JP2000058717A - Flat semiconductor device and converter using the same - Google Patents

Flat semiconductor device and converter using the same

Info

Publication number
JP2000058717A
JP2000058717A JP23044898A JP23044898A JP2000058717A JP 2000058717 A JP2000058717 A JP 2000058717A JP 23044898 A JP23044898 A JP 23044898A JP 23044898 A JP23044898 A JP 23044898A JP 2000058717 A JP2000058717 A JP 2000058717A
Authority
JP
Japan
Prior art keywords
main
main electrode
semiconductor device
electrode plate
flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23044898A
Other languages
Japanese (ja)
Inventor
Hironori Kodama
弘則 児玉
Mitsuo Kato
光雄 加藤
Mamoru Sawahata
守 沢畠
Mitsuru Hasegawa
長谷川  満
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23044898A priority Critical patent/JP2000058717A/en
Priority to CN99811858A priority patent/CN1322376A/en
Priority to PCT/JP1999/004072 priority patent/WO2000008683A1/en
Priority to CA002339523A priority patent/CA2339523A1/en
Priority to KR1020017001647A priority patent/KR20010072328A/en
Priority to EP99933154A priority patent/EP1115151A1/en
Publication of JP2000058717A publication Critical patent/JP2000058717A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Thyristors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method by which a highly reliable flat semiconductor device can be realized at a low cost. SOLUTION: A semiconductor device is constituted by incorporating at least one or more semiconductor elements 1 having at least first main electrodes 4 on first main surfaces, and second main electrodes 5 on second main surfaces in a flat package. In the flat package, a pair of main electrode plates exposed on both surfaces are electrically insulated from each other by means of an insulating outer casing. The outer peripheral surface parts of the semiconductor elements 1 which are not faced to intermediate electrode plates 2 and 3 and at least parts of the side faces of the electrode plates 2 and 3 are compactly sealed with an electrical insulating material 6. Therefor, the manufacturing cost of a flat type semiconductor device can be reduced without spoiling the reliability of the device.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、平型半導体装置に
係り、低コストで、かつ高い信頼性を実現できる平型半
導体装置、及びこれを用いた変換器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flat type semiconductor device, and more particularly, to a flat type semiconductor device capable of realizing high reliability at low cost and a converter using the same.

【0002】[0002]

【従来の技術】半導体エレクトロニクスの技術を駆使し
て主回路電流を制御するパワーエレクトロニクスの技術
は、幅広い分野で応用され、さらにその適用拡大がなさ
れつつある。パワー用半導体素子としては、サイリス
タ,光サイリスタ,GTO(GateTurn-off)サイリス
タ,GCT(Gate Commutated Turn-off)サイリスタ
や、MOS制御デバイスである絶縁ゲート型バイポーラ
トランジスタ(以下IGBTと略す)やMOS型電界効
果トランジスタ(以下MOSFETと略す)や、ダイオ
ードなどがある。これらの半導体素子では、一般に第一
主面上に第一の主電極(カソード電極,エミッタ電極)
と制御電極,第二主面側にはもう一方の第二の主電極
(アノード電極,コレクタ電極)が形成される。
2. Description of the Related Art The technology of power electronics, which controls the main circuit current by making full use of the technology of semiconductor electronics, has been applied in a wide range of fields, and its application is being expanded. As power semiconductor elements, thyristors, optical thyristors, GTO (Gate Turn-off) thyristors, GCT (Gate Commutated Turn-off) thyristors, insulated gate bipolar transistors (hereinafter abbreviated as IGBTs) and MOS type MOS control devices There are a field effect transistor (hereinafter abbreviated as MOSFET), a diode, and the like. In these semiconductor devices, a first main electrode (cathode electrode, emitter electrode) is generally provided on a first main surface.
And a control electrode, and another second main electrode (anode electrode, collector electrode) is formed on the second main surface side.

【0003】GTO,光サイリスタ等の大電力用の半導
体装置においては、素子を1枚のウエハ毎にパッケージ
ングしている。上記素子の両主電極は、MoまたはWか
らなる中間電極板(熱緩衝用電極板)を介してパッケー
ジの一対の外部主電極により加圧接触される構造となっ
ており、加圧に適した平型の構造が一般的である。
In a high-power semiconductor device such as a GTO or an optical thyristor, elements are packaged for each wafer. Both main electrodes of the above-mentioned element are structured to be in pressure contact with a pair of external main electrodes of the package via an intermediate electrode plate (heat buffer electrode plate) made of Mo or W, which is suitable for pressurization. A flat structure is common.

【0004】一方、IGBT等ではこれまで主にモジュ
ール型構造と呼ばれる、ワイヤによる電極接続方式のパ
ッケージ形態により複数個のチップを実装していた。こ
のようなモジュール型パッケージの場合、素子内部で発
生した熱はパッケージの片面、すなわち金属ベース上に
直接マウントしたコレクタ側のみから逃がすことになる
ため、一般に熱抵抗が大きく、一つのパッケージに実装
できるチップ数(発熱量、または電流容量)に制限があ
った。最近、このような問題に対処し大容量化の要求に
応えるため、複数個のIGBT素子を上記GTO,光サ
イリスタ等のパッケージに類似した平型のパッケージ内
に並列に組み込み、その主面に形成されたエミッタ電
極,コレクタ電極をそれぞれパッケージ側に設けた一対
の外部主電極板に面接触させて引き出すようにした多チ
ップ並列型加圧接触構造の平型半導体装置が注目されて
いる。平型パッケージ構造によれば、従来のモジュール
型のパッケージに比べて、1)主電極の接続がワイヤボ
ンドでなくなるために接続信頼性が向上する、2)接続
導体のインダクタンス、及び抵抗が小さくなる、3)半
導体チップを両面から冷却ができるので冷却効率を上げ
ることができる、等の改善が期待できる。
On the other hand, in IGBTs and the like, a plurality of chips have been mounted so far mainly in a package form of an electrode connection system using wires, which is called a module type structure. In the case of such a modular package, heat generated inside the element is released only from one side of the package, that is, only from the collector side directly mounted on the metal base, so that the thermal resistance is generally large and can be mounted in one package. The number of chips (calorific value or current capacity) was limited. Recently, in order to deal with such a problem and respond to the demand for large capacity, a plurality of IGBT elements are incorporated in parallel in a flat package similar to the above-mentioned GTO, optical thyristor, etc. package and formed on the main surface thereof. Attention has been paid to a flat semiconductor device having a multi-chip parallel type pressure contact structure in which the emitter electrode and the collector electrode are brought into surface contact with a pair of external main electrode plates provided on the package side and are drawn out. According to the flat package structure, 1) the connection of the main electrode is not wire-bonded, thereby improving the connection reliability, and 2) the inductance and resistance of the connection conductor are smaller than those of the conventional module type package. 3) Since the semiconductor chip can be cooled from both sides, the cooling efficiency can be improved, and the like can be expected.

【0005】[0005]

【発明が解決しようとする課題】従来の平型半導体装置
では、図10に示したように内蔵する半導体素子(図示
せず)を保護するために、パッケージ内部を気密封止構
造(ハーメチック構造)としている(例えば特開平7−6
6228号公報,特開平7−254669 号公報,特開平8−33033
8号公報等に開示)。具体的には、外部主電極板4,5
と緻密なセラミック部品31の間を金属フランジ32,
33用いて気密接合し、内部を気密封止する構造として
いる。この気密封止構造により、平型半導体装置の耐湿
信頼性を確保しているが、気密仕様の部品自体のコス
ト、及び気密封止の為の作業コストが高いという問題が
あった。
In a conventional flat type semiconductor device, as shown in FIG. 10, in order to protect a built-in semiconductor element (not shown), the inside of the package is hermetically sealed (hermetic structure). (For example, see JP-A-7-6
6228, JP-A-7-254669, JP-A-8-33033
No. 8, etc.). Specifically, the external main electrode plates 4 and 5
A metal flange 32 between the
33, and the inside is hermetically sealed. Although the moisture tight reliability of the flat semiconductor device is ensured by this hermetic sealing structure, there is a problem that the cost of the hermetically sealed parts itself and the operation cost for hermetic sealing are high.

【0006】さらに上記半導体装置ではパッケージ外側
の絶縁性を長期保証するために、素子の耐圧に応じた所
定の長さ以上のパッケージ外部沿面距離を確保する必要
がある。このためセラミックス製外筒31の外側部分
(図10のA部)に複雑な形状加工を施して外部沿面距
離を増加させる方法を一般的に用いている。しかしなが
ら、セラミックスは一般に非常に硬く、難加工性材料で
ある為、セラミックスの上記のような複雑な形状加工は
コストが高く、パッケージコストが上昇する大きな要因
の一つになっている。
Further, in the semiconductor device described above, it is necessary to secure a creepage distance outside the package of a predetermined length or more in accordance with the withstand voltage of the element in order to guarantee the insulation properties outside the package for a long time. For this reason, a method of increasing the external creepage distance by performing complicated shape processing on the outer portion (A portion in FIG. 10) of the ceramic outer cylinder 31 is generally used. However, since ceramics are generally very hard and difficult-to-process materials, such complicated shape processing of ceramics is expensive and one of the major factors for increasing package cost.

【0007】半導体素子の耐圧は今後ますます高くなる
傾向にあり、特に平型半導体装置では大容量化が強く要
求されていることもあって、素子の高耐圧化傾向が顕著
になりつつある。モジュール型構造のパッケージでは、
パッケージ外部に露出するヒートシンクと素子との間の
絶縁性(対地絶縁性能)の確保や、パッケージ内部の実
装配線間の放電の問題等に対処すると同時に、パッケー
ジのサイズをコンパクト化するために、パッケージ内部
にゲルを充填することにより絶縁信頼性を確保してい
る。一方、平型構造の素子では、オフ時に主電極間の絶
縁性が確保できればよく、これまでは基本的には空間距
離を確保することで対処している。しかしながら今後、
素子がさらに高耐圧化するにつれて、実装構造を含めた
半導体素子周辺での耐圧を確保(放電防止)し、絶縁信
頼性を確保することが非常に難しい課題になりつつあ
る。
The withstand voltage of semiconductor devices tends to be higher in the future. In particular, the flat semiconductor device is strongly required to have a large capacity, and the withstand voltage of devices is becoming remarkable. In a modular package,
In order to secure insulation (ground insulation performance) between the heat sink and the element exposed to the outside of the package and to deal with the problem of discharge between the mounting wiring inside the package, etc., and to reduce the size of the package, Filling the inside with gel ensures insulation reliability. On the other hand, in the case of an element having a flat structure, it is sufficient that insulation between the main electrodes can be ensured when the element is turned off. Until now, it has basically been dealt with by securing a space distance. However, in the future,
As the breakdown voltage of the device is further increased, it is becoming a very difficult task to secure the breakdown voltage around the semiconductor device including the mounting structure (prevent discharge) and to secure the insulation reliability.

