
Table 1 Required time of electric power of light source Example 1 500W 2 hours Example 2 72W 1/6 hours (10 minutes) Example 3 72W 1/15 hours (4 minutes) Comparative Example 1 500W 3 hours As shown, the conventional organic matter decomposition method (Comparative Example 1)
Then, before the light transmittance reaches 95% transparency,
It takes 3 hours using a 500 W bar light source 23,
When the organic matter decomposition photocatalyst 10 of Example 1 was used,
When the electric energy of the rod-shaped light source 23 was set to 500 W as in Comparative Example 1, the time required for the light transmittance to reach 95% transparency was reduced to 2 hours. By blowing ozone, the amount of active oxygen is secured above the legally regulated upper limit of hydrogen peroxide (concentration less than 5%), and the required time is shortened in inverse proportion to the amount of active oxygen added. There is no limitation on the amount of ozone to be added, and the ozone is completely decomposed by ultraviolet irradiation, so that the amount can be increased as far as the cost is satisfied.

【0029】実施例2及び実施例3によれば、有機物分
解光触媒を改善することにより、光線透過率が95%に
達する所要時間は更に短縮され、比較例に比して1/1
8、1/45に短縮される。
According to Examples 2 and 3, the time required for the light transmittance to reach 95% was further shortened by improving the organic matter decomposing photocatalyst, and was 1/1 times that of the comparative example.
8, reduced to 1/45.

【0030】上記の有機物分解方法には、過酸化水素水
が多量に使用されるが、市販の過酸化水素水は上記した
とおり高価であり、そこで本発明では過酸化水素水とし
て、陽極として活性炭素板を、陰極としてチタン金属板
を用いて水を電気分解して得られた過酸化水素含有水を
使用することによる、安価な過酸化水素水を多量に使用
することができる。
Although a large amount of aqueous hydrogen peroxide is used in the above-mentioned organic matter decomposition method, commercially available aqueous hydrogen peroxide is expensive as described above. By using hydrogen peroxide-containing water obtained by electrolyzing water using a titanium metal plate as a cathode and a carbon metal plate, a large amount of inexpensive hydrogen peroxide water can be used.

【0031】また、オゾンは、空気に対し180nm前後
の紫外線を照射して得られるオゾンを使用するから、通
常の紫外線の放電により又は波長範囲の広い紫外線によ
り空気を照射してオゾンを発生させる場合と違って同時
にNOx が発生することが防止される。
Since ozone is obtained by irradiating air with ultraviolet rays of about 180 nm, ozone is generated by irradiating air by ordinary ultraviolet discharge or by irradiating air with ultraviolet rays having a wide wavelength range. Unlike this, generation of NO x at the same time is prevented.

【0032】[0032]

【発明の効果】以上説明したことから明らかなように、
本発明に係るの有機物分解光触媒を用いた有機物分解方
法には、つぎのような優れた効果がある。
As is apparent from the above description,
The organic substance decomposition method using the organic substance decomposition photocatalyst according to the present invention has the following excellent effects.

【0033】(1) 請求項1の発明では、公知の有機物
分解光触媒を使用し被処理液に過酸化水素水を添加する
従来の方法を改善して、オゾンも添加するようにしたの
で、過酸化水素水中の酸素とオゾン中の酸素によりOH
ラジカルが効率よく発生し、これによって有機物分解光
触媒との相乗効果が最大限に発揮され、難分解性の汚染
物質でも確実にかつ迅速に分解される。しかも、過酸化
水素水だけを添加する場合にはその添加量は多いほど有
機物の分解速度は促進されるが、添加量が被処理液に対
して溶解濃度5%未満であることが法的に規制されてい
るので、添加量に制限があって十分に有機物分解光触媒
を用いた効果を発揮できなかったが、過酸化水素水を添
加するとともに、光照射により容易に分解するオゾン
(O3 )を追加することにより活性酸素の発生を増大さ
せて、有機物の分解速度を一層促進させられるので、処
理時間をかなり短縮することができる。
(1) According to the first aspect of the invention, ozone is also added by improving the conventional method of adding aqueous hydrogen peroxide to the liquid to be treated by using a known organic substance decomposition photocatalyst. OH by oxygen in hydrogen oxidized water and oxygen in ozone
Radicals are efficiently generated, thereby maximizing the synergistic effect with the organic matter decomposing photocatalyst, and even hardly decomposable pollutants are surely and rapidly decomposed. In addition, when only the hydrogen peroxide solution is added, the decomposition rate of the organic matter is accelerated as the addition amount increases, but it is legally required that the addition amount is less than 5% of the dissolved concentration in the liquid to be treated. Due to the regulation, the amount of addition was limited and the effect of using the organic matter decomposing photocatalyst could not be sufficiently exhibited, but ozone (O 3 ) which is easily decomposed by light irradiation with addition of hydrogen peroxide solution Is added, the generation of active oxygen is increased, and the decomposition rate of organic substances can be further promoted, so that the processing time can be considerably reduced.

