JP2000063180A - Hexagonal boron nitride sintered product and its production - Google Patents

Hexagonal boron nitride sintered product and its production

Info

Publication number
JP2000063180A
JP2000063180A JP10230376A JP23037698A JP2000063180A JP 2000063180 A JP2000063180 A JP 2000063180A JP 10230376 A JP10230376 A JP 10230376A JP 23037698 A JP23037698 A JP 23037698A JP 2000063180 A JP2000063180 A JP 2000063180A
Authority
JP
Japan
Prior art keywords
boron nitride
hexagonal boron
oxygen
nitride sintered
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10230376A
Other languages
Japanese (ja)
Other versions
JP3942280B2 (en
Inventor
Joji Ichihara
譲治 市原
Takashi Kidokoro
隆 城所
Nobuyuki Yoshino
信行 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP23037698A priority Critical patent/JP3942280B2/en
Publication of JP2000063180A publication Critical patent/JP2000063180A/en
Application granted granted Critical
Publication of JP3942280B2 publication Critical patent/JP3942280B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a hexagonal boron nitride sintered product having excellent deformation resistance during employment under a high strength and a high temperature by an atmospheric pressure sintering method. SOLUTION: This hexagonal boron nitride sintered product has a three point bending strength of >=20 Mpa at ordinary temperature and a deformation resistance index of <0.75. This method for producing the hexagonal boron nitride sintered product comprises sintering a molded raw material containing boron nitride powder in an inert gas atmosphere having a nitrogen component content of <=10 vol.% (including zero). Therein, the boron nitride powder contains oxygen incapable of being removed with methanol in an amount of 0.4-1.7 wt.%, and 30-60 wt.% of the oxygen is released, when the boron nitride powder is held in a helium gas atmosphere at a temperature of 1,800 deg.C for 180 min.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、六方晶窒化ほう素
焼結体及びその製造方法に関する。本発明によって製造
された六方晶窒化ほう素焼結体は、高強度であり、使用
中の耐変形性にも優れているので、半導体や電子部品等
の製造用もしくは組み付け用の治具、電気絶縁性放熱材
料、セラミックス焼成用のるつぼ・治具等として使用さ
れる。
TECHNICAL FIELD The present invention relates to a hexagonal boron nitride sintered body and a method for producing the same. The hexagonal boron nitride sintered body produced according to the present invention has high strength and is excellent in deformation resistance during use. Therefore, a jig for producing or assembling semiconductors, electronic parts, etc., an electrical insulation Used as a heat dissipation material, crucibles and jigs for firing ceramics.

【0002】[0002]

【従来の技術】六方晶窒化ほう素は、黒鉛類似の層状構
造を有し、熱伝導性、電気絶縁性、化学的安定性、固体
潤滑性、耐熱衝撃性などの特性に優れる。また、その焼
結体は、化学的安定性が大であり、耐食性・被切削性・
耐熱性・低誘電性・低誘電損失性等の特性に優れている
ため、さまざまな分野で広範に用いられている。特に、
近年セラミックス焼成用治具を初めとする大型板材の需
要が増えており、最大長400mmをこえ1000mm
程度に達する形状の焼結体への対応が求められている。
2. Description of the Related Art Hexagonal boron nitride has a layered structure similar to graphite and is excellent in properties such as thermal conductivity, electrical insulation, chemical stability, solid lubricity and thermal shock resistance. In addition, the sintered body has great chemical stability, corrosion resistance, machinability,
It is widely used in various fields due to its excellent properties such as heat resistance, low dielectric properties and low dielectric loss properties. In particular,
In recent years, there is an increasing demand for large plate materials such as jigs for firing ceramics, and the maximum length is 400 mm and 1000 mm.
Corresponding to a sintered body having a shape reaching a certain degree is required.

【0003】六方晶窒化ほう素焼結体は、酸化物系焼結
助剤を用いたホットプレス法ないしは常圧焼結法で製造
されている。しかし、ホットプレス法では、スリーブ・
ダイス等の強度限界ないしは均熱確保の限界から、最大
長400mm程度までの製品しか製造することができな
い。ここでいう最大長とは、四角形状であれば対角線、
円形状であれば直径、楕円形状であれば長径の長さを指
すものとする。
The hexagonal boron nitride sintered body is manufactured by a hot pressing method or an atmospheric pressure sintering method using an oxide type sintering aid. However, in the hot press method, sleeve
Due to the strength limit of dies and the like, or the limitation of soaking, only products with a maximum length of about 400 mm can be manufactured. The maximum length here is a diagonal line if it is quadrangular,
A circular shape means a diameter, and an elliptical shape means a major axis.

