JP2000068718A - Connecting structure of microstrip line device, high frequency filter, transmission/reception multicoupler and communication equipment - Google Patents

Connecting structure of microstrip line device, high frequency filter, transmission/reception multicoupler and communication equipment

Info

Publication number
JP2000068718A
JP2000068718A JP10235390A JP23539098A JP2000068718A JP 2000068718 A JP2000068718 A JP 2000068718A JP 10235390 A JP10235390 A JP 10235390A JP 23539098 A JP23539098 A JP 23539098A JP 2000068718 A JP2000068718 A JP 2000068718A
Authority
JP
Japan
Prior art keywords
conductor
line
lines
electrode
microstrip line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10235390A
Other languages
Japanese (ja)
Inventor
Seiji Hidaka
青路 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP10235390A priority Critical patent/JP2000068718A/en
Publication of JP2000068718A publication Critical patent/JP2000068718A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Waveguides (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce a conductor loss due to the edge effect of a microstrip line and to improve a degree of freedom on designing for obtaining a prescribed filter characteristic. SOLUTION: Connecting electrodes 5, 6 and lines 31 to 34 as a resonator are formed on the surface of a dielectric board 1. The lines 31 and 34 are made of the aggregate of plural conductor lines and the end parts of the respective conductor lines are formed in a recessed/projected state to fit to the recessed/projected part of the electrode of its connecting opposite side while keeping a prescribed interval.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明はマイクロストリッ
プライン装置の結合構造と、その結合構造を用いた高周
波フィルタ、送受共用器および通信装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coupling structure of a microstrip line device, and a high-frequency filter, a duplexer and a communication device using the coupling structure.

【0002】[0002]

【従来の技術】従来より、高周波回路用の伝送線路とし
て、製造が容易で、小型化および薄型化が可能であると
いう利点を活かしたマイクロストリップラインが用いら
れている。
2. Description of the Related Art Conventionally, as a transmission line for a high-frequency circuit, a microstrip line has been used, which makes use of the advantages of being easy to manufacture, and capable of being reduced in size and thickness.

【0003】しかし通常のマイクロストリップラインで
は、いわゆる縁端効果により、線路の縁端部に電流が集
中して、縁端部における導体損失が著しくなる。この導
体損失の大部分が線路の縁端部の数μmの領域で生じて
いて、伝送線路の損失特性や耐電力特性が上記縁端効果
に支配されることになる。そこで、このような電極縁端
部での電流集中を緩和させることを目的とした高周波伝
送線路および誘電体共振器を、本願出願人は特願平9−
276813号にて出願している。
However, in a normal microstrip line, current is concentrated on the edge of the line due to the so-called edge effect, and the conductor loss at the edge becomes significant. Most of this conductor loss occurs in the area of several μm at the edge of the line, and the loss characteristics and power handling characteristics of the transmission line are governed by the edge effect. Accordingly, the applicant of the present invention has proposed a high-frequency transmission line and a dielectric resonator for the purpose of alleviating the current concentration at the edge of the electrode as disclosed in Japanese Patent Application No. Hei.
No. 276813.

【0004】図13は上記縁端効果を緩和させたマイク
ロストリップラインの拡大斜視図であり、誘電体板1の
図における下面にグランド電極2を形成していて、誘電
体板1の図における上面に3a,3bで示すマイクロス
トリップライン用の導体線を形成している。このように
線路の端縁部に複数の間隙4を設けることによって、3
bで示す細い副導体線を構成している。
FIG. 13 is an enlarged perspective view of a microstrip line in which the edge effect has been mitigated. The ground electrode 2 is formed on the lower surface of the dielectric plate 1 in the drawing, and the upper surface of the dielectric plate 1 in the drawing. 3a and 3b, conductor lines for a microstrip line are formed. By providing a plurality of gaps 4 at the edge of the track in this way, 3
This constitutes a thin sub-conductor line shown by b.

【0005】図14は図13に示したマイクロストリッ
プラインと従来のマイクロストリップラインのそれぞれ
の電流密度の比較例である。(A)に示すように、導体
線3a,3bのそれぞれの縁端部に電流が集中するが、
全体としては複数箇所に分散されるため、最大電流密度
が抑制される。これに対し(B)に示す従来のマイクロ
ストリップラインでは、線路3の縁端部に大きな電流集
中が生じ、この部分での導体損失が大きなものとなる。
FIG. 14 is a comparative example of current densities of the microstrip line shown in FIG. 13 and a conventional microstrip line. As shown in (A), current concentrates on the respective edges of the conductor wires 3a and 3b.
As a whole, it is dispersed at a plurality of locations, so that the maximum current density is suppressed. On the other hand, in the conventional microstrip line shown in (B), a large current concentration occurs at the edge of the line 3, and the conductor loss at this portion becomes large.

【0006】[0006]

【発明が解決しようとする課題】このように、共振器と
して用いる線路を複数本の導体線の集合体で構成した場
合に、各導体線に流れる電流位相を同一にするために、
たとえば共振器用線路と結合用電極の端部同士を、また
は共振器用線路の端部同士を付き合わせて対向配置する
ことになる。しかし、その構造では強い結合が得られ
ず、フィルタとして用いる場合の設計上の自由度が非常
に低くなるという問題があった。
As described above, when the line used as the resonator is constituted by an aggregate of a plurality of conductor lines, in order to make the current phases flowing through the respective conductor lines the same,
For example, the ends of the resonator line and the coupling electrode are opposed to each other, or the ends of the resonator line are opposed to each other. However, such a structure has a problem that strong coupling cannot be obtained, and the degree of freedom in design when used as a filter is extremely low.

【0007】また、複数の共振器を順次結合させるため
に、図15に示すように共振器用線路を互いに平行に配
置する方法も採用できるが、共振器用線路が複数本の導
体線の集合体から構成されている場合、隣接する線路間
で電磁界が乱れるおそれがある。
In order to sequentially couple a plurality of resonators, a method of arranging resonator lines in parallel with each other as shown in FIG. 15 can be adopted. However, the resonator lines are formed of an aggregate of a plurality of conductor wires. When configured, the electromagnetic field may be disturbed between adjacent lines.