【0034】(2) 請求項2の発明では、有機物分解光
触媒が、両端部にガラス面が露呈している短寸棒状の耐
熱ガラスに酸化チタン薄膜を被装しているので、照射す
る紫外線が前記ガラス面を露呈している両端部を通過し
て隣り合う有機物分解光触媒を活性化するので、充填さ
れた有機物分解光触媒全体が活性化されて、有機物分解
を促進する。このため、処理時間を比較例1(従来の方
法)に比べて1/18と大幅に短縮することができる。
(2) According to the second aspect of the present invention, since the organic matter decomposition photocatalyst covers the titanium oxide thin film on the short rod-shaped heat-resistant glass having the glass surfaces exposed at both ends, the ultraviolet light to be irradiated is low. Since the adjacent organic substance decomposition photocatalyst is activated by passing through both ends exposing the glass surface, the whole charged organic substance decomposition photocatalyst is activated, and the decomposition of the organic substance is promoted. Therefore, the processing time can be significantly reduced to 1/18 of that in Comparative Example 1 (conventional method).

【0035】(3) 請求項3の発明では、有機物分解光
触媒が、両端部にガラス面が露呈している短寸筒体の耐
熱ガラスを基体として、その外周面および内周面に酸化
チタン薄膜を被装しているので、照射する紫外線が前記
ガラス面を露呈している両端部および中空部を通過して
隣り合う有機物分解光触媒を活性化するので、充填され
た有機物分解光触媒全体が活性化される。また、有機物
分解光触媒を基体の内外周両面に塗工しているので、有
機物分解光触媒と有機物との接触面が拡大し、有機物分
解を一層促進する。このため、処理時間を比較例(従来
の方法)に比べて1/45とより大幅に短縮できる。
(3) In the third aspect of the present invention, the organic matter decomposition photocatalyst is a heat-resistant glass having a short cylindrical shape having glass surfaces exposed at both ends, and a titanium oxide thin film is formed on the outer and inner peripheral surfaces thereof. Since ultraviolet light to be irradiated passes through both ends and the hollow portion exposing the glass surface and activates the adjacent organic substance decomposition photocatalyst, the entire charged organic substance decomposition photocatalyst is activated. Is done. Further, since the organic substance decomposing photocatalyst is applied to both the inner and outer peripheral surfaces of the substrate, the contact surface between the organic substance decomposing photocatalyst and the organic substance is enlarged, and the decomposition of the organic substance is further promoted. Therefore, the processing time can be significantly reduced to 1/45 as compared with the comparative example (conventional method).

【0036】(4) 請求項4の発明では、使用する過酸
化水素水が電気分解により生成されるので、従来の市販
のものを購入して使用する場合に比べて、あんんかにし
かも量的に多量に得られ、使用できるので、有機物分解
光触媒を用いた分解方法にか要するランニングコストが
低減され、非常に経済的である。
(4) In the invention of claim 4, since the hydrogen peroxide solution to be used is generated by electrolysis, the amount of the hydrogen peroxide solution is much smaller than that of a conventional commercially available product. Since it can be obtained in large quantities and can be used, the running cost required for the decomposition method using an organic matter decomposition photocatalyst is reduced, and it is very economical.