【0008】さらに多チップを並列に実装するタイプの
平型半導体装置においては、例えば特開平7−94673号公
報や富士時報,Vol.69,No.5(1996)に開示され
ているように、各チップの位置決めのための枠部品等を
利用しているが、これらの部材の分だけ実装密度が低下
する。平型半導体装置のサイズをできるだけコンパクト
にし、かつ変換容量を大きくするためには、内蔵する半
導体素子の実装密度をさらに向上することが必要であ
る。また位置決めのための個別部品が余分に必要となり
部品点数が増えるため、組立作業性,部品コスト、等の
面でも改善すべき課題である。
Further, in a flat semiconductor device of a type in which multiple chips are mounted in parallel, as disclosed in, for example, Japanese Patent Application Laid-Open No. 7-94673 and Fuji Times, Vol. 69, No. 5 (1996), Although frame components for positioning each chip are used, the mounting density is reduced by these members. In order to make the size of the flat type semiconductor device as small as possible and to increase the conversion capacity, it is necessary to further improve the mounting density of the built-in semiconductor elements. Further, since extra individual parts for positioning are required and the number of parts is increased, there is a problem to be improved in terms of assembling workability, parts cost, and the like.

【0009】本発明の目的は、平型半導体装置の耐湿信
頼性、及び絶縁信頼性を確保して、かつ実装コストの低
コスト化を図ると同時に、素子の実装密度を向上し、半
導体装置の小型化や、組立作業性の向上等も実現する方
法を提供することにある。また第2の目的は上記により
得られる半導体装置を用いることにより、高信頼で安価
な大容量変換器を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to secure the moisture resistance reliability and insulation reliability of a flat type semiconductor device, to reduce the mounting cost, to improve the mounting density of elements, It is an object of the present invention to provide a method for realizing miniaturization, improvement of assembly workability, and the like. A second object is to provide a highly reliable and inexpensive large-capacity converter by using the semiconductor device obtained as described above.

【0010】[0010]

【課題を解決するための手段】上記課題は、一対の主電
極板の間に、第一主面に少なくとも第一の主電極,第二
主面に第二の主電極を有する少なくとも一つ以上の半導
体素子を組み込んだ半導体装置において、半導体素子の
二つの主電極とこれに対向する主電極板との間に半導体
素子毎に個別の中間電極板を介装し、半導体素子表面の
うち中間電極板と対向しない外周部分と、中間電極板の
側面の少なくとも一部を電気絶縁性材料により封止した
半導体素子と中間電極板とのアッセンブリ構造(チップ
キャリア構造)を用いることにより解決できる。
The object of the present invention is to provide at least one semiconductor having at least a first main electrode on a first main surface and a second main electrode on a second main surface between a pair of main electrode plates. In a semiconductor device incorporating a device, a separate intermediate electrode plate is provided for each semiconductor device between two main electrodes of the semiconductor device and a main electrode plate facing the same, and the intermediate electrode plate and the The problem can be solved by using an assembly structure (chip carrier structure) of a semiconductor element and an intermediate electrode plate in which at least a part of a side surface of the intermediate electrode plate that is not opposed to the outer peripheral portion is sealed with an electrically insulating material.

【0011】さらに両面に露出する一対の主電極板の間
を絶縁封止する電気絶縁性の外筒を樹脂部品とし、非ハ
ーメチック構造とすることにより一層の低コスト化を実
現できる。
Further, by using a non-hermetic structure of a resin component as an electrically insulating outer cylinder that insulates and seals between a pair of main electrode plates exposed on both surfaces, further reduction in cost can be realized.

【0012】[0012]

【発明の実施の形態】本発明の実施の代表的な形態を図
面に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A typical embodiment of the present invention will be described with reference to the drawings.

【0013】図1は、一対の主電極板4,5の間に半導
体素子1を実装した半導体装置の一例を示したものであ
って、半導体素子1の二つの主電極とこれに対向する各
々の主電極板4,5との間に半導体素子毎に個別の中間
電極板2,3を介装して実装されている。上記半導体素
子1の第一主電極のAl電極と、第一主電極側の表面に
Auめっき層が形成されたMo中間電極板2の間は、接
合層を介して接合されている。同様に、上記半導体素子
1の第二主電極のAg電極と、第二主電極側の表面にA
gめっき層が形成されたMo中間電極板3の間も、Ag
の接合層を介して接合されている。上記半導体素子1と
中間電極板2,3を主電極板4,5の間に組み込む前
に、あらかじめ半導体素子1の表面のうち中間電極板2
と対向しない外周部分と、中間電極板2,3の側面の少
なくとも一部を封止するように、液状のシリコーン樹脂
6を塗布し、150℃で加熱硬化した。これにより、半
導体素子1と中間電極板2,3からなるチップキャリア
構造(アッセンブリ構造)を形成している。ここで言う
半導体素子表面のうち中間電極板と対向しない外周部分
には、もちろん半導体素子の側面も含まれる。
FIG. 1 shows an example of a semiconductor device in which a semiconductor element 1 is mounted between a pair of main electrode plates 4 and 5, and two main electrodes of the semiconductor element 1 and respective opposing opposing electrodes. Each of the semiconductor elements is mounted between the main electrode plates 4 and 5 with individual intermediate electrode plates 2 and 3 interposed therebetween. The Al electrode of the first main electrode of the semiconductor element 1 and the Mo intermediate electrode plate 2 having the Au plating layer formed on the surface on the first main electrode side are joined via a joining layer. Similarly, the Ag electrode of the second main electrode of the semiconductor element 1 and the A
g Between the Mo intermediate electrode plate 3 on which the plating layer is formed, Ag
Are bonded via a bonding layer of Before assembling the semiconductor element 1 and the intermediate electrode plates 2 and 3 between the main electrode plates 4 and 5, the intermediate electrode plate 2
A liquid silicone resin 6 was applied so as to seal at least a part of the outer peripheral portion not opposed to and the side surfaces of the intermediate electrode plates 2 and 3, and was heated and cured at 150 ° C. Thus, a chip carrier structure (assembly structure) including the semiconductor element 1 and the intermediate electrode plates 2 and 3 is formed. The outer peripheral portion of the semiconductor element surface not facing the intermediate electrode plate includes the side surface of the semiconductor element.

【0014】電気絶縁性材料により封止された半導体素
子1と中間電極板2,3からなるチップキャリア構造
(アッセンブリ構造)は、非常にコンパクトでシンプル
な構造であり、安価な絶縁材封止型の半導体装置を実現
できる。上記チップキャリア構造体の面方向のサイズ
は、該半導体素子のサイズとほぼ同等のできるだけコン
パクトなものであることが望ましい。より具体的には、
キャリアの最大外径面積が半導体素子面積の約1.4倍
以下、辺寸法で約1.2倍以下であることが好ましい。
The chip carrier structure (assembly structure) composed of the semiconductor element 1 and the intermediate electrode plates 2 and 3 sealed with an electrically insulating material is a very compact and simple structure, and is an inexpensive insulating material sealing type. Semiconductor device can be realized. It is desirable that the size of the chip carrier structure in the plane direction is as compact as possible, substantially equal to the size of the semiconductor element. More specifically,
It is preferable that the maximum outer diameter area of the carrier is about 1.4 times or less the semiconductor element area and about 1.2 times or less the side dimension.

【0015】半導体素子1の製造途中でのハンドリング
や、外部環境からの保護の観点からも、樹脂により半導
体素子が保護された形で用いられることは望ましい。
From the viewpoint of handling during the manufacture of the semiconductor element 1 and protection from the external environment, it is preferable that the semiconductor element 1 is used in a form in which the semiconductor element is protected by a resin.

【0016】図1では、チップキャリア構造体の表面に
露出する電極となる中間電極板2,3と主電極板4,5
の間は直接に接触するように平型半導体装置に組み込ま
れており、半導体装置の接触熱抵抗,接触電気抵抗をで
きるだけ低減するには、直接に接触させるのが好まし
い。
In FIG. 1, intermediate electrode plates 2 and 3 serving as electrodes exposed on the surface of the chip carrier structure and main electrode plates 4 and 5 are shown.
The semiconductor device is incorporated in the flat semiconductor device so as to be in direct contact with each other. In order to reduce the contact thermal resistance and the contact electric resistance of the semiconductor device as much as possible, it is preferable to make direct contact.

【0017】図2は半導体素子1の側面、半導体素子1
の第一主電極面のうち中間電極板2と対向しない外周部
分、及び第一主電極側に介装した中間電極板2の側面の
少なくとも一部をシリコーン変性樹脂6により封止した
チップキャリアの例を示している。上記半導体素子1の
第一主電極と、第一主電極側の中間電極板2の間は、接
合されており、上記半導体素子1の第二主電極と、第二
主電極側の中間電極板3の間は接合されていない。本実
施例では中間電極板3が複数の半導体素子1に共通の基
板として用いられる為、上記構成のチップキャリアとな
っている。上記のチップキャリアを多数個実装する場合
には、図に示したように、それらの側面の絶縁材料同士
をすき間なく突き合わせて実装することが好ましい。
FIG. 2 shows a side view of the semiconductor device 1 and the semiconductor device 1.
Of a chip carrier in which at least a part of an outer peripheral portion of the first main electrode surface not facing the intermediate electrode plate 2 and at least a part of a side surface of the intermediate electrode plate 2 interposed on the first main electrode side is sealed with a silicone-modified resin 6. An example is shown. The first main electrode of the semiconductor element 1 and the intermediate electrode plate 2 on the first main electrode side are joined, and the second main electrode of the semiconductor element 1 and the intermediate electrode plate on the second main electrode side are joined. No connection is made between the three. In this embodiment, since the intermediate electrode plate 3 is used as a common substrate for the plurality of semiconductor elements 1, the chip carrier has the above-described configuration. When a large number of the above-described chip carriers are mounted, it is preferable that the insulating materials on the side surfaces of the chip carriers are abutted against each other without any gap as shown in the drawing.

【0018】図3(a)(b)は、図2と同様に半導体素
子1の側面、半導体素子1の第一主電極面のうち中間電
極板2と対向しない外周部分、及び第一主電極側に介装
した中間電極板2の側面の少なくとも一部を電気絶縁性
材料6により封止したチップキャリアの別の形態の例と
して、第二主電極側の中間電極板3が半導体素子1毎に
個別に分割されている例を示している。
FIGS. 3A and 3B show the side surface of the semiconductor element 1, the outer peripheral portion of the first main electrode surface of the semiconductor element 1 which does not face the intermediate electrode plate 2, and the first main electrode, as in FIG. As another example of the chip carrier in which at least a part of the side surface of the intermediate electrode plate 2 interposed on the side is sealed with an electrically insulating material 6, an intermediate electrode plate 3 on the second main electrode side is provided for each semiconductor element 1. 2 shows an example in which it is divided individually.

【0019】図3(a)は、電気絶縁性材料6を、シリ
カ,ジルコニア,マグネシア等のセラミックス粉末と水
を練り合わせたスラリーを型を用いて注入,注型後、常
温硬化して図のような形状に形成したもので、得られる
セラミックス封止したチップキャリアは電気絶縁性,耐
熱性に優れている。図3(b)は、電気絶縁性材料6
が、ガラス、又は結晶化ガラスを主体とする材料の例で
ある。ペースト状の鉛系ガラス(主成分:PbO−Si
2−Al23)を塗布し、酸素雰囲気中で780〜85
0℃、40分の熱処理を施してガラス焼成したガラス被
膜7を形成して構成されている。材料としては、ZnO
−B23−SiO2 系ガラス,PbO−Al23−Si
2 系ガラス,ZnO−B23−SiO2 系結晶化ガラ
ス、等の熱膨張係数ができるだけ半導体素子に近く、か
つ低温で溶融する組成のガラスが望ましい。また、アル
カリ不純物のできるだけ少ないガラスを用いることが好
ましい。特に、高い耐環境性能が必要な過酷な使用条件
下で使われる場合などには、無機材料系の気密性で、耐
熱性にも優れる材料が好ましい。
FIG. 3 (a) shows an electric insulating material 6 in which a slurry obtained by kneading ceramic powder of silica, zirconia, magnesia or the like with water is injected using a mold, cast and cured at room temperature, as shown in the figure. The resulting ceramic-sealed chip carrier is excellent in electrical insulation and heat resistance. FIG. 3B shows an electrically insulating material 6.
Are examples of materials mainly composed of glass or crystallized glass. Lead-based paste glass (main component: PbO-Si
O 2 —Al 2 O 3 ) is applied, and 780 to 85 in an oxygen atmosphere.
It is configured by performing a heat treatment at 0 ° C. for 40 minutes to form a glass film 7 fired by glass. The material is ZnO
-B 2 O 3 -SiO 2 based glass, PbO-Al 2 O 3 -Si
A glass having a thermal expansion coefficient as close as possible to that of a semiconductor element and melting at a low temperature, such as an O 2 -based glass and a ZnO—B 2 O 3 —SiO 2 -based crystallized glass, is desirable. Further, it is preferable to use glass having as little alkali impurities as possible. In particular, when used under severe use conditions that require high environmental resistance, an inorganic material based airtight material having excellent heat resistance is preferable.

【0020】図4は、半導体素子1の側面、半導体素子
1の第一主電極面のうち中間電極板2と対向しない外周
部分、及び第二主電極側に介装した中間電極板2の側面
の少なくとも一部を電気絶縁性材料6により封止したチ
ップキャリアの形態の例を示している。上記半導体素子
1の第一主電極と、第一主電極側の中間電極板2の間
は、接合されていない。本構造の特徴は、半導体素子周
辺部のみを絶縁封止した構造であって、半導体素子周辺
の絶縁性を確保するのに最も重要な部分のみを封止した
形をとっている。この形状でも絶縁信頼性は十分に確保
でき、何ら問題はない。
FIG. 4 is a side view of the semiconductor element 1, an outer peripheral portion of the first main electrode surface of the semiconductor element 1 not facing the intermediate electrode plate 2, and a side surface of the intermediate electrode plate 2 interposed on the second main electrode side. 2 shows an example of a form of a chip carrier in which at least a part of the chip carrier is sealed with an electrically insulating material 6. The first main electrode of the semiconductor element 1 and the intermediate electrode plate 2 on the first main electrode side are not joined. The feature of this structure is that only the peripheral portion of the semiconductor element is insulated and sealed, and only the most important part for ensuring the insulation around the semiconductor element is sealed. Even with this shape, insulation reliability can be sufficiently ensured, and there is no problem.

【0021】但し、上記の場合には半導体素子面を完全
に封止していないので、耐湿信頼性を確保するために
は、平型半導体装置の両面に露出する一対の主電極板の
間を外部絶縁する為の絶縁性の外筒をセラミックス製と
し、気密封止することが必要である。本願発明の絶縁材
完全封止型のチップキャリアを用い、さらに絶縁性外筒
部分でも気密封止を行うことももちろん可能である。気
密封止が必須の場合には、両面に露出する一対の共通主
電極板の間を絶縁封止する電気絶縁性の外筒の少なくと
も一部を樹脂部品とする、すなわち上記絶縁性の外筒を
無機材料系の緻密質絶縁性部品と樹脂部品の複合型絶縁
外筒とし、該無機系緻密質絶縁性部品により気密封止
し、樹脂部品部分で外部沿面距離を十分に確保する構造
とすることも有効な方法である。すなわちハーメチック
シールするための材料と絶縁距離(沿面距離)を確保す
るための材料を機能分離することにより、高い長期信頼
性と低コスト化を実現できる。加工,成形の容易な樹脂
部品を用いて複雑形状部分を実現し、半導体装置の外部
絶縁距離を十分に確保することにより低コスト化を達成
するものである。
However, in the above case, since the surface of the semiconductor element is not completely sealed, in order to ensure moisture resistance reliability, a pair of main electrode plates exposed on both surfaces of the flat type semiconductor device are externally insulated. It is necessary to make the insulating outer cylinder made of ceramics and to hermetically seal it. It is of course possible to use the chip carrier of the completely sealed type of the insulating material of the present invention, and to further hermetically seal the insulating outer cylinder portion. When hermetic sealing is indispensable, at least a part of an electrically insulating outer cylinder that insulates and seals a pair of common main electrode plates exposed on both surfaces is made of a resin component. A composite insulating outer cylinder made of a material-based dense insulating component and a resin component, and hermetically sealed with the inorganic dense insulating component, may have a structure that ensures a sufficient external creepage distance at the resin component. This is an effective method. That is, by separating the function of the material for hermetic sealing and the material for securing the insulation distance (creepage distance), high long-term reliability and low cost can be realized. The present invention achieves a cost reduction by realizing a complicated shape portion by using a resin component which is easy to process and mold, and by sufficiently securing an external insulation distance of the semiconductor device.

【0022】具体的な実施例として、例えばあらかじめ
射出成形により成形されたポリフェニレンサルファイド
樹脂(耐トラッキング性600V以上)製の外筒リング
をシリコーン接着剤でセラミックス製の単純な円筒形状
の外筒の外側部分に接着した。これにより、外部沿面距
離は規定値を十分確保できるようになり、加速試験にお
いても十分な信頼性が確認できた。別の方法として、上
記のような樹脂製の外筒リングを、2分割構造とした例
を示す。分割された部品はその端部で組み合って篏合す
るようになっている。分割は、本例の2分割に限らず、
組み合わせるセラミック外筒部品の形状に応じて組み立
ての容易になるように分割すればよい。上記のようなセ
ラミックス等の絶縁性外筒部品と樹脂部品の複合型絶縁
外筒においては、素子を組み込む前に複合型の絶縁外筒
を作っておいてもよいし、上記実施例のように素子を組
み込んで封止した後に樹脂部分をポッテイング,はめ込
み/接着等により作製してもよい。また、樹脂部分をセ
ラミックス部品の全面を覆う形としてももちろんよい。
この場合には取扱時の衝撃によるセラミックスの割れ,
かけを防止できる効果もあり、より好ましい。
As a specific embodiment, for example, an outer cylinder ring made of a polyphenylene sulfide resin (with a tracking resistance of 600 V or more) previously molded by injection molding is attached to the outside of a simple cylindrical outer cylinder made of ceramics with a silicone adhesive. Glued to the part. As a result, the specified value of the external creepage distance can be secured sufficiently, and sufficient reliability was confirmed in the acceleration test. As another method, an example in which the resin outer ring as described above is divided into two parts will be described. The split parts are fitted together at their ends. The division is not limited to the two in this example,
What is necessary is just to divide | segment according to the shape of the ceramic outer cylinder part combined so that an assembly may become easy. In the composite insulating outer cylinder of the insulating outer cylinder component such as ceramics and the resin component as described above, a composite insulating outer cylinder may be formed before the element is incorporated, or as in the above embodiment. After the element is assembled and sealed, the resin portion may be manufactured by potting, fitting / adhering, or the like. Also, the resin portion may of course be shaped to cover the entire surface of the ceramic component.
In this case, cracking of the ceramic due to impact during handling,
It also has the effect of preventing crossing, and is more preferable.

