JP2000064850A - Eccentric circular rotary diesel engine - Google Patents

Eccentric circular rotary diesel engine

Info

Publication number
JP2000064850A
JP2000064850A JP10274201A JP27420198A JP2000064850A JP 2000064850 A JP2000064850 A JP 2000064850A JP 10274201 A JP10274201 A JP 10274201A JP 27420198 A JP27420198 A JP 27420198A JP 2000064850 A JP2000064850 A JP 2000064850A
Authority
JP
Japan
Prior art keywords
chamber
inner cylinder
compressed air
intake
outer cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10274201A
Other languages
Japanese (ja)
Inventor
Susumu Sakai
進 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP10274201A priority Critical patent/JP2000064850A/en
Publication of JP2000064850A publication Critical patent/JP2000064850A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To lengthen an explosion exhaust stroke so as to improve combustion efficiency by combining an outer cylinder and an inner cylinder eccentrically, and providing fixed partition walls in the suitable places of the outer cylinder while providing movable rotating vanes in the suitable places of the inner cylinder to partition intake and exhaust chambers a compression chamber and an expansion chamber. SOLUTION: An inner cylinder and an outer cylinder are eccentrically combined, and a compression chamber 7 and an exhaust chamber 9 partitioned by fixed partition walls 1, 2 are partitioned between both cylinders. An intake chamber and an explosion expansion chamber 8 can be partitioned by movable rotating vanes 3, 4 provided in two positions opposed in the radial direction of the inner cylinder. A compressed air sub-chamber 5 is provided at the fixed partition wall 1 part of the outer cylinder. When the movable rotating vane 4 advances to about three-quarters of an explosion exhaust stroke and an intake compression stroke, a push-out valve 11 is closed, and an inlet valve 10 is opened to push compressed air into the sub-chamber 5. When fuel is injected to this compressed air to burn the push-out valve 11 is opened to expand, thus supplying power to the inner cylinder.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】本発明は、前回の「特許願第110025
号」の、真円ロータリーエンジンの効率等の改善を目的
として考案したものです。
The present invention is based on the previous "Patent Application No. 110025".
No. ”was designed for the purpose of improving the efficiency of a true circle rotary engine.

【0002】真円ロータリーエンジンの欠点の一つに、
可動回転翼の折れやすさがある。エンジンの外円筒と内
円筒が同軸にあるとき、可動回転翼の受ける折れ曲げの
力(回転方向への爆発圧とその逆向きの圧縮圧)は可動
回転翼の一点にかかるため、その部分で折れる可能性が
大きい。そこで、外円筒と内円筒の円の中心を
One of the drawbacks of a perfect circle rotary engine is
The movable rotor blade is easily broken. When the outer cylinder and the inner cylinder of the engine are coaxial, the bending force (explosive pressure in the rotation direction and compression pressure in the opposite direction) that the movable rotor receives is applied to one point of the movable rotor. It is likely to break. Therefore, the center of the circle of the outer cylinder and the inner cylinder

【図1】のようにずらす(偏心させる)ことで、可動回
転翼にかかる折れ曲げの力を分散させることが出来、可
動回転翼が折れにくくなる。また、こうすることで可動
回転翼の受ける爆発圧は、圧力の強いとき可動回転翼の
小さい面積で受け、爆発圧が小さくなるに従って大きい
面積で受けることとなり、折れ曲げの力も減少し、トル
ク変動も小さくなるという効果も出てくる。このよう
に、外円中心と内円中心をずらした真円ロータリーエン
ジンを偏心ロータリーエンジンと名付けました。
By shifting (eccentricity) as shown in FIG. 1, the bending force applied to the movable rotor can be dispersed, and the movable rotor is less likely to break. Also, by doing so, the explosive pressure received by the movable rotor will be received by a small area of the movable rotor when the pressure is strong, and by a large area as the explosion pressure becomes smaller, the bending force will also decrease and the torque fluctuation There is also the effect of becoming smaller. In this way, the true circular rotary engine with the center of the outer circle and the center of the inner circle shifted is named the eccentric rotary engine.

【図1】[Figure 1]

【図2】[Fig. 2]

【図3】のエンジンともに偏心ロータリーエンジンの仲
間です。
[Fig. 3] is a member of the eccentric rotary engine.

【0003】[0003]

【図1】[Figure 1]

【図2】[Fig. 2]

【図3】のエンジンともに、固定隔壁βを固定隔壁αの
対称位置から20度ほど吸気・圧縮室の方へずらしてい
ます。この結果、吸気・圧縮行程は短く、爆発・排気行
程は長くなり燃焼効率が向上するものと考えます。ただ
し、
In both engines of [Fig. 3], the fixed partition β is shifted about 20 degrees from the symmetrical position of the fixed partition α toward the intake / compression chamber. As a result, the intake and compression strokes will be short, and the explosion and exhaust strokes will be long, improving combustion efficiency. However,

【図1】のエンジンでは吸気量が少なくなるので、リシ
ョルムコンプレッサー等の過給器の使用が望ましいと思
います。
The engine of [Fig.1] has a small intake air volume, so I think it is desirable to use a turbocharger such as a Lisholm compressor.

【0004】[0004]

【図2】のエンジンは、過給器を使用しないで吸気量を
確保しようとしたものです。吸気・圧縮室の外筒を広げ
て偏円とします。過給器を使用するより、摩擦の上で有
利と考えます。このエンジンを偏円ロータリーエンジン
と呼ぶことにしました。
The engine in [Fig. 2] is designed to secure intake air without using a supercharger. Expand the outer cylinder of the intake / compression chamber to form an eccentric circle. I think it is more advantageous in terms of friction than using a supercharger. I decided to call this engine a circular rotary engine.

【0005】[0005]

【図3】のエンジンは、圧縮空気副室を爆発室の副室と
して使用するものです。可動隔壁が爆発排気行程・吸気
圧縮行程の3/4ほど進んだとき(点線で記入)燃焼ガ
スを残したまま11の圧縮空気副室の押出弁を閉じ、1
0の圧縮空気副室の吸入弁を開き、副室に圧縮空気を押
し込みます。可動隔壁が10の弁にかかるとき10の弁
を閉じ、可動隔壁が11の弁を過ぎたとき、副室に燃料
を噴射して燃焼を起こすと同時に11の弁を開きます。
副室に燃料を噴射すると、副室に残っていた燃焼ガス残
気の熱と断熱圧縮による圧縮空気の温度で自然発火しま
す。燃料は軽油を想定していますが、自然発火可能なら
メタノールでもLPG等でもかまわないわけです。
The engine shown in Fig. 3 uses the compressed air sub chamber as the sub chamber of the explosion chamber. When the movable bulkhead advances about 3/4 of the explosive exhaust stroke / intake compression stroke (marked with a dotted line), the extruding valve of the compressed air subchamber 11 is closed while leaving the combustion gas, 1
Open the suction valve of the compressed air subchamber 0 and push the compressed air into the subchamber. When the movable bulkhead touches the 10th valve, the 10th valve is closed, and when the movable bulkhead passes the 11th valve, fuel is injected into the sub chamber to cause combustion and simultaneously the 11th valve is opened.
When fuel is injected into the sub-chamber, the heat of the combustion gas residual air remaining in the sub-chamber and the temperature of the compressed air due to adiabatic compression cause spontaneous ignition. The fuel is assumed to be light oil, but methanol or LPG may be used as long as it can be spontaneously ignited.

【図3】のエンジンを偏円ロータリーディーゼルエンジ
ンと呼びます。
The engine of [Fig.3] is called an eccentric rotary diesel engine.

【0006】偏円ロータリーディーゼルエンジンの動作
は、「回転翼で空気を圧縮し、圧縮された空気に燃料を
噴射し、燃焼ガスで回転翼を回します」。ところで、こ
の説明文はガスタービンエンジンの説明と全く同じもの
です。真円ロータリーエンジン群の欠点・実現の困難さ
は、シールの困難さにあります。最初からの発想は、熱
膨張のごく少ない材質で、隙間のあまりない構造で想定
していました。隙間があるものとし、シールするなら1
4カ所のシールが必要です。工夫しても10カ所。とに
かくシールがなかなか難しいのですが、このエンジンが
小型・低速回転型のガスタービンエンジンであると考え
れば、ほんの小さな隙間があっても効率のよいエンジン
になるのではないかとも思うのです。
The operation of an eccentric rotary diesel engine is that "air is compressed by a rotor, fuel is injected into the compressed air, and the rotor is rotated by combustion gas." By the way, this description is exactly the same as the description of the gas turbine engine. The drawback of the perfect circle rotary engine group and the difficulty of realizing it are the difficulty of sealing. The idea from the beginning was to use a material with very little thermal expansion and a structure with no gaps. There is a gap, and 1 if you seal
Four seals are required. 10 places even if devised. Sealing is difficult anyway, but if you think that this engine is a small, low-speed rotation type gas turbine engine, I think that it will be an efficient engine even if there is a small gap.

【0007】ハイブリッド型エンジンや電気自動車・燃
料電池などが現実化している現在、内燃機関の効率向上
等は問題にならないように考えられがちだが、そうでは
ないと考えています。効率のよい発電器用のエンジン・
小型中型船舶用エンジン等、小型・高効率のエンジンの
必要性は今後も高いと考えています。特に中型船舶エン
ジンを発明のエンジンに使用できれば、振動のごく少な
い船が出来ます。
Now that hybrid engines, electric vehicles, fuel cells, etc. are becoming a reality, it is often thought that improving the efficiency of internal combustion engines is not a problem, but I think that is not the case. Efficient generator engine
We believe that the need for small, highly efficient engines, such as small and medium-sized marine engines, will continue to grow. In particular, if a medium-sized ship engine can be used as the engine of the invention, a ship with minimal vibration can be created.

【図面の簡単な説明】[Brief description of drawings]

【図1】偏心ロータリーエンジンの構造Figure 1: Structure of eccentric rotary engine

【図2】偏円ロータリーエンジンの構造[Fig. 2] Structure of an elliptic rotary engine

【図3】偏円ロータリーディーゼルエンジンの構造[Fig. 3] Structure of an eccentric rotary diesel engine

【符号の説明】[Explanation of symbols]

「1 固定隔壁α」 「2 固定隔壁β」
「3 可動回転翼A」 「4 可動回転翼B」 「5 圧縮空気副室」
「6 吸気室」 「7 圧縮室」 「8 爆発膨張室」 「9
排気室」 「10 圧縮空気副室の吸入弁」 「11 圧縮
空気副室の押出弁」 「12 吸気管」 「13 吸気室開口部」
「14 排気室開口部」 「15 排気管」 「16 燃料噴射ポンプ」
「17 点火プラグ」 「O 内円筒中心」 「O 外円筒中心」
"1 fixed bulkhead α""2 fixed bulkhead β"
"3 movable rotor A""4 movable rotor B""5 compressed air sub-chamber"
"6 Air intake chamber""7 Compression chamber""8 Explosion expansion chamber""9
Exhaust chamber "10 Suction valve for compressed air subchamber""11 Extrusion valve for compressed air subchamber""12 Intake pipe""13 Intake chamber opening"
"14 exhaust chamber opening""15 exhaust pipe""16 fuel injection pump"
"17 spark plug,""O within the cylindrical center""O outside the outside cylindrical center"

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】偏円ロータリーエンジンの構造 【図2】1. Structure of an elliptic rotary engine [Fig. 2] 【請求項2】偏円ロータリーディーゼルエンジンの構造 【図3】2. A structure of an oblate rotary diesel engine. [Figure 3]
JP10274201A 1998-08-20 1998-08-20 Eccentric circular rotary diesel engine Pending JP2000064850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10274201A JP2000064850A (en) 1998-08-20 1998-08-20 Eccentric circular rotary diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10274201A JP2000064850A (en) 1998-08-20 1998-08-20 Eccentric circular rotary diesel engine

Publications (1)

Publication Number Publication Date
JP2000064850A true JP2000064850A (en) 2000-02-29

Family

ID=17538452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10274201A Pending JP2000064850A (en) 1998-08-20 1998-08-20 Eccentric circular rotary diesel engine

Country Status (1)

Country Link
JP (1) JP2000064850A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010079384A (en) * 2001-07-10 2001-08-22 신철호 Rotary engine with folded wings

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010079384A (en) * 2001-07-10 2001-08-22 신철호 Rotary engine with folded wings

Similar Documents

Publication Publication Date Title
US7421982B2 (en) Independent combustion chamber-type internal combustion engine
US10830047B2 (en) Rotary energy converter with retractable barrier
KR20100128300A (en) Rotary piston internal combustion engine power unit
US8033264B2 (en) Rotary engine
US6347611B1 (en) Rotary engine with a plurality of stationary adjacent combustion chambers
JP4418784B2 (en) Rotary engine
US20120103301A1 (en) Rotary valve continuous flow expansible chamber dynamic and positive displacement rotary devices
US3214907A (en) Multi-stage engine and method for operating the engine by combustion
US6434939B1 (en) Rotary piston charger
US6935300B2 (en) Rotary engine
JP2000064850A (en) Eccentric circular rotary diesel engine
USRE41373E1 (en) Rotary engine
RU2527808C2 (en) Rotary internal combustion engine
US5343838A (en) Dual radius rotor for pre-mixed-charge rotary engine combustion
ES2848320B2 (en) rotary internal combustion engine
US20070119407A1 (en) 8-stroke cycle rotary engine
JPS5849692B2 (en) ninenkikan
EP1497541B1 (en) Four-stroke rotary internal-combustion engine
KR20000055908A (en) Compulsion exhaust apparatus of internal conbustion engine
JPS6179821A (en) Internal combustion engine with rotary reciprocating piston
JPH08158881A (en) Half combustion chamber rotary engine
JPH0218288Y2 (en)
JPH09256801A (en) Fundamental structure of truly circular rotary engine and truly circular rotary pump
JPH01318724A (en) Control device for engine
JPH09256862A (en) Rotary engine with plug