JP2000068511A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JP2000068511A
JP2000068511A JP11166219A JP16621999A JP2000068511A JP 2000068511 A JP2000068511 A JP 2000068511A JP 11166219 A JP11166219 A JP 11166219A JP 16621999 A JP16621999 A JP 16621999A JP 2000068511 A JP2000068511 A JP 2000068511A
Authority
JP
Japan
Prior art keywords
film
silicon film
region
gate electrode
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11166219A
Other languages
Japanese (ja)
Other versions
JP3639745B2 (en
Inventor
Hiroshi Kotaki
浩 小瀧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP16621999A priority Critical patent/JP3639745B2/en
Publication of JP2000068511A publication Critical patent/JP2000068511A/en
Application granted granted Critical
Publication of JP3639745B2 publication Critical patent/JP3639745B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high performance transistor, wherein there is no damage at channel part in a MOSFET, the very shallow junction can be formed, the short-channel effect is suppressed, the leakage current is less and the parasitic resistance of a diffused layer is less, and a manufacturing method thereof. SOLUTION: A gate oxide film 103 and a gate electrode 104, wherein an upper part and a side wall are covered with an oxide film 105, are formed on a semiconductor substrate 101 wherein an element separating region 102 and an active resion are formed. The surface of the active region without an electrode is exposed. A poly-Si film 106 is deposited thereon. The Si film is etched back, and the oxide film of the gate-electrode upper part is exposed. The Si film is made to remain through the side-wall oxide film around the electrode. The surface of the active region is covered with the Si film. Then, the Si film is patterned with the element separating region and separated to the regions that become the source and drain regions. After impurity ions are implanted into the Si film so as not to reach the substrate, the impurities are diffused into the semiconductor substrate from the Si film, and the source and drain regions including the patterned Si are formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置の製造
方法に関し、特にMOS FETの製造方法に関する。
The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a MOS FET.

【0002】[0002]

【従来の技術】従来のシリサイドトランジスタに関する
製造方法は、図3(a)〜(d)に示すような製造方法
がある。図3(a)に示すように、所定の領域にフィー
ルド酸化膜202を形成した半導体基板201上に多結
晶シリコン膜203を堆積する行程と、図3(b)に示
すように、上記多結晶シリコン膜203上に酸化膜20
4を形成した後、トランジスタのチャンネル領域となる
領域の上記酸化膜204及び多結晶シリコン膜203を
RIEにより、シリコン基板が露出するまでエッチング
する行程と、図3(c)に示すように、ゲート酸化膜2
05、ゲート電極206を形成し、半導体基板と逆導電
型の高濃度の不純物イオンをイオン注入法によりドーピ
ングする行程と、図3(d)に示すように、Ti金属を
スパッタし、急速加熱処理(RTA)により自己整合的
に上記ソース、ドレイン領域208及びゲート電極20
6表面をシリサイド化し、チタンシリサイド層207を
形成した後、未反応のTiを選択的に除去する行程を備
えている。(例えば、M.Shimizu et al., Symposium
on VLSI Technology Digest of Technical Pap
ers,p11(1988))
2. Description of the Related Art As a conventional method of manufacturing a silicide transistor, there is a manufacturing method as shown in FIGS. As shown in FIG. 3A, a step of depositing a polycrystalline silicon film 203 on a semiconductor substrate 201 having a field oxide film 202 formed in a predetermined region is performed, and as shown in FIG. Oxide film 20 on silicon film 203
After the formation of the gate electrode 4, the oxide film 204 and the polycrystalline silicon film 203 in the region to be the channel region of the transistor are etched by RIE until the silicon substrate is exposed, and as shown in FIG. Oxide film 2
05, forming a gate electrode 206 and doping a high concentration impurity ion of a conductivity type opposite to that of the semiconductor substrate by an ion implantation method, and as shown in FIG. The source / drain region 208 and the gate electrode 20 are self-aligned by (RTA).
After forming the titanium silicide layer 207 by silicidation of the six surfaces, a step of selectively removing unreacted Ti is provided. (Eg, M. Shimizu et al., Symposium
on VLSI Technology Digest of Technical Pap
ers, p11 (1988))

【0003】[0003]