【0037】(5) 請求項5の発明では、使用するオゾ
ンを空気に特定波長の紫外線を照射して生成するので、
オゾンの発生と同時にNOx が発生するおそれがなく、
被処理液中に吹き込んで混合するオゾンとして、NOx
などの有害なガスの含有されていないオゾンを使用で
き、有機物分解効果が有効に発揮される。
(5) According to the fifth aspect of the invention, the ozone to be used is generated by irradiating air with ultraviolet rays of a specific wavelength.
There is no danger of NO x being generated at the same time as the generation of ozone,
As the ozone to be blown into the liquid to be treated and mixed, NO x
Ozone that does not contain harmful gases such as ozone can be used, and the organic matter decomposition effect is effectively exhibited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に係る有機物分解方法の有機物
分解性能を測定するための試験器の概要を示す斜視図
(一部断面)で、図2の公知の有機物分解触媒10を用
いている。
FIG. 1 is a perspective view (partly in section) showing an outline of a tester for measuring the organic substance decomposition performance of an organic substance decomposition method according to an embodiment of the present invention, using a known organic substance decomposition catalyst 10 of FIG. I have.

【図2】本発明(実施例1)及び比較例1に使用される
基体が玉状の有機物分解触媒を示す斜視図である。
FIG. 2 is a perspective view showing a ball-shaped organic substance decomposition catalyst used in the present invention (Example 1) and Comparative Example 1.

【図3】本発明の他の実施例に係る棒状の耐熱ガラスペ
レットを基体とした有機物分解触媒を示す斜視図であ
る。
FIG. 3 is a perspective view showing an organic matter decomposition catalyst based on rod-shaped heat-resistant glass pellets according to another embodiment of the present invention.

【図4】本発明のさらに他の実施例に係るの管状の耐熱
ガラスペレットを基体とした有機物分解触媒を示す斜視
図である。
FIG. 4 is a perspective view showing an organic substance decomposition catalyst based on a tubular heat-resistant glass pellet according to still another embodiment of the present invention.

【図5】本発明の別の実施例に係る有機物分解方法の有
機物分解性能を測定するための試験器の概要を示す斜視
図(一部断面)で、図4の有機物分解触媒2を用いてい
る。
5 is a perspective view (partially in section) showing an outline of a tester for measuring the organic substance decomposition performance of the organic substance decomposition method according to another embodiment of the present invention, using the organic substance decomposition catalyst 2 of FIG. I have.

【符号の説明】[Explanation of symbols]

1:棒状の耐熱ガラスペレットによる有機物分解触媒 2:管状の耐熱ガラスペレットによる有機物分解触媒 3:酸化チタン薄膜光触媒 4、8:端面 5:中空部 10:玉状の耐熱ガラスペレットによる有機物分解触媒 20:合成石英ガラス管 22:被処理液 23:棒状光源 25:過酸化水素水 26:オゾン 27:混合部 1: Organic substance decomposition catalyst by rod-shaped heat-resistant glass pellet 2: Organic substance decomposition catalyst by tubular heat-resistant glass pellet 3: Titanium oxide thin film photocatalyst 4, 8: End face 5: Hollow portion 10: Organic substance decomposition catalyst by ball-shaped heat-resistant glass pellet 20 : Synthetic quartz glass tube 22: Liquid to be treated 23: Rod-shaped light source 25: Hydrogen peroxide 26: Ozone 27: Mixing part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 廣岡 義光 奈良県生駒市喜里が丘2丁目5番1号 (72)発明者 三谷 恭久 島根県益田市幸町10番2号 Fターム(参考) 4D037 AA05 AA11 AB02 AB04 BA18 BB09 CA04 4D050 AA02 AA12 AB04 AB11 BB02 BB09 BC06 CA07 CA10 4G069 AA03 BA04A BA14A BA48A CA05 CA10 CA11 CA17 CA19 EA02X EA08  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Yoshimitsu Hirooka 2-5-1 Kirigaoka, Ikoma City, Nara Prefecture (72) Inventor Yasuhisa Mitani 10-2, Sachimachi, Masuda City, Shimane Prefecture F-term (reference) 4D037 AA05 AA11 AB02 AB04 BA18 BB09 CA04 4D050 AA02 AA12 AB04 AB11 BB02 BB09 BC06 CA07 CA10 4G069 AA03 BA04A BA14A BA48A CA05 CA10 CA11 CA17 CA19 EA02X EA08