【0023】上記の樹脂系材料に必要な特性として、ま
ず耐トラッキング性(CTI値)が400V以上、より
好ましくは600V以上であることが望ましい。また難
燃性としては、UL94V−0レベルのものを用いるの
が好ましい。熱機械特性では、機械強度や破壊じん性が
高く、さらに熱膨張係数が他の実装材料、及び実装形態
との兼ね合いで決まる最適な値のものに調整できる材料
系であることが好ましい。セラミックス等の電気絶縁外
筒部品と複合一体化する場合にはできるだけセラミック
ス系部品に近い熱膨張係数を有するものが好ましい。具
体的な材料としては、エポキシ系,フェノール系等の熱
硬化性樹脂の他、シリコーン系,フッ素系エラストマー
を用いることが好ましい。またポリフェニレンサルファ
イド(PPS),芳香族ポリアミド,熱可塑性ポリイミ
ド等のエンプラ系熱可塑性樹脂を用いることもできる。
さらには、これらの材料に各種の充填剤を複合化したも
のを用いることもできる。樹脂部品であるため、従来の
セラミック部品に比べて外部沿面の形状を比較的自由に
設計できるので、外部沿面距離を確保するための設計上
の制約を少なくできる利点がある。
As a characteristic required for the above resin-based material, it is desirable that the tracking resistance (CTI value) is 400 V or more, more preferably 600 V or more. It is preferable to use a UL94V-0 level flame retardant. In terms of thermo-mechanical properties, it is preferable that the material be a material system having high mechanical strength and fracture toughness and capable of adjusting the coefficient of thermal expansion to an optimum value determined in consideration of other mounting materials and mounting forms. In the case of integrally integrating with an electrically insulated outer cylinder part such as ceramics, it is preferable that the thermal expansion coefficient is as close as possible to that of the ceramic parts. As a specific material, it is preferable to use a silicone-based or fluorine-based elastomer in addition to a thermosetting resin such as an epoxy-based or phenol-based resin. An engineering plastic thermoplastic resin such as polyphenylene sulfide (PPS), aromatic polyamide, and thermoplastic polyimide can also be used.
Furthermore, those obtained by compounding various fillers with these materials can also be used. Since it is a resin component, the shape of the external creeping surface can be designed relatively freely as compared with the conventional ceramic component, so that there is an advantage that the restriction on the design for securing the external creeping distance can be reduced.

【0024】樹脂部品の製法としては、上記の例にも示
したポッテイングの他に、射出成形,トランスファーモ
ールド,コンプレッションモールド,粉末焼結成形、等
の方法を用いることができ、材料や実装方式に応じて最
適な方法を選択すれば良い。特にポッテイングを用いて
直接にセラミックス外筒に樹脂部品を一体成形するに
は、シリコーン,ウレタン,ポリスチレン,ポリブタジ
エン等、及びこれらの共重合体からなるエラストマー
や、エポキシ,フェノール樹脂等の熱硬化性材料を用い
ることが好適である。あらかじめ成形した樹脂部品をセ
ラミックス等の電気絶縁外筒部品や電極材料に接着して
一体化する場合には、接着剤として、特にシリコーン
系,フッ素系,エポキシ系ゴムを用いることにより接着
する材料間の応力緩和ができるため好ましい。
In addition to the potting shown in the above example, the resin component can be manufactured by injection molding, transfer molding, compression molding, powder sintering, or the like. What is necessary is just to select the optimal method according to it. In particular, in order to integrally mold a resin component directly on a ceramic outer cylinder using potting, thermosetting materials such as silicone, urethane, polystyrene, polybutadiene, and elastomers composed of these copolymers, and epoxy and phenolic resins It is preferred to use When a preformed resin part is bonded to an electrically insulating outer cylinder part such as ceramics or an electrode material by integrating it, a silicone-based, fluorine-based, or epoxy-based rubber is used as the adhesive. Is preferable because the stress can be relaxed.

【0025】一方、セラミックス外筒部品に用いる材料
としては、長石質普通磁器,クリストバライト磁器,ア
ルミナ含有磁器,アルミナ含有クリストバライト磁器等
の普通磁器や、アルミナ,マグネシア,ベリリア,ステ
アタイト,フォルステライト,コーデイエライト,ムラ
イト,ジルコン,ジルコニア等を主成分とする材料の
他、ガラスセラミックス,ホウケイ酸ガラス,石英ガラ
ス,高ケイ酸ガラス等のガラス系材料を用いるのが好ま
しい。上記無機材料系電気絶縁外筒部品と樹脂部品とを
接合する場合には、無機材料系電気絶縁外筒部品表面を
凹凸面として、樹脂部品との接合強度を高めることも有
効な方法である。この為には無機材料系電気絶縁外筒の
焼結条件により表面に意識的に凹凸を残すようにした
り、通常の焼結後にサンドブラスト,液体ホーニング,
エッチング,化学研削,電解研削等の手法を用いて簡単
に加工することが有効である。
On the other hand, materials used for ceramic outer cylinder parts include ordinary porcelain such as feldspar-like ordinary porcelain, cristobalite porcelain, alumina-containing porcelain, and alumina-containing cristobalite porcelain, and alumina, magnesia, beryllia, steatite, forsterite, and corde. It is preferable to use a glass-based material such as glass ceramics, borosilicate glass, quartz glass, high silicate glass, etc., in addition to a material mainly containing yerite, mullite, zircon, zirconia, or the like. When joining the inorganic material-based electrically insulating outer cylinder component and the resin component, it is also an effective method to increase the bonding strength with the resin component by making the surface of the inorganic material-based electrically insulating outer cylinder component uneven. For this purpose, the surface of the inorganic material-based electrically insulating outer cylinder is intentionally left with irregularities depending on the sintering conditions, or sandblasting, liquid honing, or the like after normal sintering.
It is effective to easily process using techniques such as etching, chemical grinding, and electrolytic grinding.

【0026】図5(a)は、二重樹脂充填構造の実施例
を示している。第一の絶縁封止材6を形成した後、第二
の絶縁封止材8を充填した構造となっている。第一の絶
縁封止材6と、第二の絶縁封止材8の物性を変えること
によって、半導体装置の使用条件に最適な応力状態を保
つチップキャリア構造を選択できるようになる。例え
ば、第二の封止材料のヤング率を、第一の封止材料のヤ
ング率より低い材料とすることにより、半導体素子面に
発生応力を緩和し、かつ第二の封止材料により絶縁性
と、作業性の確保ができる組み合わせを選択することな
どが可能となる。具体的には、第一の封止材料をシリコ
ーン樹脂とし、第二の封止材料をシリコーンゴムや、シ
リコーンゲルとすることができる。ゲルはそれ単独では
成形性を付与することができない為、第一の封止材料と
して形状を保つためには別の枠材が必要になるので、低
コスト化や、作業性の点でも、第一の絶縁材料としては
あまり好ましくない。
FIG. 5A shows an embodiment of a double resin filling structure. After the first insulating sealing material 6 is formed, the second insulating sealing material 8 is filled. By changing the physical properties of the first insulating sealing material 6 and the second insulating sealing material 8, it becomes possible to select a chip carrier structure that maintains a stress state optimal for the use conditions of the semiconductor device. For example, by setting the Young's modulus of the second sealing material to be lower than the Young's modulus of the first sealing material, the stress generated on the semiconductor element surface is reduced, and the insulating property of the second sealing material is reduced. , It is possible to select a combination that can ensure workability. Specifically, the first sealing material can be a silicone resin, and the second sealing material can be a silicone rubber or a silicone gel. Since gel alone cannot provide moldability, another frame material is required to maintain the shape as the first sealing material. It is not so preferable as one insulating material.

【0027】図5(b)は、別の二重樹脂充填構造の実
施例を示している。第一の絶縁封止材9(例えばエンジ
ニアリングプラスチック系の樹脂)は、主に第二の絶縁
封止材9(シリコーン樹脂)を充填するための枠として
用いて、そのままチップキャリアの一部とした例であ
る。例えば、第一の絶縁封止材9と、第二の絶縁封止材
8の物性を変えることによって、チップキャリアに対す
る外部からの応力に対して安定な構造が実現できるよう
になる。
FIG. 5B shows another embodiment of the double resin filling structure. The first insulating sealing material 9 (for example, an engineering plastic resin) is mainly used as a frame for filling the second insulating sealing material 9 (silicone resin), and is used as a part of the chip carrier as it is. It is an example. For example, by changing the physical properties of the first insulating sealing material 9 and the second insulating sealing material 8, a structure that is stable against external stress on the chip carrier can be realized.

【0028】図6は、第一主面に第一の主電極と制御電
極(ゲート電極)を有する半導体素子を組み込む場合の
チップキャリアの実施例を示す(図1+図5+ゲート配
線)。図6(a)は、半導体素子1の中央に形成したゲ
ート制御電極にゲート取り出し用のピン10を接合した
例を示した。ゲート取り出し用のピン10には、チップ
側先端をピンより径の大きなヘッド加工11を施してあ
る。第一の封止材料6(フェノール樹脂)で半導体素子
1の側面、および第一主電極面のうち中間電極板2と接
しない外周部分と、第二主電極側の中間電極板3の側面
の少なくとも一部を一様に封止し、さらに第二の封止材
料8(シリコーンゲル)を残りの部分に充填して完全封
止されたチップキャリアを得る。
FIG. 6 shows an embodiment of a chip carrier when a semiconductor element having a first main electrode and a control electrode (gate electrode) on a first main surface is incorporated (FIG. 1 + FIG. 5 + gate wiring). FIG. 6A shows an example in which a gate extraction pin 10 is joined to a gate control electrode formed in the center of the semiconductor element 1. The pin 10 for taking out the gate is provided with a head processing 11 whose tip on the chip side is larger in diameter than the pin. The side surface of the semiconductor element 1 and the outer peripheral portion of the first main electrode surface that is not in contact with the intermediate electrode plate 2 and the side surface of the intermediate electrode plate 3 on the second main electrode side with the first sealing material 6 (phenol resin). At least a part is uniformly sealed, and the remaining part is filled with the second sealing material 8 (silicone gel) to obtain a completely sealed chip carrier.

【0029】図6(b)は、半導体素子1の周辺部に形
成したゲート制御電極12にワイヤボンディングにより
ゲート配線13を形成した例を示す。第一の封止材料6
(エポキシ樹脂)で半導体素子1の側面、および第一主
電極面のうち中間電極板2と接しない外周部分と、第二
主電極側の中間電極板3の側面の少なくとも一部を一様
に封止し、さらに第二の封止材料8(シリコーンゴム)
を残りの部分に充填して完全封止されたチップキャリア
を得る。
FIG. 6B shows an example in which a gate wiring 13 is formed by wire bonding on a gate control electrode 12 formed in a peripheral portion of the semiconductor element 1. First sealing material 6
The side surface of the semiconductor element 1 and the outer peripheral portion of the first main electrode surface that is not in contact with the intermediate electrode plate 2 and at least a part of the side surface of the intermediate electrode plate 3 on the second main electrode side are made uniform with (epoxy resin). Seal, and further, a second sealing material 8 (silicone rubber)
Is filled in the remaining portion to obtain a completely sealed chip carrier.

【0030】図6(c)は、半導体素子1の周辺部に形
成したゲート制御電極12にワイヤボンディングにより
ゲート配線13を形成した別の実施例を示す。エポキシ
系樹脂に石英粉末を充填し、低熱膨張化した複合材料を
絶縁封止材料として用いた。半導体素子1の側面、およ
び第一主電極面のうち中間電極板2と接しない外周部分
と、中間電極板2,3の側面の少なくとも一部、さらに
ワイヤ引き出し部分を上記複合樹脂にて一様に封止して
完全封止されたチップキャリアを得た。
FIG. 6C shows another embodiment in which a gate wiring 13 is formed by wire bonding on a gate control electrode 12 formed on the periphery of the semiconductor element 1. An epoxy resin was filled with quartz powder, and a composite material having a reduced thermal expansion was used as an insulating sealing material. The side surface of the semiconductor element 1, the outer peripheral portion of the first main electrode surface that is not in contact with the intermediate electrode plate 2, at least a part of the side surface of the intermediate electrode plates 2 and 3, and the wire drawing portion are uniformly made of the composite resin. To obtain a completely sealed chip carrier.

【0031】有機材料系の封止樹脂としては、エポキシ
樹脂,フェノ−ル樹脂,ポリエステル樹脂などの電気絶
縁性樹脂が適しており、加熱により徐々に硬化する組成
の熱硬化性樹脂が好ましい。特にエポキシ樹脂をベ−ス
とするものが適当であり、硬化剤,触媒,顔料,充填
剤,添加剤も必要に応じて特性改善/保持のために使用
できる。特に充填剤としては例えば結晶性および溶融性
シリカ粉末,アルミナ粉などの低熱膨張の無機材料粉末
を使用することにより、樹脂と前記粉末との複合材料の
熱膨張係数を半導体チップや中間電極板の熱膨張係数に
近くすることができるので、温度サイクルに対する信頼
性が向上する。一般に樹脂組成物全体の60%程度以上
含有するのが好ましく、特に7〜9重量%の範囲に設定
するのが好ましい。さらに無機質充填剤の高充填化を行
うことにより吸水量の低減と樹脂強度の向上を図ること
も可能である。さらに、この発明に用いられるエポキシ
樹脂組成物には、上記添加剤以外に、シリコーンオイル
およびシリコーンゴム,合成ゴム等のゴム成分を配合し
て低応力化を図ったり、耐湿信頼性の向上を目的として
ハイドロタルサイト等のイオントラップ剤を配合しても
よい。
As the sealing resin of an organic material, an electrically insulating resin such as an epoxy resin, a phenol resin, and a polyester resin is suitable, and a thermosetting resin having a composition which is gradually cured by heating is preferable. In particular, those based on epoxy resin are suitable, and curing agents, catalysts, pigments, fillers, and additives can be used for improving / retaining properties as required. In particular, by using a low thermal expansion inorganic material powder such as crystalline and fusible silica powder and alumina powder as the filler, the thermal expansion coefficient of the composite material of the resin and the powder can be reduced by using a semiconductor chip or an intermediate electrode plate. Since the coefficient of thermal expansion can be approximated, reliability with respect to a temperature cycle is improved. Generally, it is preferably contained in an amount of about 60% or more of the entire resin composition, and particularly preferably in the range of 7 to 9% by weight. Further, by increasing the amount of the inorganic filler, it is possible to reduce the amount of water absorption and improve the resin strength. Further, the epoxy resin composition used in the present invention may contain a silicone oil and a rubber component such as silicone rubber or synthetic rubber in addition to the above-mentioned additives to reduce stress or improve moisture resistance reliability. And an ion trapping agent such as hydrotalcite.

【0032】流れ性,低温硬化性,脱泡性,低チクソ
性,型を用いて成形する場合の型材との離型性などの作
業性を良くすることや、低熱膨脹,含有不純物イオンの
低いなどの要求に対して、最適な樹脂、または複合樹脂
を選ぶことができる。またシリコーンゴム,シリコーン
変性樹脂を用いて低応力化を図り、耐熱衝撃性を向上さ
せることも可能である。
The workability such as flowability, low-temperature curing property, defoaming property, low thixotropy, and mold release property when molding using a mold is improved, and low thermal expansion and low content of impurity ions are included. For such requirements, an optimal resin or a composite resin can be selected. It is also possible to reduce the stress by using silicone rubber or silicone-modified resin to improve the thermal shock resistance.

【0033】熱可塑性樹脂を用いることももちろん可能
で、材料としては熱可塑性ポリイミド,芳香族ポリアミ
ド,ポリアミドイミド樹脂,ポリエーテルエーテルケト
ン(PEEK),PPO,PPS,液晶ポリマー等が使
用できる。但し、加熱して溶融させて注入することが必
要であり、取り扱う際には注意が必要である。
It is of course possible to use a thermoplastic resin, and as the material, thermoplastic polyimide, aromatic polyamide, polyamideimide resin, polyetheretherketone (PEEK), PPO, PPS, liquid crystal polymer, etc. can be used. However, it is necessary to heat and melt and inject, and care must be taken when handling.

【0034】熱硬化性樹脂の他に、紫外線硬化型樹脂,
電子線硬化型樹脂のような活性エネルギ線で硬化する活
性エネルギ線硬化型樹脂を用いた半導体装置も用途,プ
ロセス条件等によっては使用することができる。活性エ
ネルギ線硬化型樹脂の代表的な組成物としては、アクリ
ル酸基,アリル基,イタコン酸基,共役2重結合などの
不飽和基が導入されたアルキッド樹脂,アクリル樹脂,
ウレタン樹脂,ポリウレタン樹脂,エポキシ樹脂などが
挙げられる。
In addition to the thermosetting resin, an ultraviolet curable resin,
A semiconductor device using an active energy ray-curable resin such as an electron beam-curable resin that is cured by an active energy ray can also be used depending on the application, process conditions, and the like. Typical compositions of the active energy ray-curable resin include alkyd resin having an unsaturated group such as acrylic acid group, allyl group, itaconic acid group, conjugated double bond, etc., acrylic resin,
Urethane resin, polyurethane resin, epoxy resin and the like can be mentioned.

【0035】有機系樹脂組成物を用いての半導体素子の
封止は、特に限定するものではなく、通常のトランスフ
ァー成形等の公知のモールド方法により行うことができ
る。さらに、小形・薄型化や省力化,工程削減のため、
半導体素子を中間電極板に搭載して接着し、樹脂を滴下
しコ−ティングする方法もある。作業性の向上には、熱
硬化性樹脂を自動デイスペンサ等で所定位置に塗布した
後、熱硬化する方法等が好ましい。さらには半導体素
子、及び中間電極板を封止作業の為の枠の内にセットし
た状態で、液状封止樹脂を枠内全面に流し込み、真空脱
泡することにより、気泡のない良好な封止ができる。
The sealing of the semiconductor element using the organic resin composition is not particularly limited, and can be performed by a known molding method such as ordinary transfer molding. Furthermore, in order to reduce the size and thickness, save labor, and reduce the number of processes,
There is also a method in which a semiconductor element is mounted on an intermediate electrode plate and bonded, and a resin is dropped and coated. In order to improve workability, a method of applying a thermosetting resin to a predetermined position with an automatic dispenser or the like and then thermosetting the resin is preferable. Furthermore, with the semiconductor element and the intermediate electrode plate set in the frame for the sealing operation, the liquid sealing resin is poured over the entire surface of the frame and degassed in a vacuum, thereby achieving good sealing without bubbles. Can be.

【0036】図7には、IGBTを用いたスイッチング
デバイスと逆並列に接続したフライホイールダイオード
(FWD)を組み込んだ逆導通型スイッチングデバイス
に本発明を適用した例を示した。図には、平型半導体装
置断面のうち、最外部から中央に向かった途中までの一
部断面のみを示している。IGBTチップ14には上面
側の第一主面のほぼ全面にエミッタ電極、下面側の第二
主面にはコレクタ電極が形成されており、さらに第一主
面には制御用電極(ゲート電極)が形成されている。ま
た、FWDチップ15には、シリコン基板の上面側にア
ノード電極,下面側にカソード電極が形成されている。
これらの各半導体チップには、放熱と電気的接続を兼ね
たMoからなる中間電極2,3がチップ上の各主電極と
接合されており、これらがさらに第1の主電極板4(C
u)と第2の主電極板5(Cu)に挟まれている。ま
た、IGBTチップ14のゲート電極からはワイヤボン
ドにより配線13が引き出され、さらに主電極板5上に
形成されたゲート電極配線16に接続される。上記半導
体チップ14,15、及び中間電極板2,3はシリコー
ン樹脂6により封止された構造となっている。
FIG. 7 shows an example in which the present invention is applied to a reverse conduction type switching device incorporating a flywheel diode (FWD) connected in anti-parallel with a switching device using an IGBT. The figure shows only a partial cross section of the cross section of the flat type semiconductor device from the outermost part to the middle toward the center. The IGBT chip 14 has an emitter electrode formed on almost the entire first main surface on the upper surface side and a collector electrode on the second main surface on the lower surface side, and further has a control electrode (gate electrode) on the first main surface. Are formed. In the FWD chip 15, an anode electrode is formed on the upper surface side of the silicon substrate, and a cathode electrode is formed on the lower surface side.
In each of these semiconductor chips, intermediate electrodes 2 and 3 made of Mo, which perform both heat radiation and electrical connection, are joined to the respective main electrodes on the chip, and these are further connected to the first main electrode plate 4 (C
u) and the second main electrode plate 5 (Cu). Further, the wiring 13 is drawn out from the gate electrode of the IGBT chip 14 by wire bonding, and further connected to the gate electrode wiring 16 formed on the main electrode plate 5. The semiconductor chips 14 and 15 and the intermediate electrode plates 2 and 3 have a structure sealed with a silicone resin 6.

【0037】図7では、絶縁性の外筒を樹脂により構成
し非ハーメチック構造(ノンハーメチック構造,非密封
構造)とした場合、すなわち一対の外部主電極板4,5
の間を、芳香族ポリアミド製の外筒17により外部絶縁
封止した例を示したものである。外部主電極板4,5と
絶縁外筒17の間は有機接着剤19により接着した封止
構造となっている。さらにこの絶縁外筒17には接着剤
で固定された金属配線20が形成されており、これによ
りゲート電極配線16をパッケージ外に引き出す構造と
なっている。本実施例の接着部分19のシール構造の場
合、半導体装置を加圧して使用する際には、常に接着部
を加圧してシールをより強固にする方向になるので好ま
しい。接着剤としては弾性変形能の大きな接着剤を用い
る方が、加圧時の主電極間距離の変化や使用時の変形に
対応できるので好ましい。従来のセラミック製の外筒部
品の場合に比べて、樹脂を用いた場合には外部の凹凸を
大きくして縁面距離を大きくすることが簡単に可能とな
る。また、絶縁性の外筒が樹脂製のものは、衝撃に対し
てもセラミックスのようにもろくないので、耐衝撃信頼
性に優れた半導体装置となる。
FIG. 7 shows a case where the insulating outer cylinder is made of resin and has a non-hermetic structure (non-hermetic structure, non-sealed structure), that is, a pair of external main electrode plates 4 and 5.
This shows an example in which the outer space is sealed by an outer cylinder 17 made of an aromatic polyamide. A sealing structure in which the external main electrode plates 4 and 5 and the insulating outer cylinder 17 are bonded with an organic adhesive 19 is provided. Further, a metal wiring 20 fixed with an adhesive is formed on the insulating outer cylinder 17, so that the gate electrode wiring 16 is drawn out of the package. In the case of the seal structure of the bonding portion 19 of the present embodiment, when the semiconductor device is used under pressure, the direction in which the bonding portion is always pressed to make the seal stronger is preferable. It is preferable to use an adhesive having a large elastic deformability as the adhesive can cope with a change in the distance between the main electrodes during pressurization and deformation during use. Compared to the case of a conventional ceramic outer cylinder part, when resin is used, it is possible to easily increase the outer surface unevenness to increase the edge surface distance. Further, a resin device having an insulating outer cylinder made of resin is not so fragile as to ceramics against shocks, so that the semiconductor device has excellent shock resistance reliability.

【0038】本発明の方式は、多数の半導体素子が並置
されて一対の主電極板の間に組み込まれている平型半導
体装置や、半導体素子が少なくとも一つのPN接合を有
する1枚の半導体素子ウエハからなる平型半導体装置等
のいずれの方式にも適用可能である。また上記の実施例
のほかに、ダイオードを含まないIGBT等のスイッチ
ング素子のみからなる平型半導体装置や、ダイオードチ
ップのみを多数個平型パッケージに実装した平型ダイオ
ード装置、等ももちろん有効である。本発明は少なくと
も第一主面に第一の主電極と第二主面に第二の主電極を
有する半導体素子全般を対象としており、IGBT以外
の絶縁ゲート形トランジスタ(MOSトランジスタ)
や、IGCT(Insulated Gate Controlled Thyristor)
などを含む絶縁ゲート形サイリスタ(MOS制御サイリ
スタ),GTOサイリスタ,GCTサイリスタ,光サイ
リスタ,サイリスタなどの制御電極付き半導体素子、及
び制御電極のないダイオードなどに対しても同様に実施
できる。また、本発明はSi素子以外のSiC,GaN
などの化合物半導体素子を用いた場合、及びそれらの新
しい使用環境(例えば高温環境等)に対しても同様に有
効である。
According to the method of the present invention, a flat semiconductor device in which a large number of semiconductor elements are juxtaposed and incorporated between a pair of main electrode plates, or a semiconductor element wafer in which the semiconductor elements have at least one PN junction is used. The present invention can be applied to any system such as a flat semiconductor device. In addition to the above embodiments, a flat semiconductor device including only a switching element such as an IGBT without a diode, a flat diode device in which only a plurality of diode chips are mounted in a flat package, and the like are of course effective. . The present invention is intended for general semiconductor devices having at least a first main electrode on a first main surface and a second main electrode on a second main surface, and is an insulated gate transistor (MOS transistor) other than an IGBT.
And IGCT (Insulated Gate Controlled Thyristor)
The present invention can be similarly applied to a semiconductor element with a control electrode such as an insulated gate thyristor (MOS control thyristor), a GTO thyristor, a GCT thyristor, an optical thyristor, a thyristor, and a diode having no control electrode. Further, the present invention relates to SiC, GaN other than Si elements.
It is similarly effective in the case of using compound semiconductor elements such as these and in their new use environment (for example, high-temperature environment).

【0039】本発明の平型半導体装置を用いることによ
り、変換器コストを大幅に削減した大容量変換器が実現
できる。図8に本発明によるIGBTの平型半導体装置
を主変換素子として電力用変換器に応用した場合の例を
1ブリッジ分の構成回路図で示す。主変換素子となるI
GBT21とダイオード22が逆並列に配置され、これ
らがn個直列に接続された構成となっている。これらI
GBT21とダイオード22は、本発明実施例による多
数の半導体チップを並列実装した平型半導体装置を示し
ている。上記実施例の逆導通型IGBT平型半導体装置
の場合には図中のIGBT21とダイオード22がまと
めて一つのパッケージに収められた形となる。これにス
ナバ回路23、及び限流回路が設けてある。図9は、図
8の3相ブリッジを4多重した自励式変換器の構成を示
したものである。本発明の平型半導体装置は、複数個を
その主電極板外側と面接触する形で水冷電極を挟んで直
列接続するスタック構造と呼ぶ形に実装され、スタック
全体を一括で加圧する。
By using the flat type semiconductor device of the present invention, it is possible to realize a large-capacity converter whose converter cost is greatly reduced. FIG. 8 is a configuration circuit diagram of one bridge in which the IGBT flat semiconductor device according to the present invention is applied to a power converter as a main conversion element. I to be the main conversion element
The GBT 21 and the diode 22 are arranged in anti-parallel, and have a configuration in which n units are connected in series. These I
The GBT 21 and the diode 22 represent a flat semiconductor device in which a number of semiconductor chips according to the embodiment of the present invention are mounted in parallel. In the case of the reverse conducting IGBT flat type semiconductor device of the above embodiment, the IGBT 21 and the diode 22 in the drawing are collectively housed in one package. This is provided with a snubber circuit 23 and a current limiting circuit. FIG. 9 shows the configuration of a self-excited converter in which the three-phase bridge of FIG. 8 is multiplexed by four. The flat semiconductor device of the present invention is mounted in a so-called stack structure in which a plurality of the semiconductor devices are connected in series with a water-cooled electrode interposed therebetween so as to be in surface contact with the outside of the main electrode plate, and the entire stack is pressurized at once.

【0040】本発明の平型半導体装置は、上記の例に限
らず電力系統に用いられる自励式大容量変換器やミル用
変換器として用いられる大容量変換器に特に好適で、さ
らに可変速揚水発電,ビル内変電所設備,電鉄用変電設
備,ナトリウム硫黄(NaS)電池システム,車両等の変
換器にも用いることができる。
The flat semiconductor device of the present invention is not particularly limited to the above example, and is particularly suitable for a self-excited large-capacity converter used in a power system or a large-capacity converter used as a converter for a mill. It can also be used for power generation, substation facilities in buildings, substation facilities for railways, sodium-sulfur (NaS) battery systems, converters for vehicles, and the like.

【0041】[0041]

【発明の効果】本発明の絶縁材で封止された半導体素子
と中間電極板とのチップキャリア構造(アッセンブリ構
造)を用いることにより、耐湿信頼性,絶縁信頼性等の
向上と、実装単位の小型化,実装密度の向上が図れ、し
かもこれらが安価に実現できる。
By using the chip carrier structure (assembly structure) of the semiconductor element sealed with the insulating material of the present invention and the intermediate electrode plate, it is possible to improve the moisture resistance reliability, insulation reliability, etc., and to improve the mounting unit. The miniaturization and the mounting density can be improved, and these can be realized at low cost.

【0042】さらに多数の半導体素子を一対の主電極板
の間に並列に搭載する平型半導体装置においては、各半
導体素子を小型チップキャリア構造とすることにより、
組立の際の作業性(ハンドリング性)が向上し、かつチ
ップキャリア単位でのリペアも非常に容易となる。製造
途中、及び製造後の外部環境からの保護という観点でも
安定性が向上する。したがって本発明による平型半導体
装置は、高い信頼性を確保しながら、半導体装置として
の部品コスト,組立コスト等の低減や、歩留り向上を実
現することが可能となる。
In a flat semiconductor device in which a large number of semiconductor elements are mounted in parallel between a pair of main electrode plates, each semiconductor element has a small chip carrier structure.
The workability (handling property) at the time of assembly is improved, and the repair on a chip carrier basis becomes very easy. Stability is improved from the viewpoint of protection from an external environment during and after manufacturing. Therefore, the flat type semiconductor device according to the present invention can realize a reduction in component cost, an assembly cost, and the like as a semiconductor device and an improvement in yield while ensuring high reliability.

【0043】また半導体素子全面を完全に封止したチッ
プキャリアを内蔵した平型半導体装置では、非ハーメチ
ック構造とすることが可能となる為、一対の主電極板間
を外部絶縁する外筒部品を従来のセラミックス製のもの
から安価な樹脂等に変えることにより、一層の低コスト
も可能となる。
In a flat semiconductor device incorporating a chip carrier in which the entire surface of a semiconductor element is completely sealed, a non-hermetic structure can be obtained. By changing from conventional ceramics to inexpensive resins and the like, even lower cost is possible.

【0044】上記の様な特徴を有する本発明の平型半導
体装置を用いることによって、変換器システムのコスト
ダウンも図れる。
By using the flat semiconductor device of the present invention having the above-described features, the cost of the converter system can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す図。FIG. 1 is a diagram showing an embodiment of the present invention.

【図2】本発明の別の実施例を示す図。FIG. 2 is a diagram showing another embodiment of the present invention.

【図3】本発明の別の実施例を示す図。FIG. 3 is a diagram showing another embodiment of the present invention.

【図4】本発明の別の実施例を示す図。FIG. 4 is a diagram showing another embodiment of the present invention.

【図5】本発明の別の実施例を示す図。FIG. 5 is a diagram showing another embodiment of the present invention.

【図6】制御端子を形成した本発明の別の実施例を示す
図。
FIG. 6 is a diagram showing another embodiment of the present invention in which a control terminal is formed.

【図7】全樹脂製外筒部品、およびその実装形態を示し
た図。
FIG. 7 is a diagram illustrating an all-resin outer cylinder part and a mounting form thereof.

【図8】本発明の半導体装置を用いた1ブリッジ分の構
成回路図。
FIG. 8 is a configuration circuit diagram of one bridge using the semiconductor device of the present invention.

【図9】図8の3相ブリッジを4多重した自励式変換器
の構成図。
9 is a configuration diagram of a self-excited converter in which the three-phase bridge of FIG. 8 is multiplexed by four.

【図10】従来の平型半導体装置。FIG. 10 shows a conventional flat semiconductor device.

【符号の説明】[Explanation of symbols]

1…半導体素子、2,3…中間電極、4,5…主電極
板、6,7…電気絶縁性材料、8…第二の電気絶縁性材
料、9…電気絶縁性材料、10…ピン、11…ピンヘッ
ド、12…ゲート制御電極、13…ゲート配線、14…
IGBT、15…フライホイールダイオード、16…ゲ
ート電極配線、17…絶縁外筒、19…有機接着剤、2
0…金属配線、21…IGBT、22…ダイオード、2
3…スナバ回路、31…セラミックス部品、32,33
…金属フランジ。
DESCRIPTION OF SYMBOLS 1 ... Semiconductor element, 2,3 ... Intermediate electrode, 4,5 ... Main electrode plate, 6,7 ... Electrically insulating material, 8 ... Second electrically insulating material, 9 ... Electrically insulating material, 10 ... Pin, 11 pin head, 12 gate control electrode, 13 gate wiring, 14
IGBT, 15: flywheel diode, 16: gate electrode wiring, 17: insulating cylinder, 19: organic adhesive, 2
0: metal wiring, 21: IGBT, 22: diode, 2
3: snubber circuit, 31: ceramic parts, 32, 33
... metal flange.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 沢畠 守 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 長谷川 満 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 Fターム(参考) 4M109 AA01 CA01 CA02 CA05 CA21 CA22 DB02 DB10 EA02 EA10 EA11 EA12 EA18 EA20 EB02 EB04 EB08 EB12 EB18 EB19 EC04 EC09 GA10 5F005 AE09 AF01 AF02 CA01 DA02 FA03 GA01 GA02 GA03 GA04 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Mamoru Sawahata 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside the Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Mitsuru Hasegawa 7-1-1 Omika-cho, Hitachi City, Ibaraki Prefecture No. 1 F term in Hitachi Research Laboratory, Hitachi, Ltd. F-term (reference) 4M109 AA01 CA01 CA02 CA05 CA21 CA22 DB02 DB10 EA02 EA10 EA11 EA12 EA18 EA20 EB02 EB04 EB08 EB12 EB18 EB19 EC04 EC09 GA10 5F005 AE09 AF01 AF02 GA01 GA03 GA04

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】両面に露出する一対の主電極板の間を絶縁
性の外筒により外部絶縁した平型パッケージの中に、第
一主面に少なくとも第一の主電極,第二主面に第二の主
電極を有する少なくとも一つ以上の半導体素子を組み込
んだ半導体装置であって、該半導体素子の二つの主電極
とこれに対向する該主電極板との間に該半導体素子毎に
個別の中間電極板を介装し、該半導体素子表面のうち該
中間電極板と対向しない外周部分と、該中間電極板の側
面の少なくとも一部を電気絶縁性材料により封止したこ
とを特徴とする平型半導体装置。
A flat package in which a pair of main electrode plates exposed on both sides are externally insulated by an insulating outer cylinder, at least a first main electrode on a first main surface, and a second main electrode on a second main surface. A semiconductor device incorporating at least one or more semiconductor elements having a main electrode, wherein a separate intermediate element is provided for each of the semiconductor elements between two main electrodes of the semiconductor element and the main electrode plate opposed thereto. A flat type wherein an electrode plate is interposed, and an outer peripheral portion of the semiconductor element surface not facing the intermediate electrode plate and at least a part of a side surface of the intermediate electrode plate are sealed with an electrically insulating material. Semiconductor device.
【請求項2】両面に露出する一対の主電極板の間を絶縁
性の外筒により外部絶縁した平型パッケージの中に、第
一主面に少なくとも第一の主電極,第二主面に第二の主
電極を有する少なくとも一つ以上の半導体素子を組み込
んだ半導体装置であって、該半導体素子の主電極とこれ
に対向する該主電極板との間の少なくとも第一主電極側
に個別の中間電極板を介装し、該半導体素子の側面、該
半導体素子の第一主電極面のうち中間電極板と対向しな
い外周部分、及び第一主電極側に介装した中間電極板の
側面の少なくとも一部を電気絶縁性材料により封止した
ことを特徴とする平型半導体装置。
2. A flat package in which a pair of main electrode plates exposed on both sides are externally insulated by an insulating outer cylinder, at least a first main electrode on a first main surface and a second main electrode on a second main surface. A semiconductor device incorporating at least one or more semiconductor elements having a main electrode, wherein at least a first intermediate electrode is provided between the main electrode of the semiconductor element and the main electrode plate facing the semiconductor element. An electrode plate is interposed, a side surface of the semiconductor element, an outer peripheral portion of the first main electrode surface of the semiconductor element not facing the intermediate electrode plate, and at least a side surface of the intermediate electrode plate interposed on the first main electrode side. A flat semiconductor device, a part of which is sealed with an electrically insulating material.
【請求項3】両面に露出する一対の主電極板の間を絶縁
性の外筒により外部絶縁した平型パッケージの中に、第
一主面に少なくとも第一の主電極,第二主面に第二の主
電極を有する少なくとも一つ以上の半導体素子を組み込
んだ半導体装置であって、該半導体素子の二つの主電極
とこれに対向する該主電極板との間に該半導体素子毎に
個別の中間電極板を介装し、該半導体素子の側面、該半
導体素子の第一主電極面のうち中間電極板と対向しない
外周部分、及び第二主電極側に介装した中間電極板の側
面の少なくとも一部を電気絶縁性材料により封止したこ
とを特徴とする平型半導体装置。
3. A flat package in which a pair of main electrode plates exposed on both sides are externally insulated by an insulating outer cylinder, at least a first main electrode on a first main surface and a second main electrode on a second main surface. A semiconductor device incorporating at least one or more semiconductor elements having a main electrode, wherein a separate intermediate element is provided for each of the semiconductor elements between two main electrodes of the semiconductor element and the main electrode plate opposed thereto. An electrode plate is interposed, a side surface of the semiconductor element, an outer peripheral portion of the first main electrode surface of the semiconductor element not facing the intermediate electrode plate, and at least a side surface of the intermediate electrode plate interposed on the second main electrode side. A flat semiconductor device, a part of which is sealed with an electrically insulating material.
【請求項4】上記半導体素子の主電極のうち、少なくと
も第二の主電極とこれに対向する中間電極板が接合され
ていることを特徴とする請求項1乃至3記載の平型半導
体装置。
4. The flat semiconductor device according to claim 1, wherein at least a second main electrode of the main electrodes of the semiconductor element is joined to an intermediate electrode plate facing the second main electrode.
【請求項5】上記半導体素子の主電極のうち、少なくと
も第一の主電極とこれに対向する中間電極板が接合され
ていることを特徴とする請求項1乃至4記載の平型半導
体装置。
5. The flat type semiconductor device according to claim 1, wherein at least a first main electrode of the main electrodes of the semiconductor element is joined to an intermediate electrode plate facing the first main electrode.
【請求項6】上記電気絶縁性材料が、成形性を有する材
料であることを特徴とする請求項1乃至5記載の平型半
導体装置。
6. The flat semiconductor device according to claim 1, wherein said electrically insulating material is a material having moldability.
【請求項7】上記電気絶縁性材料が、熱硬化性、または
熱可塑性の樹脂を主体とする材料であることを特徴とす
る請求項1乃至6記載の平型半導体装置。
7. The flat semiconductor device according to claim 1, wherein said electrically insulating material is a material mainly composed of a thermosetting or thermoplastic resin.
【請求項8】上記電気絶縁性材料が、熱硬化性樹脂と無
機材料粉末の複合材料であることを特徴とする請求項1
乃至7記載の平型半導体装置。
8. The method according to claim 1, wherein said electrically insulating material is a composite material of a thermosetting resin and an inorganic material powder.
8. The flat semiconductor device according to any one of claims 7 to 7.
【請求項9】上記電気絶縁性材料が、ガラス、又はセラ
ミックスを主体とする材料であることを特徴とする請求
項1乃至6記載の平型半導体装置。
9. The flat semiconductor device according to claim 1, wherein said electrically insulating material is a material mainly composed of glass or ceramics.
【請求項10】上記電気絶縁性材料により封止され該半
導体素子及び該中間電極板と一体化した構造体の面方向
のサイズが該半導体素子のサイズとほぼ同等であること
を特徴とする請求項1乃至9記載の平型半導体装置。
10. The semiconductor device and the structure integrated with the intermediate electrode plate, which are sealed with the electrically insulating material, have a planar size substantially equal to the size of the semiconductor device. Item 10. The flat semiconductor device according to any one of Items 1 to 9.
【請求項11】上記平型半導体装置の両面に露出する一
対の主電極板の間を外部絶縁する為の絶縁性の外筒が樹
脂製であることを特徴とする請求項1乃至10記載の平
型半導体装置。
11. The flat type semiconductor device according to claim 1, wherein an insulating outer cylinder for externally insulating between a pair of main electrode plates exposed on both surfaces of said flat type semiconductor device is made of resin. Semiconductor device.
【請求項12】両面に露出する一対の主電極板の間を絶
縁性の外筒により外部絶縁した平型パッケージの中に、
第一主面に少なくとも第一の主電極,第二主面に第二の
主電極を有する少なくとも一つ以上の半導体素子を組み
込んだ半導体装置であって、該半導体素子の二つの主電
極とこれに対向する該主電極板との間に該半導体素子毎
に個別の中間電極板を介装し、該半導体素子表面のうち
該中間電極板と対向しない外周部分と、該中間電極板の
側面の少なくとも一部を電気絶縁性材料により封止した
平型半導体装置を主変換素子として用いたことを特徴と
する電力変換器。
12. A flat package in which a pair of main electrode plates exposed on both sides are externally insulated by an insulating outer cylinder.
A semiconductor device incorporating at least one or more semiconductor elements having at least a first main electrode on a first main surface and a second main electrode on a second main surface, comprising two main electrodes of the semiconductor element and A separate intermediate electrode plate is provided for each of the semiconductor elements between the main electrode plate and the outer peripheral portion of the semiconductor element surface that does not face the intermediate electrode plate, and a side surface of the intermediate electrode plate. A power converter characterized in that a flat semiconductor device at least partially sealed with an electrically insulating material is used as a main conversion element.
【請求項13】両面に露出する一対の主電極板の間を絶
縁性の外筒により外部絶縁した平型パッケージの中に、
第一主面に少なくとも第一の主電極,第二主面に第二の
主電極を有する少なくとも一つ以上の半導体素子を組み
込んだ半導体装置であって、該半導体素子の主電極とこ
れに対向する該主電極板との間の少なくとも第一主電極
側に個別の中間電極板を介装し、該半導体素子の側面、
該半導体素子の第一主電極面のうち中間電極板と対向し
ない外周部分、及び第一主電極側に介装した中間電極板
の側面の少なくとも一部を電気絶縁性材料により封止し
た平型半導体装置を主変換素子として用いたことを特徴
とする電力変換器。
13. A flat package in which a pair of main electrode plates exposed on both sides are externally insulated by an insulating outer cylinder.
A semiconductor device incorporating at least one semiconductor element having at least a first main electrode on a first main surface and a second main electrode on a second main surface, wherein the semiconductor element has a main electrode facing the main electrode. A separate intermediate electrode plate is interposed at least on the first main electrode side between the main electrode plate and a side surface of the semiconductor element,
A flat type in which an outer peripheral portion of the first main electrode surface of the semiconductor element not facing the intermediate electrode plate and at least a part of a side surface of the intermediate electrode plate interposed on the first main electrode side are sealed with an electrically insulating material. A power converter using a semiconductor device as a main conversion element.
【請求項14】両面に露出する一対の主電極板の間を絶
縁性の外筒により外部絶縁した平型パッケージの中に、
第一主面に少なくとも第一の主電極,第二主面に第二の
主電極を有する少なくとも一つ以上の半導体素子を組み
込んだ半導体装置であって、該半導体素子の二つの主電
極とこれに対向する該主電極板との間に該半導体素子毎
に個別の中間電極板を介装し、該半導体素子の側面、該
半導体素子の第一主電極面のうち中間電極板と対向しな
い外周部分、及び第二主電極側に介装した中間電極板の
側面の少なくとも一部を電気絶縁性材料により封止した
平型半導体装置を主変換素子として用いたことを特徴と
する電力変換器。
14. A flat package wherein a pair of main electrode plates exposed on both sides are externally insulated by an insulating outer cylinder.
A semiconductor device incorporating at least one or more semiconductor elements having at least a first main electrode on a first main surface and a second main electrode on a second main surface, comprising two main electrodes of the semiconductor element and A separate intermediate electrode plate for each of the semiconductor elements is interposed between the main electrode plate and the side opposite to the main electrode plate, and the outer periphery of the first main electrode surface of the semiconductor element which is not opposed to the intermediate electrode plate. A power converter using a flat semiconductor device in which a portion and at least a part of a side surface of an intermediate electrode plate interposed on a second main electrode side are sealed with an electrically insulating material as a main conversion element.
JP23044898A 1998-08-07 1998-08-17 Flat semiconductor device and converter using the same Pending JP2000058717A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP23044898A JP2000058717A (en) 1998-08-17 1998-08-17 Flat semiconductor device and converter using the same
CN99811858A CN1322376A (en) 1998-08-07 1999-07-29 Flat semiconductor device, method for manufacturing same, and converter comprising same
PCT/JP1999/004072 WO2000008683A1 (en) 1998-08-07 1999-07-29 Flat semiconductor device, method for manufacturing the same, and converter comprising the same
CA002339523A CA2339523A1 (en) 1998-08-07 1999-07-29 Flat semiconductor device, method for manufacturing the same, and converter comprising the same
KR1020017001647A KR20010072328A (en) 1998-08-07 1999-07-29 Flat semiconductor device, method for manufacturing the same, and converter comprising the same
EP99933154A EP1115151A1 (en) 1998-08-07 1999-07-29 Flat semiconductor device, method for manufacturing the same, and converter comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23044898A JP2000058717A (en) 1998-08-17 1998-08-17 Flat semiconductor device and converter using the same

Publications (1)

Publication Number Publication Date
JP2000058717A true JP2000058717A (en) 2000-02-25

Family

ID=16908051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23044898A Pending JP2000058717A (en) 1998-08-07 1998-08-17 Flat semiconductor device and converter using the same

Country Status (1)

Country Link
JP (1) JP2000058717A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004363184A (en) * 2003-06-02 2004-12-24 Grand Power Sources Inc Method of forming heat sink and its structure
JP2005109526A (en) * 2001-07-26 2005-04-21 Denso Corp Semiconductor device
JP2006319213A (en) * 2005-05-13 2006-11-24 Fuji Electric Device Technology Co Ltd Semiconductor device
WO2013163664A1 (en) * 2012-05-04 2013-11-07 A.B. Mikroelektronik Gesellschaft Mit Beschränkter Haftung Circuit board, particularly for a power-electronic module, comprising an electrically-conductive substrate
JP2018110218A (en) * 2017-01-05 2018-07-12 株式会社東芝 Semiconductor device and method for manufacturing the same
WO2018163599A1 (en) * 2017-03-08 2018-09-13 三菱電機株式会社 Semiconductor device, manufacturing method therefor, and semiconductor module
JP2019016744A (en) * 2017-07-10 2019-01-31 株式会社東芝 Semiconductor device
JP2019050301A (en) * 2017-09-11 2019-03-28 株式会社東芝 Power semiconductor module

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005109526A (en) * 2001-07-26 2005-04-21 Denso Corp Semiconductor device
JP2004363184A (en) * 2003-06-02 2004-12-24 Grand Power Sources Inc Method of forming heat sink and its structure
JP2006319213A (en) * 2005-05-13 2006-11-24 Fuji Electric Device Technology Co Ltd Semiconductor device
WO2013163664A1 (en) * 2012-05-04 2013-11-07 A.B. Mikroelektronik Gesellschaft Mit Beschränkter Haftung Circuit board, particularly for a power-electronic module, comprising an electrically-conductive substrate
US9648736B2 (en) 2012-05-04 2017-05-09 A.B. Mikroelektronik Gesellschaft Mit Beschraenkter Haftung Circuit board, particularly for a power-electronic module, comprising an electrically-conductive substrate
US10091874B2 (en) 2012-05-04 2018-10-02 Ab Mikroelektronik Gesellschaft Mit Beschraenkter Haftung Circuit board, particulary for a power-electronic module, comprising an electrically-conductive substrate
JP6991846B2 (en) 2017-01-05 2022-01-13 株式会社東芝 Semiconductor devices and their manufacturing methods
JP2018110218A (en) * 2017-01-05 2018-07-12 株式会社東芝 Semiconductor device and method for manufacturing the same
WO2018163599A1 (en) * 2017-03-08 2018-09-13 三菱電機株式会社 Semiconductor device, manufacturing method therefor, and semiconductor module
JP6477975B2 (en) * 2017-03-08 2019-03-06 三菱電機株式会社 Semiconductor device, manufacturing method thereof, and semiconductor module
JPWO2018163599A1 (en) * 2017-03-08 2019-03-14 三菱電機株式会社 Semiconductor device, manufacturing method thereof, and semiconductor module
JP2019091915A (en) * 2017-03-08 2019-06-13 三菱電機株式会社 Semiconductor device, manufacturing method therefor, and semiconductor module
US11264318B2 (en) 2017-03-08 2022-03-01 Mitsubishi Electric Corporation Semiconductor device, method for manufacturing the same, and semiconductor module
JP2019016744A (en) * 2017-07-10 2019-01-31 株式会社東芝 Semiconductor device
JP2019050301A (en) * 2017-09-11 2019-03-28 株式会社東芝 Power semiconductor module

Similar Documents

Publication Publication Date Title
JP5656907B2 (en) Power module
JP4954356B1 (en) Circuit board for peripheral circuit of large capacity module, and large capacity module including peripheral circuit using the circuit board
JP5472498B2 (en) Power module manufacturing method
CN108231709A (en) Power module with two-sided cooling
JP6719569B2 (en) Semiconductor device and power converter
JP6371610B2 (en) Power module and manufacturing method thereof
WO2017138402A1 (en) Semiconductor device, power module, method for manufacturing semiconductor device and method for manufacturing power module
KR20070102515A (en) Highly heat-resistant synthetic polymer compound and high withstand voltage semiconductor device
JP2011216564A (en) Power module and method of manufacturing the same
US20090237890A1 (en) Semiconductor device and method for manufacturing the same
US20190051636A1 (en) Semiconductor device
JP6057926B2 (en) Semiconductor device
CN111599796B (en) Semiconductor module and power conversion device using the same
WO2000008683A1 (en) Flat semiconductor device, method for manufacturing the same, and converter comprising the same
JP2000058717A (en) Flat semiconductor device and converter using the same
US20220238422A1 (en) Semiconductor Package with Barrier to Contain Thermal Interface Material
CN114078790A (en) Power semiconductor module device and method for manufacturing the same
US20150255370A1 (en) Semiconductor device
JP5368492B2 (en) Power semiconductor device
JP2000058693A (en) Flat semiconductor device, manufacture thereof and converter using the same
JPH11214612A (en) Power semiconductor module
EP4187589A1 (en) Directly cooled power module
JP2000091472A (en) Semiconductor device
US20130001758A1 (en) Power Semiconductor Package
JP7155748B2 (en) semiconductor equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040310

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040310

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070306