JP2000067925A - Method and device for manufacturing non-aqueous electrolyte secondary battery - Google Patents

Method and device for manufacturing non-aqueous electrolyte secondary battery

Info

Publication number
JP2000067925A
JP2000067925A JP10255984A JP25598498A JP2000067925A JP 2000067925 A JP2000067925 A JP 2000067925A JP 10255984 A JP10255984 A JP 10255984A JP 25598498 A JP25598498 A JP 25598498A JP 2000067925 A JP2000067925 A JP 2000067925A
Authority
JP
Japan
Prior art keywords
battery
aqueous electrolyte
manufacturing
secondary battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10255984A
Other languages
Japanese (ja)
Inventor
Hiroshi Nakahara
浩 中原
Yasushi Harada
泰志 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP10255984A priority Critical patent/JP2000067925A/en
Publication of JP2000067925A publication Critical patent/JP2000067925A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a lightweight and safe secondary battery which uses a non-aqueous electrolyte and sustains the use at a high temperature. SOLUTION: This non-aqueous electrolyte secondary battery is provided with a positive and a negative electrode made of substance capable of occluding and releasing lithium ions and is manufactured from a battery precursor accommodated in a battery case made from a laminate film using at least one layer of metal, with a non-aqueous electrolyte being poured into the battery case. The processes for manufacturing include sealing the pour-in hole for precursor, leaving it at a temp. between 35-90 deg.C, opening the precursor, and sealing the pour-in hole again.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解質二次電
池の製造方法及び製造装置に属する。
The present invention relates to a method and an apparatus for manufacturing a non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来の技術】近年、携帯用無線電話、携帯用パソコ
ン、携帯用ビデオカメラ等の電子機器が開発され、各種
電子機器が携帯可能な程度に小型化されている。それに
伴って、内蔵される電池としても、高エネルギー密度を
有し、且つ軽量なものが採用されている。そのような要
求を満たす典型的な電池は、特にリチウム金属やリチウ
ム合金等の活物質、又はリチウムイオンをホスト物質
(ここでホスト物質とは、リチウムイオンを吸蔵及び放
出できる物質をいう。)である炭素に吸蔵させたリチウ
ムインターカレーション化合物を負極材料とし、LiC
lO4、LiPF6等のリチウム塩を溶解した非プロトン
性の有機溶媒を電解液とする非水電解質二次電池であ
る。
2. Description of the Related Art In recent years, electronic devices such as a portable radio telephone, a portable personal computer, and a portable video camera have been developed, and various electronic devices have been reduced in size to be portable. Along with this, a battery having a high energy density and a light weight is also adopted as a built-in battery. A typical battery that satisfies such a requirement is an active material such as lithium metal or lithium alloy, or a host material containing lithium ions (here, a host material refers to a material that can occlude and release lithium ions). Lithium intercalation compound occluded in a certain carbon is used as a negative electrode material, and LiC
This is a non-aqueous electrolyte secondary battery using an aprotic organic solvent in which a lithium salt such as 10 4 or LiPF 6 is dissolved as an electrolyte.

【0003】この非水電解質二次電池は、上記の負極材
料をその支持体である負極集電体に保持してなる負極
板、リチウムコバルト複合酸化物のようにリチウムイオ
ンと可逆的に電気化学反応をする正極活物質をその支持
体である正極集電体に保持してなる正極板、電解液を保
持するとともに負極板と正極板との間に介在して両極の
短絡を防止するセパレータからなっている。
This non-aqueous electrolyte secondary battery has a negative electrode plate in which the above-mentioned negative electrode material is held on a negative electrode current collector as a support, and a reversible electrochemical reaction with lithium ions such as a lithium-cobalt composite oxide. The positive electrode plate, which holds the positive electrode active material that reacts on the positive electrode current collector that is the support, from the separator that holds the electrolytic solution and intervenes between the negative electrode plate and the positive electrode plate to prevent a short circuit between the two electrodes Has become.

【0004】そして、上記正極板、セパレータ及び負極
板は、いずれも薄いシートないし箔状に成形されたもの
を順に積層、又は螺旋状に巻いて、気密構造を有する金
属・樹脂ラミネートフィルムからなる電池ケースに収納
される。この非水電解質二次電池を電子機器に用いる場
合、単電池又は複数個の直列接続したものとして所某の
電圧を得るようにする。この単数又は複数個の電池は、
充放電制御回路とともに前記金属・樹脂ラミネートフィ
ルムよりは剛性の樹脂もしくは金属と樹脂との複合材料
からなるパックに格納される。
[0004] The positive electrode plate, the separator and the negative electrode plate are each formed of a thin sheet or foil and sequentially laminated or spirally wound to form a battery made of a metal / resin laminate film having an airtight structure. It is stored in the case. When this nonaqueous electrolyte secondary battery is used in an electronic device, a predetermined voltage is obtained as a single cell or a plurality of cells connected in series. The battery or batteries are
Together with the charge / discharge control circuit, it is stored in a pack made of a resin that is more rigid than the metal / resin laminate film or a composite material of metal and resin.

【0005】[0005]

【発明が解決しようとする課題】金属・樹脂ラミネート
フィルムを熱溶着してなる電池ケースを用いた単電池
(以下、ラミネート単電池)は、使用中の物理衝撃対策
として、また電池を取り扱う際の利便性向上のために、
ラミネート単電池を電池パックに格納して用いられるこ
とが多い。ラミネート単電池は、従来の金属ケースを用
いた電池と比較すると、電池内部で異常発熱がおこった
り、外部からの加熱により異常に温度上昇した場合に電
池ケース自身が容易に膨らんでしまうという点で異なっ
ている。したがって、電池パックに格納していると電池
パックが膨張変形し、パックを機器から取り外せなくな
ったり、パックが破壊して破片が飛散するなどしてユー
ザーを傷つけたりするなどの問題があった。本発明は、
上記の問題を鑑みてなされたものであり、高温下での使
用に耐え、しかも軽量、安全な非水電解質二次電池を提
供することを目的とする。
A cell using a battery case formed by heat-sealing a metal / resin laminate film (hereinafter referred to as a laminated cell) is used as a measure against physical impact during use and when handling a battery. For convenience,
In many cases, a laminated unit cell is stored in a battery pack and used. Compared to a battery using a conventional metal case, a laminated unit cell is characterized in that the battery case itself easily expands when abnormal heat is generated inside the battery or when the temperature rises abnormally due to external heating. Is different. Therefore, when the battery pack is stored in the battery pack, the battery pack expands and deforms, so that the pack cannot be removed from the device, or there is a problem that the pack is broken and fragments are scattered, thereby damaging the user. The present invention
The present invention has been made in view of the above problems, and has as its object to provide a lightweight, safe and non-aqueous electrolyte secondary battery that can withstand use at high temperatures.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、この発明の非水電解質二次電池の製造方法は、リチ
ウムイオンを吸蔵・放出可能な物質を正・負極とし、こ
れらを電池ケースに収納した状態で非水電解液を電池ケ
ース内に注入してなる電池前駆体から、非水電解質二次
電池を製造する方法において、前記電池前駆体の注入口
を封じた(以下、「封口」という)後、放置し、次いで
注入口の封じられた電池前駆体を開封し、再度封じるこ
とを特徴とする。
In order to achieve the above object, a method for manufacturing a non-aqueous electrolyte secondary battery according to the present invention comprises a positive electrode and a negative electrode which can occlude and release lithium ions, and use these materials as a battery case. In a method for manufacturing a non-aqueous electrolyte secondary battery from a battery precursor obtained by injecting a non-aqueous electrolyte into a battery case while being housed in a battery case, an inlet for the battery precursor is sealed (hereinafter referred to as “sealing”). )), And then leave the battery precursor sealed at the inlet, and then seal it again.

【0007】本発明の製造方法において、注入口を二度
封じる理由は、以下の通りである。炭素材料のようにリ
チウムイオンを吸蔵・放出可能な物質(以下、「炭素材
料等」)を負極に用いた非水電解質二次電池では、最初
の充電で炭素材料等の表面に薄くて電解液に対して不活
性な皮膜が生成することが知られている。この皮膜は電
解液の高分子化により形成されるものと考えられる。本
来、有機電解液などの非水系の電解液と反応性のあるリ
チウム金属が、その中で常温で安定に存在しうるのは、
その皮膜がリチウム金属と電解液との必要以上の反応を
抑制することによると考えられている。
The reason why the injection port is sealed twice in the manufacturing method of the present invention is as follows. In a non-aqueous electrolyte secondary battery using a material capable of occluding and releasing lithium ions such as a carbon material (hereinafter referred to as “carbon material”) as a negative electrode, a thin electrolyte solution on the surface of the carbon material or the like at the first charge It is known that an inert film is formed. This film is considered to be formed by polymerizing the electrolytic solution. Originally, lithium metal, which is reactive with non-aqueous electrolytes such as organic electrolytes, can stably exist at room temperature in it.
It is considered that the coating suppresses an unnecessary reaction between the lithium metal and the electrolyte.

【0008】しかしながら、そのような皮膜は初充電の
際に一度形成されれば、その後は成長しない。従って、
高温時のリチウムイオンの急速な拡散に対して十分な障
壁となることができず、リチウムイオンと電解液との反
応による発熱を抑制することができない。あるいは電池
のおかれる温度によっては、皮膜自体の熱分解反応が起
こって発熱することもありうる。前記のように電池内部
の異常発熱や外部からの温度上昇に伴って電池ケースが
膨らむのは、このときに発生するガスによる。
However, such a film, once formed at the time of the first charge, does not grow thereafter. Therefore,
It cannot serve as a sufficient barrier against rapid diffusion of lithium ions at high temperature, and heat generation due to reaction between lithium ions and the electrolyte cannot be suppressed. Alternatively, depending on the temperature at which the battery is placed, a thermal decomposition reaction of the film itself may occur to generate heat. As described above, the expansion of the battery case due to the abnormal heat generation inside the battery or the temperature rise from the outside is due to the gas generated at this time.

【0009】そこで、本発明では上記のように注液した
状態で一旦電池前駆体を封じた後、放置し、放置中に意
図的にガスを発生させ、発生したガスを開封時に外部に
放出してから再度封じることにより、電池完成後に上記
性質のガスが発生するのを防止するのである。これによ
り、電池ケースの膨張に伴う電池パックの膨張変形又は
破壊が防止される。また、発生したガスは引火性が高い
ために、これを使用前に予め放出しておくことで、作業
上の安全化を図ることもできる。
Therefore, in the present invention, the battery precursor is once sealed in the state of being injected as described above, and then left to stand. Gas is intentionally generated during the standing, and the generated gas is released to the outside at the time of opening. By resealing after that, the gas having the above-mentioned properties is prevented from being generated after the completion of the battery. This prevents the battery pack from being expanded, deformed, or broken due to the expansion of the battery case. Further, since the generated gas has high flammability, it can be made safer by discharging the gas before use before use.

【0010】上記電池ケースとしては、前記金属・樹脂
ラミネートフィルムのように少なくとも1層の金属を用
いたラミネートフィルムからなるものが好ましい。この
ようなフィルムは、その柔軟性の故にガス発生に伴って
変形しやすく、本発明の作用が発揮されやすいからであ
る。
The battery case is preferably made of a laminate film using at least one metal layer, such as the above-mentioned metal / resin laminate film. This is because such a film is easily deformed due to gas generation due to its flexibility, and the effect of the present invention is easily exerted.

【0011】上記放置は、35〜90℃の範囲の温度で
なされるとよい。35℃より低くては皮膜も電解液も安
定していてガスが発生しがたいし、他方90℃より高い
と電極表面の前記皮膜が熱分解したり電解液が変質した
りするおそれがあるからである。上記放置期間は、好ま
しくは0.5時間以上である。0.5時間未満ではガス
が発生しきらないと考えられるからである。上記のよう
に初充電後に発生するガスを開封して放出させる趣旨か
ら、初充電は上記放置の前、即ち初回の封口前又は初回
の封口直後に実施される。
[0011] The leaving is preferably performed at a temperature in the range of 35 to 90 ° C. When the temperature is lower than 35 ° C., both the film and the electrolyte are stable and gas is hardly generated. On the other hand, when the temperature is higher than 90 ° C., the film on the electrode surface may be thermally decomposed or the electrolyte may be deteriorated. It is. The leaving period is preferably 0.5 hours or more. This is because it is considered that gas is not completely generated in less than 0.5 hour. For the purpose of opening and releasing the gas generated after the initial charging as described above, the initial charging is performed before the above-mentioned leaving, that is, immediately before the first sealing or immediately after the first sealing.

【0012】本発明の製造方法に用いる適切な製造装置
は、リチウムイオンを吸蔵・放出可能な物質を正・負極
とし、これらを電池ケースに収納した状態で非水電解液
を電池ケース内に注入してなる電池前駆体から、非水電
解質二次電池を製造する装置において、前記電池前駆体
の注入口を封じる封口手段と、注入口の封じられた電池
前駆体を開封する開封手段と、開封された電池前駆体を
再度封じて電池として完成する再封口手段とを備えるこ
とを特徴とする。
[0012] A suitable manufacturing apparatus used in the manufacturing method of the present invention comprises a positive electrode and a negative electrode which can occlude and release lithium ions, and injects a non-aqueous electrolyte into the battery case with these stored in the battery case. In a device for producing a non-aqueous electrolyte secondary battery from the battery precursor thus obtained, a sealing means for sealing the inlet of the battery precursor, an opening means for opening the sealed battery precursor of the inlet, Resealing means for resealing the battery precursor thus completed to complete the battery.

【0013】このように封口手段の他に、開封手段と再
封口手段を備えるので、封口手段で注入口を一旦封じた
後、放置して電池ケース内部でガスを意図的に発生さ
せ、開封手段で開封して発生ガスを放出した状態で再度
封じることができる。
Since the opening means and the resealing means are provided in addition to the sealing means as described above, the injection port is once sealed by the sealing means, and then left alone to intentionally generate gas inside the battery case. And can be sealed again with the generated gas released.

【0014】前記封口手段及び再封口手段は、好ましく
は各々熱溶着機である。前記のラミネートフィルムが樹
脂層を含むことから熱溶着することで容易に封じること
ができるからである。前記開封手段は、好ましくは切断
機である。瞬時にして開封できるし、切断線がきれいに
仕上がるからである。
The sealing means and the resealing means are preferably each a heat welding machine. This is because the laminate film includes a resin layer and can be easily sealed by heat welding. The opening means is preferably a cutting machine. This is because it can be opened instantly and the cutting line is finished neatly.

【0015】上記製造装置には、更に、前記電池前駆体
を封口手段から開封手段へ一定の所要時間で搬送する搬
送手段を備えるとよい。封口手段から開封手段へ一定の
所要時間で搬送すれば、注入口を封じてから開封までの
放置時間を一定に保つことができるからである。
[0015] The manufacturing apparatus may further include a conveying means for conveying the battery precursor from the sealing means to the opening means for a predetermined required time. This is because if the article is conveyed from the opening means to the opening means for a certain period of time, the time from when the injection port is sealed to when it is opened can be kept constant.

【0016】[0016]

【発明の実施の形態】本発明において、電解液に溶解す
るリチウム塩としてはLiPF6が汎用的であるが、こ
れに限定されるものではなく、LiClO4、LiB
4、LiAsF6、LiCF3CO2、LiCF3SO3
LiN(SO2CF32、LiN(SO2CF2
32、LiN(COCF32およびLiN(COCF
2CF32などの塩もしくはこれらの混合物でもよい。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, LiPF6 is generally used as a lithium salt dissolved in an electrolytic solution, but it is not limited thereto, and LiClO 4 , LiB
F 4 , LiAsF 6 , LiCF 3 CO 2 , LiCF 3 SO 3 ,
LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2 C
F 3 ) 2 , LiN (COCF 3 ) 2 and LiN (COCF
A salt such as 2 CF 3 ) 2 or a mixture thereof may be used.

【0017】また、電解液の溶媒としては、エチレンカ
ーボネートとメチルエチルカーボネートが汎用的である
が、これに限定されるものではなく、プロピレンカーボ
ネート、ブチレンカーボネート、ジエチルカーボネー
ト、ジメチルカーボネート、γ- ブチロラクトン、スル
ホラン、ジメチルスルホキシド、アセトニトリル、ジメ
チルホルムアミド、ジメチルアセトアミド、1,2-ジメト
キシエタン、1,2-ジエトキシエタン、テトラヒドロフラ
ン、2-メチルテトラヒドロフラン、ジオキソラン、メチ
ルアセテート等の極性溶媒、もしくはこれらの混合物を
使用してもよい。
As the solvent for the electrolytic solution, ethylene carbonate and methyl ethyl carbonate are generally used, but are not limited thereto. Propylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, γ-butyrolactone, Use a polar solvent such as sulfolane, dimethyl sulfoxide, acetonitrile, dimethylformamide, dimethylacetamide, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolan, methyl acetate, or a mixture thereof. May be.

【0018】ただし、本発明になる電池に使用する電解
質としては、非水電解液に限られるものではなく、リチ
ウムイオン伝導性高分子固体電解質などの有機固体電解
質やペロブスカイトなどの無機固体電解質を使用するこ
とも可能である。電解質が非水電解液のみの場合は電極
間にセパレータを備える必要があるが、固体電解質と併
用する場合は固体電解質がセパレータとしても機能す
る。
However, the electrolyte used in the battery according to the present invention is not limited to a non-aqueous electrolyte, but may be an organic solid electrolyte such as a lithium ion conductive polymer solid electrolyte or an inorganic solid electrolyte such as perovskite. It is also possible. When the electrolyte is only a non-aqueous electrolyte, a separator must be provided between the electrodes, but when used in combination with a solid electrolyte, the solid electrolyte also functions as a separator.

【0019】さらに、リチウムを吸蔵放出可能な正極材
料としては、LiCo0.15Ni0.82Al0.032が汎用
的であるが、これに限定されるものではない。これ以外
にも、組成式LixMO2、またはLiy24(ただし
M は遷移金属、0≦x≦1、0≦y≦2 )で表され
る、複合酸化物、トンネル状の空孔を有する酸化物、層
状構造の金属カルコゲン化物などの無機化合物を用いる
ことができる。具体的には、LiCoO2 、LiNiO
2、LiMn24 、Li2Mn24 、MnO2、Fe
2、V25、V613、TiO2、TiS2等が挙げられ
る。また、例えばポリアニリン等の導電性ポリマーのよ
うな有機化合物でもよいし、無機化合物、有機化合物及
び上記電解液を適宜混合して用いてもよい。リチウムを
吸蔵放出可能な負極材料としては、黒鉛が汎用的である
が、これに限定されるものではなく、リチウムを吸蔵放
出可能な炭素材料であればよい。
As a positive electrode material capable of inserting and extracting lithium, LiCo 0.15 Ni 0.82 Al 0.03 O 2 is widely used, but is not limited thereto. In addition, a composite oxide represented by the composition formula Li x MO 2 or Li y M 2 O 4 (where M is a transition metal, 0 ≦ x ≦ 1, 0 ≦ y ≦ 2), and a tunnel-like composite oxide An inorganic compound such as an oxide having vacancies or a metal chalcogenide having a layered structure can be used. Specifically, LiCoO 2 , LiNiO
2 , LiMn 2 O 4 , Li 2 Mn 2 O 4 , MnO 2 , Fe
O 2 , V 2 O 5 , V 6 O 13 , TiO 2 , TiS 2 and the like can be mentioned. Further, for example, an organic compound such as a conductive polymer such as polyaniline may be used, or an inorganic compound, an organic compound, and the above-mentioned electrolytic solution may be appropriately mixed and used. As a negative electrode material capable of inserting and extracting lithium, graphite is generally used, but is not limited thereto, and any carbon material capable of inserting and extracting lithium may be used.

【0020】[0020]

【実施例】本発明の実施例を図面とともに説明する。以
下、参考例とあるのは請求項1の技術的範囲には属する
が他の請求項の技術的範囲には属さない場合もある例を
示し、比較例とあるのはどの請求項の技術的範囲にも属
さない例を示す。
An embodiment of the present invention will be described with reference to the drawings. Hereinafter, a reference example indicates an example that belongs to the technical scope of claim 1 but may not belong to the technical scope of another claim, and a comparative example indicates the technical scope of any claim. Here is an example that does not belong to the range.

【0021】−実施例1− 図1は本発明になる非水電解質二次電池の説明図であ
る。非水電解質二次電池1は、正極板、負極板及びセパ
レータからなる電極群が非水系の電解液(図示省略)と
ともに金属ラミネート樹脂フィルムを熱溶着してなる電
池ケース2に収納されている。
Example 1 FIG. 1 is an explanatory view of a non-aqueous electrolyte secondary battery according to the present invention. The nonaqueous electrolyte secondary battery 1 is housed in a battery case 2 in which an electrode group including a positive electrode plate, a negative electrode plate, and a separator is heat-sealed with a nonaqueous electrolytic solution (not shown) to a metal laminated resin film.

【0022】正極板は、集電体に活物質としてリチウム
コバルト複合酸化物が保持されたものである。集電体
は、厚さ10μmのアルミニウム箔である。正極板は、
結着剤であるポリフッ化ビニリデン6部と導電剤である
アセチレンブラック3部とを活物質91部とともに混合
し、適宜N−メチルピロリドンを加えてペースト状に調
製した後、その集電体材料の両面に塗布、乾燥すること
によって製作した。
The positive electrode plate is a current collector in which a lithium-cobalt composite oxide is held as an active material. The current collector is an aluminum foil having a thickness of 10 μm. The positive electrode plate is
6 parts of polyvinylidene fluoride as a binder and 3 parts of acetylene black as a conductive agent were mixed together with 91 parts of an active material, and N-methylpyrrolidone was added as appropriate to prepare a paste. It was manufactured by coating and drying on both sides.

【0023】負極板の集電体は、厚さ14μmの銅箔を
用いた。負極板は、その集電体の両面に、ホスト物質と
してのグラファイト(黒鉛)92部と結着剤としてのポ
リフッ化ビニリデン8部とを混合し、適宜N−メチルピ
ロリドンを加えてペースト状に調製したものを塗布、乾
燥することによって製作された。
As the current collector of the negative electrode plate, a copper foil having a thickness of 14 μm was used. The negative electrode plate was prepared by mixing 92 parts of graphite (graphite) as a host substance and 8 parts of polyvinylidene fluoride as a binder on both sides of the current collector, and adding N-methylpyrrolidone as appropriate to prepare a paste. It was manufactured by coating and drying.

【0024】セパレータは、ポリエチレン微多孔膜であ
る。また、電解液は、LiPF6を1mol/l含むエ
チレンカーボネート:ジエチルカーボネート=4:6
(体積比)の混合液である。それぞれの寸法は正極板が
厚さ180μm、幅49mmで、セパレータが厚さ25
μm、幅53mmで、負極板が厚さ170μm、幅51
mmとなっており、順に重ね合わせてポリエチレンの長
方形状の巻芯を中心として、その周囲に長円渦状に巻い
た後、気密に封じるために電池ケース2に収納されてい
る。
The separator is a polyethylene microporous membrane. Further, the electrolyte, the LiPF 6 1 mol / l comprising ethylene carbonate: diethyl carbonate = 4: 6
(Volume ratio). The respective dimensions are as follows: the positive electrode plate has a thickness of 180 μm, the width is 49 mm, and the separator has a thickness of 25 μm.
μm, width 53 mm, negative plate 170 μm thick, width 51
mm, which are superposed one on the other, wound around an elliptical core around a rectangular core of polyethylene, and then housed in a battery case 2 for hermetic sealing.

【0025】電池ケース2は、図2に断面図として詳細
に示すように最外層に表面保護用の12μmのPET層
21を有し、その下にバリア層として9μmのアルミニ
ウム箔22をウレタン系接着剤で接着している。さら
に、その下に熱溶着層として100μmの酸変性ポリエ
チレン層23を有するラミネートフィルムからなってい
る。ここで、熱溶着層である酸変性ポリエチレン層23
には軟化点が100℃のものを用いた。
The battery case 2 has a 12 μm PET layer 21 for surface protection on the outermost layer and a 9 μm aluminum foil 22 as a barrier layer thereunder as shown in FIG. Adhesive. Further, it is made of a laminate film having a 100 μm acid-modified polyethylene layer 23 as a heat welding layer thereunder. Here, the acid-modified polyethylene layer 23 serving as a heat welding layer
Used had a softening point of 100 ° C.

【0026】また、リード端子3は、図2のように50
から100μmの銅、アルミ、ニッケルなどの金属導体
31に金属との接着層となる50μmの酸変性PE層3
2を接着し、その外側に電解液バリア層として70μm
のエバール樹脂(クラレ製のエチレンビニルアルコール
共重合樹脂)層33を設けたものである。これらを図の
ように重ねて接着すると良好な気密性が得られる。ここ
では、正極リード端子材料にアルミニウム、負極リード
端子材料にニッケルを用いた。
Further, as shown in FIG.
50 μm acid-modified PE layer 3 serving as an adhesive layer with metal on metal conductor 31 of copper, aluminum, nickel, etc.
2 and a 70 μm-thick outer surface as an electrolyte barrier layer
(Kuraray's ethylene vinyl alcohol copolymer resin) layer 33 is provided. When these are overlapped and adhered as shown in the figure, good airtightness can be obtained. Here, aluminum was used for the positive electrode lead terminal material and nickel was used for the negative electrode lead terminal material.

【0027】つぎに、図3に示すような方法にて、電池
を製作した。先ず、電解液を注入して封口すれば見掛け
上は電池1となる電池前駆体10を準備した。この電池
前駆体10の電池ケース2のリード端子3と反対側の開
口部から電解液を注入して、封口せずに250mAにて
4.1Vまで充電した。つぎに、開口している部位を熱
溶着して封口して密閉状態とした。そして、45℃にて
1時間放置(以下、「製作放置」という)した後、最後
に熱溶着した部位2aよりもリード端子3側の部位2b
にて切断することにより開封して、電池内で発生した気
体を電池外へ放出させた。その後、再度この部位を熱溶
着することにより−700mmHg下で減圧封口して、
非水電解質二次電池1を製作した。設計容量550mA
hであるこの電池を100セル製作した。
Next, a battery was manufactured by the method shown in FIG. First, a battery precursor 10 that apparently becomes the battery 1 when an electrolyte was injected and sealed was prepared. An electrolytic solution was injected from the opening of the battery precursor 10 opposite to the lead terminal 3 of the battery case 2 and charged to 4.1 V at 250 mA without sealing. Next, the open portion was heat-sealed and sealed to form a sealed state. Then, after leaving at 45 ° C. for 1 hour (hereinafter referred to as “manufacturing leaving”), a portion 2b closer to the lead terminal 3 than the portion 2a finally heat-welded.
Then, the package was opened by cutting, and the gas generated in the battery was released to the outside of the battery. Thereafter, this portion was again heat-sealed to seal under reduced pressure under -700 mmHg.
A non-aqueous electrolyte secondary battery 1 was manufactured. Design capacity 550mA
h, 100 cells of this battery were manufactured.

【0028】図4は、上記方法を実施するための装置で
あって、コンベア4に電池前駆体10のリード端子3側
の一部を挿入可能なブラケット5が取り付けられてい
る。電池前駆体10はリード端子3を下向きにしてブラ
ケット5に挿入された状態でコンベア4にて搬送され
る。電池前駆体10には電解液が上方の開口部より注入
されている。電池前駆体10が熱溶着機6の位置に搬送
されてきたら、コンベア4が一時停止するとともに、図
略の検知センサが電池前駆体10を検知して熱溶着機6
を作動させて電池前駆体10の上端部を熱溶着する。そ
の後、コンベア4が再び駆動し、電池前駆体10が切断
機7の位置に搬送される。ここで切断機7を作動させて
電池前駆体10の溶着部より少し下の位置で電池ケース
2を切断する。電池ケース2の中から放出されるガスを
ダクトで排気する。コンベア4は、熱溶着機6が溶着を
終えてから切断機7が切断を開始するまでの所要時間が
一定となるような速度で駆動するように制御する。続い
て、電池前駆体10は第二熱溶着機8の位置に搬送され
る。そして、切断により開封した電池ケース2の上端部
を再び熱溶着する。
FIG. 4 shows an apparatus for carrying out the above method, in which a bracket 5 capable of inserting a part of the battery precursor 10 on the lead terminal 3 side is attached to a conveyor 4. The battery precursor 10 is conveyed on the conveyor 4 with the lead terminals 3 facing down and inserted into the bracket 5. The electrolyte is injected into the battery precursor 10 from the upper opening. When the battery precursor 10 is transported to the position of the heat welding machine 6, the conveyor 4 is temporarily stopped, and a detection sensor (not shown) detects the battery precursor 10 and the heat welding machine 6
Is operated to thermally weld the upper end of the battery precursor 10. Thereafter, the conveyor 4 is driven again, and the battery precursor 10 is transported to the position of the cutting machine 7. Here, the cutting machine 7 is operated to cut the battery case 2 at a position slightly below the welded portion of the battery precursor 10. Gas released from the battery case 2 is exhausted by a duct. The conveyor 4 is controlled so as to be driven at such a speed that the required time from the completion of the welding of the heat welding machine 6 to the start of the cutting of the cutting machine 7 becomes constant. Subsequently, the battery precursor 10 is transported to the position of the second heat welding machine 8. Then, the upper end of the battery case 2 opened by cutting is heat-sealed again.

【0029】電池ケース2の内部で発生したガスは、切
断機7による切断と同時に放出されるので、切断機7か
ら第二熱溶着機8に至るまでの搬送時間は短くて良い。
むしろ、開封後の異物混入や液漏れを防止するためにも
短い方が好ましい。従って、一つのコンベアで電池前駆
体10を熱溶着機6から第二熱溶着機8まで搬送する場
合、熱溶着機6と切断機7とは一定の間隔を置いて設置
し、切断機7と第二熱溶着機8とは隣接させると良い。
尚、前記で製作された100セルの電池は、試験品のた
め図4の装置に依るのではなく、手作業にて封口及び開
封を行った。以下の実施例及び参考例も同様である。
Since the gas generated inside the battery case 2 is released at the same time as the cutting by the cutting machine 7, the transport time from the cutting machine 7 to the second heat welding machine 8 may be short.
Rather, it is preferable that the length be short in order to prevent foreign substances from entering and liquid leakage after opening. Therefore, when the battery precursor 10 is transported from the heat welding machine 6 to the second heat welding machine 8 by one conveyor, the heat welding machine 6 and the cutting machine 7 are installed at a fixed interval, and the cutting machine 7 It is good to be adjacent to the second heat welding machine 8.
The 100-cell battery manufactured as described above was a test product, and was sealed and opened manually instead of using the apparatus shown in FIG. The same applies to the following examples and reference examples.

【0030】−実施例2− 初回の封口後の製作放置条件を、45℃にて3時間とし
た以外は、実施例1に記載した製作方法と同様の非水電
解質二次電池を100セル製作した。 −実施例3− 初回の封口後の製作放置条件を、45℃にて5時間とし
た以外は、実施例1に記載した製作方法と同様の非水電
解質二次電池を100セル製作した。
Example 2 A 100-cell non-aqueous electrolyte secondary battery was manufactured in the same manner as in the manufacturing method described in Example 1, except that the manufacturing and leaving conditions after the first sealing were set at 45 ° C. for 3 hours. did. -Example 3-100 cells of a non-aqueous electrolyte secondary battery were manufactured in the same manner as in the manufacturing method described in Example 1, except that the production leaving condition after the first sealing was set to 45 hours at 45 ° C.

【0031】−実施例4− 初回の封口後の製作放置条件を、45℃にて10時間と
した以外は、実施例1に記載した製作方法と同様の非水
電解質二次電池を100セル製作した。−実施例5−初
回の封口後の製作放置条件を、45℃にて24時間とし
た以外は、実施例1に記載した製作方法と同様の非水電
解質二次電池を100セル製作した。
Example 4 A 100-cell non-aqueous electrolyte secondary battery was manufactured in the same manner as in the manufacturing method described in Example 1, except that the manufacturing and leaving conditions after the initial sealing were changed to 45 ° C. for 10 hours. did. -Example 5-100 cells of a nonaqueous electrolyte secondary battery were manufactured in the same manner as the manufacturing method described in Example 1, except that the production leaving conditions after the first sealing were set to 45 ° C for 24 hours.

【0032】−実施例6− 初回の封口後の製作放置条件を、45℃にて48時間と
した以外は、実施例1に記載した製作方法と同様の非水
電解質二次電池を100セル製作した。 −実施例7− 初回の封口後の製作放置条件を、45℃にて72時間と
した以外は、実施例1に記載した製作方法と同様の非水
電解質二次電池を100セル製作した。
Example 6 A 100-cell non-aqueous electrolyte secondary battery was manufactured in the same manner as in the manufacturing method described in Example 1, except that the manufacturing and leaving conditions after the first sealing were set to 45 hours at 45 ° C. did. -Example 7-100 cells of a non-aqueous electrolyte secondary battery were manufactured in the same manner as in the manufacturing method described in Example 1, except that the production leaving conditions after the first sealing were set to 45 ° C for 72 hours.

【0033】−実施例8− 初回の封口後の製作放置条件を、45℃にて96時間と
した以外は、実施例1に記載した製作方法と同様の非水
電解質二次電池を100セル製作した。 −実施例9− 初回の封口後の製作放置条件を、45℃にて120時間
とした以外は、実施例1に記載した製作方法と同様の非
水電解質二次電池を100セル製作した。
Example 8 100 cells of a non-aqueous electrolyte secondary battery were manufactured in the same manner as in the manufacturing method described in Example 1 except that the manufacturing and leaving conditions after the first sealing were set to 96 hours at 45 ° C. did. -Example 9-100 cells of a non-aqueous electrolyte secondary battery were manufactured in the same manner as in the manufacturing method described in Example 1 except that the manufacturing and leaving conditions after the initial sealing were set to 45 hours at 120C for 120 hours.

【0034】−実施例10− 初回の封口後の製作放置条件を、45℃にて144時間
とした以外は、実施例1に記載した製作方法と同様の非
水電解質二次電池を100セル製作した。 −実施例11− 初回の封口後の製作放置条件を、45℃にて168時間
とした以外は、実施例1に記載した製作方法と同様の非
水電解質二次電池を100セル製作した。
Example 10 A 100-cell non-aqueous electrolyte secondary battery was manufactured in the same manner as in the manufacturing method described in Example 1 except that the manufacturing and leaving conditions after the first sealing were changed to 45 hours at 45 ° C. for 144 hours. did. -Example 11-100 cells of a non-aqueous electrolyte secondary battery were manufactured in the same manner as in the manufacturing method described in Example 1, except that the manufacturing and leaving conditions after the initial sealing were 168 hours at 45 ° C.

【0035】−実施例12− 初回の封口後の製作放置条件を、60℃にて1時間とし
た以外は、実施例1に記載した製作方法と同様の非水電
解質二次電池を100セル製作した。 −実施例13− 初回の封口後の製作放置条件を、60℃にて3時間とし
た以外は、実施例1に記載した製作方法と同様の非水電
解質二次電池を100セル製作した。
Example 12 A 100-cell non-aqueous electrolyte secondary battery was manufactured in the same manner as in the manufacturing method described in Example 1, except that the manufacturing and leaving conditions after the initial sealing were changed to 60 ° C. for 1 hour. did. -Example 13-100 cells of a non-aqueous electrolyte secondary battery were manufactured in the same manner as the manufacturing method described in Example 1 except that the production leaving condition after the first sealing was set at 60 ° C for 3 hours.

【0036】−実施例14− 初回の封口後の製作放置条件を、60℃にて5時間とし
た以外は、実施例1に記載した製作方法と同様の非水電
解質二次電池を100セル製作した。 −実施例15− 初回の封口後の製作放置条件を、60℃にて10時間と
した以外は、実施例1に記載した製作方法と同様の非水
電解質二次電池を100セル製作した。
Example 14 A 100-cell non-aqueous electrolyte secondary battery was produced in the same manner as in the production method described in Example 1, except that the production leaving condition after the first sealing was changed to 60 ° C. for 5 hours. did. -Example 15-100 cells of a non-aqueous electrolyte secondary battery were manufactured in the same manner as in the manufacturing method described in Example 1, except that the manufacturing and leaving conditions after the initial sealing were set to 60 ° C for 10 hours.

【0037】−実施例16− 初回の封口後の製作放置条件を、60℃にて24時間と
した以外は、実施例1に記載した製作方法と同様の非水
電解質二次電池を100セル製作した。 −実施例17− 初回の封口後の製作放置条件を、60℃にて48時間と
した以外は、実施例1に記載した製作方法と同様の非水
電解質二次電池を100セル製作した。
Example 16 A 100-cell non-aqueous electrolyte secondary battery was manufactured in the same manner as in the manufacturing method described in Example 1, except that the manufacturing and leaving conditions after the first sealing were changed to 60 ° C. for 24 hours. did. -Example 17-100 cells of a non-aqueous electrolyte secondary battery were manufactured in the same manner as in the manufacturing method described in Example 1, except that the production leaving conditions after the first sealing were set to 60 ° C for 48 hours.

【0038】−実施例18− 初回の封口後の製作放置条件を、60℃にて72時間と
した以外は、実施例1に記載した製作方法と同様の非水
電解質二次電池を100セル製作した。 −実施例19− 初回の封口後の製作放置条件を、60℃にて96時間と
した以外は、実施例1に記載した製作方法と同様の非水
電解質二次電池を100セル製作した。
Example 18 A 100-cell non-aqueous electrolyte secondary battery was manufactured in the same manner as in the manufacturing method described in Example 1, except that the manufacturing and leaving conditions after the initial sealing were changed to 60 ° C. for 72 hours. did. -Example 19-100 cells of a non-aqueous electrolyte secondary battery were manufactured in the same manner as in the manufacturing method described in Example 1 except that the production leaving conditions after the first sealing were set to 60 ° C for 96 hours.

【0039】−実施例20− 初回の封口後の製作放置条件を、60℃にて120時間
とした以外は、実施例1に記載した製作方法と同様の非
水電解質二次電池を100セル製作した。 −実施例21− 初回の封口後の製作放置条件を、60℃にて144時間
とした以外は、実施例1に記載した製作方法と同様の非
水電解質二次電池を100セル製作した。
Example 20 A 100-cell non-aqueous electrolyte secondary battery was manufactured in the same manner as in the manufacturing method described in Example 1, except that the manufacturing and leaving conditions after the initial sealing were changed to 60 ° C. for 120 hours. did. -Example 21-100 cells of a non-aqueous electrolyte secondary battery were manufactured in the same manner as the manufacturing method described in Example 1, except that the production leaving conditions after the first sealing were set to 144 hours at 60 ° C.

【0040】−実施例22− 初回の封口後の製作放置条件を、60℃にて168時間
とした以外は、実施例1に記載した製作方法と同様の非
水電解質二次電池を100セル製作した。 −実施例23− 初回の封口後の製作放置条件を、85℃にて1時間とし
た以外は、実施例1に記載した製作方法と同様の非水電
解質二次電池を100セル製作した。
Example 22 A 100-cell non-aqueous electrolyte secondary battery was manufactured in the same manner as in the manufacturing method described in Example 1, except that the manufacturing and leaving conditions after the initial sealing were 168 hours at 60 ° C. did. -Example 23-100 cells of a non-aqueous electrolyte secondary battery were manufactured in the same manner as in the manufacturing method described in Example 1, except that the production leaving condition after the first sealing was set to 85 ° C for 1 hour.

【0041】−実施例24− 初回の封口後の製作放置条件を、85℃にて3時間とし
た以外は、実施例1に記載した製作方法と同様の非水電
解質二次電池を100セル製作した。 −実施例25− 初回の封口後の製作放置条件を、85℃にて5時間とし
た以外は、実施例1に記載した製作方法と同様の非水電
解質二次電池を100セル製作した。
Example 24 A 100-cell non-aqueous electrolyte secondary battery was manufactured in the same manner as in the manufacturing method described in Example 1, except that the production leaving condition after the first sealing was changed to 85 ° C. for 3 hours. did. -Example 25-100 cells of a non-aqueous electrolyte secondary battery were manufactured in the same manner as the manufacturing method described in Example 1 except that the production leaving conditions after the first sealing were changed to 85 ° C for 5 hours.

【0042】−実施例26− 初回の封口後の製作放置条件を、85℃にて10時間と
した以外は、実施例1に記載した製作方法と同様の非水
電解質二次電池を100セル製作した。 −実施例27− 初回の封口後の製作放置条件を、85℃にて24時間と
した以外は、実施例1に記載した製作方法と同様の非水
電解質二次電池を100セル製作した。
Example 26 A 100-cell non-aqueous electrolyte secondary battery was manufactured in the same manner as in the manufacturing method described in Example 1 except that the manufacturing and leaving conditions after the initial sealing were changed to 85 ° C. for 10 hours. did. -Example 27-100 cells of a nonaqueous electrolyte secondary battery were manufactured in the same manner as in the manufacturing method described in Example 1, except that the manufacturing and leaving conditions after the initial sealing were set to 85 ° C for 24 hours.

【0043】−実施例28− 初回の封口後の製作放置条件を、85℃にて48時間と
した以外は、実施例1に記載した製作方法と同様の非水
電解質二次電池を100セル製作した。 −実施例29− 初回の封口後の製作放置条件を、85℃にて72時間と
した以外は、実施例1に記載した製作方法と同様の非水
電解質二次電池を100セル製作した。
Example 28 A 100-cell non-aqueous electrolyte secondary battery was manufactured in the same manner as in the manufacturing method described in Example 1, except that the manufacturing and leaving conditions after the initial sealing were changed to 85 ° C. for 48 hours. did. -Example 29-100 cells of a non-aqueous electrolyte secondary battery were manufactured in the same manner as in the manufacturing method described in Example 1 except that the manufacturing and leaving conditions after the first sealing were changed to 85 ° C for 72 hours.

【0044】−実施例30− 初回の封口後の製作放置条件を、85℃にて96時間と
した以外は、実施例1に記載した製作方法と同様の非水
電解質二次電池を100セル製作した。 −実施例31− 初回の封口後の製作放置条件を、85℃にて120時間
とした以外は、実施例1に記載した製作方法と同様の非
水電解質二次電池を100セル製作した。
Example 30 A 100-cell non-aqueous electrolyte secondary battery was manufactured in the same manner as in the manufacturing method described in Example 1, except that the manufacturing and leaving conditions after the initial sealing were changed to 85 ° C. for 96 hours. did. -Example 31-100 cells of a non-aqueous electrolyte secondary battery were manufactured in the same manner as in the manufacturing method described in Example 1, except that the production leaving conditions after the first sealing were set to 85 ° C for 120 hours.

【0045】−実施例32− 初回の封口後の製作放置条件を、85℃にて144時間
とした以外は、実施例1に記載した製作方法と同様の非
水電解質二次電池を100セル製作した。 −実施例33− 初回の封口後の製作放置条件を、85℃にて168時間
とした以外は、実施例1に記載した製作方法と同様の非
水電解質二次電池を100セル製作した。
Example 32 A 100-cell non-aqueous electrolyte secondary battery was manufactured in the same manner as in the manufacturing method described in Example 1 except that the manufacturing and leaving conditions after the first sealing were changed to 85 ° C. for 144 hours. did. -Example 33-100 cells of a non-aqueous electrolyte secondary battery were manufactured in the same manner as the manufacturing method described in Example 1, except that the production leaving condition after the first sealing was 168 hours at 85 ° C.

【0046】−参考例1− 初回の封口後の製作放置条件を、25℃にて1時間とし
た以外は、実施例1に記載した製作方法と同様の非水電
解質二次電池を100セル製作した。 −参考例2− 初回の封口後の製作放置条件を、25℃にて3時間とし
た以外は、実施例1に記載した製作方法と同様の非水電
解質二次電池を100セル製作した。
Reference Example 1 A 100-cell non-aqueous electrolyte secondary battery was manufactured in the same manner as in the manufacturing method described in Example 1, except that the manufacturing and leaving conditions after the initial sealing were changed to 25 ° C. for 1 hour. did. -Reference Example 2-100 cells of a non-aqueous electrolyte secondary battery were manufactured in the same manner as in the manufacturing method described in Example 1, except that the manufacturing and leaving conditions after the first sealing were changed to 25 hours at 25 ° C for 3 hours.

【0047】−参考例3− 初回の封口後の製作放置条件を、25℃にて5時間とし
た以外は、実施例1に記載した製作方法と同様の非水電
解質二次電池を100セル製作した。 −参考例4− 初回の封口後の製作放置条件を、25℃にて10時間と
した以外は、実施例1に記載した製作方法と同様の非水
電解質二次電池を100セル製作した。
Reference Example 3 A 100-cell non-aqueous electrolyte secondary battery was manufactured in the same manner as in the manufacturing method described in Example 1, except that the manufacturing and leaving conditions after the first sealing were changed to 25 ° C. for 5 hours. did. -Reference Example 4-100 cells of a non-aqueous electrolyte secondary battery were manufactured in the same manner as in the manufacturing method described in Example 1 except that the manufacturing and leaving conditions after the first sealing were changed to 25 ° C for 10 hours.

【0048】−参考例5− 初回の封口後の製作放置条件を、25℃にて24時間と
した以外は、実施例1に記載した製作方法と同様の非水
電解質二次電池を100セル製作した。 −参考例6− 初回の封口後の製作放置条件を、25℃にて48時間と
した以外は、実施例1に記載した製作方法と同様の非水
電解質二次電池を100セル製作した。
-Reference Example 5-100 cells of a non-aqueous electrolyte secondary battery were manufactured in the same manner as in the manufacturing method described in Example 1, except that the manufacturing and leaving conditions after the first sealing were set to 25 hours at 25 ° C. did. -Reference Example 6-100 cells of a non-aqueous electrolyte secondary battery were manufactured in the same manner as in the manufacturing method described in Example 1, except that the production leaving conditions after the initial sealing were set to 25 ° C for 48 hours.

【0049】−参考例7− 初回の封口後の製作放置条件を、25℃にて72時間と
した以外は、実施例1に記載した製作方法と同様の非水
電解質二次電池を100セル製作した。 −参考例8− 初回の封口後の製作放置条件を、25℃にて96時間と
した以外は、実施例1に記載した製作方法と同様の非水
電解質二次電池を100セル製作した。
-Reference Example 7- A 100-cell non-aqueous electrolyte secondary battery was manufactured in the same manner as in the manufacturing method described in Example 1, except that the manufacturing and leaving conditions after the first sealing were set to 25 hours at 25 ° C. did. -Reference Example 8-100 cells of a non-aqueous electrolyte secondary battery were manufactured in the same manner as in the manufacturing method described in Example 1, except that the manufacturing and leaving conditions after the first sealing were set to 96 hours at 25 ° C.

【0050】−参考例9− 初回の封口後の製作放置条件を、25℃にて120時間
とした以外は、実施例1に記載した製作方法と同様の非
水電解質二次電池を100セル製作した。 −参考例10− 初回の封口後の製作放置条件を、25℃にて144時間
とした以外は、実施例1に記載した製作方法と同様の非
水電解質二次電池を100セル製作した。
Reference Example 9 A 100-cell non-aqueous electrolyte secondary battery was manufactured in the same manner as in the manufacturing method described in Example 1, except that the manufacturing and leaving conditions after the first sealing were changed to 25 ° C. for 120 hours. did. -Reference Example 10-100 cells of a non-aqueous electrolyte secondary battery were manufactured in the same manner as in the manufacturing method described in Example 1, except that the production leaving condition after the first sealing was set to 25 hours at 144 hours.

【0051】−参考例11− 初回の封口後の製作放置条件を、25℃にて168時間
とした以外は、実施例1に記載した製作方法と同様の非
水電解質二次電池を100セル製作した。 −参考例12− 初回の封口後の製作放置条件を、100℃にて1時間と
した以外は、実施例1に記載した製作方法と同様の非水
電解質二次電池を100セル製作した。
Reference Example 11 A 100-cell non-aqueous electrolyte secondary battery was manufactured in the same manner as in the manufacturing method described in Example 1 except that the manufacturing and leaving conditions after the initial sealing were 168 hours at 25 ° C. did. -Reference Example 12-100 cells of a nonaqueous electrolyte secondary battery were manufactured in the same manner as in the manufacturing method described in Example 1 except that the manufacturing and leaving conditions after the initial sealing were 100 ° C for 1 hour.

【0052】−参考例13− 初回の封口後の製作放置条件を、100℃にて3時間と
した以外は、実施例1に記載した製作方法と同様の非水
電解質二次電池を100セル製作した。 −参考例14− 初回の封口後の製作放置条件を、100℃にて5時間と
した以外は、実施例1に記載した製作方法と同様の非水
電解質二次電池を100セル製作した。
Reference Example 13 A 100-cell non-aqueous electrolyte secondary battery was manufactured in the same manner as in the manufacturing method described in Example 1, except that the manufacturing and leaving conditions after the first sealing were 100 ° C. for 3 hours. did. -Reference Example 14-100 cells of a non-aqueous electrolyte secondary battery were manufactured in the same manner as in the manufacturing method described in Example 1, except that the production leaving condition after the first sealing was set at 100 ° C for 5 hours.

【0053】−参考例15− 初回の封口後の製作放置条件を、100℃にて10時間
とした以外は、実施例1に記載した製作方法と同様の非
水電解質二次電池を100セル製作した。 −参考例16− 初回の封口後の製作放置条件を、100℃にて24時間
とした以外は、実施例1に記載した製作方法と同様の非
水電解質二次電池を100セル製作した。
Reference Example 15 A 100-cell non-aqueous electrolyte secondary battery was manufactured in the same manner as in the manufacturing method described in Example 1, except that the manufacturing and leaving conditions after the first sealing were changed to 100 ° C. for 10 hours. did. -Reference Example 16-100 cells of a non-aqueous electrolyte secondary battery were manufactured in the same manner as in the manufacturing method described in Example 1, except that the manufacturing and leaving conditions after the first sealing were changed to 100 ° C for 24 hours.

【0054】−参考例17− 初回の封口後の製作放置条件を、100℃にて48時間
とした以外は、実施例1に記載した製作方法と同様の非
水電解質二次電池を100セル製作した。 −参考例18− 初回の封口後の製作放置条件を、100℃にて72時間
とした以外は、実施例1に記載した製作方法と同様の非
水電解質二次電池を100セル製作した。
Reference Example 17 A 100-cell non-aqueous electrolyte secondary battery was produced in the same manner as in the production method described in Example 1, except that the production leaving conditions after the initial sealing were changed to 100 ° C. for 48 hours. did. -Reference Example 18-100 cells of a non-aqueous electrolyte secondary battery were manufactured in the same manner as the manufacturing method described in Example 1, except that the production leaving condition after the first sealing was set to 100 ° C for 72 hours.

【0055】−参考例19− 初回の封口後の製作放置条件を、100℃にて96時間
とした以外は、実施例1に記載した製作方法と同様の非
水電解質二次電池を100セル製作した。 −参考例20− 初回の封口後の製作放置条件を、100℃にて120時
間とした以外は、実施例1に記載した製作方法と同様の
非水電解質二次電池を100セル製作した。
Reference Example 19 A 100-cell non-aqueous electrolyte secondary battery was produced in the same manner as in the production method described in Example 1, except that the production leaving conditions after the first sealing were changed to 100 ° C. for 96 hours. did. Reference Example 20 100 nonaqueous electrolyte secondary batteries were manufactured in the same manner as in the manufacturing method described in Example 1, except that the manufacturing and leaving conditions after the first sealing were changed to 100 ° C. for 120 hours.

【0056】−参考例21− 初回の封口後の製作放置条件を、100℃にて144時
間とした以外は、実施例1に記載した製作方法と同様の
非水電解質二次電池を100セル製作した。 −参考例22− 初回の封口後の製作放置条件を、100℃にて168時
間とした以外は、実施例1に記載した製作方法と同様の
非水電解質二次電池を100セル製作した。
Reference Example 21 A 100-cell non-aqueous electrolyte secondary battery was produced in the same manner as in the production method described in Example 1, except that the production leaving condition after the first sealing was changed to 100 ° C. for 144 hours. did. -Reference Example 22-100 cells of a non-aqueous electrolyte secondary battery were manufactured in the same manner as the manufacturing method described in Example 1 except that the manufacturing and leaving conditions after the first sealing were changed to 168 hours at 100 ° C.

【0057】これらの電池を、500mAで4.2Vま
で3時間充電して、充電状態で85℃にて14日間放置
(以下、「試験放置」という)した。また、実施例1の
電池において初回封口後に開封も再封口もしない電池を
100セル製作し、同様に500mAで4.2Vまで3
時間充電して比較例の電池とした。この比較例の電池も
同様に充電状態で85℃にて14日間試験放置したが、
時間の経過とともに電池が膨れ、最終的に熱溶着部の一
部が開口した。試験放置後、比較例の電池を除く各電池
内における気体の体積を測定した結果を図5に示す。気
体の体積は、パラフィン中で気体を放出させてメスシリ
ンダーに捕集することによって測定した。実施例1〜3
3および参考例1〜22の試験放置前の電池の中に含ま
れている気体の体積を測定すると、僅かに0.5〜0.
6mlであった。上記電池は初回充電時に発生した気体
を放出したものであるため、このときの電池は常温であ
るから内圧は1kgf/cm2であると推定される。し
たがって、上記体積は、非水電解質二次電池内の空孔体
積として考えられる。
These batteries were charged at 500 mA to 4.2 V for 3 hours, and left in a charged state at 85 ° C. for 14 days (hereinafter referred to as “test left”). In addition, 100 cells of the battery of Example 1 which were not opened and resealed after the initial sealing were manufactured, and similarly, up to 4.2 V at 500 mA.
The battery was charged for a time to obtain a comparative example. The battery of this comparative example was similarly left at 85 ° C. for 14 days in a charged state,
The battery swelled with the passage of time, and finally a part of the heat-welded portion was opened. After the test was left, the results of measuring the gas volume in each battery except the battery of the comparative example are shown in FIG. The gas volume was measured by releasing the gas in paraffin and collecting it in a graduated cylinder. Examples 1-3
3 and Reference Examples 1-22, when the volume of gas contained in the batteries before the test was left was measured, it was found that the volume was slightly 0.5 to 0.5.
It was 6 ml. Since the battery emitted gas generated at the time of the first charge, the internal pressure was estimated to be 1 kgf / cm 2 because the battery at this time was at room temperature. Therefore, the volume can be considered as a pore volume in the non-aqueous electrolyte secondary battery.

【0058】電池ケース2に用いられている金属・樹脂
フィルムは機械的強度は低いものの、封口した場合には
常温において4〜5kg/cm2程度のきわめて高い耐
圧性能を有する。非水電解質二次電池を電池パックに入
れると、電池パックは剛性が高いから、電池を上記の試
験放置の条件で放置しても温度上昇及びガス発生に伴う
物理的変化は体積膨張ではなく、むしろ内圧上昇であ
る。そこで、電池ケース2の耐圧付近まで内圧上昇した
上記の空孔体積相当の気体を常圧に戻したときの体積を
計算すると、ボイルの法則より8〜12mlとなる。従
って、図5において、8〜12ml以下の気体体積であ
れば、電池使用中の高温放置時においても電池が内圧上
昇に伴って開口することなく、液漏れ等の危険性がない
ものと考えられる。そして、図5より気体体積が8〜1
2ml以下となっているのは、初回封口後の製作放置条
件が、45〜85℃で1〜168時間(7日間)の場合
である。よって、本発明において、この製作放置条件を
含む範囲で初回封口後から開封までの間に放置するのが
好ましい。
Although the metal / resin film used for the battery case 2 has low mechanical strength, it has a very high pressure resistance of about 4 to 5 kg / cm 2 at room temperature when sealed. When a non-aqueous electrolyte secondary battery is placed in a battery pack, the battery pack has high rigidity, so that even if the battery is left under the above test conditions, the physical change due to temperature rise and gas generation is not volume expansion, Rather, the internal pressure rises. Then, when the above-mentioned gas equivalent to the pore volume whose internal pressure has increased to near the pressure resistance of the battery case 2 is returned to normal pressure, the volume is calculated to be 8 to 12 ml according to Boyle's law. Therefore, in FIG. 5, if the gas volume is 8 to 12 ml or less, it is considered that there is no danger of liquid leakage and the like even when the battery is left at high temperature during use without opening due to the increase in internal pressure. . And, as shown in FIG.
It is 2 ml or less when the production leaving condition after the initial sealing is 45 to 85 ° C. for 1 to 168 hours (7 days). Therefore, in the present invention, it is preferable to leave the container between the time of first sealing and the time of opening within the range including the production leaving condition.

【0059】[0059]

【発明の効果】本発明によれば、高温下で放置したり高
温域で使用したりした場合であっても電池内で気体が発
生することを抑制でき、それによって電池内圧が上昇す
ることを抑制できる。このために、非水電解質電池にお
いて高温時に電池が破裂したり、電池内容物が漏出した
りすることもなく、電池を軽くしかも安全なものとする
ことが可能である。
According to the present invention, generation of gas in the battery can be suppressed even when the battery is left at a high temperature or used in a high temperature range, thereby preventing the internal pressure of the battery from increasing. Can be suppressed. For this reason, in a nonaqueous electrolyte battery, the battery can be made light and safe without rupture or leakage of the battery contents at high temperatures.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例の電池の平面図である。FIG. 1 is a plan view of a battery according to an example.

【図2】 図1のXY断面図である。FIG. 2 is an XY cross-sectional view of FIG.

【図3】 実施例の電池の製造工程を説明する図であ
る。
FIG. 3 is a diagram illustrating a manufacturing process of the battery of the example.

【図4】 実施例の電池の製造装置の各工程部分を示す
断面図である。
FIG. 4 is a cross-sectional view showing each step of the battery manufacturing apparatus according to the embodiment.

【図5】 実施例の電池を85℃にて14日間試験的に
放置したときに電池内で発生する気体体積を示した図で
ある。
FIG. 5 is a view showing a gas volume generated in the battery when the battery of the example was left as a test at 85 ° C. for 14 days.

フロントページの続き Fターム(参考) 5H011 AA02 AA09 AA13 AA17 CC02 CC06 CC10 DD07 DD13 DD26 FF02 KK00 KK04 5H029 AJ02 AJ05 AJ12 AJ14 AK02 AK03 AK05 AK16 AL06 AL07 AM02 AM03 AM04 AM05 AM07 AM12 AM16 CJ01 CJ02 CJ04 CJ05 CJ16 CJ30 DJ02 DJ11 EJ01 EJ12 HJ00 HJ14 Continued on the front page F-term (reference) 5H011 AA02 AA09 AA13 AA17 CC02 CC06 CC10 DD07 DD13 DD26 FF02 KK00 KK04 5H029 AJ02 AJ05 AJ12 AJ14 AK02 AK03 AK05 AK16 AL06 AL07 AM02 AM03 AM04 AM05 AM07 DJ12J01 EJ12 HJ00 HJ14

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】リチウムイオンを吸蔵・放出可能な物質を
正・負極とし、これらを電池ケースに収納した状態で非
水電解液を電池ケース内に注入してなる電池前駆体か
ら、非水電解質二次電池を製造する方法において、 前記電池前駆体の注入口を封じた後、放置し、次いで注
入口の封じられた電池前駆体を開封し、再度封じること
を特徴とする非水電解質二次電池の製造方法。
1. A non-aqueous electrolyte is prepared from a battery precursor obtained by injecting a non-aqueous electrolyte into a battery case in a state in which the materials capable of occluding and releasing lithium ions are stored as positive and negative electrodes and stored in the battery case. In the method for manufacturing a secondary battery, the non-aqueous electrolyte secondary, characterized in that the inlet of the battery precursor is sealed and then left, and then the sealed battery precursor of the inlet is opened and sealed again. Battery manufacturing method.
【請求項2】上記電池ケースが、少なくとも1層の金属
を用いたラミネートフィルムからなる請求項1に記載の
非水電解質二次電池の製造方法。
2. The method for producing a non-aqueous electrolyte secondary battery according to claim 1, wherein the battery case is formed of a laminated film using at least one layer of metal.
【請求項3】上記放置が35〜90℃の範囲の温度でな
される請求項1又は2に記載の非水電解質二次電池の製
造方法。
3. The method for producing a non-aqueous electrolyte secondary battery according to claim 1, wherein the leaving is performed at a temperature in the range of 35 to 90 ° C.
【請求項4】上記放置期間が少なくとも0.5時間であ
る請求項1〜3のいずれかに記載の非水電解質二次電池
の製造方法。
4. The method for producing a non-aqueous electrolyte secondary battery according to claim 1, wherein said leaving period is at least 0.5 hour.
【請求項5】上記放置の前に初充電する請求項1〜4の
いずれかに記載の非水電解質二次電池の製造方法。
5. The method for producing a non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte secondary battery is charged first before being left.
【請求項6】リチウムイオンを吸蔵・放出可能な物質を
正・負極とし、これらを電池ケースに収納した状態で非
水電解液を電池ケース内に注入してなる電池前駆体か
ら、非水電解質二次電池を製造する装置において、 前記電池前駆体の注入口を封じる封口手段と、 注入口の封じられた電池前駆体を開封する開封手段と、 開封された電池前駆体を再度封じて電池として完成する
再封口手段とを備えることを特徴とする非水電解質二次
電池の製造装置。
6. A battery precursor obtained by injecting a non-aqueous electrolyte into a battery case with the positive and negative materials capable of occluding and releasing lithium ions being contained in the battery case, In an apparatus for manufacturing a secondary battery, sealing means for sealing an inlet of the battery precursor, opening means for opening a sealed battery precursor of an injection port, and sealing the opened battery precursor again as a battery An apparatus for manufacturing a non-aqueous electrolyte secondary battery, comprising: a completed resealing means.
【請求項7】前記封口手段及び再封口手段は、各々熱溶
着機である請求項6に記載の非水電解質二次電池の製造
装置。
7. The non-aqueous electrolyte secondary battery manufacturing apparatus according to claim 6, wherein said sealing means and resealing means are each a heat welding machine.
【請求項8】前記開封手段は、切断機である請求項6又
は7に記載の非水電解質二次電池の製造装置。
8. The apparatus for manufacturing a non-aqueous electrolyte secondary battery according to claim 6, wherein said opening means is a cutting machine.
【請求項9】更に、前記電池前駆体を封口手段から開封
手段へ一定の所要時間で搬送する搬送手段を備える請求
項6〜8のいずれかに記載の非水電解質二次電池の製造
装置。
9. The apparatus for producing a non-aqueous electrolyte secondary battery according to claim 6, further comprising a transporting means for transporting the battery precursor from the sealing means to the opening means for a predetermined required time.
JP10255984A 1998-08-25 1998-08-25 Method and device for manufacturing non-aqueous electrolyte secondary battery Pending JP2000067925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10255984A JP2000067925A (en) 1998-08-25 1998-08-25 Method and device for manufacturing non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10255984A JP2000067925A (en) 1998-08-25 1998-08-25 Method and device for manufacturing non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2000067925A true JP2000067925A (en) 2000-03-03

Family

ID=17286301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10255984A Pending JP2000067925A (en) 1998-08-25 1998-08-25 Method and device for manufacturing non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2000067925A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001256965A (en) * 2000-03-09 2001-09-21 Matsushita Electric Ind Co Ltd Sealed type battery and method for sealing cap thereof
JP2001283914A (en) * 2000-03-30 2001-10-12 Matsushita Electric Ind Co Ltd Manufacturing method of lithium polymer battery
JP2001307771A (en) * 2000-04-21 2001-11-02 Asahi Kasei Corp Nonaqueous secondary battery
JP2002216851A (en) * 2001-01-15 2002-08-02 Mitsubishi Cable Ind Ltd Manufacturing method of lithium ion secondary cell
JP2005276782A (en) * 2004-03-26 2005-10-06 Toshiba Corp Manufacturing method of nonaqueous electrolyte secondary battery
WO2012172831A1 (en) 2011-06-15 2012-12-20 株式会社 東芝 Nonaqueous electrolyte secondary battery
WO2015156167A1 (en) * 2014-04-11 2015-10-15 日産自動車株式会社 Flat secondary battery
JP2016085975A (en) * 2014-10-24 2016-05-19 株式会社半導体エネルギー研究所 Lithium ion storage battery, and method for manufacturing the same
JP2016126826A (en) * 2014-12-26 2016-07-11 昭和電工パッケージング株式会社 Method of manufacturing battery
US10490808B2 (en) 2011-02-18 2019-11-26 Kabushiki Kaisha Toshiba Non-aqueous electrolyte secondary battery and production method thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001256965A (en) * 2000-03-09 2001-09-21 Matsushita Electric Ind Co Ltd Sealed type battery and method for sealing cap thereof
JP2001283914A (en) * 2000-03-30 2001-10-12 Matsushita Electric Ind Co Ltd Manufacturing method of lithium polymer battery
JP4513160B2 (en) * 2000-03-30 2010-07-28 パナソニック株式会社 Method for producing lithium polymer battery
JP2001307771A (en) * 2000-04-21 2001-11-02 Asahi Kasei Corp Nonaqueous secondary battery
JP2002216851A (en) * 2001-01-15 2002-08-02 Mitsubishi Cable Ind Ltd Manufacturing method of lithium ion secondary cell
JP2005276782A (en) * 2004-03-26 2005-10-06 Toshiba Corp Manufacturing method of nonaqueous electrolyte secondary battery
JP4559763B2 (en) * 2004-03-26 2010-10-13 株式会社東芝 Method for producing non-aqueous electrolyte secondary battery
US10490808B2 (en) 2011-02-18 2019-11-26 Kabushiki Kaisha Toshiba Non-aqueous electrolyte secondary battery and production method thereof
US11139465B2 (en) 2011-02-18 2021-10-05 Kabushiki Kaisha Toshiba Non-aqueous electrolyte secondary battery and production method thereof
WO2012172831A1 (en) 2011-06-15 2012-12-20 株式会社 東芝 Nonaqueous electrolyte secondary battery
US9214669B2 (en) 2011-06-15 2015-12-15 Kabushiki Kaisha Toshiba Non-aqueous electrolyte secondary battery
WO2015156167A1 (en) * 2014-04-11 2015-10-15 日産自動車株式会社 Flat secondary battery
CN106165144A (en) * 2014-04-11 2016-11-23 日产自动车株式会社 Platypelloid type secondary cell
JPWO2015156167A1 (en) * 2014-04-11 2017-04-13 日産自動車株式会社 Flat secondary battery
US10431852B2 (en) 2014-04-11 2019-10-01 Envision Aesc Japan Ltd. Flat secondary battery
JP2016085975A (en) * 2014-10-24 2016-05-19 株式会社半導体エネルギー研究所 Lithium ion storage battery, and method for manufacturing the same
JP2016126826A (en) * 2014-12-26 2016-07-11 昭和電工パッケージング株式会社 Method of manufacturing battery

Similar Documents

Publication Publication Date Title
JP4977375B2 (en) Lithium ion battery and battery pack using the same
JP3795713B2 (en) Manufacturing method of sheet type battery
JP3831939B2 (en) battery
JP2000100399A (en) Manufacture of polymer lithium secondary battery
JP4862211B2 (en) Sealed secondary battery
JP4432146B2 (en) Nonaqueous electrolyte secondary battery
JP2000067925A (en) Method and device for manufacturing non-aqueous electrolyte secondary battery
JP2008171579A (en) Lithium-ion secondary battery, and battery pack of lithium-ion secondary battery
JP5066804B2 (en) Lithium ion secondary battery
JP2000277066A5 (en)
JP2000156227A (en) Nonaqueous electrolyte battery
JP2001273880A (en) Nonaqueous electrolyte secondary battery
JPH11265699A (en) Thin battery
JP2001273930A (en) Manufacturing method of polymer battery
US20220223982A1 (en) Electrochemical device and electronic device containing the same
JP2001167752A (en) Non-aqueous electrolyte secondary battery
JP2002042865A (en) Thin-type nonaqueous electrolyte secondary battery
JP2000285902A (en) Battery
JP2000058125A (en) Nonaqueous electrolyte battery
JP2004139749A (en) Secondary battery, outer packaging material, and laminated film
JP2000277159A (en) Nonaqueous electrolyte secondary battery
JP2000100404A (en) Nonaqueous electrolyte battery and battery pack
JP2000123858A (en) Manufacture of battery excellent in airtightness
JP2000021368A (en) Battery and battery pack
JP4018881B2 (en) Electrochemical devices