【0004】そこで、最大長400mmをこえる大型形
状にも対応できる常圧焼結法が、次第に多く採用される
ようになってきた。常圧焼結法で製造された六方晶窒化
ほう素焼結体は、焼成後の密度のバラつきが少なく、セ
ラミックス焼成用治具として好適な特性を有しているな
どの利点がある。
Therefore, the atmospheric pressure sintering method, which can cope with a large shape having a maximum length of 400 mm or more, has been increasingly adopted. The hexagonal boron nitride sintered body produced by the atmospheric pressure sintering method has advantages that there is little variation in density after firing and that it has suitable characteristics as a jig for firing ceramics.

【0005】しかしながら、このような常圧焼結法によ
る六方晶窒化ほう素焼結体にあっては、その大型化にと
もない高温下での使用中に変形を生じやすい問題があ
る。これは、六方晶窒化ほう素焼結体内部に残存してい
る焼結助剤成分、特に酸素が、高温下での使用中に窒化
ほう素結晶を成長させ、変形を助長していることによる
ものと考えられている。
However, such a hexagonal boron nitride sintered body produced by the atmospheric pressure sintering method has a problem that it tends to be deformed during use at high temperature due to its increase in size. This is because the sintering aid component remaining inside the hexagonal boron nitride sintered body, especially oxygen, promotes deformation by growing a boron nitride crystal during use at high temperature. It is believed that.

【0006】また、六方晶窒化ほう素焼結体の治具を高
温下で使用した場合、被焼成物から応力負荷を受け塑性
変形を生じるので、繰り返しの使用が困難であった。塑
性変形量は加わる応力に従って増大し、また六方晶窒化
ほう素焼結体の強度が大きいほど小さくなる。以上のこ
とから、セラミックス焼成用治具としては、耐変形性に
優れ、高強度の六方晶窒化ほう素焼結体の出現が待たれ
ていた。
Further, when the jig of the hexagonal boron nitride sintered body is used at a high temperature, a stress load is applied from the material to be fired to cause plastic deformation, so that repeated use is difficult. The amount of plastic deformation increases with applied stress, and decreases as the strength of the hexagonal boron nitride sintered body increases. From the above, as a jig for firing ceramics, the appearance of a hexagonal boron nitride sintered body having excellent deformation resistance and high strength has been awaited.

【0007】従来、常圧焼結法については、アモルファ
ス窒化ほう素粉末を原料とし還元窒化雰囲気もしくは窒
化雰囲気中で焼結する方法(特公平3−36781号公
報)などが提案されている。この発明によれば、高強度
な六方晶窒化ほう素焼結体を得ることができるが、耐変
形性に優れた六方晶窒化ほう素焼結体とはならない。
Conventionally, as the atmospheric pressure sintering method, there has been proposed a method of sintering amorphous boron nitride powder as a raw material in a reducing nitriding atmosphere or a nitriding atmosphere (Japanese Patent Publication No. 3-36781). According to the present invention, a high-strength hexagonal boron nitride sintered body can be obtained, but it does not become a hexagonal boron nitride sintered body excellent in deformation resistance.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記に鑑み
てなされたものであり、その目的は、高強度かつ耐変形
性に優れた六方晶窒化ほう素焼結体を提供することであ
る。特に、これらの特性を備え、最大長400mmをこ
える大型形状の六方晶窒化ほう素焼結体を提供すること
である。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object thereof is to provide a hexagonal boron nitride sintered body having high strength and excellent deformation resistance. In particular, it is to provide a large-sized hexagonal boron nitride sintered body having these characteristics and having a maximum length of 400 mm or more.

【0009】[0009]

【課題を解決するための手段】すなわち、本発明は、常
温3点曲げ強度20MPa以上、本発明で定義される耐
変形指数0.75未満であることを特徴とする六方晶窒
化ほう素焼結体である。また、本発明は、窒化ほう素粉
末を含む成形原料を、窒素成分10vol%以下(0を
含む)の不活性ガス雰囲気下で焼成する方法において、
上記窒化ほう素粉末が、メタノールで除去できない酸素
を0.4〜1.7重量%含み、しかも該酸素は、ヘリウ
ムガス雰囲気下、温度1800℃で180分間保持した
場合に、その30〜60重量%が放出されるものである
ことを特徴とする六方晶窒化ほう素焼結体の製造方法で
ある。
That is, the present invention has a hexagonal boron nitride sintered body characterized by a room temperature three-point bending strength of 20 MPa or more and a deformation resistance index of less than 0.75 as defined in the present invention. Is. The present invention also provides a method of firing a forming raw material containing boron nitride powder in an atmosphere of an inert gas having a nitrogen content of 10 vol% or less (including 0),
The boron nitride powder contains 0.4 to 1.7% by weight of oxygen that cannot be removed with methanol, and the oxygen content is 30 to 60% by weight when kept at a temperature of 1800 ° C. for 180 minutes in a helium gas atmosphere. % Of the hexagonal boron nitride sintered body is produced.