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 有機物分解光触媒を透明な筒体に充填
し、その外周面より紫外線を照射しながら前記筒体に有
機物を含有する被処理水を流通する有機物分解方法であ
って、有機物分解光触媒を透明な筒体に充填し、その外
周面より紫外線を照射しながら前記筒体に有機物を含有
する被処理液を流通させて有機物を分解する方法であっ
て、 前記筒体に前記被処理液を流通する手前で同被処理液
に、過酸化水素水を添加するとともに、オゾンを吹き込
むことを特徴とする有機物分解光触媒を用いた有機物分
解方法。
An organic matter decomposition photocatalyst comprising: filling a transparent cylinder with an organic matter decomposition photocatalyst; and irradiating ultraviolet light from an outer peripheral surface of the transparent body with the water to be treated containing an organic substance. Is filled in a transparent cylinder, and a liquid to be treated containing an organic substance is passed through the cylinder while irradiating ultraviolet rays from the outer peripheral surface thereof to decompose the organic substance, and the liquid to be treated is passed through the cylinder. An organic matter decomposition photocatalyst using an organic matter decomposition photocatalyst, wherein hydrogen peroxide water is added to the liquid to be treated and ozone is blown into the liquid to be treated just before flowing.
【請求項2】 前記有機物分解光触媒が、棒状の透明な
耐熱ガラスペレットを基体としてその外周面にのみ酸化
チタン薄膜光触媒層を被装され、前記基体の両端部にガ
ラス面が露呈させている請求項1に記載の有機物分解光
触媒を用いた有機物分解方法。
2. The organic substance decomposing photocatalyst is composed of a rod-shaped transparent heat-resistant glass pellet as a substrate, and a titanium oxide thin film photocatalyst layer is provided only on an outer peripheral surface thereof, and glass surfaces are exposed at both ends of the substrate. Item 2. An organic matter decomposition method using the organic matter decomposition photocatalyst according to Item 1.
【請求項3】 前記有機物分解光触媒が、管状の透明な
耐熱ガラスペレットを基体としてその外周面および内周
面に酸化チタン薄膜光触媒層を被装され、前記基体の両
端部にガラス面を露呈させている請求項1に記載の有機
物分解方法。
3. The photocatalyst for decomposing organic matter is provided with a titanium oxide thin film photocatalyst layer on the outer peripheral surface and inner peripheral surface of a tubular transparent heat-resistant glass pellet as a base, and exposes glass surfaces at both ends of the base. The organic matter decomposition method according to claim 1, wherein
【請求項4】 前記過酸化水素水が、水を電気分解する
ことにより製造された過酸化水素水である請求項1〜3
のいずれかに記載の有機物分解光触媒を用いた有機物分
解方法。
4. The hydrogen peroxide solution is a hydrogen peroxide solution produced by electrolyzing water.
An organic matter decomposition method using the organic matter decomposition photocatalyst according to any one of the above.
【請求項5】 前記オゾンが、空気に180nm前後の紫
外線を照射して得られるオゾン含有空気である請求項1
〜4のいずれかに記載の有機物分解光触媒を用いた有機
物分解方法。
5. The ozone-containing air obtained by irradiating air with ultraviolet light having a wavelength of about 180 nm.
An organic matter decomposition method using the organic matter decomposition photocatalyst according to any one of claims 1 to 4.
JP24381398A 1998-08-28 1998-08-28 Decomposing method of organic matter using photocatalyst for decomposition of organic matter Pending JP2000070968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24381398A JP2000070968A (en) 1998-08-28 1998-08-28 Decomposing method of organic matter using photocatalyst for decomposition of organic matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24381398A JP2000070968A (en) 1998-08-28 1998-08-28 Decomposing method of organic matter using photocatalyst for decomposition of organic matter

Publications (1)

Publication Number Publication Date
JP2000070968A true JP2000070968A (en) 2000-03-07

Family

ID=17109319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24381398A Pending JP2000070968A (en) 1998-08-28 1998-08-28 Decomposing method of organic matter using photocatalyst for decomposition of organic matter

Country Status (1)

Country Link
JP (1) JP2000070968A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040049470A (en) * 2002-12-06 2004-06-12 이철호 Water sterilization device
JP2007330832A (en) * 2006-06-12 2007-12-27 Masami Ouchi Water cleaning system
KR100814357B1 (en) 2006-07-25 2008-03-18 심종섭 Wastewayer treatment method using high pressure advanced oxidation processHPAOP with unreacted ozone reusing
KR101004777B1 (en) * 2008-04-22 2011-01-04 순천대학교 산학협력단 Water treatment method and apparatus using microwave and oxidant
WO2011152338A1 (en) 2010-06-04 2011-12-08 株式会社昭和 Decomposition/elimination method using a photocatalytic material
WO2017181125A1 (en) * 2016-04-14 2017-10-19 Oregon State Board Of Higher Education On Behalf Of Portland State University Rotationally symmetric photocatalytic reactor for water purification
KR101830951B1 (en) * 2016-06-13 2018-04-04 한국에너지기술연구원 Rotating-type photochemical reactor for water treatment
WO2021096319A1 (en) * 2019-11-14 2021-05-20 한국에너지기술연구원 Rotating methane pyrolysis solar reactor, and method for producing hydrogen and carbon black using same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040049470A (en) * 2002-12-06 2004-06-12 이철호 Water sterilization device
JP2007330832A (en) * 2006-06-12 2007-12-27 Masami Ouchi Water cleaning system
KR100814357B1 (en) 2006-07-25 2008-03-18 심종섭 Wastewayer treatment method using high pressure advanced oxidation processHPAOP with unreacted ozone reusing
KR101004777B1 (en) * 2008-04-22 2011-01-04 순천대학교 산학협력단 Water treatment method and apparatus using microwave and oxidant
WO2011152338A1 (en) 2010-06-04 2011-12-08 株式会社昭和 Decomposition/elimination method using a photocatalytic material
JP2012011372A (en) * 2010-06-04 2012-01-19 Showa:Kk Decomposition/elimination method using photocatalytic material
US8597603B2 (en) 2010-06-04 2013-12-03 Showa Co., Ltd. Decomposition/elimination method using a photocatalytic material
EP2578301A4 (en) * 2010-06-04 2014-11-05 Showa Co Ltd Decomposition/elimination method using a photocatalytic material
WO2017181125A1 (en) * 2016-04-14 2017-10-19 Oregon State Board Of Higher Education On Behalf Of Portland State University Rotationally symmetric photocatalytic reactor for water purification
KR101830951B1 (en) * 2016-06-13 2018-04-04 한국에너지기술연구원 Rotating-type photochemical reactor for water treatment
WO2021096319A1 (en) * 2019-11-14 2021-05-20 한국에너지기술연구원 Rotating methane pyrolysis solar reactor, and method for producing hydrogen and carbon black using same

Similar Documents

Publication Publication Date Title
US10723644B2 (en) Method for controlling chlorinated nitrogen-containing disinfection by-product in water
Chavoshan et al. Photocatalytic degradation of penicillin G from simulated wastewater using the UV/ZnO process: isotherm and kinetic study
WO2017117861A1 (en) Catalyzer for sterilizing, disinfecting and purifying air, and preparation method thereof
KR950006684B1 (en) Process and apparatus for the decomposition of organochlorine solvent contained in water
KR20110109111A (en) Apparatus and method for treating water by using plasma gun
JP2000070968A (en) Decomposing method of organic matter using photocatalyst for decomposition of organic matter
US5932111A (en) Photoelectrochemical reactor
KR20070004479A (en) The process of recirculated hybrid system composed of novel photo-catalytic reactor and biofilter to treat process-waste-air containing vocs and malodor safely and efficiently
KR101700269B1 (en) Plasma catalyst adsorption purification apparatus capable of generating ozone and removing ozone and purification method using the same
KR20000022991A (en) Method for decomposing bromic acid by photocatalyst and apparatus therefor
JP2003211173A (en) Water treatment method and apparatus and photochemical reaction liquid treatment apparatus
JP2001259620A (en) Water treating device by semiconductor photocatalyst using microwave and uv ray jointly
JP2006026194A (en) Organic matter removing apparatus
JP3118558B2 (en) Water treatment catalyst and water treatment method
JP2000024514A (en) Catalyst for decomposing organic substance and its production
JPH0466628B2 (en)
Helmy et al. Ozone-based processes in dye removal
JPH1177031A (en) Method and apparatus for ultraviolet radiation sterilizing purification
JP2000279977A (en) Fluid treatment and fluid treatment apparatus
JPH0871573A (en) Method and apparatus for water treatment by photocatalyst
JP3576474B2 (en) Decomposition method of dioxins
JP2002361095A (en) Photocatalyst body, photocatalytically deodorizing device and photocatalytically water-purifying device, using the same
JP4066041B2 (en) Water purification equipment
JP2000117271A (en) Water treating device
JP2000334446A (en) Method and device for water treatment