【発明が解決しようとする課題】従来のMOS FET
の製造方法では、前記トランジスタのチャンネル領域と
なる領域の酸化膜、及び多結晶シリコン膜を、RIEに
よりシリコン基板が露出するまでエッチンングする工程
に於いて、RIEにより、シリコン基板がダメージを受
けると共に、図3(d)A部、B部が、急峻な鋭角形状
となるため、電解集中が起こりトランジスタ特性を劣化
させるという問題点がある。また、シリサイド化反応を
行う前に(Ti金属を堆積する前に)不純物拡散層を形
成しているため、不純物の影響、及び多結晶シリコンの
グレインの影響によりシリサイド化反応の制御が困難と
なり、TiSi2 C54結晶が安定的に形成できず抵抗
が高くなるという問題点が有る。
SUMMARY OF THE INVENTION Conventional MOS FET
In the step of etching the oxide film in the region to be the channel region of the transistor and the polycrystalline silicon film until the silicon substrate is exposed by RIE, the silicon substrate is damaged by RIE, Since the portions A and B in FIG. 3D have steep acute angles, there is a problem that electrolytic concentration occurs and transistor characteristics deteriorate. Further, since the impurity diffusion layer is formed before performing the silicidation reaction (before depositing the Ti metal), it is difficult to control the silicidation reaction due to the influence of impurities and the effect of the grains of polycrystalline silicon. There is a problem that the TiSi 2 C54 crystal cannot be formed stably and the resistance increases.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に半導体装置のトランジスタ形成工程において、素子分
離領域と活性領域とを形成した半導体基板上に、ゲート
絶縁膜を形成する工程と、前記ゲート絶縁膜上に、上部
と側壁部が絶縁膜で覆われたゲート電極を形成するとと
もに、ゲート電極が存在しない活性領域表面を露出させ
る工程と、上記活性領域と直接接するようにシリコン膜
を堆積する工程と、上記シリコン膜を堆積した直後に上
記シリコン膜をエッチバックし、ゲート電極上部の絶縁
膜を露出させるとともに、少なくともゲート電極の周り
に、ゲート電極側壁絶縁膜を介して上記シリコン膜を残
し、かつ、上記残したシリコン膜により、活性領域表面
を覆う工程と、上記シリコン膜を素子分離領域上でパタ
ーンニングし、ソース領域とドレイン領域となる領域に
分離する工程と、半導体基板まで到達しないように、不
純物イオンを、前記パターンニングされたシリコン膜中
に注入する工程と、前記不純物が導入されたシリコン膜
から前記半導体基板中に不純物を拡散させ、パターンニ
ングされたシリコン膜を含むソース、ドレイン領域を形
成する工程とを、含むことを特徴とする。
In order to solve the above problems, in a transistor forming step of a semiconductor device, a step of forming a gate insulating film on a semiconductor substrate on which an element isolation region and an active region are formed; Forming a gate electrode having an upper portion and a side wall portion covered with the insulating film on the insulating film, exposing a surface of the active region where the gate electrode does not exist, and depositing a silicon film so as to directly contact the active region; Step and immediately after depositing the silicon film, the silicon film is etched back to expose the insulating film on the gate electrode, and to leave the silicon film at least around the gate electrode via the gate electrode sidewall insulating film. And a step of covering the surface of the active region with the remaining silicon film, and patterning the silicon film on the element isolation region, Separating impurity ions into the patterned silicon film so as not to reach the semiconductor substrate, and implanting the impurity ions into the patterned silicon film so as not to reach the semiconductor substrate. Forming a source / drain region including a patterned silicon film by diffusing an impurity into the semiconductor substrate.

【0005】[0005]

【発明の実施の形態】以下、本発明の半導体装置及びそ
の製造方法を実施例により詳細に説明する。図1(a)
〜(c)及び図2(d)〜(e)は、本発明のトランジ
スタの工程順断面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a semiconductor device and a method of manufacturing the same according to the present invention will be described in detail with reference to examples. FIG. 1 (a)
2 (c) and 2 (d) to 2 (e) are step-by-step cross-sectional views of the transistor of the present invention.

【0006】まず、図1(a)に示すように、周知の方
法で半導体基板101(本実施例では、P型半導体基
板)上にフィールド酸化膜102、ゲート酸化膜10
3、多結晶シリコン膜およびその上のタングステンシリ
サイド膜の2層構造より成るゲート電極104、ゲート
電極の上部及び側壁部を覆う酸化膜105を形成する。
First, as shown in FIG. 1A, a field oxide film 102 and a gate oxide film 10 are formed on a semiconductor substrate 101 (a P-type semiconductor substrate in this embodiment) by a known method.
3. A gate electrode 104 having a two-layer structure of a polycrystalline silicon film and a tungsten silicide film thereon is formed, and an oxide film 105 covering the top and side walls of the gate electrode is formed.

【0007】次に、図1(b)に示すように、多結晶シ
リコン膜106を堆積した後ゲート電極上部が露出する
まで異方性エッチングによりエッチバックする。
Next, as shown in FIG. 1B, after depositing the polycrystalline silicon film 106, it is etched back by anisotropic etching until the upper portion of the gate electrode is exposed.

【0008】次に、所望のパターンに上記多結晶シリコ
ンをパターンニング(フィールド酸化膜上にて、隣接す
るトランジスタの活性領域とを分離するため)した後、
図1(c)に示す様に、高融点金属膜(本実施例では、
チタン膜107)を堆積する。
Next, after patterning the polycrystalline silicon into a desired pattern (to separate an active region of an adjacent transistor on a field oxide film),
As shown in FIG. 1C, the refractory metal film (in this embodiment,
A titanium film 107) is deposited.

【0009】次に、第1のRTA処理を、例えば窒素雰
囲気中で、625℃、20秒程度行ない準安定なチタン
シリサイド層108を形成し、未反応のチタン金属を硫
酸と過酸化水素水の混合液でエッチング除去し、図2
(d)を得る。
Next, a first RTA process is performed at 625 ° C. for about 20 seconds in, for example, a nitrogen atmosphere to form a metastable titanium silicide layer 108. Fig. 2
(D) is obtained.

【0010】次に、基板と逆導電型の不純物イオン(本
実施例では、砒素イオン)をドーズ量の95%以上が、
上記チタンシリサイド膜108中に注入されるようなエ
ネルギーで、例えば、本実施例では、35Kev程度の
注入エネルギーで、5E15/cm2程度のドーズ量を
上記チタンシリサイド膜108中に注入した後、第2の
RTA処理を行ない上記チタンシリサイド膜108を安
定な、TiSi2 C54結晶構造に変化させる。
Next, 95% or more of the dose amount of impurity ions (arsenic ions in this embodiment) of the opposite conductivity type to the substrate is
After injecting a dose of about 5E15 / cm 2 into the titanium silicide film 108 at an energy such as to be implanted into the titanium silicide film 108, for example, in this embodiment, at an implantation energy of about 35 Kev, 2 is performed to change the titanium silicide film 108 into a stable TiSi 2 C 54 crystal structure.

【0011】次に、図2(e)に示すように、層間絶縁
膜109を堆積した後900℃、15分程度の熱処理に
より、半導体基板101まで達するソース、ドレイン領
域110を形成する。
Next, as shown in FIG. 2E, a source / drain region 110 reaching the semiconductor substrate 101 is formed by heat treatment at 900 ° C. for about 15 minutes after the interlayer insulating film 109 is deposited.

【0012】(実施例2)本発明のシリサイド層の形成
方法は、第1の実施例に限るものではない。
(Embodiment 2) The method of forming a silicide layer of the present invention is not limited to the first embodiment.

【0013】第1の実施例の様に、多結晶シリコン膜1
06を所望のパターンにパターンニングした後、多結晶
シリコン膜106中に高融点金属イオン、例えばTiイ
オンをイオン注入法により注入し、多結晶シリコン膜1
06表面を非晶質化する。次に上記高融点金属と同じ金
属から成る高融点金属膜、例えば本実施例ではTi膜を
堆積する。次に第1のRTA処理を、例えば窒素雰囲気
中で、625℃、20秒程度行ない上記多結晶シリコン
膜106中のTi及び上記Ti膜と多結晶シリコン膜中
のシリコンを反応させ、準安定なチタンシリサイド層1
08を形成し、未反応のチタン金属を硫酸と過酸化水素
水の混合液でエッチング除去し、図2(d)を得る。後
は、第1の実施例と同様の工程を経て所望のトランジス
タ素子を形成する。
As in the first embodiment, the polycrystalline silicon film 1
After patterning No. 06 into a desired pattern, high melting point metal ions, for example, Ti ions are implanted into the polycrystalline silicon film 106 by an ion implantation method.
06 is made amorphous. Next, a high melting point metal film made of the same metal as the above high melting point metal, for example, a Ti film in this embodiment is deposited. Next, a first RTA process is performed in a nitrogen atmosphere, for example, at 625 ° C. for about 20 seconds to cause the Ti in the polycrystalline silicon film 106 and the Ti film and silicon in the polycrystalline silicon film to react with each other. Titanium silicide layer 1
08, and unreacted titanium metal is removed by etching with a mixed solution of sulfuric acid and hydrogen peroxide solution to obtain FIG. 2 (d). Thereafter, a desired transistor element is formed through the same steps as in the first embodiment.