【0010】[0010]

【発明の実施の形態】以下に、更に詳しく本発明につい
て説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail below.

【0011】常圧焼結法による六方晶窒化ほう素焼結体
の焼結機構は、概略以下のとおりである。すなわち、原
料の窒化ほう素粉末は、その合成の過程において、メタ
ノールで除去できない微量の酸素を不純物として含む。
この微量の酸素は、B、N、Oの三元素系化合物(一般
式「Bx y z 」で表される)の形態で存在している
と考えられている。このような原料粉末を成形・常圧焼
結すると、先ずBx y z の酸素がB2 3 の形で放
出される。次いで、このB2 3 によって液相が形成さ
れ、その中に六方晶窒化ほう素粒子が溶解・再析出して
成長し、この粒成長と同時に起こる粒子間の接合により
六方晶窒化ほう素焼結体となる。
Hexagonal boron nitride sintered body by atmospheric pressure sintering method
The sintering mechanism of is as follows. That is, Hara
The boron nitride powder used as a raw material is
It contains a trace amount of oxygen as an impurity that cannot be removed with a nor.
This trace amount of oxygen is a tri-elemental compound of B, N, and O (generally,
Expression "BxNyOz"Represented by")
It is believed that. This raw material powder is molded and pressureless baked.
When tied, first BxN yOzOxygen is B2O3Released in the form of
Will be issued. Then this B2O3Form a liquid phase
Hexagonal boron nitride particles were dissolved and re-precipitated in the
By the intergranular bond that grows and coincides with this grain growth
It becomes a hexagonal boron nitride sintered body.

【0012】本発明の特徴は、このような六方晶窒化ほ
う素焼結体の焼成において、後記のように、窒化ほう素
原料粉末に含まれるメタノールで除去できない酸素量
と、その放出特性を適正化すると共に、焼成雰囲気中の
窒素成分の分圧を下げて焼成することによって、所期し
た高強度(常温3点曲げ強度20MPa以上)と耐変形
性(本発明で定義される耐変形指数0.75未満)を備
えた六方晶窒化ほう素焼結体を製造できたことである。
The feature of the present invention is that, in the firing of such a hexagonal boron nitride sintered body, the amount of oxygen which cannot be removed by methanol contained in the boron nitride raw material powder and its release characteristic are optimized, as described later. In addition, by lowering the partial pressure of the nitrogen component in the firing atmosphere and firing, the desired high strength (at room temperature, three-point bending strength of 20 MPa or more) and deformation resistance (deformation resistance index of 0. It was possible to produce a hexagonal boron nitride sintered body having a value of less than 75).

【0013】本発明で定義される耐変形指数とは、六方
晶窒化ほう素焼結体の板状試片を窒素ガス大気圧雰囲気
下、温度1900℃で10時間保持した際に発生した反
り量を測定し、耐変形指数=〔反り発生量(mm)×試
片幅(mm)×{試片厚み(mm)}2 〕/〔試片長さ
(mm)〕、の式を用いて算出されたものである。
The deformation resistance index defined in the present invention is the amount of warpage that occurs when a plate-shaped specimen of a hexagonal boron nitride sintered body is held at a temperature of 1900 ° C. for 10 hours under an atmosphere of nitrogen gas at atmospheric pressure. Measured and calculated using the formula of deformation resistance index = [warpage amount (mm) × test piece width (mm) × {test piece thickness (mm)} 2 ] / [test piece length (mm)] It is a thing.

【0014】耐変形指数が大きいほど、高温中での使用
中に変形が生じやすくなり、ホットプレス法による六方
晶窒化ほう素焼結体では、この耐変形指数が5以上にも
達する。
The larger the deformation resistance index, the more easily deformation occurs during use at high temperature, and in the hexagonal boron nitride sintered body by the hot pressing method, the deformation resistance index reaches 5 or more.

【0015】本発明の製造方法に用いられる六方晶窒化
ほう素原料粉末は、メタノールで除去できない酸素を
0.4〜1.7重量%含有しているものである。
The hexagonal boron nitride raw material powder used in the manufacturing method of the present invention contains 0.4 to 1.7% by weight of oxygen which cannot be removed by methanol.

【0016】ここで、「メタノールで除去できない酸
素」とは、上記のように、六方晶窒化ほう素粉末中に不
純物として含まれる酸素を主体とするもので、Bx y
z の形態で存在し、常圧焼結中に酸素をB2 3の形
で放出して、液相を形成するものと考えられる。
Here, "oxygen which cannot be removed by methanol" is mainly oxygen contained in the hexagonal boron nitride powder as an impurity as described above, and is B x N y.
It exists in the form of O z and is considered to release oxygen in the form of B 2 O 3 during pressureless sintering to form a liquid phase.