【0008】この発明の目的は、マイクロストリップラ
インの縁端効果による導体損失を軽減するとともに、所
定のフィルタ特性などを得るための設計上の自由度を高
めるようにしたマイクロストリップライン装置の結合構
造、その構造を用いた高周波フィルタ、送受共用器およ
び通信装置を提供することにある。
An object of the present invention is to reduce the conductor loss due to the edge effect of a microstrip line and to increase the degree of freedom in design for obtaining predetermined filter characteristics and the like. , A high-frequency filter, a duplexer, and a communication device using the structure.

【0009】[0009]

【課題を解決するための手段】この発明は、誘電体の表
面に設けた線路と電極との結合構造であって、前記線路
をそれぞれ複数本の導体線の集合体から構成し、該複数
本の導体線の端部と前記電極の端部とを、それぞれ凹凸
状にするとともに、互いの凹凸状部分を所定の間隙を保
ってはめ込んだ形状にする。
SUMMARY OF THE INVENTION The present invention relates to a coupling structure of a line and an electrode provided on a surface of a dielectric, wherein each of the lines is constituted by an aggregate of a plurality of conductor wires. The ends of the conductor wires and the ends of the electrodes are made uneven, and the uneven portions are fitted with a predetermined gap therebetween.

【0010】この構造により共振器用線路または伝送線
路と結合用電極とが、または共振器用線路同士が、複数
本の導体線の端部で凹凸状を成して互いに相手の凹凸状
部分にはまり込むことによって、その間隙部分の静電容
量が増して、強い外部結合または強い共振器間結合が得
られる。
With this structure, the resonator line or the transmission line and the coupling electrode, or the resonator lines form irregularities at the ends of the plurality of conductor wires and fit into the irregularities of each other. As a result, the capacitance of the gap increases, and strong external coupling or strong resonator-to-resonator coupling is obtained.

【0011】また、この発明では、前記複数本の導体線
の長さを略一定とし、各導体線の配置位置を導体線の長
手方向に交互にずらせる。この構造により複数本の各導
体線の長さが略一定で、且つ対向する電極同士が凹凸状
を成して互いに相手の凹凸状部分にはまり込むため、各
導体線の電流位相のずれがそろう。その結果、電磁界の
乱れが少なく、表皮効果による各導体線の縁端部に流れ
る電流密度の分散効果が有効に作用して低損失特性が得
られる。
Further, in the present invention, the lengths of the plurality of conductor lines are made substantially constant, and the arrangement positions of the conductor lines are alternately shifted in the longitudinal direction of the conductor lines. With this structure, the length of each of the plurality of conductor wires is substantially constant, and the electrodes facing each other form an uneven shape and fit into the uneven portions of each other, so that the current phases of the respective conductor wires are aligned. . As a result, the disturbance of the electromagnetic field is small, and the effect of dispersing the current density flowing to the edge of each conductor wire due to the skin effect works effectively, thereby obtaining low loss characteristics.

【0012】また、この発明では、前記線路を、中央に
配置した主導体線とその縁端部分に配置した複数の副導
体線とから構成し、前記主導体線の端部を相手側の凹凸
状部分に合わせて、両者が互いにはまり込む凹凸状に形
成する。この構造により、縁端部での電流集中が緩和す
るとともに、一定線路幅内での導体部分の減少に伴う導
体損失の増加が抑えられて、全体に効率的に導体損が低
減し、且つ凹凸状部分での静電容量が増して、強い結合
が得られる。
Further, in the present invention, the line is constituted by a main conductor line arranged at the center and a plurality of sub-conductor lines arranged at an edge portion thereof, and an end of the main conductor line is made uneven on the other side. In accordance with the shape portion, both are formed in an uneven shape that fits into each other. With this structure, the current concentration at the edge is reduced, and the increase in conductor loss due to the decrease in the conductor portion within a certain line width is suppressed. The capacitance at the ridges is increased and a strong coupling is obtained.

【0013】また、この発明では、前記導体線の凹凸状
部分に誘電体を充填または近接させる。これにより凹凸
状部分の間隙の静電容量が増し、結合の強さが高まる。
Further, in the present invention, a dielectric is filled in or brought close to the uneven portion of the conductor wire. As a result, the capacitance of the gap between the concave and convex portions increases, and the strength of the coupling increases.

【0014】また、この発明では、前記導体線の少なく
とも一つを、薄膜導体層と薄膜誘電体層との積層体から
成る薄膜多層電極とする。これにより電流集中が更に緩
和されて全体の導体損失が低減される。
Further, in the present invention, at least one of the conductor wires is a thin-film multilayer electrode composed of a laminate of a thin-film conductor layer and a thin-film dielectric layer. As a result, current concentration is further alleviated, and overall conductor loss is reduced.

【0015】また、この発明では、前記導体線の少なく
とも一つを超伝導体で構成する。これにより全体の導体
損が低減する。
According to the present invention, at least one of the conductor wires is made of a superconductor. This reduces the overall conductor loss.

【0016】また、この発明では、前記線路を共振器と
し、前記電極を前記共振器に結合する入出力部として高
周波フィルタを構成する。
Further, in the present invention, the line is a resonator, and the high-frequency filter is configured as an input / output unit for coupling the electrode to the resonator.

【0017】またその高周波フィルタにより送信フィル
タと受信フィルタを構成し、入力ポートと入出力ポート
との間に送信フィルタを設け、入出力ポートと出力ポー
トとの間に受信フィルタを設けて送受共用器を構成す
る。更に前記誘電体フィルタまたは送受共用器を高周波
部に設けて通信装置を構成する。
A transmission filter and a reception filter are constituted by the high frequency filter, a transmission filter is provided between the input port and the input / output port, and a reception filter is provided between the input / output port and the output port. Is configured. Further, the communication device is configured by providing the dielectric filter or the duplexer in the high frequency unit.

【0018】[0018]

【発明の実施の形態】第1の実施形態に係る高周波フィ
ルタの構成を図1に示す。同図においては誘電体板の上
面に形成した電極パターンについてのみ示している。上
記誘電体板の下面には全面のグランド電極を形成してい
て、このグランド電極と誘電体板を挟む上面の電極とに
よってマイクロストリップラインを構成している。但
し、マイクロストリップラインの中央部は省略してい
て、その省略部分を波線で表している。同図において3
で示す部分が共振器として用いる線路であり、中央の線
路幅の比較的太い主導体線3aとその縁端部分に配置し
た線路幅の細い複数の副導体線3bとから構成してい
る。これらの主導体線3aおよび副導体線3bの両端部
は凹凸状を成すように配置している。この線路3の線路
長は共振周波数の半波長として、両端開放型のマイクロ
ストリップライン共振器を構成している。以下、この共
振器を「薄膜多線共振器」という。
FIG. 1 shows the configuration of a high-frequency filter according to a first embodiment. FIG. 1 shows only the electrode pattern formed on the upper surface of the dielectric plate. A ground electrode is formed on the entire lower surface of the dielectric plate, and a microstrip line is formed by the ground electrode and an electrode on the upper surface sandwiching the dielectric plate. However, the central portion of the microstrip line is omitted, and the omitted portion is indicated by a wavy line. In FIG.
A portion indicated by is a line used as a resonator, and is composed of a main conductor line 3a having a relatively large line width at the center and a plurality of sub-conductor lines 3b having a small line width arranged at an edge portion thereof. Both ends of the main conductor wire 3a and the sub conductor wire 3b are arranged so as to form irregularities. The line length of the line 3 is a half wavelength of the resonance frequency to constitute a microstrip line resonator having both ends open. Hereinafter, this resonator is referred to as a “thin-film multi-wire resonator”.

【0019】5,6はそれぞれ結合用電極であり、主導
体線3aと副導体線3bの端部が成す凹凸状部分にはま
り込むように櫛状電極5b,6bを突出させている。た
とえば主導体線3aの線路幅は数μm〜100μm、副
導体線3bの各導体線の線路幅は1.5μmであり、副
導体線の本数は100本オーダーであり、線路3全体の
幅は約400μmである。この構造により、結合用電極
5,6と線路3の両端部とが静電容量により結合(以下
「容量結合」という。)する。このようにして、結合用
電極5,6が信号の入出力端子、線路3が共振器として
作用する高周波フィルタを得る。
Reference numerals 5 and 6 denote coupling electrodes, respectively, and the comb-shaped electrodes 5b and 6b protrude so as to fit into the uneven portions formed by the ends of the main conductor line 3a and the sub-conductor line 3b. For example, the line width of the main conductor 3a is several μm to 100 μm, the line width of each conductor of the sub-conductor 3b is 1.5 μm, the number of sub-conductors is on the order of 100, and the width of the entire line 3 is It is about 400 μm. With this structure, the coupling electrodes 5 and 6 and both ends of the line 3 are coupled by electrostatic capacitance (hereinafter, referred to as “capacitive coupling”). In this way, a high-frequency filter in which the coupling electrodes 5 and 6 operate as signal input / output terminals and the line 3 operates as a resonator is obtained.

【0020】上記共振器用線路と結合用電極のパターン
は、誘電体板上に全面に電極膜を形成した後に、エッチ
ングなどの各種パターンニング法によって形成する。
The pattern of the resonator line and the coupling electrode is formed by various patterning methods such as etching after forming an electrode film on the entire surface of the dielectric plate.

【0021】このように共振器として作用する導体線が
グランド電極以外に複数本存在する場合に、その数分だ
け共振モードが生じるが、その内の最も共振周波数の低
い基本共振モードを利用することによって共振器を低損
失動作させることができる。
When there are a plurality of conductor wires acting as resonators other than the ground electrode as described above, resonance modes are generated by the number of the conductor wires, and among these, the fundamental resonance mode having the lowest resonance frequency is used. Thereby, the resonator can be operated with low loss.

【0022】この第1の実施形態によれば、薄膜多線電
極共振器の低損失動作が損なわれず、且つ小面積で大容
量の結合を確保することができる。また、所定間隙を保
って共振器用線路の端部と結合用電極の端部の凹凸状部
分をはめ込むようにしたため、Qe(外部結合Q)を1
0〜100程度に強くすることができる。単に、線路と
電極の端部を突き合わせた構造では、Qeは千〜数千程
度と、弱い外部結合しか得られない。
According to the first embodiment, low-loss operation of the thin-film multi-wire electrode resonator is not impaired, and large-capacity coupling can be ensured in a small area. In addition, since a concave-convex portion between the end of the resonator line and the end of the coupling electrode is fitted with a predetermined gap, Qe (external coupling Q) is set to 1
It can be as strong as about 0-100. In a structure in which the ends of the line and the electrode are simply butted, Qe is only about one thousand to several thousand, and only weak external coupling can be obtained.

【0023】図2は第2の実施形態に係る高周波フィル
タの構成を示す図であり、誘電体板上の電極パターン部
分についてのみ示している。この例では線路3の主導体
線3aの両端部に櫛状電極3cを設けることによって凹
部を形成している。一方、結合用電極5,6には主導体
線3aの両端部の凹部に対応する櫛状電極5c,6cを
形成している。この構造により、結合用電極5,6と線
路3の両端部との間の容量結合を増すことができる。
尚、逆に主導体線3aの両端部に凸状の櫛状電極を形成
し、これに対向して結合用電極5,6側に凹状の櫛状電
極を形成してもよい。
FIG. 2 is a diagram showing a configuration of a high frequency filter according to the second embodiment, and shows only an electrode pattern portion on a dielectric plate. In this example, a concave portion is formed by providing the comb-shaped electrodes 3c at both ends of the main conductor line 3a of the line 3. On the other hand, the comb-like electrodes 5c and 6c corresponding to the concave portions at both ends of the main conductor wire 3a are formed on the coupling electrodes 5 and 6, respectively. With this structure, the capacitive coupling between the coupling electrodes 5 and 6 and both ends of the line 3 can be increased.
Conversely, a convex comb-shaped electrode may be formed at both ends of the main conductor wire 3a, and a concave comb-shaped electrode may be formed on the side of the coupling electrodes 5 and 6 opposite thereto.

【0024】図3は第3の実施形態に係る高周波フィル
タの構成を示す図であり、誘電体板上の電極パターンの
みを示している。第1・第2の実施形態とは異なり、こ
の例では、線路3の主導体線3aと副導体線3bのそれ
ぞれの線路長を同一とし、その配置位置を線路の長手方
向(図における左右方向)に交互にずらせている。これ
に合わせて結合用電極5,6の櫛状電極5b,6bの突
出長さを一定にしている。この構造によれば、線路3の
主導体線3aと副導体線3bのそれぞれの共振周波数を
一致させることができ、各導体線に流れる電流位相がそ
ろって、表皮効果による各導体線の縁端部に流れる電流
密度の分散効果が有効に作用する。そのため、薄膜多線
共振器を設計中心に近い状態で低損失動作させることが
できる。
FIG. 3 is a view showing a configuration of a high-frequency filter according to the third embodiment, and shows only an electrode pattern on a dielectric plate. Unlike the first and second embodiments, in this example, the main conductor line 3a and the sub-conductor line 3b of the line 3 have the same line length, and the arrangement position is set in the longitudinal direction of the line (the horizontal direction in the figure). ). In accordance with this, the protruding length of the comb-like electrodes 5b, 6b of the coupling electrodes 5, 6 is made constant. According to this structure, the resonance frequencies of the main conductor line 3a and the sub conductor line 3b of the line 3 can be matched, the phases of the currents flowing through the conductor lines are uniform, and the edge of each conductor line due to the skin effect The effect of dispersing the density of the current flowing through the portion works effectively. Therefore, the thin-film multi-wire resonator can be operated with low loss near the design center.

【0025】次に第4の実施形態に係る高周波フィルタ
の構成を図4に示す。図4の(A)は誘電体板上の全体
の電極パターンを示し、(B)は(A)におけるB部分
の拡大図である。第1〜第3の実施形態では、単一の線
路を用いて一段の共振器による高周波フィルタを構成し
たが、この例では線路3,7による2つの共振器を用い
た高周波フィルタとしている。結合用電極5と共振器用
線路3との間の結合部の構造および共振器用線路7と結
合用電極6との間の結合部の構造は第1〜第3の実施形
態の場合と同様である。線路3,7の突き合わせ部分は
(B)のように、線路3の主導体線3aと副導体線3b
の端部を凹凸状に配置し、これに対応して線路7の主導
体線7aと副導体線7bの端部も凹凸状にして、それら
が互いにはまり込むようにしている。この構造によって
線路3,7による2つの共振器が容量結合することにな
る。
Next, the configuration of a high-frequency filter according to a fourth embodiment is shown in FIG. FIG. 4A shows the entire electrode pattern on the dielectric plate, and FIG. 4B is an enlarged view of a portion B in FIG. In the first to third embodiments, a single line is used to form a high-frequency filter using a single-stage resonator, but in this example, a high-frequency filter using two resonators using lines 3 and 7 is used. The structure of the coupling part between the coupling electrode 5 and the resonator line 3 and the structure of the coupling part between the resonator line 7 and the coupling electrode 6 are the same as those in the first to third embodiments. . The abutting portions of the lines 3 and 7 are, as shown in (B), a main conductor line 3a and a sub conductor line 3b of the line 3.
Are arranged unevenly, and correspondingly, the ends of the main conductor line 7a and the sub-conductor line 7b of the line 7 are also arranged so that they fit into each other. With this structure, two resonators constituted by the lines 3 and 7 are capacitively coupled.

【0026】図5は第5の実施形態に係る高周波フィル
タの共振器間の結合部分の構成を示す図である。このよ
うに、2つの線路の主導体線3aと7aにそれぞれ櫛状
電極3c,7cを設けて凹凸部がはまり込むようにして
もよい。この構造によれば共振器間の結合の強さを更に
増すことができる。
FIG. 5 is a diagram showing a configuration of a coupling portion between resonators of a high-frequency filter according to a fifth embodiment. In this manner, the comb-shaped electrodes 3c and 7c may be provided on the main conductor lines 3a and 7a of the two lines, respectively, so that the concave and convex portions are fitted. According to this structure, the strength of the coupling between the resonators can be further increased.

【0027】図6は第6の実施形態に係る高周波フィル
タの結合用電極と線路との結合部の構造を示す図であ
る。同図に示すように結合用電極5と線路3の主導体線
3aおよび副導体線3bの対向部は、凹凸状部分が所定
の間隙を保ってはまり込んだ形状にするとともに、その
間隙部分に誘電体8を形成している。この構造により、
結合用電極5と線路3の端部との間の静電容量が増すこ
とになる。このような誘電体8は厚膜印刷法によって形
成すればよい。
FIG. 6 is a view showing a structure of a coupling portion between a coupling electrode and a line of a high frequency filter according to a sixth embodiment. As shown in the drawing, the opposing portions of the coupling electrode 5 and the main conductor line 3a and the sub-conductor line 3b of the line 3 have a shape in which the concave and convex portions are fitted with a predetermined gap therebetween, and are formed in the gap portions. A dielectric 8 is formed. With this structure,
The capacitance between the coupling electrode 5 and the end of the line 3 increases. Such a dielectric 8 may be formed by a thick film printing method.

【0028】図7は第7の実施形態に係る高周波フィル
タの共振器間の結合部の構造を示す図である。(B)は
(A)におけるB部分の拡大図である。線路3と線路7
の対向部分の形状は図5に示したものと同様に、凹凸状
部分が所定の間隙を保ってはまり込んだ形状にするとと
もに、その間隙部分に誘電体8を形成している。この構
造によって共振器間の容量結合を更に増すことができ
る。また、線路3,7の副導体線のそれぞれの間隙部分
に誘電体9,10を設けることによって、表皮効果によ
る電流集中を緩和して、全体の導体損失を低減すること
ができる。尚、共振器同士の結合部の全体を誘電体で覆
ってもよい。同様に隣接する副導体線に跨がって表面に
誘電体を被覆してもよい。
FIG. 7 is a view showing a structure of a coupling portion between resonators of a high frequency filter according to a seventh embodiment. (B) is an enlarged view of a B part in (A). Track 3 and Track 7
The shape of the opposing portion is the same as that shown in FIG. 5 in that the concavo-convex portion is fitted with a predetermined gap kept therebetween, and the dielectric 8 is formed in the gap. With this structure, the capacitive coupling between the resonators can be further increased. Further, by providing the dielectrics 9 and 10 in the gaps between the sub-conductor lines of the lines 3 and 7, current concentration due to the skin effect can be reduced, and overall conductor loss can be reduced. Note that the entire coupling portion between the resonators may be covered with a dielectric. Similarly, the surface may be covered with a dielectric over the adjacent sub-conductor line.

【0029】図8は第8の実施形態に係る高周波フィル
タの構成を示す図である。(A)は誘電体板上の電極パ
ターン、(B)は(A)におけるB−B部分の断面図で
ある。結合用電極5,6と線路3の平面図としてのパタ
ーンは図3に示したものと同様であるが、線路3の主導
体線3aと副導体線3bは、それぞれ(B)に示すよう
に薄膜導体層と薄膜誘電体層の積層体から成る薄膜多層
電極として設けている。図8の(B)において2は誘電
体板1の下面に形成した単層のグランド電極であり、主
導体線3aと副導体線3bはそれぞれ薄膜の導体層と誘
電体層を交互に積層形成している。ここで薄膜導体層の
厚みおよび薄膜誘電体層の厚みはそれぞれ表皮深さ以下
のオーダーであり、たとえば2GHzに対する設計で薄
膜導体層を0.8μm、薄膜誘電体層を0.1μmとす
る。
FIG. 8 is a diagram showing a configuration of a high frequency filter according to the eighth embodiment. (A) is an electrode pattern on a dielectric plate, (B) is a cross-sectional view of the BB portion in (A). The patterns of the coupling electrodes 5 and 6 and the line 3 as a plan view are the same as those shown in FIG. 3, but the main conductor line 3a and the sub-conductor line 3b of the line 3 are as shown in FIG. It is provided as a thin-film multilayer electrode composed of a laminate of a thin-film conductor layer and a thin-film dielectric layer. In FIG. 8B, reference numeral 2 denotes a single-layer ground electrode formed on the lower surface of the dielectric plate 1, and the main conductor lines 3a and the sub-conductor lines 3b are formed by alternately laminating thin-film conductor layers and dielectric layers, respectively. are doing. Here, the thickness of the thin-film conductor layer and the thickness of the thin-film dielectric layer are each on the order of the skin depth or less.

【0030】この構造により、単層電極の場合のよう
に、表皮効果によって表面部分にのみ電流が集中せず、
各薄膜導体層部分に電流が分散する。このため、縁端効
果による電流集中が誘電体板1の面方向に分散されると
ともに、電極の膜厚方向の表皮効果による電流集中も同
時に緩和される。
With this structure, unlike the case of the single-layer electrode, the current does not concentrate only on the surface portion due to the skin effect.
The current is dispersed in each thin-film conductor layer portion. For this reason, the current concentration due to the edge effect is dispersed in the surface direction of the dielectric plate 1, and the current concentration due to the skin effect in the thickness direction of the electrode is reduced at the same time.

【0031】図9は第9の実施形態に係る高周波フィル
タの構成を示す図であり、誘電体板表面の電極パターン
部分を示している。ここでは線路3の主導体線3aと副
導体線3bのそれぞれを超伝導体で構成している。この
ような薄膜多線電極共振器においては最大電流密度が抑
えられるため、超伝導が破綻する臨界電流密度を超えな
い範囲で全体に大きな電流を流すことができ、小型であ
りながら比較的大電力の信号を扱えるようになる。
FIG. 9 is a view showing the configuration of a high-frequency filter according to the ninth embodiment, showing an electrode pattern portion on the surface of a dielectric plate. Here, each of the main conductor line 3a and the sub conductor line 3b of the line 3 is made of a superconductor. In such a thin-film multi-wire electrode resonator, the maximum current density is suppressed, so that a large current can flow through the entirety within a range not exceeding the critical current density at which superconductivity breaks down. Will be able to handle signals.

【0032】次に第10の実施形態に係る高周波フィル
タの構成例を図10に示す。(A)は全体の上面図、
(B)は(A)におけるB−B部分の断面図、(C)は
(A)におけるC部分の拡大図、(D)は(A)におけ
るD部分の拡大図である。図10において31,32,
33,34はそれぞれヘアピン型に湾曲させた線路であ
り、各線路の端部は(C),(D)に示すように、先に
示した実施形態の場合と同様に、主導体線の縁端部に複
数の副導体線を設けている。各線路の線路長は共振周波
数の半波長の長さとしていて、各線路はいわゆるヘアピ
ン型共振器として作用する。従って、この例では全体に
4段の共振器から成る帯域通過型フィルタとして作用す
る。上記構成において、各共振器間の結合および外部結
合の強さを強くすることができるので、通過帯域の広帯
域化を容易に図ることができる。なお、上述の各実施形
態においては、主導体線とその主導体線の縁端部分に配
置した複数の副導体線とから1組の線路を構成したが、
すべての導体線を各実施形態に示した副導体線と同等の
細い線路幅を有する導体線として、これらの複数の導体
線だけを配列して1組の線路を構成してもよい。また、
主導体線の線路幅を副導体線の線路幅と同程度に細くし
てもよい。
Next, FIG. 10 shows a configuration example of a high frequency filter according to the tenth embodiment. (A) is a top view of the whole,
(B) is a sectional view of a BB portion in (A), (C) is an enlarged view of a C portion in (A), and (D) is an enlarged view of a D portion in (A). In FIG. 10, 31, 32,
Reference numerals 33 and 34 denote hairpin-shaped lines, respectively. The ends of the lines are, as shown in (C) and (D), the edges of the main conductor line in the same manner as in the above-described embodiment. A plurality of sub-conductor wires are provided at the end. The length of each line is a half wavelength of the resonance frequency, and each line acts as a so-called hairpin type resonator. Therefore, in this example, the filter functions as a band-pass filter composed of four stages of resonators. In the above configuration, since the strength of the coupling between the resonators and the external coupling can be increased, the passband can be broadened easily. In each of the above-described embodiments, one set of lines is configured from the main conductor line and the plurality of sub-conductor lines arranged at the edge of the main conductor line.
All the conductor lines may be formed as conductor lines having the same narrow line width as the sub-conductor line shown in each embodiment, and only a plurality of these conductor lines may be arranged to form a set of lines. Also,
The line width of the main conductor line may be made as thin as the line width of the sub conductor line.

【0033】次に、上記高周波フィルタを用いた送受共
用器の構成例を図11に示す。ここで送信フィルタと受
信フィルタは上記誘電体フィルタの構成から成る帯域通
過フィルタであり、送信フィルタは送信信号の周波数
を、受信フィルタは受信信号の周波数をそれぞれ通過さ
せる。送信フィルタの出力ポートと受信フィルタの入力
ポートとの接続位置は、その接続点から、送信フィルタ
の最終段の共振器の等価的な短絡面までの電気長が、受
信信号の周波数の波長で1/4波長の奇数倍となり、且
つ上記接続点から、受信フィルタの初段の共振器の等価
的な短絡面までの電気長が、送信信号の周波数の波長で
1/4波長の奇数倍となる関係としている。これによ
り、送信信号と受信信号とを確実に分岐させる。
Next, FIG. 11 shows a configuration example of a duplexer using the above high-frequency filter. Here, the transmission filter and the reception filter are band-pass filters having the configuration of the dielectric filter. The transmission filter passes the frequency of the transmission signal, and the reception filter passes the frequency of the reception signal. The connection position between the output port of the transmission filter and the input port of the reception filter is such that the electrical length from the connection point to the equivalent short-circuit surface of the resonator at the last stage of the transmission filter is 1 at the wavelength of the frequency of the reception signal. The relationship that the electric length from the connection point to the equivalent short-circuit plane of the first-stage resonator of the receiving filter is an odd multiple of 1/4 wavelength at the wavelength of the transmission signal. And As a result, the transmission signal and the reception signal are surely branched.

【0034】このように、共通に用いるポートと個別の
ポートとの間に複数の誘電体フィルタを設けることによ
って、同様にしてダイプレクサやマルチプレクサを構成
することができる。
As described above, by providing a plurality of dielectric filters between ports commonly used and individual ports, a diplexer or a multiplexer can be similarly configured.

【0035】図12は上記送受共用器(デュプレクサ)
を用いた通信装置の構成を示すブロック図である。この
ように、送信フィルタの入力ポートに送信回路、受信フ
ィルタの出力ポートに受信回路をそれぞれ接続し、デュ
プレクサの入出力ポートにアンテナを接続することによ
って、通信装置の高周波部を構成する。
FIG. 12 shows the duplexer (duplexer).
FIG. 2 is a block diagram illustrating a configuration of a communication device using the communication device. As described above, the transmission circuit is connected to the input port of the transmission filter, the reception circuit is connected to the output port of the reception filter, and the antenna is connected to the input / output port of the duplexer.

【0036】なお、その他に上記ダイプレクサ、マルチ
プレクサ、合成器、分配器等の回路素子を薄膜多線共振
器とそれに結合する結合用電極とによって構成し、これ
らの回路素子を用いて通信装置を構成することにより、
小型で高効率な通信装置を得ることができる。
In addition, circuit elements such as the diplexer, the multiplexer, the combiner, and the distributor are constituted by a thin-film multi-wire resonator and a coupling electrode coupled thereto, and a communication device is constituted by using these circuit elements. By doing
A small and highly efficient communication device can be obtained.

【0037】[0037]

【発明の効果】請求項1,2に記載の発明によれば、マ
イクロストリップラインの縁端効果による導体損失が軽
減するとともに、共振器用線路または伝送線路と結合用
電極との強い外部結合が得られ、また強い共振器間結合
が得られるため、所定のフィルタ特性などを得るための
設計上の自由度が高まる。
According to the first and second aspects of the present invention, the conductor loss due to the edge effect of the microstrip line is reduced, and a strong external coupling between the resonator line or the transmission line and the coupling electrode is obtained. In addition, since strong inter-resonator coupling is obtained, the degree of freedom in design for obtaining predetermined filter characteristics and the like is increased.

【0038】請求項3に記載の発明によれば、複数本の
各導体線の長さが略一定で且つ対向する電極同士が凹凸
状を成して互いに相手の凹凸状部分にはまり込むため、
各導体線の電流位相のずれがそろって、表皮効果による
各導体線の縁端部に流れる電流密度の分散効果が有効に
作用して低損失特性が得られる。
According to the third aspect of the present invention, the length of each of the plurality of conductor wires is substantially constant, and the electrodes facing each other form an uneven shape and fit into the uneven portions of each other.
Since the current phases of the conductor wires are aligned with each other, the effect of dispersing the current density flowing at the edge of each conductor wire due to the skin effect works effectively, and low loss characteristics can be obtained.

【0039】請求項4,5に記載の発明によれば、縁端
部での電流集中が緩和するとともに、一定線路幅内での
導体部分の減少に伴う導体損失の増加が抑えられて、全
体に効率的に導体損が低減し、且つ凹凸状部分での静電
容量を増して、強い結合が得られる。
According to the fourth and fifth aspects of the present invention, current concentration at the edge is reduced, and an increase in conductor loss due to a decrease in the conductor portion within a certain line width is suppressed. In addition, the conductor loss is efficiently reduced, and the capacitance at the uneven portion is increased, so that a strong coupling can be obtained.

【0040】請求項6に記載の発明によれば、共振器用
線路または伝送線路と結合用電極との結合、または共振
器間の結合をさらに容易に強くすることができる。
According to the invention described in claim 6, the coupling between the resonator line or the transmission line and the coupling electrode or the coupling between the resonators can be further easily strengthened.

【0041】請求項7に記載の発明によれば、導体線の
表面部分における電流集中も緩和されて全体の導体損失
がさらに低減される。
According to the seventh aspect of the present invention, the current concentration at the surface portion of the conductor wire is also reduced, and the overall conductor loss is further reduced.

【0042】請求項8に記載の発明によれば、導体線全
体の導体損が低減し、また、超伝導が破綻する臨界電流
密度を超えない範囲で全体に大きな電流を流すことがで
き、小型でありながら比較的大電力の信号を扱えるよう
になる。
According to the eighth aspect of the present invention, the conductor loss of the entire conductor wire is reduced, and a large current can be applied to the entire conductor wire within a range not exceeding the critical current density at which the superconductivity fails. However, a relatively high-power signal can be handled.

【0043】請求項9,10に記載の発明によれば、低
損失の高周波フィルタを得ることができ、また通過帯域
の比較的広い特性を有する高周波フィルタまたは送受共
用器を容易に構成することができる。
According to the ninth and tenth aspects of the present invention, a low-loss high-frequency filter can be obtained, and a high-frequency filter or a duplexer having a relatively wide passband characteristic can be easily formed. it can.

【0044】請求項11に記載の発明によれば、小型で
高効率な通信装置を構成することができる。
According to the eleventh aspect, a small and highly efficient communication device can be configured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施形態に係る高周波フィルタの構成を
示す図
FIG. 1 is a diagram showing a configuration of a high-frequency filter according to a first embodiment.

【図2】第2の実施形態に係る高周波フィルタの構成を
示す図
FIG. 2 is a diagram illustrating a configuration of a high-frequency filter according to a second embodiment.

【図3】第3の実施形態に係る高周波フィルタの構成を
示す図
FIG. 3 is a diagram showing a configuration of a high-frequency filter according to a third embodiment.

【図4】第4の実施形態に係る高周波フィルタの主要部
の全体図および部分拡大図
FIG. 4 is an overall view and a partially enlarged view of a main part of a high-frequency filter according to a fourth embodiment.

【図5】第5の実施形態に係る高周波フィルタの構成を
示す図
FIG. 5 is a diagram showing a configuration of a high-frequency filter according to a fifth embodiment.

【図6】第6の実施形態に係る高周波フィルタの構成を
示す図
FIG. 6 is a diagram showing a configuration of a high-frequency filter according to a sixth embodiment.

【図7】第7の実施形態に係る高周波フィルタの構成を
示す図
FIG. 7 is a diagram showing a configuration of a high-frequency filter according to a seventh embodiment.

【図8】第8の実施形態に係る高周波フィルタの主要部
の上面図および拡大断面図
FIG. 8 is a top view and an enlarged cross-sectional view of a main part of a high-frequency filter according to an eighth embodiment.

【図9】第9の実施形態に係る高周波フィルタの構成を
示す図
FIG. 9 is a diagram showing a configuration of a high-frequency filter according to a ninth embodiment;

【図10】第10の実施形態に係る高周波フィルタの構
成を示す図
FIG. 10 is a diagram showing a configuration of a high-frequency filter according to a tenth embodiment.

【図11】送受共用器の構成例を示すブロック図FIG. 11 is a block diagram showing a configuration example of a duplexer.

【図12】通信装置の構成例を示すブロック図FIG. 12 is a block diagram illustrating a configuration example of a communication device.

【図13】薄膜多線電極を用いたマイクロストリップラ
インの構成を示す拡大斜視図
FIG. 13 is an enlarged perspective view showing the configuration of a microstrip line using thin-film multi-wire electrodes.

【図14】同マイクロストリップラインと従来のマイク
ロストリップラインにおける電流密度の分布例を示す図
FIG. 14 is a diagram showing an example of current density distribution in the microstrip line and a conventional microstrip line.

【図15】従来の結合線路による高周波フィルタの構成
例を示す図
FIG. 15 is a diagram showing a configuration example of a high-frequency filter using a conventional coupled line.

【符号の説明】[Explanation of symbols]

1−誘電体板 2−グランド電極 3,7−線路 3a,7a−主導体線 3b,7b−副導体線 3c,7c−櫛状電極 4−間隙 5,6−結合用電極 5b,5c,6b,6c−櫛状電極 8,9,10−誘電体 31〜34−線路 Reference Signs List 1-dielectric plate 2-ground electrode 3,7-line 3a, 7a-main conductor line 3b, 7b-sub conductor line 3c, 7c-comb electrode 4-gap 5,6-coupling electrode 5b, 5c, 6b , 6c-comb electrode 8, 9, 10-dielectric 31-34 line

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 誘電体の表面に設けた線路と電極との結
合構造であって、 前記線路をそれぞれ複数本の導体線の集合体から構成
し、該複数本の導体線の端部と前記電極の端部とを、そ
れぞれ凹凸状にするとともに、互いの凹凸状部分を所定
の間隙を保ってはめ込んだ形状にしたことを特徴とする
マイクロストリップライン装置の結合構造。
1. A coupling structure between a line and an electrode provided on a surface of a dielectric, wherein each of the lines is formed of an aggregate of a plurality of conductor lines, and an end of the plurality of conductor lines and the end of the plurality of conductor lines. A coupling structure for a microstrip line device, characterized in that the end portions of the electrodes are made uneven, and the uneven portions are fitted with a predetermined gap therebetween.
【請求項2】 誘電体の表面に設けた線路同士の結合構
造であって、 前記線路をそれぞれ複数本の導体線の集合体から構成
し、一方の複数本の導体線の端部と他方の複数本の導体
線の端部とを、それぞれ凹凸状にするとともに、互いの
凹凸状部分を所定の間隙を保ってはめ込んだ形状にした
ことを特徴とするマイクロストリップライン装置の結合
構造。
2. A coupling structure between lines provided on a surface of a dielectric, wherein each of the lines comprises an aggregate of a plurality of conductor wires, and one end of one of the plurality of conductor wires and the other end of the plurality of conductor wires. A coupling structure for a microstrip line device, characterized in that the end portions of a plurality of conductor wires are each formed into an uneven shape, and the uneven portions are fitted with a predetermined gap therebetween.
【請求項3】 前記複数本の導体線の長さを略一定と
し、各導体線の配置位置を導体線の長手方向に交互にず
らせたことを特徴とする請求項1または2に記載のマイ
クロストリップライン装置の結合構造。
3. The micro-micrometer according to claim 1, wherein the length of the plurality of conductor lines is made substantially constant, and the arrangement positions of the conductor lines are alternately shifted in the longitudinal direction of the conductor lines. Combined structure of stripline equipment.
【請求項4】 前記線路を、中央に配置した主導体線と
その縁端部分に配置した複数の副導体線とから構成し、
前記主導体線の端部と、該端部に対向する前記電極の端
部とを、互いにはまり込む凹凸状に形成したことを特徴
とする請求項1に記載のマイクロストリップライン装置
の結合構造。
4. The line comprises a main conductor line disposed at the center and a plurality of sub-conductor lines disposed at an edge portion thereof.
2. The coupling structure for a microstrip line device according to claim 1, wherein an end of the main conductor wire and an end of the electrode facing the end are formed in an uneven shape to fit into each other.
【請求項5】 前記線路を、それぞれ中央に配置した主
導体線とその縁端部分に配置した複数の副導体線とから
構成し、一方の線路の主導体線の端部と、該端部に対向
する他方の線路の主導体線の端部とを、互いにはまり込
む凹凸状に形成したことを特徴とする請求項2に記載の
マイクロストリップライン装置の結合構造。
5. The line is composed of a main conductor line arranged at the center and a plurality of sub-conductor lines arranged at an edge of the main line. 3. The coupling structure for a microstrip line device according to claim 2, wherein the end of the main conductor line of the other line facing the first line is formed in an uneven shape to fit into each other.
【請求項6】 前記導体線の凹凸状部分に誘電体を充填
または近接させたことを特徴とする請求項1〜5のうち
いずれかに記載のマイクロストリップライン装置の結合
構造。
6. The coupling structure for a microstrip line device according to claim 1, wherein a dielectric is filled in or brought into close proximity to the concavo-convex portion of the conductor wire.
【請求項7】 前記導体線の少なくとも1つを、薄膜導
体層と薄膜誘電体層との積層体から成る薄膜多層電極と
したことを特徴とする請求項1〜6のうちいずれかに記
載のマイクロストリップライン装置の結合構造。
7. The thin-film multilayer electrode according to claim 1, wherein at least one of said conductor wires is a thin-film multilayer electrode comprising a laminate of a thin-film conductor layer and a thin-film dielectric layer. Connection structure of microstrip line device.
【請求項8】 前記導体線の少なくとも1つを、超伝導
体で構成したことを特徴とする請求項1〜7のうちいず
れかに記載のマイクロストリップライン装置の結合構
造。
8. The coupling structure for a microstrip line device according to claim 1, wherein at least one of said conductor lines is made of a superconductor.
【請求項9】 請求項1〜8のうちいずれかに記載の線
路を共振器とし、前記電極を前記共振器に結合する入出
力部とした高周波フィルタ。
9. A high-frequency filter, wherein the line according to claim 1 is a resonator, and the electrode is an input / output unit coupled to the resonator.
【請求項10】 請求項9に記載の高周波フィルタによ
り送信フィルタと受信フィルタを構成し、入力ポートと
入出力ポートとの間に前記送信フィルタを設け、前記入
出力ポートと出力ポートとの間に前記受信フィルタを設
けて成る送受共用器。
10. A transmission filter and a reception filter are constituted by the high-frequency filter according to claim 9, wherein the transmission filter is provided between an input port and an input / output port, and between the input / output port and the output port. A duplexer comprising the receiving filter.
【請求項11】 請求項9に記載の誘電体フィルタまた
は請求項10に記載の送受共用器を高周波部に設けた通
信装置。
11. A communication device provided with the dielectric filter according to claim 9 or the duplexer according to claim 10 in a high frequency unit.
JP10235390A 1998-08-21 1998-08-21 Connecting structure of microstrip line device, high frequency filter, transmission/reception multicoupler and communication equipment Pending JP2000068718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10235390A JP2000068718A (en) 1998-08-21 1998-08-21 Connecting structure of microstrip line device, high frequency filter, transmission/reception multicoupler and communication equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10235390A JP2000068718A (en) 1998-08-21 1998-08-21 Connecting structure of microstrip line device, high frequency filter, transmission/reception multicoupler and communication equipment

Publications (1)

Publication Number Publication Date
JP2000068718A true JP2000068718A (en) 2000-03-03

Family

ID=16985383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10235390A Pending JP2000068718A (en) 1998-08-21 1998-08-21 Connecting structure of microstrip line device, high frequency filter, transmission/reception multicoupler and communication equipment

Country Status (1)

Country Link
JP (1) JP2000068718A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007074274A (en) * 2005-09-06 2007-03-22 National Institute Of Information & Communication Technology Multiple and ultra-wide bandpass filter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007074274A (en) * 2005-09-06 2007-03-22 National Institute Of Information & Communication Technology Multiple and ultra-wide bandpass filter
JP4565146B2 (en) * 2005-09-06 2010-10-20 独立行政法人情報通信研究機構 Multiband ultra wideband bandpass filter

Similar Documents

Publication Publication Date Title
US7902944B2 (en) Stacked resonator
CN107819180B (en) Substrate integrated waveguide device and substrate integrated waveguide filter
EP1831954B1 (en) Bandpass filter
US8258897B2 (en) Ground structures in resonators for planar and folded distributed electromagnetic wave filters
JP3255118B2 (en) Transmission line and transmission line resonator
US9373876B2 (en) Multiple-mode filter for radio frequency integrated circuits
JPH0993005A (en) Electrode for high frequency circuit, transmission line and resonator using the same
US5922650A (en) Method and structure for high power HTS transmission lines using strips separated by a gap
JPH1188009A (en) Stacked dielectric filter
EP1564834B1 (en) Microwave filter
JP3723284B2 (en) High frequency filter
JP3379471B2 (en) Transmission line, resonator, filter, duplexer, and communication device
JP3391271B2 (en) Low loss electrode for high frequency
JP2000068718A (en) Connecting structure of microstrip line device, high frequency filter, transmission/reception multicoupler and communication equipment
JP2000013106A (en) Dielectric filter, shared transmitter/receiver sharing unit and communication equipment
JP3603826B2 (en) Spiral line assembly element, resonator, filter, duplexer and high frequency circuit device
US7525401B2 (en) Stacked filter
JP2004349966A (en) Superconductive filter
JP2001308603A (en) Filter
JPH05267908A (en) High frequency filter
US6934569B2 (en) Elliptical resonators with radial current mode and radio frequency filter formed therefrom
JPH10308606A (en) Dielectric filter
US8866568B2 (en) Signal transmission device, filter, and inter-substrate communication device
JP3592875B2 (en) Dielectric filter
JP2000077905A (en) High frequency circuit element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060322