【0014】なお、実施例1及び実施例2において上記
多結晶シリコン膜106の替りに非晶質シリコン膜を用
いてもよい。非晶質シリコン膜を使用した場合、多結晶
シリコン膜のようなグレインが存在しないため、シリサ
イド化反応が均一に起こるという利点が有る。
In the first and second embodiments, an amorphous silicon film may be used instead of the polycrystalline silicon film 106. When an amorphous silicon film is used, there is an advantage that a silicidation reaction occurs uniformly because there is no grain unlike a polycrystalline silicon film.

【0015】また、本発明のシリサイド層の形成の為の
高融点金属材料は、チタン金属に限るものではない。C
o、Ni、Zr、V、Hf金属を使用してもよい。
The high melting point metal material for forming the silicide layer of the present invention is not limited to titanium metal. C
o, Ni, Zr, V, and Hf metals may be used.

【0016】[0016]

【発明の効果】以上より明らかなように本発明は、トラ
ンジスタ形成工程に於て、ゲート酸化膜及びゲート電極
を形成した後、多結晶シリコン膜を堆積し、エッチバッ
クにより自己整合的に分離された積み上げ拡散層領域
(ソース、ドレイン領域)を形成するため、図3の従来
例のようなチャンネル部のダメージが無い。また、チャ
ンネル部より上部に形成されたシリサイド層より不純物
を拡散するため、非常に浅いジャンクションを形成する
ことが可能となり、トランジスタの短チャンネル効果を
抑制することが可能となる。また、シリサイド領域は半
導体基板まで達していないため、リーク電流が少ない。
さらに、非常に抵抵抗なシリサイド層が形成されてお
り、且つ、活性領域上にコンタクト領域を設ける必要が
なく、拡散層面積(活性領域)を非常に小さく設計でき
るため拡散層寄生抵抗を低減でき、トランジスタのスピ
ードを向上させる事ができる。
As is clear from the above, according to the present invention, after forming a gate oxide film and a gate electrode in a transistor forming step, a polycrystalline silicon film is deposited and separated in a self-aligned manner by etch back. Since the stacked diffusion layer regions (source and drain regions) are formed, there is no damage to the channel portion as in the conventional example of FIG. Further, since impurities are diffused from the silicide layer formed above the channel portion, a very shallow junction can be formed, and the short channel effect of the transistor can be suppressed. Further, since the silicide region does not reach the semiconductor substrate, the leakage current is small.
Furthermore, since a very resistant silicide layer is formed, and it is not necessary to provide a contact region on the active region, the diffusion layer area (active region) can be designed to be very small, so that the parasitic resistance of the diffusion layer can be reduced. Thus, the speed of the transistor can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の工程順断面図(a)〜(c)
である。
1A to 1C are cross-sectional views in the order of steps in an embodiment of the present invention.
It is.

【図2】本発明の実施例の工程順断面図(d)〜(e)
である。
FIGS. 2A to 2E are sectional views in the order of steps of an embodiment of the present invention.
It is.

【図3】従来例のトランジスタの工程順断面図(a)〜
(d)である。
3A to 3C are cross-sectional views in the order of steps of a conventional transistor.
(D).

【符号の説明】[Explanation of symbols]

101、201 半導体基板 102、202 フィールド酸化膜 203 多結晶シリコン膜 204 酸化膜 103、205 ゲート酸化膜 104、206 ゲート電極 105 酸化膜 106 多結晶シリコン膜 107 Ti膜 108、207 Tiシリサイド膜 109 層間絶縁膜 110、208 ソース、ドレイン領域 101, 201 semiconductor substrate 102, 202 field oxide film 203 polycrystalline silicon film 204 oxide film 103, 205 gate oxide film 104, 206 gate electrode 105 oxide film 106 polycrystalline silicon film 107 Ti film 108, 207 Ti silicide film 109 interlayer insulation Film 110, 208 Source and drain regions

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体装置のトランジスタ形成工程にお
いて、 素子分離領域と活性領域とを形成した半導体基板上に、
ゲート絶縁膜を形成する工程と、 前記ゲート絶縁膜上に、上部と側壁部が絶縁膜で覆われ
たゲート電極を形成するとともに、ゲート電極が存在し
ない活性領域表面を露出させる工程と、 上記活性領域と直接接するようにシリコン膜を堆積する
工程と、 上記シリコン膜を堆積した直後に上記シリコン膜をエッ
チバックし、ゲート電極上部の絶縁膜を露出させるとと
もに、少なくともゲート電極の周りに、ゲート電極側壁
絶縁膜を介して上記シリコン膜を残し、かつ、上記残し
たシリコン膜により、活性領域表面を覆う工程と、 上記シリコン膜を素子分離領域上でパターンニングし、
ソース領域とドレイン領域となる領域に分離する工程
と、 半導体基板まで到達しないように、不純物イオンを、前
記パターンニングされたシリコン膜中に注入する工程
と、 前記不純物が導入されたシリコン膜から前記半導体基板
中に不純物を拡散させ、パターンニングされたシリコン
膜を含むソース、ドレイン領域を形成する工程とを、含
むことを特徴とする半導体装置の製造方法。
In a transistor forming step of a semiconductor device, a semiconductor substrate on which an element isolation region and an active region are formed,
Forming a gate insulating film, forming a gate electrode having an upper portion and a side wall portion covered with an insulating film on the gate insulating film, and exposing a surface of an active region where no gate electrode is present; Depositing a silicon film so as to be in direct contact with the region; etching the silicon film immediately after depositing the silicon film to expose an insulating film above the gate electrode; and forming a gate electrode at least around the gate electrode. Leaving the silicon film through the sidewall insulating film, and covering the active region surface with the remaining silicon film; patterning the silicon film on the element isolation region;
A step of separating into a region to be a source region and a drain region; a step of injecting impurity ions into the patterned silicon film so as not to reach a semiconductor substrate; Forming a source / drain region including a patterned silicon film by diffusing an impurity into a semiconductor substrate.
JP16621999A 1999-06-14 1999-06-14 Manufacturing method of semiconductor device Expired - Fee Related JP3639745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16621999A JP3639745B2 (en) 1999-06-14 1999-06-14 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16621999A JP3639745B2 (en) 1999-06-14 1999-06-14 Manufacturing method of semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP04344075A Division JP3129867B2 (en) 1992-12-24 1992-12-24 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JP2000068511A true JP2000068511A (en) 2000-03-03
JP3639745B2 JP3639745B2 (en) 2005-04-20

Family

ID=15827331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16621999A Expired - Fee Related JP3639745B2 (en) 1999-06-14 1999-06-14 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP3639745B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013058587A (en) * 2011-09-08 2013-03-28 Seiko Epson Corp Semiconductor element manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013058587A (en) * 2011-09-08 2013-03-28 Seiko Epson Corp Semiconductor element manufacturing method

Also Published As

Publication number Publication date
JP3639745B2 (en) 2005-04-20

Similar Documents

Publication Publication Date Title
JP2551127B2 (en) MIS semiconductor device and manufacturing method thereof
KR0140719B1 (en) Favrication method of mosfet
JPH10284728A (en) Manufacture of mosfet having cobalt silicide film
JP2925008B2 (en) Method for manufacturing semiconductor device
JPH11284179A (en) Semiconductor device and manufacture thereof
US6258682B1 (en) Method of making ultra shallow junction MOSFET
JP3129867B2 (en) Method for manufacturing semiconductor device
JPH11186545A (en) Manufacture of semiconductor device having silicide and ldd structure
JP3496723B2 (en) Method for manufacturing semiconductor device
US6255183B1 (en) Manufacture of a semiconductor device with a MOS transistor having an LDD structure using SiGe spacers
JPH10335662A (en) Manufacture of self-aligned silicide
JPH10209291A (en) Manufacture of mos type semiconductor device
KR100223736B1 (en) Method of manufacturing semiconductor device
US20020013016A1 (en) Method for fabricating semiconductor device
JPH0581051B2 (en)
JP3639745B2 (en) Manufacturing method of semiconductor device
JPH0982949A (en) Semiconductor device and the manufacture
JP3287621B2 (en) Method for manufacturing semiconductor device
JP3346810B2 (en) Semiconductor device and manufacturing method thereof
KR100604496B1 (en) Method for fabricating semiconductor device
KR20030013882A (en) Method for manufacturing a silicide layer of semiconductor device
JPH0629310A (en) Semiconductor device and manufacture thereof
JPH07249761A (en) Semiconductor device and its fabrication
JP3108927B2 (en) Method for manufacturing semiconductor device
KR100898257B1 (en) Method for manufacturing of semiconductor device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees