JP2000067858A - Electrode for lithium secondary battery - Google Patents

Electrode for lithium secondary battery

Info

Publication number
JP2000067858A
JP2000067858A JP10232102A JP23210298A JP2000067858A JP 2000067858 A JP2000067858 A JP 2000067858A JP 10232102 A JP10232102 A JP 10232102A JP 23210298 A JP23210298 A JP 23210298A JP 2000067858 A JP2000067858 A JP 2000067858A
Authority
JP
Japan
Prior art keywords
lithium
electrode
battery
containing composite
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10232102A
Other languages
Japanese (ja)
Inventor
Junichi Yamaura
純一 山浦
Masaki Hasegawa
正樹 長谷川
Shuji Tsutsumi
修司 堤
Makoto Fujino
信 藤野
Shigeo Kondo
繁雄 近藤
Takahisa Masashiro
尊久 正代
Yoji Sakurai
庸司 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Panasonic Holdings Corp
Original Assignee
Matsushita Battery Industrial Co Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Battery Industrial Co Ltd, Nippon Telegraph and Telephone Corp filed Critical Matsushita Battery Industrial Co Ltd
Priority to JP10232102A priority Critical patent/JP2000067858A/en
Publication of JP2000067858A publication Critical patent/JP2000067858A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a battery having a high capacity and a stable cycle characteristic by forming an electrode of a molded body containing a powder of a predetermined lithium-containing compound nitride, a conductive agent and a binder and specifying an average particle diameter of the lithium-containing compound nitride. SOLUTION: An electrode is formed of a molded body containing a lithium- containing compound nitride powder represented by a formula: LiαMβN (M preferably represents at least one transition element selected from the group consisting of cobalt, iron, manganese, copper and nickel, 0<=α<=3.0, 0.1<=β<=0.8), a conductive agent and a binder as an electrode for a lithium secondary battery. Then it is preferable that an average particle diameter of the lithium-containing compound nitride powder used is in a range of 20 μm or less and 1 μm or more. The lithium-containing compound nitride having a performance reversibly charging/discharging lithium is used for an electrode and is used by finely pulverizing a particle diameter of the powder from the first.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電
池、特に活物質としてリチウム含有複合窒化物を用いた
電極に関するものである。
The present invention relates to a lithium secondary battery, and more particularly to an electrode using a lithium-containing composite nitride as an active material.

【0002】[0002]

【従来の技術】近年、正極にコバルト酸リチウム、負極
に炭素を用いた高エネルギー密度のリチウムイオン電池
が実用電池として広く用いられている。これら電池は、
電子機器の超小型、軽量化に伴い、更に高いエネルギー
密度化が望まれている。近年、リチウムを含む窒素化合
物、すなわちリチウム含有複合窒化物のリチウム電池へ
の応用が試みられている。例えば、リチウム二次電池を
含む電気化学素子の電極材料としてリチウム含有複合窒
化物を用いたもの(特開平7−78609号公報)、リ
チウム含有複合窒化物と金属Liを混合して用いたもの
(特開平7−320720号公報)、リチウム含有複合
窒化物の非晶質が使われたもの(特開平7−19258
5号公報)などがある。このリチウム含有複合窒化物
は、その作動電極電位がLi電位基準で0〜2V辺りに
あり、負極材料としての利用も考えられている。
2. Description of the Related Art In recent years, high energy density lithium ion batteries using lithium cobalt oxide for the positive electrode and carbon for the negative electrode have been widely used as practical batteries. These batteries are
2. Description of the Related Art As electronic devices become ultra-compact and lightweight, higher energy density is desired. In recent years, application of a nitrogen compound containing lithium, that is, a lithium-containing composite nitride to a lithium battery has been attempted. For example, those using lithium-containing composite nitride as an electrode material of an electrochemical element including a lithium secondary battery (Japanese Patent Laid-Open No. 7-78609), those using a mixture of lithium-containing composite nitride and metal Li ( Japanese Patent Application Laid-Open No. 7-320720) and those using an amorphous lithium-containing composite nitride (Japanese Patent Application Laid-Open No. 7-19258).
No. 5). The working electrode potential of this lithium-containing composite nitride is around 0 to 2 V on the basis of the Li potential, and its use as a negative electrode material is also considered.

【0003】リチウム含有複合窒化物の充放電機構は、
基本的には、リチウム含有複合窒化物中のLiのインタ
ーカレーション/デインターカレーション反応と考えら
れている。そして、負極材料として用いた場合の可逆容
量は極めて大きく、高エネルギー密度の電池を実現でき
る。リチウム含有複合窒化物として、例えばLi3-x
xNのCoの置換量xがx=0.3〜0.4の材料の
場合、この化合物の平均動作電位はLiの電位基準で
0.7V辺りであり、その可逆容量は700〜800m
Ah/gが得られる。さらに、この材料の真比重は約
2.0g/ccであり、黒鉛と同等の値を有する。これ
に対して、通常のリチウムイオン電池として、正極にコ
バルト酸リチウム(LiCoO2)を用い、負極に炭素
を用いる電池では、負極に用いられる黒鉛の平均動作電
位はLiの電位基準で0.1〜0.2Vであり、またそ
の理論容量が370mAh/gである。従って、正極に
コバルト酸リチウムを用い、負極にリチウム含有複合窒
化物を用いた電池では、電池電圧は約0.5V程度低く
なるが、電池容量を飛躍的に向上させることができ、と
りわけ容積当たりのエネルギー密度が極めて大きいリチ
ウム二次電池を構成することができる。
The charge / discharge mechanism of lithium-containing composite nitride is as follows:
Basically, it is considered to be an intercalation / deintercalation reaction of Li in the lithium-containing composite nitride. The reversible capacity when used as a negative electrode material is extremely large, and a battery with a high energy density can be realized. As a lithium-containing composite nitride, for example, Li 3-x C
If o x N of Co substitution amount x of the material of x = 0.3 to 0.4, an average operating potential of this compound is 0.7V Atari in potential reference of Li, the reversible capacity is 700~800m
Ah / g is obtained. Furthermore, the true specific gravity of this material is about 2.0 g / cc, which is equivalent to graphite. On the other hand, in a normal lithium ion battery using lithium cobalt oxide (LiCoO 2 ) for the positive electrode and carbon for the negative electrode, the average operating potential of graphite used for the negative electrode is 0.1% with respect to the potential of Li. 0.20.2 V and its theoretical capacity is 370 mAh / g. Therefore, in a battery using lithium cobalt oxide for the positive electrode and a lithium-containing composite nitride for the negative electrode, the battery voltage is reduced by about 0.5 V, but the battery capacity can be dramatically improved, and Can have a very high energy density.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、負極に
リチウム含有複合窒化物、例えばLi3-xCoxNを用
い、正極にLiCoO2を用いてリチウム二次電池を構
成した場合、容量が極めて大きい電池となるが、実際に
電池を構成して充放電させると、充放電サイクルにとも
ない充放電容量が漸次低下し、サイクル特性の劣化が大
きいことが判明した。本発明は、上記の課題を解決し、
高容量で、かつ安定したサイクル特性を示すリチウム二
次電池を与える電極を提供することを目的とする。
However, when a lithium secondary battery is formed using a lithium - containing composite nitride such as Li 3-x Co x N for the negative electrode and LiCoO 2 for the positive electrode, the capacity is extremely large. It turned out that when the battery was actually constructed and charged and discharged, the charge / discharge capacity gradually decreased with the charge / discharge cycle, and the cycle characteristics deteriorated significantly. The present invention solves the above problems,
An object of the present invention is to provide an electrode that provides a lithium secondary battery having high capacity and stable cycle characteristics.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、リチウム含有複合窒化物の粒径を細かく
したものを使用する。すなわち、本発明のリチウム二次
電池用電極は、一般式LiαMβN(Mは遷移元素を表
し、0≦α≦3.0、0.1≦β≦0.8)で表される
リチウム含有複合窒化物の粉末、導電剤、および結着剤
を含む成形体からなり、前記リチウム含有複合窒化物粉
末の平均粒径が20μm以下であることを特徴とする。
ここで、Mはコバルト、鉄、マンガン、銅およびニッケ
ルからなる群より選ばれる少なくとも一種の元素である
ことが好ましい。
In order to solve the above-mentioned problems, the present invention uses a lithium-containing composite nitride having a reduced particle size. That is, the electrode for a lithium secondary battery of the present invention is a lithium-containing composite nitride represented by a general formula LiαMβN (M represents a transition element, 0 ≦ α ≦ 3.0, 0.1 ≦ β ≦ 0.8). And a lithium-containing composite nitride powder having an average particle size of 20 μm or less.
Here, M is preferably at least one element selected from the group consisting of cobalt, iron, manganese, copper and nickel.

【0006】[0006]

【発明の実施の形態】リチウム含有複合窒化物は、一般
的に式LiαMβNで表され、元素Mの種類、および
α、βの値によって、電極活物質としての性能は大きく
変化する。特に、Mに遷移元素を用い、α、及びβの数
値範囲が0≦α≦3.0、0.1≦β≦0.8である化
合物は、リチウムを可逆的に充放電する能力、即ちリチ
ウム二次電池の電極活物質として優れた性能を持ち合わ
せている。なかでも遷移元素Mにコバルト、鉄、マンガ
ン、銅、およびニッケルからなる群より選択される少な
くとも一種を用いたものは、高容量の電極活物質とな
る。本発明は、これら高容量を示すリチウム含有複合窒
化物を電極活物質に用いた電池の充放電サイクル特性の
向上を図るものである。
BEST MODE FOR CARRYING OUT THE INVENTION A lithium-containing composite nitride is generally represented by the formula LiαMβN, and the performance as an electrode active material greatly changes depending on the type of the element M and the values of α and β. In particular, a compound using a transition element for M and having a numerical range of α and β of 0 ≦ α ≦ 3.0 and 0.1 ≦ β ≦ 0.8 has the ability to reversibly charge and discharge lithium, that is, It has excellent performance as an electrode active material for lithium secondary batteries. Among them, those using at least one selected from the group consisting of cobalt, iron, manganese, copper, and nickel as the transition element M are a high-capacity electrode active material. The present invention is intended to improve the charge / discharge cycle characteristics of a battery using such a high capacity lithium-containing composite nitride as an electrode active material.

【0007】本発明は、上述の課題であるサイクル特性
の劣化の原因として以下のことを見い出したことに基づ
くものである。リチウム含有複合窒化物を合成すると、
六方晶の結晶質として得られる。このリチウム含有複合
窒化物を負極活物質として電池を構成し、充放電させる
と、リチウム含有複合窒化物は、その結晶状態が大きく
変化する。即ち、最初の充放電により、六方晶のリチウ
ム含有複合窒化物は非晶質に変化し、微細化が進む。そ
の結果、活物質と導電剤の間における集電性が阻害さ
れ、サイクル特性の劣化を引き起こす。さらに、リチウ
ム含有複合窒化物は、非晶質の状態のまま活物質が大き
な膨張収縮を繰り返しながらサイクルが進行する。これ
により、リチウム含有複合窒化物の導電剤への電気的接
触がさらに悪化する。
The present invention is based on the finding of the following as the cause of the deterioration of the cycle characteristics, which is the above-mentioned problem. When a lithium-containing composite nitride is synthesized,
Obtained as hexagonal crystalline. When a battery is formed using this lithium-containing composite nitride as a negative electrode active material and charged and discharged, the crystal state of the lithium-containing composite nitride changes significantly. That is, by the first charge / discharge, the hexagonal lithium-containing composite nitride changes to amorphous, and the miniaturization proceeds. As a result, the current collection between the active material and the conductive agent is hindered, and the cycle characteristics deteriorate. Further, in the lithium-containing composite nitride, the cycle proceeds while the active material repeatedly undergoes large expansion and contraction in an amorphous state. This further deteriorates the electrical contact of the lithium-containing composite nitride with the conductive agent.

【0008】特に、活物質の粒子径が比較的大きい場合
にサイクル特性の劣化が顕著となる傾向がある。これ
は、活物質の粒子径が大きいほど、微細化によって活物
質粒子内に生じた粒界が多く形成されるため、リチウム
イオンの移動阻害や電子伝導の遮断を引き起こす。ま
た、活物質の粒子径が大きいほど、微細化によってでき
る空隙に電解液が浸透する界面が多く形成され、その結
果、膨張収縮幅も大となり、さらにサイクルの進行に伴
って合剤層内で活物質粒子と導電剤(炭素粉末など)粒
子との間の電気的接触が緩んで集電効率の低下を引き起
こすことが判明した。これを阻止し、充放電サイクル特
性の優れた電池を構成するには、用いるリチウム含有複
合窒化物の粒子径を最初から微細化して用いることが必
要で、特に、リチウム含有複合窒化物粉末の平均粒径を
20μm以下、1μm以上の範囲とすることが好まし
い。ここで、1μm以下の平均粒子径のリチウム含有複
合窒化物を用いた場合、電極の合剤密度が低く、いわゆ
る嵩高い粉となり、負極内の活物質の充填量が少なくな
り、好適な選択とはならない。
In particular, when the particle size of the active material is relatively large, the cycle characteristics tend to deteriorate significantly. This is because, as the particle size of the active material increases, the number of grain boundaries generated in the active material particles increases due to the miniaturization, which causes inhibition of lithium ion transfer and interruption of electron conduction. In addition, as the particle size of the active material increases, the number of interfaces through which the electrolyte penetrates into the voids formed by the miniaturization increases, and as a result, the expansion and contraction width also increases. It has been found that the electrical contact between the active material particles and the conductive agent (such as carbon powder) particles is loosened and causes a decrease in current collection efficiency. In order to prevent this and configure a battery having excellent charge / discharge cycle characteristics, it is necessary to use a lithium-containing composite nitride having a fine particle diameter from the beginning, and in particular, to use an average lithium-containing composite nitride powder. It is preferable that the particle size is 20 μm or less and 1 μm or more. Here, when a lithium-containing composite nitride having an average particle diameter of 1 μm or less is used, the mixture density of the electrode is low, the powder becomes a so-called bulky powder, the filling amount of the active material in the negative electrode is reduced, and suitable selection and Not be.

【0009】[0009]

【実施例】以下、実施例により本発明をさらに詳しく説
明する。図1は、本発明によるリチウム二次電池のサイ
クル特性を比較検討するためのテストセルとして作製し
たボタン形電池の断面図である。図1において、1はス
テンレス鋼製の封口板を表す。封口板1の内面には、ニ
ッケル網2を抵抗溶接により固定してある。リチウム含
有複合窒化物を含む負極3は、銅箔4上に形成したもの
で、銅箔4をニッケル網2に圧着することにより集電さ
れる。LiCoO2を活物質とする正極7は、アルミ箔
8上に形成した後、直径15mmの円盤状に打ち抜いた
ものであり、あらかじめ充電状態になるよう電気化学的
に化成されている。ステンレス鋼製の正極ケース9の内
面には、ステンレス鋼網10が抵抗溶接により固定され
ている。正極7は、アルミ箔8を正極ケース9内のステ
ンレス鋼網10に圧着することにより集電される。ケー
ス9の内面に正極7を配置し、その上にポリエチレンの
多孔質膜セパレータ6をのせ、電解液を注入した後、負
極3およびガスケット5を取り付けた封口板1をケース
に組み合わせ、ケースの端部をかしめて封口し、密閉電
池が組み立てられる。有機電解液は、炭酸エチレンと炭
酸ジエチルの体積比1:1の混合溶媒に、LiPF6
1モル/リットル溶解したものである。
The present invention will be described in more detail with reference to the following examples. FIG. 1 is a cross-sectional view of a button-type battery manufactured as a test cell for comparatively examining the cycle characteristics of a lithium secondary battery according to the present invention. In FIG. 1, reference numeral 1 denotes a sealing plate made of stainless steel. A nickel mesh 2 is fixed to the inner surface of the sealing plate 1 by resistance welding. The negative electrode 3 containing the lithium-containing composite nitride is formed on the copper foil 4, and current is collected by pressing the copper foil 4 on the nickel mesh 2. The positive electrode 7 using LiCoO 2 as an active material is formed on an aluminum foil 8 and then punched into a disk having a diameter of 15 mm, and is electrochemically formed in advance to be in a charged state. A stainless steel mesh 10 is fixed to the inner surface of the positive electrode case 9 made of stainless steel by resistance welding. The positive electrode 7 is collected by pressing an aluminum foil 8 onto a stainless steel mesh 10 in a positive electrode case 9. The positive electrode 7 is arranged on the inner surface of the case 9, the porous membrane separator 6 made of polyethylene is placed on the positive electrode 7, and after injecting the electrolyte, the sealing plate 1 to which the negative electrode 3 and the gasket 5 are attached is combined with the case. The part is sealed by caulking and the sealed battery is assembled. The organic electrolyte is obtained by dissolving 1 mol / liter of LiPF 6 in a mixed solvent of ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1.

【0010】上記電池において、リチウム含有複合窒化
物を含む負極は、次のように作製した。まず、リチウム
含有複合窒化物として合成時の組成式がLi2.6Co0.4
Nの活物質を用いた。このリチウム含有複合窒化物は、
窒化リチウム(Li3N)と金属コバルトの粉末を所定
量混合し、窒素雰囲気中において700℃で8時間加熱
処理することによって得た。合成されたLi2.6Co0.4
Nは、焼結体として得られ、これをめのう乳鉢で粉砕
し、粉末とした。粒子径の異なる試料の作製は、粉砕時
間の調整と、篩による分級で行った。比較検討用の電極
作製には、粒度分布を測定して平均粒径を確認して用い
た。以上のような方法で、それぞれその平均粒子径が3
0μm、25μm、20μm、15μm、10μm、5
μm、1μm、0.5μmの試料を準備した。この時の
試料の粒子径の分布幅は、それぞれ平均粒子径±平均粒
子径の50%以内となるように調製したものを使用し
た。
In the above battery, a negative electrode containing a lithium-containing composite nitride was produced as follows. First, the composition formula at the time of synthesis as a lithium-containing composite nitride is Li 2.6 Co 0.4
An N active material was used. This lithium-containing composite nitride is
A predetermined amount of lithium nitride (Li 3 N) and metallic cobalt powders were mixed and heat-treated at 700 ° C. for 8 hours in a nitrogen atmosphere. Synthesized Li 2.6 Co 0.4
N was obtained as a sintered body, which was ground in an agate mortar to obtain a powder. Preparation of samples having different particle diameters was performed by adjusting the pulverization time and classification by a sieve. In preparing an electrode for comparative study, a particle size distribution was measured to confirm the average particle size before use. With the above method, the average particle size of each is 3
0 μm, 25 μm, 20 μm, 15 μm, 10 μm, 5
Samples of μm, 1 μm, and 0.5 μm were prepared. At this time, the distribution width of the particle diameter of the sample used was adjusted so as to be within 50% of the average particle diameter ± the average particle diameter.

【0011】次に、負極は、前述の方法で作製したLi
2.6Co0.4Nの活物質粉末と導電剤の炭素粉末と結着剤
としてのスチレンブタジエンゴム(SBR)を重量比8
0:18:2で混合し、これらを脱水トルエンに分散さ
せてスラリーを作製し、厚み18μmの銅箔からなる負
極集電体に、ドクターブレードを用い塗布し、乾燥後、
圧延して負極シートとした。この負極シートから、直径
16mmの負極板を打ち抜き円盤状の電極とした。一
方、正極は、コバルト酸リチウム粉末と導電剤の炭素粉
末と結着剤のポリフッ化ビニリデン樹脂を重量比85:
10:5で混合し、これらを脱水N−メチルピロリジノ
ドンに分散させてスラリーを作製し、厚み20μmのア
ルミ箔からなる正極集電体に、ドクターブレードを用い
塗布し、乾燥後、圧延して正極シートとした。この正極
シートから、直径15mmの正極板を打ち抜き円盤状の
電極とした。これら正極は、負極の初期状態に合わせる
ために、あらかじめ電気化学的に化成し充電状態とし
た。
Next, the negative electrode is made of the Li
2.6 An active material powder of Co 0.4 N, a carbon powder of a conductive agent, and styrene butadiene rubber (SBR) as a binder have a weight ratio of 8
The mixture was mixed at 0: 18: 2 and dispersed in dehydrated toluene to prepare a slurry. The slurry was applied to a negative electrode current collector made of a copper foil having a thickness of 18 μm using a doctor blade, and dried.
Rolled to form a negative electrode sheet. From this negative electrode sheet, a negative electrode plate having a diameter of 16 mm was punched to form a disk-shaped electrode. On the other hand, the positive electrode was prepared by mixing lithium cobalt oxide powder, carbon powder of a conductive agent, and polyvinylidene fluoride resin as a binder in a weight ratio of 85:
The mixture was mixed at 10: 5 and dispersed in dehydrated N-methylpyrrolidinodon to prepare a slurry. The slurry was applied to a positive electrode current collector made of an aluminum foil having a thickness of 20 μm using a doctor blade, dried, and then rolled. To form a positive electrode sheet. From this positive electrode sheet, a positive electrode plate having a diameter of 15 mm was punched to form a disk-shaped electrode. These positive electrodes were electrochemically formed in advance and charged to match the initial state of the negative electrode.

【0012】以上のようにして作製した電池を、2mA
の定電流で終止電圧4.1Vまで充電し、2mAの定電
流で終止電圧2.0Vまで放電する充放電サイクルを繰
り返した。図2は、上記各種粒子径の活物質を用いた電
池のそれぞれの充放電サイクル特性を示したもので、上
述の充放電条件で50サイクルまで充放電を繰り返した
ときの放電容量の変化をプロットしたものである。図2
を見て明らかなように、平均粒子径の大きな活物質を用
いた電池のサイクル特性の劣化が大きく、特にその平均
粒子径が25μm以上となると電池のサイクル特性の劣
化が急激に著しくなる。以上のようにLi2.6Co0.4
を負極とする電池においては、その平均粒子径は20μ
m以下であることが好ましいことがわかる。
The battery fabricated as described above was charged at 2 mA.
The charge / discharge cycle in which the battery was charged to a cut-off voltage of 4.1 V with a constant current of 0.1 V and discharged to a cut-off voltage of 2.0 V with a constant current of 2 mA was repeated. FIG. 2 shows the charge / discharge cycle characteristics of each of the batteries using the active materials having the above-described various particle diameters. The change in the discharge capacity when charge / discharge is repeated up to 50 cycles under the above charge / discharge conditions is plotted. It was done. FIG.
As is clear from the above, the cycle characteristics of a battery using an active material having a large average particle size are greatly deteriorated, and particularly when the average particle size is 25 μm or more, the cycle characteristics of the battery are rapidly deteriorated. As described above, Li 2.6 Co 0.4 N
Has a mean particle size of 20 μm.
It is understood that the value is preferably equal to or less than m.

【0013】本発明は、充放電サイクルに伴う容量の劣
化を阻止させるものであり、基本的に粒子径の上限を限
定するものである。即ち、図2からもわかるように、粒
子径の下限については、粒子径を下げることでサイクル
特性を損ねるものではない。サイクル可逆性に関して
は、粒子径の下限はない。しかし、粒子径が小さい場合
は、粉末が嵩高くなり、例えば、圧延強度を一定(20
0kg/cm2)として作製した極板の合剤層の密度を
測定すると、平均粒子径が1μm以上であれば合剤層の
密度が1.4〜1.6g/ccを示した。しかし、1μ
m未満の領域、例えば0.5μmになると、その合剤層
密度は1.1g/ccまで低下した。その結果、電池放
電容量も図2からわかるように小さくなった。
The present invention is intended to prevent the capacity from being deteriorated due to the charge / discharge cycle, and basically limits the upper limit of the particle diameter. That is, as can be seen from FIG. 2, the lower limit of the particle diameter does not impair the cycle characteristics by reducing the particle diameter. There is no lower limit on particle size for cycle reversibility. However, when the particle size is small, the powder becomes bulky and, for example, the rolling strength is kept constant (20%).
When the density of the mixture layer of the electrode plate manufactured at 0 kg / cm 2 ) was measured, the density of the mixture layer was 1.4 to 1.6 g / cc when the average particle diameter was 1 μm or more. However, 1μ
m, for example, 0.5 μm, the mixture layer density decreased to 1.1 g / cc. As a result, the battery discharge capacity also became smaller as can be seen from FIG.

【0014】以上の実施例では、Li2.6Co0.4Nを負
極とする電池について述べたが、同様の試験をその他の
リチウム含有複合窒化物についても行った。その結果、
一般式LiαMβN(M:遷移元素、0≦α≦3.0、
0.1≦β≦0.8)で表されるリチウム含有複合窒化
物で、かつそのMがコバルト、鉄、マンガン、銅および
ニッケルからなる群より選ばれる少なくとも一種の元素
である活物質材料については、同様の結果が得られた。
In the above embodiment, a battery using Li 2.6 Co 0.4 N as a negative electrode has been described, but the same test was performed for other lithium-containing composite nitrides. as a result,
General formula LiαMβN (M: transition element, 0 ≦ α ≦ 3.0,
0.1 ≦ β ≦ 0.8) and an active material in which M is at least one element selected from the group consisting of cobalt, iron, manganese, copper and nickel. Gave similar results.

【0015】[0015]

【発明の効果】以上のように本発明によれば、高容量
で、かつサイクル特性に優れたリチウム二次電池を与え
る電極が得られる。
As described above, according to the present invention, an electrode which provides a lithium secondary battery having a high capacity and excellent cycle characteristics can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例におけるボタン形電池の縦断面
図である。
FIG. 1 is a longitudinal sectional view of a button type battery according to an embodiment of the present invention.

【図2】各種負極を用いた電池のサイクル特性を示す図
である。
FIG. 2 is a diagram showing cycle characteristics of a battery using various negative electrodes.

【符号の説明】[Explanation of symbols]

1 封口板 2 ニッケル網 3 負極 4 銅箔 5 ガスケット 6 セパレータ 7 正極 8 アルミ箔 9 正極ケース 10 ステンレス鋼網 DESCRIPTION OF SYMBOLS 1 Sealing plate 2 Nickel mesh 3 Negative electrode 4 Copper foil 5 Gasket 6 Separator 7 Positive electrode 8 Aluminum foil 9 Positive electrode case 10 Stainless steel mesh

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長谷川 正樹 大阪府守口市松下町1番1号 松下電池工 業株式会社内 (72)発明者 堤 修司 大阪府守口市松下町1番1号 松下電池工 業株式会社内 (72)発明者 藤野 信 大阪府守口市松下町1番1号 松下電池工 業株式会社内 (72)発明者 近藤 繁雄 大阪府守口市松下町1番1号 松下電池工 業株式会社内 (72)発明者 正代 尊久 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内 (72)発明者 櫻井 庸司 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内 Fターム(参考) 5H003 AA02 AA04 BB47 BD00 BD02 5H014 AA02 EE10 HH06 5H029 AJ03 AJ05 AK03 AL01 AM05 AM07 BJ03 HJ02 HJ05  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masaki Hasegawa 1-1, Matsushita-cho, Moriguchi-shi, Osaka Matsushita Battery Industry Co., Ltd. (72) Inventor Shuji Tsutsumi 1-1, Matsushita-cho, Moriguchi-shi, Osaka Matsushita Battery (72) Inventor: Shin Fujino 1-1, Matsushita-cho, Moriguchi-shi, Osaka Matsushita Battery Industrial Co., Ltd. (72) Shigeo Kondo 1-1-1, Matsushita-cho, Moriguchi-shi, Osaka Matsushita Battery Inside (72) Inventor Takahisa Masayo 3-19-2 Nishi-Shinjuku, Shinjuku-ku, Tokyo Japan Inside Telegraph and Telephone Corporation (72) Inventor Yoji Sakurai 3-192-2, Nishi-Shinjuku, Shinjuku-ku, Tokyo Japan F-term in Telegraph and Telephone Corporation (reference) 5H003 AA02 AA04 BB47 BD00 BD02 5H014 AA02 EE10 HH06 5H029 AJ03 AJ05 AK03 AL01 AM05 AM07 BJ03 HJ02 HJ05

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一般式LiαMβN(Mは遷移元素を表
し、0≦α≦3.0、0.1≦β≦0.8)で表される
リチウム含有複合窒化物の粉末、導電剤、および結着剤
を含む成形体からなり、前記リチウム含有複合窒化物粉
末の平均粒径が20μm以下であることを特徴とするリ
チウム二次電池用電極。
1. A powder of a lithium-containing composite nitride represented by a general formula LiαMβN (M represents a transition element, 0 ≦ α ≦ 3.0, 0.1 ≦ β ≦ 0.8), a conductive agent, and An electrode for a lithium secondary battery, comprising a molded body containing a binder, wherein the lithium-containing composite nitride powder has an average particle size of 20 μm or less.
【請求項2】 Mがコバルト、鉄、マンガン、銅および
ニッケルからなる群より選ばれる少なくとも一種の元素
である請求項1記載のリチウム二次電池用電極。
2. The electrode for a lithium secondary battery according to claim 1, wherein M is at least one element selected from the group consisting of cobalt, iron, manganese, copper and nickel.
JP10232102A 1998-08-18 1998-08-18 Electrode for lithium secondary battery Pending JP2000067858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10232102A JP2000067858A (en) 1998-08-18 1998-08-18 Electrode for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10232102A JP2000067858A (en) 1998-08-18 1998-08-18 Electrode for lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2000067858A true JP2000067858A (en) 2000-03-03

Family

ID=16934047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10232102A Pending JP2000067858A (en) 1998-08-18 1998-08-18 Electrode for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2000067858A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289192A (en) * 2001-03-27 2002-10-04 Hitachi Maxell Ltd Lithium-contained nitride and energy storage element using it
JPWO2002027825A1 (en) * 2000-09-28 2004-02-05 日立マクセル株式会社 Composite electrode material, method for producing the same, and electrochemical device using the composite electrode material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2002027825A1 (en) * 2000-09-28 2004-02-05 日立マクセル株式会社 Composite electrode material, method for producing the same, and electrochemical device using the composite electrode material
US6989218B2 (en) 2000-09-28 2006-01-24 Hitachi Maxell, Ltd. Composite electrode material and method for producing the same, and electrochemical element using the same
JP2002289192A (en) * 2001-03-27 2002-10-04 Hitachi Maxell Ltd Lithium-contained nitride and energy storage element using it

Similar Documents

Publication Publication Date Title
US6818351B2 (en) Mixed cathode active material for lithium secondary battery
US7635540B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery comprising the same
EP1347524B1 (en) Positive electrode active material and nonaqueous electrolyte secondary cell
KR20060091486A (en) Cathode active material, method of preparing the same, and cathode and lithium battery containing the material
JP2003303585A (en) Battery
EP0434776A1 (en) Carbonaceous electrodes for lithium cells
JP2002015735A (en) Lithium iron compound oxide for lithium secondary cell positive active material, its manufacturing method and lithium secondary cell using the same
KR100975875B1 (en) Cathode active material, method of preparing the same, and cathode and lithium battery containing the material
EP1381099B1 (en) Negative electrode for non-aqueous electrolyte secondary cell and non-aqueous electrolyte secondary cell using the negative electrode
EP4112555A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
KR20010030298A (en) Positive Electrode Active Material for a Non-aqueous Electrolyte Cell and Non-aqueous Electrolyte Cell Using the Same
JPH10144298A (en) Lithium secondary battery
JPH1186854A (en) Lithium secondary battery
US5601950A (en) Non-aqueous electrolyte secondary cell
WO2002013294A1 (en) Negative electrode for nonaqueous-electrolyte secondary battery and battery employing the same
US5939224A (en) Nonaqueous electrolyte secondary battery
EP1132984B1 (en) Non-Aqueous electrolyte secondary battery
JP2000067853A (en) Negative electrode for lithium secondary battery
JP4656710B2 (en) Non-aqueous electrolyte secondary battery
JPH10302765A (en) Lithium secondary battery
JP2000067858A (en) Electrode for lithium secondary battery
JP3451602B2 (en) Non-aqueous electrolyte battery
JP3048953B2 (en) Non-aqueous electrolyte secondary battery
JPH056765A (en) Nonaqueous solvent secondary battery
JP2004228030A (en) Electrode for lithium ion secondary battery, and lithium ion secondary battery using it