【0017】一方、メタノールで除去できる酸素につい
ては、六方晶窒化ほう素粉末中に当初からB23やH3
BO3などの形態で存在する酸素であると考えられる。
これらの酸素については、常圧焼結中の温度の低い段階
で放出されるため、焼結体の物性向上にはあまり寄与し
ない。
On the other hand, regarding oxygen which can be removed by methanol, B 2 O 3 and H 3 are added to the hexagonal boron nitride powder from the beginning.
It is considered to be oxygen existing in the form of BO 3 and the like.
These oxygens are released at a low temperature stage during normal pressure sintering, and thus do not contribute much to the improvement of the physical properties of the sintered body.

【0018】メタノールによる酸素の除去については、
大気中、120℃で2時間乾燥させた六方晶窒化ほう素
粉末1gあたり、3mlのメタノールを添加し、B23
やH 3BO3などの形態で存在する酸素をメタノール中に
抽出させてから、70〜80℃の温度でメタノールとと
もに揮散させ、1.5時間乾燥させることにより行われ
る。
Regarding the removal of oxygen with methanol,
Hexagonal boron nitride dried in air at 120 ° C for 2 hours
Add 3 ml of methanol per 1 g of powder, and add B2O3
And H 3BO3Oxygen present in the form of
After extraction, add methanol at a temperature of 70-80 ° C.
It is carried out by volatilizing and drying for 1.5 hours.
It

【0019】そして、メタノールで除去できなかった酸
素量の測定については、上記方法によりB2 3 やH3
BO3のなどの形態で存在する酸素を除去したのち、例
えば堀場製作所製O/N同時分析計を用いて行うことが
できる。
For the measurement of the amount of oxygen that could not be removed with methanol, B 2 O 3 or H 3 was measured by the above method.
After removing oxygen existing in the form of BO 3 or the like, it can be performed using, for example, an O / N simultaneous analyzer manufactured by Horiba Ltd.

【0020】また、メタノールで除去できない酸素の放
出特性としては、この酸素を含む窒化ほう素粉末を、ヘ
リウムガス雰囲気下、温度1800℃で180分間で保
持した場合に、このメタノールで除去できない酸素の3
0〜60重量%が放出されることが好ましい。この時、
酸素はB23の形で揮散・放出されると考えられる。こ
のような酸素の放出特性は、六方晶窒化ほう素粉末と炭
素粉末の均一混合物をヘリウムガスフローの下、上記温
度で保持した際に生成した一酸化炭素量を定量すること
によって求めることができる。
Further, regarding the release characteristics of oxygen which cannot be removed by methanol, when the boron nitride powder containing this oxygen is held at a temperature of 1800 ° C. for 180 minutes in a helium gas atmosphere, the oxygen which cannot be removed by this methanol is removed. Three
It is preferred that 0-60% by weight be released. This time,
It is considered that oxygen is volatilized and released in the form of B 2 O 3 . Such oxygen release characteristics can be obtained by quantifying the amount of carbon monoxide produced when a uniform mixture of hexagonal boron nitride powder and carbon powder is held at the above temperature under a helium gas flow. .

【0021】本発明において、六方晶窒化ほう素粉末中
に含まれる、メタノールで除去できない酸素の量が0.
4重量%未満では、焼結不足となって強度低下する。逆
に、1.7重量%をこえると、六方晶窒化ほう素焼結体
の残留酸素量が増大し、使用時における塑性変形の原因
となる。しかも、焼結時の液相量が多くなり過ぎること
によって六方晶窒化ほう素粒子の粒成長が大きくなり、
その結果、焼結体の変形が生じやすくなったり、純度や
密度が低下したり、更には多量のB2 3 の急激な揮散
によりクラックが発生したりする。
In the present invention, the amount of oxygen contained in the hexagonal boron nitride powder that cannot be removed by methanol is 0.
If it is less than 4% by weight, sintering will be insufficient and the strength will decrease. On the other hand, if it exceeds 1.7% by weight, the amount of residual oxygen in the hexagonal boron nitride sintered body increases, which causes plastic deformation during use. Moreover, since the amount of liquid phase during sintering becomes too large, the grain growth of hexagonal boron nitride particles increases,
As a result, the sintered body is likely to be deformed, the purity and density are lowered, and further, cracks are generated due to rapid volatilization of a large amount of B 2 O 3 .

【0022】メタノールで除去できない酸素の六方晶窒
化ほう素粉末原料中の含有量は、製造される六方晶窒化
ほう素焼結体の厚みにもとづいて調整することが好まし
く、例えば厚みが35mm程度である場合は、0.5〜
0.9重量%の含有量とすることが好ましい。
The content of oxygen which cannot be removed with methanol in the hexagonal boron nitride powder raw material is preferably adjusted based on the thickness of the hexagonal boron nitride sintered body produced, and for example, the thickness is about 35 mm. In the case of 0.5
The content is preferably 0.9% by weight.

【0023】また、本発明において、メタノールで除去
できない酸素の放出特性が30重量%未満では、六方晶
窒化ほう素焼結体中の酸素量が増大し、また60重量%
をこえると割れなどが発生する。最適な放出特性は40
〜50重量%である。
Further, in the present invention, when the oxygen release characteristic which cannot be removed with methanol is less than 30% by weight, the amount of oxygen in the hexagonal boron nitride sintered body increases, and 60% by weight.
If it exceeds, cracks will occur. Optimal release characteristics are 40
~ 50% by weight.

【0024】以上のような、メタノールで除去できない
酸素の放出特性と適正量を有する窒化ほう素粉末原料
は、その放出特性と含有量が既知である六方晶窒化ほう
素粉末と、一次粒子径の平均値が10〜15μm程度に
まで十分に発達させた高結晶、かつメタノールで除去で
きない酸素を殆ど含んでいない六方晶窒化ほう素粉末と
を適宜混合するとによって製造することができる。
The boron nitride powder raw material having the above-mentioned release characteristics and proper amount of oxygen which cannot be removed by methanol is composed of hexagonal boron nitride powder whose release characteristics and content are known and the primary particle size. It can be produced by appropriately mixing with a high crystal that has been sufficiently developed to an average value of about 10 to 15 μm and a hexagonal boron nitride powder that contains almost no oxygen that cannot be removed with methanol.

【0025】前者の六方晶窒化ほう素粉末は、オルトほ
う酸やほう砂等のほう酸源と、窒素尿素、メラミン、ア
ンモニア等の窒素源とを反応させる際、その温度域が1
200〜1400℃で製造され、そのメタノールで除去
できない酸素の放出特性と適正量は、焼成温度、触媒の
種類・量等によって調整することができる。また、後者
の高結晶六方晶窒化ほう素粉末は、上記反応温度域が1
800〜2100℃で製造される。両粉末の混合には、
リボンブレンダー、V型混合機、ダブルコーンブレンダ
ー、ヘンシェルミキサー等の混合機が用いられる。
The former hexagonal boron nitride powder has a temperature range of 1 when a boric acid source such as orthoboric acid or borax is reacted with a nitrogen source such as nitrogen urea, melamine or ammonia.
The release characteristics and appropriate amount of oxygen that is produced at 200 to 1400 ° C. and cannot be removed with methanol can be adjusted by the calcination temperature, the type and amount of catalyst, and the like. The latter high-crystal hexagonal boron nitride powder has a reaction temperature range of 1
Manufactured at 800-2100 ° C. To mix both powders,
A mixer such as a ribbon blender, a V type mixer, a double cone blender, a Henschel mixer, etc. is used.

【0026】六方晶窒化ほう素粉末原料の成形方法につ
いては、金型プレス法、静水圧プレス法、泥漿鋳込み成
形法、押出し成形法、射出成形法などの一般的な方法を
採用することができる。また、これらを組み合わせるこ
ともできる。これらの方法において、成形用有機バイン
ダー等を用いた場合には、焼成前にこれを取り除く必要
がある。特に、高強度で、耐変形性に優れる六方晶窒化
ほう素焼結体を得るためには、0.5トン/cm2 以上
の静水圧プレスを加えることが望ましい。
As a method for molding the hexagonal boron nitride powder raw material, a general method such as a die pressing method, a hydrostatic pressing method, a slurry casting molding method, an extrusion molding method, and an injection molding method can be adopted. . Moreover, these can also be combined. In these methods, when a molding organic binder or the like is used, it is necessary to remove it before firing. In particular, in order to obtain a hexagonal boron nitride sintered body having high strength and excellent resistance to deformation, it is desirable to apply a hydrostatic press of 0.5 ton / cm 2 or more.

【0027】六方晶窒化ほう素成形体の焼成は、窒素成
分10vol%以下(0を含む)の不活性ガス雰囲気下
で行われる。その不活性ガスとしては、ヘリウム、ネオ
ン、アルゴン等の単味もしくは混合物を用いることがで
きる。また、窒素成分としては、窒素ガスのほか、アン
モニア等、その組成に窒素を含むガスが用いられる。窒
素成分が10vol%をこえると、残留酸素量の低減と
強度発現を充分に両立させることができない。この理由
については定かではないが、雰囲気中の窒素成分を10
vol%以下(0を含む)に制御することによって、以
下に説明するように、焼結の進行する温度域において、
メタノールで除去できない酸素がB23の形で揮散・放
出するのを促進するためと考えている。
The firing of the hexagonal boron nitride compact is performed in an inert gas atmosphere having a nitrogen content of 10 vol% or less (including 0). As the inert gas, a simple substance or a mixture of helium, neon, argon and the like can be used. As the nitrogen component, in addition to nitrogen gas, ammonia and other gases containing nitrogen in its composition are used. When the nitrogen component exceeds 10 vol%, it is not possible to achieve both reduction of residual oxygen content and strength development. The reason for this is not clear, but the nitrogen component in the atmosphere should be 10
By controlling the content to be not more than vol% (including 0), as described below, in the temperature range in which sintering proceeds,
This is to promote the volatilization and release of oxygen that cannot be removed by methanol in the form of B 2 O 3 .

【0028】すなわち、B2 3 のつくる液相中で六方
晶窒化ほう素粒子の溶解・再析出により焼結の進行する
温度域は1200〜1900℃であるが、1900℃を
こえるとB2 3 の飽和蒸気圧が急激に立ち上がる。飽
和蒸気圧の高い温度域で形成されたB2 3 液相は速や
かに揮散してしまい、六方晶窒化ほう素の焼結に寄与す
ることができない。そのため、飽和蒸気圧の低い低温域
においてBx y zをB2 3 に変化させることが六
方晶窒化ほう素の焼結にとって好都合である。本発明に
おける不活性雰囲気下では、飽和蒸気圧の低い温度域で
2 3 の形成が促進されるため、六方晶窒化ほう素粉
末原料中に存在するメタノールで除去できない酸素を充
分に焼結に寄与させることができるものと考えられる。
[0028] That is, the temperature range for sintering proceeds in the liquid phase by dissolution and reprecipitation of the hexagonal boron nitride particles to create a B 2 O 3 is is a 1,200-1,900 ° C., is more than 1900 ° C. B 2 The saturated vapor pressure of O 3 rises sharply. The B 2 O 3 liquid phase formed in the temperature range where the saturated vapor pressure is high volatilizes rapidly and cannot contribute to the sintering of hexagonal boron nitride. Therefore, it is convenient for the sintering of hexagonal boron nitride to change B x N y O z to B 2 O 3 in a low temperature range where the saturated vapor pressure is low. Under the inert atmosphere of the present invention, the formation of B 2 O 3 is promoted in a temperature range where the saturated vapor pressure is low, so that oxygen existing in the hexagonal boron nitride powder raw material that cannot be removed by methanol is sufficiently sintered. It is thought that it can contribute to.

【0029】そして、窒素成分の割合が10vol%を
こえると、残留酸素量の低減と強度の発現を充分に両立
させることができないことについては、窒素成分の割合
が多いと、B2 3 の飽和蒸気圧の低い温度域において
メタノールで除去できない酸素のB2 3 への変化が不
充分となり、焼結に有効に寄与するB2 3 液相の必要
量が確保されず、焼結体の充分な強度が得られにくい状
態となっているためと考えられる。
[0029] When the ratio of the nitrogen content exceeds 10 vol%, the inability to sufficiently balance the expression of reduction and strength of the residual amount of oxygen, when the larger part of the ratio of nitrogen content, the B 2 O 3 In the temperature range where the saturated vapor pressure is low, the change of oxygen to B 2 O 3 that cannot be removed by methanol becomes insufficient, and the required amount of B 2 O 3 liquid phase that effectively contributes to sintering cannot be secured, resulting in a sintered body. It is considered that this is because it is difficult to obtain sufficient strength.

【0030】焼成温度は、1700℃以上であることが
好ましい。この温度よりも低いと焼結が充分に進行しな
い。温度を更に上げることによって残留酸素を低減さ
せ、焼結体の純度を高めることも可能である。温度を上
げることにより、焼結体の使用時に有害となる酸素を揮
散させることができる。この場合、工業的に昇温が可能
なのは2300℃程度までである。
The firing temperature is preferably 1700 ° C. or higher. If it is lower than this temperature, the sintering does not proceed sufficiently. It is also possible to reduce the residual oxygen and raise the purity of the sintered body by further raising the temperature. By raising the temperature, it is possible to vaporize oxygen, which is harmful when the sintered body is used. In this case, the temperature can be industrially raised up to about 2300 ° C.

【0031】焼成時の昇温速度については、1000℃
未満の温度域においてはいくらでも構わないが、工業的
には速いほうが有利である。1000℃以上の温度域に
おいては50〜500℃/時間程度とするのが望まし
い。
The temperature rising rate during firing is 1000 ° C.
Although any amount may be used in the temperature range below, industrially, it is advantageous to be fast. In the temperature range of 1000 ° C or higher, it is desirable to set the rate to about 50 to 500 ° C / hour.

【0032】以上に述べた方法により、常温3点曲げ強
度20MPa以上の高強度で、しかも耐変形指数0.7
5未満である耐変形性に優れた六方晶窒化ほう素焼結体
を製造することができる。
According to the method described above, the high strength of three-point bending strength at room temperature is 20 MPa or more, and the deformation resistance index is 0.7.
A hexagonal boron nitride sintered body having an excellent deformation resistance of less than 5 can be produced.

【0033】[0033]

【実施例】以下、実施例、比較例をあげて更に具体的に
本発明を説明する。
EXAMPLES The present invention will be described more specifically with reference to Examples and Comparative Examples.

【0034】実施例1〜10 比較例1〜8 放出特性が表1に示すとおりであり、しかもメタノール
で除去できない酸素を表1の割合で含有する、種々の六
方晶窒化ほう素粉末原料をゴム型に充填し、1.5トン
/cm2 で静水圧プレスにより略寸法が550mm×6
50mm×35mmに成形した。この成形体を六方晶窒
化ほう素製るつぼ内に充填し、表1に示される雰囲気ガ
スフロー下、昇温速度100℃/時間で表1に示される
焼成保持温度まで昇温し、その温度で3時間保持した。
その後、昇温速度100℃/時間で2000℃まで昇温
し、その温度で3時間保持したのち放冷して六方晶窒化
ほう素焼結体を製造した。
Examples 1 to 10 Comparative Examples 1 to 8 Various hexagonal boron nitride powder raw materials having release characteristics as shown in Table 1 and containing oxygen which cannot be removed by methanol in the proportion shown in Table 1 are rubbers. It is filled in a mold and pressed by isostatic pressing at 1.5 ton / cm 2 so that the dimensions are approximately 550 mm × 6.
It was molded into 50 mm × 35 mm. This compact was filled in a hexagonal boron nitride crucible and heated to the firing holding temperature shown in Table 1 at a temperature rising rate of 100 ° C./hour under the atmosphere gas flow shown in Table 1 at that temperature. Hold for 3 hours.
Thereafter, the temperature was raised to 2000 ° C. at a temperature rising rate of 100 ° C./hour, and the temperature was maintained for 3 hours and then allowed to cool to produce a hexagonal boron nitride sintered body.

【0035】得られた六方晶窒化ほう素焼結体につい
て、密度、常温3点曲げ強度、残留酸素量及び耐変形指
数を以下に従って測定した。それらの結果を表2に示し
た。
The density, the three-point bending strength at room temperature, the amount of residual oxygen, and the deformation resistance index of the obtained hexagonal boron nitride sintered body were measured as follows. The results are shown in Table 2.

【0036】(1)密度は、焼結体の各部より3mm×
4mm×50mmの曲げ試片を均等に10個切り出し、
その重量と寸法から密度を求め、その平均値を算出し
た。 (2)常温3点曲げ強度は、密度測定に使用した試片を
JIS R1601に準拠して測定した。 (3)残留酸素量は、焼結体の一部を乳鉢で粉砕し、六
方晶窒化ほう素粉末原料の酸素量と同様に測定した。 (4)耐変形指数は、六方晶窒化ほう素焼結体から板状
試片(50mm×100mm×4mm)を切り出し、そ
れを窒素ガス雰囲気下、温度1900℃で10時間保持
した際に発生した反り量を測定し、上式により算出し
た。
(1) The density is 3 mm × from each part of the sintered body.
Cut 10 pieces of 4mm x 50mm bending sample evenly,
The density was calculated from the weight and size, and the average value was calculated. (2) The room temperature three-point bending strength was measured according to JIS R1601 on the test piece used for the density measurement. (3) The residual oxygen content was measured in the same manner as the oxygen content of the hexagonal boron nitride powder raw material by crushing a part of the sintered body in a mortar. (4) Deformation resistance index is the warpage that occurs when a plate-shaped sample (50 mm x 100 mm x 4 mm) is cut out from a hexagonal boron nitride sintered body and held in a nitrogen gas atmosphere at a temperature of 1900 ° C for 10 hours. The amount was measured and calculated by the above formula.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】[0039]

【発明の効果】本発明によれば、高密度、高強度で残留
酸素量が少なく、しかも高温下での使用における耐変形
性に優れた六方晶窒化ほう素焼結体を常圧焼結によって
得ることができる。
According to the present invention, a hexagonal boron nitride sintered body having a high density, a high strength, a small amount of residual oxygen, and excellent deformation resistance when used at high temperatures is obtained by pressureless sintering. be able to.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 常温3点曲げ強度20MPa以上、本発
明で定義される耐変形指数0.75未満であることを特
徴とする六方晶窒化ほう素焼結体。
1. A hexagonal boron nitride sintered body having a room temperature three-point bending strength of 20 MPa or more and a deformation resistance index of less than 0.75 defined in the present invention.
【請求項2】 窒化ほう素粉末を含む成形原料を、窒素
成分10vol%以下(0を含む)の不活性ガス雰囲気
下で焼成する方法において、上記窒化ほう素粉末が、メ
タノールで除去できない酸素を0.4〜1.7重量%含
み、しかも該酸素は、ヘリウムガス雰囲気下、温度18
00℃で180分間保持した場合に、その30〜60重
量%が放出されるものであることを特徴とする六方晶窒
化ほう素焼結体の製造方法。
2. A method of firing a forming raw material containing boron nitride powder in an atmosphere of an inert gas having a nitrogen content of 10 vol% or less (including 0), wherein the boron nitride powder contains oxygen that cannot be removed with methanol. 0.4 to 1.7% by weight, and the oxygen is contained in a helium gas atmosphere at a temperature of 18
A method for producing a hexagonal boron nitride sintered body, wherein 30 to 60% by weight is released when held at 00 ° C for 180 minutes.
JP23037698A 1998-08-17 1998-08-17 Method for producing hexagonal boron nitride sintered body Expired - Fee Related JP3942280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23037698A JP3942280B2 (en) 1998-08-17 1998-08-17 Method for producing hexagonal boron nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23037698A JP3942280B2 (en) 1998-08-17 1998-08-17 Method for producing hexagonal boron nitride sintered body

Publications (2)

Publication Number Publication Date
JP2000063180A true JP2000063180A (en) 2000-02-29
JP3942280B2 JP3942280B2 (en) 2007-07-11

Family

ID=16906904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23037698A Expired - Fee Related JP3942280B2 (en) 1998-08-17 1998-08-17 Method for producing hexagonal boron nitride sintered body

Country Status (1)

Country Link
JP (1) JP3942280B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030033575A (en) * 2001-10-24 2003-05-01 주식회사 스트리트오토 Management method for used car through network
JP2010059055A (en) * 2001-08-07 2010-03-18 Saint-Gobain Ceramics & Plastics Inc HIGH-SOLID hBN SLURRY, hBN PASTE, SPHERICAL hBN POWDER, AND METHODS OF MAKING AND USING THEM

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059055A (en) * 2001-08-07 2010-03-18 Saint-Gobain Ceramics & Plastics Inc HIGH-SOLID hBN SLURRY, hBN PASTE, SPHERICAL hBN POWDER, AND METHODS OF MAKING AND USING THEM
KR20030033575A (en) * 2001-10-24 2003-05-01 주식회사 스트리트오토 Management method for used car through network

Also Published As

Publication number Publication date
JP3942280B2 (en) 2007-07-11

Similar Documents

Publication Publication Date Title
US4908173A (en) Process for preparation of dense molded bodies of polycrystalline aluminum nitride without use of sintering aids
US7723247B2 (en) Method for pressurelessly sintering zirconium diboride/silicon carbide composite bodies to high densities
US8097548B2 (en) High-density pressurelessly sintered zirconium diboride/silicon carbide composite bodies and a method for producing the same
JPS6128627B2 (en)
US4564601A (en) Shaped polycrystalline silicon carbide articles and isostatic hot-pressing process
CN101734920B (en) Titanium nitride porous ceramics and preparation method thereof
JP2004043241A (en) High purity silicon carbide sintered compact and its forming method
JP2000154062A (en) Boron carbide sintered compact and its production
JPS60501852A (en) Method for producing densified silicon nitride/oxynitride composites
JP2000063180A (en) Hexagonal boron nitride sintered product and its production
US5139719A (en) Sintering process and novel ceramic material
JP2585506B2 (en) Silicon carbide sintered body and method for producing the same
JP4542747B2 (en) Manufacturing method of high strength hexagonal boron nitride sintered body
JP3297547B2 (en) Method for producing silicon carbide sintered body
JP2001089270A (en) Method of producing silicon impregnated silicon carbide ceramic member
JP3618211B2 (en) Method for producing hexagonal boron nitride sintered body
JP3141505B2 (en) Aluminum nitride sintered body and method for producing the same
JP4958353B2 (en) Aluminum nitride powder and method for producing the same
JP2658944B2 (en) Silicon nitride-titanium nitride composite ceramics and method for producing the same
JPH11335172A (en) Production of porous silicon carbide sintered compact
JP3696300B2 (en) Silicon nitride sintered body and method for producing the same
JPS62283871A (en) Manufacture of silicon carbide sintered body
JPH0463028B2 (en)
JP3839514B2 (en) Silicon nitride sintered body and method for producing the same
JP3452741B2 (en) Method for producing aluminum nitride based composite material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070403

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees