JP2000055625A - Position measuring device and thickness measuring device - Google Patents

Position measuring device and thickness measuring device

Info

Publication number
JP2000055625A
JP2000055625A JP10222094A JP22209498A JP2000055625A JP 2000055625 A JP2000055625 A JP 2000055625A JP 10222094 A JP10222094 A JP 10222094A JP 22209498 A JP22209498 A JP 22209498A JP 2000055625 A JP2000055625 A JP 2000055625A
Authority
JP
Japan
Prior art keywords
light
virtual
irradiation
reflection
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10222094A
Other languages
Japanese (ja)
Other versions
JP3934799B2 (en
Inventor
Atsushi Shimamoto
篤 嶋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nano TEM Co Ltd
Original Assignee
Nano TEM Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nano TEM Co Ltd filed Critical Nano TEM Co Ltd
Priority to JP22209498A priority Critical patent/JP3934799B2/en
Publication of JP2000055625A publication Critical patent/JP2000055625A/en
Application granted granted Critical
Publication of JP3934799B2 publication Critical patent/JP3934799B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To ensure the linearity of a wide range and attain the miniaturization of a device and the reduction in the cost by adjacently setting or connecting a plurality of square columns to form an optical waveguide, and propagating an illuminating light and its reflected light therein. SOLUTION: A plurality of square columns are set adjacently or connected to form an optical waveguide. An incident light is incident on its incident surface, propagated in the optical waveguide, and emitted to a subject to be measured from an emitting surface as illuminating light. The reflected light from the subject to be measured is incident on the light receiving surface, propagated in the optical waveguide, and emitted from a detecting surface as detecting light. For example, a position measuring device 2 has an optical waveguide group GG having five optical waveguides, a laser diode light source LD, and a light receiving part PD having two partial light receiving parts PDA, PDB. A control part CN controls the light source LD, and determines a measurement gap (y) on the basis of the light receiving result of the light receiving part PD. The optical waveguide group GG is made of a flat plate (square column) consisting of quartz glass.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば電子部品等
に多用されるセラミックス、液晶パネル等のガラス、ハ
ードディスクの基盤、半導体(シリコン)ウェハ等を測
定対象物として、光学的測定により位置(または変位)
を測定する位置測定装置および厚みを測定する厚み測定
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a position (or a position) by optical measurement using, for example, ceramics frequently used in electronic parts, glass such as a liquid crystal panel, a hard disk base, a semiconductor (silicon) wafer, etc. Displacement)
And a thickness measuring device for measuring thickness.

【0002】[0002]

【従来の技術】従来、この種の位置測定装置として、光
ファイバ変位計が知られている。光ファイバ変位計で
は、照射ファイバや受光ファイバなどとして使用される
光ファイバを多数束ねた光ファイバ束の測定端の面(測
定面)を測定対象物に対向させ、測定面内の照射ファイ
バの端面(照射面)から測定対象物に対して光(照射
光)を照射し、測定面内の受光ファイバの端面(受光
面)に、照射光に対する測定対象物からの反射光を入射
して受光し、その受光量に基づいて、測定面と測定対象
物との距離(測定ギャップ)を求める。すなわち測定対
象物の変位は、固定された測定面からの測定ギャップの
変化として測定される。
2. Description of the Related Art Conventionally, an optical fiber displacement meter has been known as this type of position measuring device. In an optical fiber displacement meter, the measurement end surface (measurement surface) of an optical fiber bundle in which a large number of optical fibers used as an irradiation fiber or a reception fiber are bundled is opposed to a measurement object, and the end surface of the irradiation fiber in the measurement surface is measured. Light (irradiation light) is radiated from the (irradiation surface) to the measurement object, and the reflected light from the measurement object with respect to the irradiation light is incident on the end surface (light reception surface) of the light receiving fiber in the measurement surface and received. The distance (measurement gap) between the measurement surface and the object to be measured is determined based on the amount of received light. That is, the displacement of the measurement object is measured as a change in the measurement gap from the fixed measurement surface.

【0003】光ファイバ変位計の測定対象物は、必要な
光量を反射する物であれば何でも良いので、測定対象物
の適用範囲が広い。また、非接触で測定できるので、測
定対象物に粉塵等の汚染や傷等の変形を与える心配がな
い。また、サブナノメートルオーダーの高分解能と、温
度・気圧・電磁場の影響を受けない等の高安定度を有し
ている。
[0003] The object to be measured by the optical fiber displacement meter can be anything as long as it reflects a required amount of light, so that the applicable range of the object to be measured is wide. In addition, since the measurement can be performed in a non-contact manner, there is no fear that the measurement target is contaminated with dust or the like or deformed such as a scratch. In addition, it has high resolution on the order of sub-nanometers and high stability such as being unaffected by temperature, pressure and electromagnetic fields.

【0004】なお、所定の基準位置(例えば測定面)か
ら測定対象物までの距離(測定ギャップ)を図る距離計
は、その測定対象物の位置を測定する測位計としても機
能し、また、その位置を変化させたときの変位(すなわ
ち、基準位置からの距離の変化:位置の変化)を測定す
る変位計としても機能するので、以下では、これらを総
括した概念として位置測定装置という。また、この位置
測定装置と同等ではあるが慣用的な呼び方のあるものに
ついては、距離計、測位計、変位計等の呼び名を適宜使
用して説明する。
A distance meter that measures the distance (measurement gap) from a predetermined reference position (for example, a measurement surface) to a measurement object also functions as a position measurement device that measures the position of the measurement object. Since it also functions as a displacement meter that measures displacement when the position is changed (that is, change in distance from the reference position: change in position), these will hereinafter be referred to as a position measuring device as a general concept. In addition, a device that is equivalent to the position measuring device but has a conventional name will be described by appropriately using names such as a distance meter, a positioning device, and a displacement meter.

【0005】次に、非接触式の従来の厚み測定装置とし
ては、光学的測定によるものでは、三角測量タイプの
(レーザ)距離計を利用したもの、光学的測定以外で
は、空気マイクロメータ、静電容量センサ等を利用した
ものが知られている。
Next, as a conventional non-contact type thickness measuring device, a device using a triangulation type (laser) distance meter is used for optical measurement, and an air micrometer, static A sensor using a capacitance sensor or the like is known.

【0006】レーザ距離計を利用したものでは、対向す
る一対のレーザ距離計の間(測定面間ギャップ)に測定
対象物を挿入し、各距離計から測定対象物の表裏2面の
各面までの距離(測定ギャップ)を求めて測定面間ギャ
ップから減算することにより、測定対象物の厚みを求め
る。
In the case of using a laser range finder, an object to be measured is inserted between a pair of laser rangefinders facing each other (a gap between measurement surfaces), and from each range finder to each of the front and back surfaces of the object to be measured. Is obtained by subtracting the distance (measurement gap) from the gap between the measurement surfaces, thereby obtaining the thickness of the measurement object.

【0007】また、空気マイクロメータでは、測定対象
物を平らな定盤面に置いて、先細のノズル先端から吹き
出す空気その他のガスの流量・圧力等に基づいてノズル
先端からの測定ギャップを求め、定盤面までの距離との
差に基づいて測定対象物の厚みを求める。
In the air micrometer, an object to be measured is placed on a flat surface of a platen, and a measurement gap from the tip of the nozzle is determined based on the flow rate and pressure of air or other gas blown from the tip of the tapered nozzle. The thickness of the object to be measured is determined based on the difference from the distance to the board.

【0008】また、静電容量センサでは、測定対象物が
金属等の導電体の場合、対向する一対の測定電極間のギ
ャップ(測定面間ギャップ)内に挿入した測定対象物と
各測定電極との間の各静電容量を求め、各静電容量に基
づいて各測定電極からの測定ギャップを求めて測定面間
ギャップから減算することにより、測定対象物の厚みを
求める。また、測定対象物が絶縁体の場合、一方の測定
電極を導体定盤とし、他方の測定電極との間の静電容量
が測定対象物を挿入する前後で変化することを利用し
て、その静電容量の変化に基づいて測定対象物の厚みを
求める。
In the capacitance sensor, when the object to be measured is a conductor such as a metal, the object to be measured inserted into a gap (a gap between measurement surfaces) between a pair of opposed measurement electrodes and each measurement electrode are connected to each other. Is obtained, a measurement gap from each measurement electrode is obtained based on each capacitance, and the measurement gap is subtracted from the gap between the measurement surfaces to obtain the thickness of the measurement object. In addition, when the measurement object is an insulator, one of the measurement electrodes is a conductive surface plate, and the capacitance between the measurement electrode and the other measurement electrode is changed before and after the measurement object is inserted. The thickness of the measurement object is obtained based on the change in the capacitance.

【0009】[0009]

【発明が解決しようとする課題】しかし、光ファイバ束
の各光ファイバは円柱状なので、その測定面内の照射面
や受光面は円形となり、円形相互間の接合は点接合とな
るので、接合(製造)しにくく、また、光ファイバ自体
の単価も高いので、低価格化(コストダウン)しにく
い。また、どのようにうまく接合しても、円形相互間の
接合点以外の部分には間隙ができてしまい、その部分へ
の反射光は受光できないので、その範囲の測定ギャップ
と受光量との関係の線形性(リニアリティ)が確保でき
ず、測定可能な測定ギャップの実用範囲を広範囲に設定
できない。また、間隙を含むサイズとなるため、必要な
感度(分解能)に対してサイズ効率が悪く小型化しにく
い。
However, since each optical fiber of the optical fiber bundle has a cylindrical shape, the irradiation surface and the light receiving surface in the measurement surface are circular, and the junction between the circles is a point junction. (Manufacturing) and the unit price of the optical fiber itself is high, so it is difficult to reduce the cost (cost reduction). In addition, no matter how well the joint is made, a gap is formed in the part other than the junction between the circles, and the reflected light to that part cannot be received, so the relationship between the measurement gap and the received light amount in that range Cannot secure the linearity of the measurement gap, and the practical range of the measurable measurement gap cannot be set in a wide range. Further, since the size includes the gap, the size efficiency is low with respect to the required sensitivity (resolution), and it is difficult to reduce the size.

【0010】また、レーザ距離計では、レーザ光源と位
置検出素子(いわゆるPSD)等の光学的な位置検出セ
ンサが必要となるが、基本的に三角測量のため、測定系
が大がかりになる。すなわち、レーザ光源と位置検出セ
ンサの間隔や測定ギャップ等を小さくしにくく、小型化
しにくい。また、小型化が困難であるため、光路の幾何
学的配置が、温度変化による熱膨張の影響を受け易く、
高安定度が得られなくなる。
The laser distance meter requires a laser light source and an optical position detecting sensor such as a position detecting element (so-called PSD), but the measuring system is basically large because of triangulation. That is, it is difficult to reduce the distance between the laser light source and the position detection sensor, the measurement gap, and the like, and it is difficult to reduce the size. Also, since miniaturization is difficult, the geometrical arrangement of the optical path is susceptible to thermal expansion due to temperature changes,
High stability cannot be obtained.

【0011】また、空気マイクロメータでは、非接触と
はいっても、定盤面との接触により測定対象物に粉塵等
の汚染や傷等の変形を与えるなど、接触式と同様の問題
が生じる。また、空気圧等により振動等の力学的作用を
測定対象物に及ぼすため、正確に測定できないこともあ
る。また、静電容量センサでは、静電容量に基づく測定
のため、測定ギャップが制限されて、製造工程中の測定
に適さないばかりでなく、測定対象物が絶縁体の場合に
は、測定面間ギャップが制限されるため、厚みの大きな
測定対象物の厚みを測定できない。
[0011] In the air micrometer, even though it is non-contact, the same problem as the contact type occurs such that the measurement object may be contaminated with dust or the like or may be deformed such as a scratch due to contact with the surface of the surface plate. In addition, since a mechanical action such as vibration is exerted on an object to be measured by air pressure or the like, accurate measurement may not be performed. In addition, in the capacitance sensor, since the measurement is based on the capacitance, the measurement gap is limited, which is not suitable for the measurement during the manufacturing process. Since the gap is limited, the thickness of the measurement object having a large thickness cannot be measured.

【0012】本発明は、第1に、光ファイバ変位計と同
等の利点を有しつつ、広範囲のリニアリティを確保で
き、かつ、小型化やコストダウンが図れる位置測定装置
を提供することを目的とし、第2に、測定対象物の導電
率や厚みの大小などの属性に拘らず、また、力学的作用
を及ぼすこと無く、非接触の状態で測定対象物の厚みを
測定できる厚み測定装置を提供することを目的とする。
A first object of the present invention is to provide a position measuring apparatus which has the same advantages as an optical fiber displacement meter, can secure a wide range of linearity, and can be reduced in size and cost. Second, there is provided a thickness measuring device capable of measuring the thickness of a measurement object in a non-contact state regardless of attributes such as conductivity and thickness of the measurement object and without exerting a mechanical action. The purpose is to do.

【0013】[0013]

【課題を解決するための手段】本発明の請求項1の位置
測定装置は、各6面の全てが長方形の2つの仮想の四角
柱の各4つの側面のうち、互いに同一サイズの各1つの
側面同士を4辺が合うように平行に対向させて、前記2
つの仮想の四角柱を隣接または接合し、対向する前記各
1つの側面を含む平行な4つの側面を一方の端からそれ
ぞれ第1仮想側面、第2仮想側面、第3仮想側面および
第4仮想側面とし、前記2つの仮想の四角柱のうち、前
記第1仮想側面および前記第2仮想側面を側面として有
する一方を仮想照射光導波路として他方を仮想反射光導
波路とし、前記仮想照射光導波路の上底面および下底面
のうちの一方を測定対象物に平行に対向させて照射面と
して他方を入射面とし、前記仮想反射光導波路の上底面
および下底面のうちの前記照射面と同一側の一方を受光
面として他方を検出面としたとき、内部に前記仮想照射
光導波路を含み、入射光を前記入射面に入射して前記仮
想照射光導波路内を伝搬させ、前記照射面から照射光と
して前記測定対象物に対して発射させる照射光導波路
と、内部に前記仮想反射光導波路を含み、前記測定対象
物からの前記照射光に対応する反射光を前記受光面に入
射して前記仮想反射光導波路内を伝搬させ、前記検出面
から検出光として発射させる反射光導波路と、前記入射
光を発する光源と、前記検出光を受光する受光部と、前
記光源を制御するとともに、前記受光部の受光結果に基
づいて前記測定対象物と前記照射面との距離を求める制
御部と、を備え、前記照射光導波路は、前記光源からの
前記入射光を前記入射面に入射する照射制御面と、前記
照射面からの前記照射光を前記測定対象物に発射する照
射測定面と、前記第1仮想側面および前記第2仮想側面
を含み、前記照射制御面が含む外周が閉じた面のその外
周の全ておよび前記照射測定面が含む外周が閉じた面の
その外周の全てを連結して、伝搬する光を内部に閉じこ
める照射側面と、を有し、前記反射光導波路は、前記測
定対象物からの前記反射光を前記受光面に入射する反射
測定面と、前記検出面からの前記検出光を前記受光部に
発射する反射制御面と、前記第3仮想側面および前記第
4仮想側面を含み、前記反射測定面が含む外周が閉じた
面のその外周の全ておよび前記反射制御面が含む外周が
閉じた面のそのの外周の全てを連結して、伝搬する光を
内部に閉じこめる反射側面と、を有することを特徴とす
る。
According to a first aspect of the present invention, there is provided a position measuring apparatus, wherein each of the four sides of two imaginary square pillars, each of which has a rectangular shape, has one of the same size. The two sides are opposed to each other in parallel so that the four sides are aligned with each other.
Four virtual square pillars are adjacent or joined to each other, and four parallel sides including the one side facing each other are separated from one end by a first virtual side, a second virtual side, a third virtual side, and a fourth virtual side, respectively. And one of the two virtual quadrangular prisms having the first virtual side surface and the second virtual side surface as a side surface, the other being a virtual reflected light waveguide, the other being a virtual reflected light waveguide, and the upper bottom surface of the virtual irradiated light waveguide. One of the bottom surface and the bottom surface is opposed to the object to be measured in parallel, and the other is an incident surface as an irradiation surface, and one of the upper and lower bottom surfaces of the virtual reflected optical waveguide on the same side as the irradiation surface is received. When the other surface is the detection surface, the virtual irradiation optical waveguide is included therein, incident light is incident on the incident surface and propagates through the virtual irradiation light waveguide, and the measurement object is irradiated from the irradiation surface as irradiation light. An irradiating light waveguide to be emitted to the light source and the virtual reflected light waveguide therein, and reflected light corresponding to the irradiating light from the object to be measured is incident on the light receiving surface and propagates through the virtual reflected light waveguide. And a reflected light waveguide for emitting the detection light from the detection surface, a light source for emitting the incident light, a light receiving unit for receiving the detection light, and controlling the light source, based on a light receiving result of the light receiving unit. A control unit for determining a distance between the measurement object and the irradiation surface, and the irradiation light waveguide includes: an irradiation control surface that causes the incident light from the light source to enter the incident surface; An irradiation measurement surface that emits the irradiation light to the object to be measured, and all of the outer periphery of a closed surface including the first virtual side surface and the second virtual side surface and included in the irradiation control surface, and the irradiation measurement. Face included An irradiation side surface for connecting all of the outer circumference of the closed surface to confine propagating light inside, and the reflected light waveguide transmits the reflected light from the measurement object to the light receiving surface. Includes an incident reflection measurement surface, a reflection control surface that emits the detection light from the detection surface to the light receiving unit, and the third virtual side surface and the fourth virtual side surface, wherein an outer periphery of the reflection measurement surface is closed. And a reflection side surface that connects all of the outer periphery of the reflection control surface and all of the outer periphery of the closed surface included in the reflection control surface to confine propagating light inside.

【0014】この位置測定装置では、光源からの入射光
を入射面に入射して仮想照射光導波路内を伝搬させ、照
射面から照射光として測定対象物に対して発射(照射)
し、測定対象物からの照射光に対応する反射光を受光面
に入射して仮想反射光導波路内を伝搬させ、検出面から
検出光として発射し、受光部で受光して、その受光結果
に基づいて測定対象物と照射面との距離(測定ギャッ
プ)を求める。この場合、照射面からの照射光に対する
反射光が、測定ギャップと所定の関係を持つように変化
すれば、その反射光を受光面から入射して受光すること
により、反射光の変化から測定ギャップの変化(測定対
象物の変位)を求められる。
In this position measuring device, the incident light from the light source is incident on the incident surface, propagates through the virtual irradiation optical waveguide, and is emitted (irradiated) from the irradiation surface as irradiation light to the object to be measured.
Then, the reflected light corresponding to the irradiation light from the object to be measured is incident on the light receiving surface, propagates through the virtual reflected light waveguide, is emitted as the detection light from the detection surface, is received by the light receiving unit, and the light receiving result is obtained. Then, the distance (measurement gap) between the object to be measured and the irradiation surface is determined. In this case, if the reflected light with respect to the irradiation light from the irradiation surface changes so as to have a predetermined relationship with the measurement gap, the reflected light enters from the light receiving surface and is received. (Displacement of the object to be measured) is obtained.

【0015】すなわち、この位置測定装置では、従来の
光ファイバ変位計と同等の原理に基づいて測定ギャップ
やその変化を求めることができるので、測定対象物の適
用範囲が広く、非接触測定のため測定対象物に汚染や変
形等を与える心配がなく、高分解能・高安定度を有する
など、光ファイバ変位計と同等の利点を得られる。
That is, in this position measuring device, the measuring gap and its change can be obtained based on the same principle as that of the conventional optical fiber displacement meter. The same advantages as the optical fiber displacement meter can be obtained, such as high resolution and high stability without the risk of contamination or deformation of the measurement object.

【0016】一方、第1仮想側面ないし第4仮想側面の
4つの側面は、同一サイズの平行な平面であり、そのう
ちの第2仮想側面と第3仮想側面は、4辺が合うように
平行に対向させて隣接または接合している。この場合、
第2仮想側面と第3仮想側面は同一サイズの平面同士な
ので接合し易く、また、円柱状の光ファイバを接合する
場合のような間隙は生じない。
On the other hand, the four sides from the first virtual side to the fourth virtual side are parallel planes of the same size, and the second virtual side and the third virtual side are parallel to each other so that the four sides match. Adjacent or joined to face each other. in this case,
Since the second imaginary side surface and the third imaginary side surface are planes of the same size, they are easy to join, and there is no gap as in the case of joining cylindrical optical fibers.

【0017】この位置測定装置では、照射光導波路の側
面である照射側面には、仮想照射光導波路の第2仮想側
面が含まれ、反射光導波路の側面である反射側面には、
仮想反射光導波路の第3仮想側面が含まれるので、照射
側面の第2仮想側面と反射側面の第3仮想側面とを接合
すれば、円柱状の光ファイバを接合するより接合し易
く、かつ線形性(リニアリティ)を害するような間隙が
生じにくい。すなわち、接合(製造)し易い分だけ製造
コストを抑止することができ、間隙が生じない分だけ広
範囲のリニアリティを確保できる。
In this position measuring device, the irradiation side, which is the side of the irradiation light waveguide, includes the second virtual side of the virtual irradiation light waveguide, and the reflection side, which is the side of the reflection light waveguide, includes:
Since the third virtual side surface of the virtual reflected optical waveguide is included, if the second virtual side surface of the irradiation side surface and the third virtual side surface of the reflection side surface are bonded, it is easier to bond than a columnar optical fiber and more linear. A gap that impairs the linearity is less likely to occur. That is, the manufacturing cost can be suppressed by the ease of joining (manufacturing), and a wide range of linearity can be ensured by the absence of a gap.

【0018】なお、この場合、照射側面の第1仮想側面
および第2仮想側面を除く形状や、反射側面の第3仮想
側面および第4仮想側面を除く形状は、最低限、上記の
第2仮想側面と第3仮想側面との近接を妨害しない形状
であれば、任意の形状で良い。このため、照射側面の形
状を、光源から発する入射光が入射面に誘導されるよう
な形状にしたり、照射光を誘導して測定対象物の反射光
導波路に近い位置に照射する(すなわち反射光の反射角
を変える)形状にしたり、反射側面の形状を、反射光が
受光面に誘導されるような形状にしたり、検出面からの
検出光が受光部に誘導されるような形状にしたりするこ
とができる。
In this case, the shape of the irradiation side surface excluding the first virtual side surface and the second virtual side surface and the shape of the reflection side surface excluding the third virtual side surface and the fourth virtual side surface are at least the second virtual side. Any shape may be used as long as the shape does not hinder the approach between the side surface and the third virtual side surface. For this reason, the shape of the irradiation side surface is made to be such that the incident light emitted from the light source is guided to the incident surface, or the irradiation light is guided to irradiate a position close to the reflected light waveguide of the measurement object (that is, the reflected light The shape of the reflective side surface is changed so that the reflected light is guided to the light receiving surface, or the detected light from the detection surface is guided to the light receiving portion. be able to.

【0019】請求項1の位置測定装置において、前記照
射測定面が前記照射面を含む平面であり、前記反射測定
面が前記受光面を含む平面であることが好ましい。
In the position measuring device according to the first aspect, it is preferable that the irradiation measurement surface is a plane including the irradiation surface, and the reflection measurement surface is a plane including the light receiving surface.

【0020】この位置測定装置では、照射測定面と反射
測定面が仮想の同一平面内に位置すること(面一)にな
るので、それらに含まれる照射面と受光面を測定対象物
に近接させることができ、これにより、微小の測定ギャ
ップまで測定でき、測定可能範囲を広げることができ
る。
In this position measuring device, since the irradiation measurement surface and the reflection measurement surface are located on the same virtual plane (the same plane), the irradiation surface and the light receiving surface included in them are brought close to the object to be measured. As a result, it is possible to measure even a minute measurement gap, and the measurable range can be expanded.

【0021】請求項1または2の位置測定装置におい
て、前記入射面の光軸に対する前記入射光の入射角は、
前記照射光が前記照射面の光軸と所定の発射角を有する
ように定められていることが好ましい。
The position measuring apparatus according to claim 1 or 2, wherein the incident angle of the incident light with respect to the optical axis of the incident surface is:
It is preferable that the irradiation light is set so as to have a predetermined emission angle with the optical axis of the irradiation surface.

【0022】一般的な光ファイバ変位計では、照射面か
ら測定対象物に対してその光軸を中心とする円錐状の発
散光線束(発散光)を照射光として照射し、測定対象物
上の照射(投光)範囲と開口数(NA)で決まる受光範
囲との重なった部分からの反射光を利用する。
In a general optical fiber displacement meter, a conical divergent light beam (divergent light) having its optical axis as the center is radiated from the irradiation surface to the measurement object as irradiation light, and the measurement object is irradiated on the measurement object. The reflected light from the overlapping part of the irradiation (projection) range and the light receiving range determined by the numerical aperture (NA) is used.

【0023】このため、レーザ光などの集束性の強い平
行光線束(平行光、視準光、コリメート光)を光軸に沿
って照射したのでは、照射面と受光面が仮に隣接してい
ても投光範囲と受光範囲に重なりが生じないので、照射
光として利用できない。また、レーザ光などを利用した
のでは、その集束性、可干渉性、高輝度・単色性、指向
性など(以下「集束性等」)の強さにより、光軸上で全
面反射して元の照射面に戻って干渉し合ってしまう。
For this reason, if a highly convergent parallel light beam (parallel light, collimated light, collimated light) such as laser light is irradiated along the optical axis, the irradiated surface and the light receiving surface are temporarily adjacent to each other. Also, since no overlap occurs between the light projecting range and the light receiving range, it cannot be used as irradiation light. In addition, when a laser beam or the like is used, the light is totally reflected on the optical axis due to its convergence, coherence, high brightness / monochromaticity, and directivity (hereinafter referred to as “convergence, etc.”). Return to the irradiation surface and interfere with each other.

【0024】この位置測定装置において、入射面の光軸
に対する入射光の入射角は、照射光が照射面の光軸と所
定の発射角を有するように定められているため、平行光
線束を入射光とし、それを伝搬させた平行光線束を照射
光として利用しても、(前述のように照射側面の形状を
照射光を誘導して反射光の反射角を変える形状にするこ
となく、また、照射測定面と反射測定面が面一であって
も、)測定対象物から所定の反射角の反射光が得られ、
この反射光は測定ギャップと所定の関係を持つように変
化することになるので、その反射光の変化に基づいて測
定ギャップおよびその変化を求めることができる。
In this position measuring device, the incident angle of the incident light with respect to the optical axis of the incident surface is determined so that the irradiated light has a predetermined launch angle with the optical axis of the irradiated surface. Even if light is used and the parallel light beam that propagates it is used as irradiation light, (as described above, without changing the shape of the irradiation side surface to the shape that induces the irradiation light and changes the reflection angle of the reflected light, , Even if the irradiation measurement surface and the reflection measurement surface are flush with each other) reflected light having a predetermined reflection angle is obtained from the measurement object;
Since this reflected light changes so as to have a predetermined relationship with the measurement gap, the measurement gap and its change can be obtained based on the change in the reflected light.

【0025】すなわち、この位置測定装置では、レーザ
光などの集束性等の強い種類の光を照射光として利用で
きる。また、集束性等の強い種類の光を入射光として利
用すれば、仮想照射光導波路内に閉じこめた状態で伝搬
させ易くなり、また、それを照射面から照射光として照
射すれば、発散光を利用する場合より、反射光を仮想反
射光導波路の受光面に入射し易くなり、高分解能などの
光ファイバ変位計と同等の利点をさらに向上させ、か
つ、広範囲のリニアリティをさらに確保し易くなる。
That is, in this position measuring device, light of a strong type such as a laser beam or the like having a high convergence can be used as irradiation light. Also, if light of a strong type such as converging property is used as incident light, it becomes easier to propagate in a state of being confined in the virtual irradiation optical waveguide, and if it is irradiated as irradiation light from the irradiation surface, divergent light will be emitted. The reflected light is more easily incident on the light receiving surface of the virtual reflected light waveguide than in the case where the optical fiber displacement gauge is used, so that the same advantages as an optical fiber displacement meter such as high resolution can be further improved, and a wide range of linearity can be easily secured.

【0026】請求項3の位置測定装置において、前記光
源は、レーザ光を発するレーザ光源であることが好まし
い。
Preferably, the light source is a laser light source that emits laser light.

【0027】この位置測定装置では、光源がレーザ光源
なので、集束性等の強いレーザ光を照射光として使用で
き、高密度の照射ができる。すなわち、レーザ光は、光
量を大きくすることが容易なので、光量を大きくするこ
とにより、分解能を向上させ、帯域幅を広げることがで
きる。また、レーザ光の利用により、仮想照射光導波路
内に閉じこめた状態で伝搬させ易くなり、また、それを
照射面から照射光として照射することにより、反射光を
仮想反射光導波路の受光面に入射し易くなる。
In this position measuring device, since the light source is a laser light source, a laser beam having strong convergence or the like can be used as irradiation light, and high-density irradiation can be performed. That is, since the amount of laser light can be easily increased, the resolution can be improved and the bandwidth can be increased by increasing the amount of laser light. In addition, the use of laser light makes it easier to propagate the light in the state of being confined within the virtual irradiation optical waveguide, and irradiates it as irradiation light from the irradiation surface, so that reflected light enters the light receiving surface of the virtual reflection light waveguide. Easier to do.

【0028】すなわち、照射光(レーザ光)やその反射
光の光路とそれ以外との光量の差が顕著となって他の光
の影響を受けにくくなるばかりでなく、減衰しても結果
的な受光量が多いので、高分解能などの光ファイバ変位
計と同等の利点をさらに向上させ、かつ、広範囲のリニ
アリティをさらに確保し易くなる。
That is, the difference between the light path of the irradiation light (laser light) or the light path of the reflected light and the light amount of the other light becomes remarkable, so that not only is it hard to be affected by other light, but even if the light is attenuated, the resulting light is consequently reduced. Since the amount of received light is large, advantages equivalent to those of an optical fiber displacement meter such as high resolution can be further improved, and linearity over a wide range can be easily secured.

【0029】なお、光路における透過率の高い波長(例
えば多成分系ガラスの場合830nm程度)の単色光を
利用することにより、減衰を少なくすることもできる。
また、レーザ光源としては、ルビーレーザ、ガラスレー
ザ、YAGレーザ等の固体レーザでも、アルゴンレー
ザ、金属イオンレーザ等のガスレーザでも、ラマンレー
ザ、ダイレーザ等の液体レーザでも、その発光と入射面
への入射角が制御できれば、適用は可能であるが、小型
化等のためには、レーザダイオード等の半導体レーザが
好ましい。
The attenuation can be reduced by using monochromatic light having a wavelength with a high transmittance in the optical path (for example, about 830 nm in the case of multi-component glass).
In addition, as a laser light source, a solid-state laser such as a ruby laser, a glass laser, or a YAG laser, a gas laser such as an argon laser or a metal ion laser, or a liquid laser such as a Raman laser or a die laser, emits light and emits light at an incident angle. Is controllable, but a semiconductor laser such as a laser diode is preferable for miniaturization and the like.

【0030】請求項4の位置測定装置において、前記レ
ーザ光源は、レーザダイオードであることが好ましい。
Preferably, the laser light source is a laser diode.

【0031】この位置測定装置では、レーザ光を利用す
る利点、すなわち、光ファイバ変位計と同等の利点の
他、広範囲のリニアリティを確保できるという利点を有
し、かつ、レーザ光源がレーザダイオードなので、小型
化が可能になるとともに、大量生産が可能になるので、
材料(資材コスト)や製造(製造コスト)などに関し
て、コストダウンが図れる。
This position measuring device has an advantage of using a laser beam, that is, an advantage equivalent to that of an optical fiber displacement meter, an advantage that a wide linearity can be secured, and a laser light source is a laser diode. As miniaturization becomes possible and mass production becomes possible,
Cost reduction can be achieved for materials (material costs) and manufacturing (manufacturing costs).

【0032】請求項5の位置測定装置において、前記レ
ーザ光源を、前記照射光導波路および前記反射光導波路
とともに一体化して、1つのパッケージ内に納めたこと
が好ましい。
In the position measuring apparatus according to the fifth aspect, it is preferable that the laser light source is integrated with the irradiation light waveguide and the reflection light waveguide and is housed in one package.

【0033】この位置測定装置では、一般的な電子部品
を樹脂等によりモールドしてパッケージ化するのと同様
に、レーザ光源であるレーザダイオードを照射光導波路
および反射光導波路とともに一体化して、1つのパッケ
ージ内に納めるので、さらに小型化が可能になり、ま
た、扱い易いものとなる。
In this position measuring device, a laser diode, which is a laser light source, is integrated with an irradiation optical waveguide and a reflected optical waveguide in the same manner as a general electronic component is molded and packaged with resin or the like. Since it is housed in a package, further miniaturization becomes possible and it becomes easy to handle.

【0034】請求項1ないし6のいずれかの位置測定装
置において、前記照射側面を構成する前記照射光導波路
の外周部位および前記反射側面を構成する前記反射光導
波路の外周部位には、内部に伝搬する光を反射させるク
ラッド領域が形成され、このクラッド領域に囲まれる部
位には、光を伝搬するためのコア領域が形成されている
ことが好ましい。
7. The position measuring apparatus according to claim 1, wherein an outer peripheral portion of said irradiating optical waveguide forming said illuminating side surface and an outer peripheral portion of said reflecting optical waveguide forming said reflecting side surface propagate inward. It is preferable that a cladding region that reflects the light to be transmitted is formed, and a core region for transmitting the light is formed in a portion surrounded by the cladding region.

【0035】この位置測定装置では、照射光導波路や反
射光導波路が、光ファイバ変位計の光ファイバと同様の
構成を有するので、光を問題なく伝搬させることがで
き、光ファイバ変位計と同様の利点を問題なく得られ
る。
In this position measuring device, since the irradiation optical waveguide and the reflected optical waveguide have the same configuration as the optical fiber of the optical fiber displacement meter, light can be propagated without any problem, and the same as the optical fiber displacement meter. The benefits can be obtained without problems.

【0036】請求項7の位置測定装置において、前記コ
ア領域は、石英系ガラス、多成分系ガラスおよびプラス
チックのいずれかから成ることが好ましい。
[0036] In the position measuring device according to claim 7, it is preferable that the core region is made of any of quartz-based glass, multi-component glass and plastic.

【0037】この位置測定装置では、光を伝搬させるコ
ア領域が、光ファイバのコア領域と同等の材質から成る
ので、光を問題なく伝搬させることができる。
In this position measuring device, since the core region for transmitting light is made of the same material as the core region of the optical fiber, light can be transmitted without any problem.

【0038】請求項7または8の位置測定装置におい
て、前記クラッド領域は、光を反射する金属系の物質ま
たは前記コア領域より屈折率の低い誘電体から成ること
が好ましい。
In the position measuring apparatus according to claim 7 or 8, it is preferable that the cladding region is made of a metal material that reflects light or a dielectric material having a lower refractive index than the core region.

【0039】この位置測定装置では、内部に伝搬する光
を反射させるクラッド領域が、例えば金などの光を反射
する金属系の物質や、コア領域より屈折率の低い誘電体
から成るので、内部の光をコア領域とクラッド領域の境
界で反射させることができ、これにより、光を問題なく
伝搬させることができる。
In this position measuring device, the cladding region for reflecting light propagating inside is made of a metal-based material that reflects light, such as gold, or a dielectric material having a lower refractive index than the core region. Light can be reflected at the boundary between the core region and the cladding region, so that the light can be propagated without any problem.

【0040】請求項7ないし9のいずれかの位置測定装
置において、前記照射光導波路および前記反射光導波路
は、電気めっき法、物理気相合成法および化学気相合成
法のいずれかを含む作製方法により作製されることが好
ましい。
10. The position measuring apparatus according to claim 7, wherein said irradiation light waveguide and said reflection light waveguide are formed by any one of an electroplating method, a physical vapor synthesis method and a chemical vapor synthesis method. It is preferable to be produced by

【0041】この位置測定装置では、照射光導波路およ
び反射光導波路が、金などの金属等の電気めっき法、真
空蒸着やスパッタリングなどの物理気相合成法、およ
び、熱CVDやプラズマCVDなどの化学気相合成法の
いずれかを含む作製方法で作製される。すなわち、これ
らの作製方法によれば、いわゆる薄膜化されたコア領域
やクラッド領域を作製でき、小型化に有効であるととも
に、各光導波路を薄くできることにより、感度を向上さ
せ、さらに高分解能・広帯域の特性を有する位置測定装
置とすることができる。
In this position measuring device, the irradiation optical waveguide and the reflected optical waveguide are formed by electroplating a metal such as gold, physical vapor synthesis such as vacuum evaporation or sputtering, and chemical vapor deposition such as thermal CVD or plasma CVD. It is manufactured by a manufacturing method including any of the gas phase synthesis methods. In other words, according to these manufacturing methods, a so-called thinned core region or clad region can be manufactured, which is effective for miniaturization, and since each optical waveguide can be thinned, sensitivity is improved, and further high resolution and wide band A position measuring device having the following characteristics can be obtained.

【0042】また、これらの作製方法は、他の装置や部
品等を作製するためにも一般的に用いられる作製方法で
あるため、他の目的で購入した既存の設備等を使用して
作製し易く、この場合、特別な設備投資等が不要とな
る。また、いずれの方法も光導波路の表面を平面化し易
いので、例えば照射光導波路の第2仮想側面を含む照射
側面と反射光導波路の第3仮想側面を含む反射側面とを
接合する場合も接合し易い。
Since these manufacturing methods are generally used for manufacturing other devices and parts, they are manufactured using existing equipment purchased for other purposes. In this case, no special capital investment is required. In addition, since the surface of the optical waveguide is easily planarized by any of the methods, for example, when the irradiation side surface including the second virtual side surface of the irradiation optical waveguide and the reflection side surface including the third virtual side surface of the reflection optical waveguide are bonded to each other. easy.

【0043】請求項1ないし10のいずれかの位置測定
装置において、前記入射面および前記検出面を含む仮想
の平面と前記照射面および前記受光面を含む仮想の平面
の2つの平行な仮想の平面間において、前記照射側面の
前記第1仮想側面と前記第2仮想側面の間を連結する側
面および/または前記反射側面の前記第3仮想側面と前
記第4仮想側面の間を連結する側面が、複数の平面から
成ることが好ましい。
11. The position measuring apparatus according to claim 1, wherein two parallel virtual planes, a virtual plane including the incident surface and the detection surface, and a virtual plane including the irradiation surface and the light receiving surface. A side surface connecting the first virtual side surface and the second virtual side surface of the irradiation side surface and / or a side surface connecting the third virtual side surface and the fourth virtual side surface of the reflection side surface, It preferably comprises a plurality of planes.

【0044】この位置測定装置では、照射側面の前記第
1仮想側面と前記第2仮想側面の間を連結する側面およ
び/または前記反射側面の前記第3仮想側面と前記第4
仮想側面の間を連結する側面が、複数の平面から成るの
で、照射光導波路の仮想照射光導波路を含む部位および
/または反射光導波路の仮想反射光導波路を含む部位
は、複数の平側面を有する角柱形状となる。このため、
光ファイバ等のように曲面を含む場合に比べて、製造が
容易になるので、製造コストを低減できる。
In this position measuring device, the side surface connecting the first virtual side surface and the second virtual side surface of the irradiation side surface and / or the third virtual side surface of the reflection side surface and the fourth virtual side surface are connected to each other.
Since the side surface connecting between the virtual side surfaces is composed of a plurality of planes, the portion of the irradiation light guide including the virtual irradiation light guide and / or the portion of the reflection light guide including the virtual reflection light guide has a plurality of flat side surfaces. It has a prismatic shape. For this reason,
Manufacturing is easier than in the case where the optical fiber includes a curved surface such as an optical fiber, so that manufacturing costs can be reduced.

【0045】請求項11の位置測定装置において、前記
複数の平面は、4つの平面であることが好ましい。
Preferably, the plurality of planes are four planes.

【0046】この位置測定装置では、仮想照射光導波路
を含む部位および/または反射光導波路の仮想反射光導
波路を含む部位が四角柱形状となり、角柱の中でも最も
扱い易く製造し易いものとなるので、さらに製造コスト
を低減でき、コストダウンが図れる。
In this position measuring device, the portion including the virtual irradiation optical waveguide and / or the portion including the virtual reflection optical waveguide of the reflection optical waveguide has a quadrangular prism shape, which is the most easy to handle and manufacture among the prisms. Further, the manufacturing cost can be reduced, and the cost can be reduced.

【0047】請求項1ないし12のいずれかの位置測定
装置において、前記照射制御面および前記反射制御面の
それぞれの光軸が相互に異なる方向に定められているこ
とが好ましい。
In the position measuring device according to any one of claims 1 to 12, it is preferable that the respective optical axes of the irradiation control surface and the reflection control surface are set in directions different from each other.

【0048】仮想照射光導波路の光軸と仮想反射光導波
路との光軸は、双方を含む仮想の平面内において平行な
ので、それらと一致する入射面の光軸と検出面の光軸と
は平行となるが、この位置測定装置では、照射制御面お
よび反射制御面のそれぞれの光軸が相互に異なる方向に
定められている。すなわち、照射制御面の光軸が入射面
の光軸と所定の角度を有するように定められているか、
反射制御面の光軸が検出面の光軸と所定の角度を有する
ように定められているか、または双方とも所定の角度に
かつ相互に異なるように定められている。
Since the optical axis of the virtual irradiation optical waveguide and the optical axis of the virtual reflection optical waveguide are parallel in a virtual plane including both, the optical axis of the incident surface and the optical axis of the detection surface that coincide with them are parallel. However, in this position measuring device, the respective optical axes of the irradiation control surface and the reflection control surface are determined in directions different from each other. That is, whether the optical axis of the irradiation control surface is determined to have a predetermined angle with the optical axis of the incident surface,
The optical axis of the reflection control surface is determined to have a predetermined angle with the optical axis of the detection surface, or both are determined to have a predetermined angle and differ from each other.

【0049】光源が発する入射光の光軸が照射制御面の
光軸に合うようにあるいは所定の入射角となるように光
源を配置し、反射制御面から発射される検出光を受光し
やすいように反射制御面の光軸に合わせて受光部を配置
する場合、照射制御面の光軸と反射制御面の光軸の方向
を同じにすると、光源と受光部を同じ方向に配置する必
要があり、配置し難い。この位置測定装置では、照射制
御面および反射制御面のそれぞれの光軸が相互に異なる
方向に定められているので、光源と受光部を配置し易く
なる。
The light source is arranged so that the optical axis of the incident light emitted from the light source matches the optical axis of the irradiation control surface or has a predetermined angle of incidence, so that the detection light emitted from the reflection control surface can be easily received. When arranging the light receiving unit along the optical axis of the reflection control surface, if the direction of the optical axis of the irradiation control surface is the same as that of the reflection control surface, the light source and the light receiving unit must be arranged in the same direction. , Difficult to place. In this position measuring device, since the respective optical axes of the irradiation control surface and the reflection control surface are set in mutually different directions, it is easy to arrange the light source and the light receiving unit.

【0050】この場合、光源や受光部をそれぞれ照射制
御面や反射制御面に近接して配置し易いように、照射制
御面および反射制御面のそれぞれの光軸を定めておけ
ば、光源や受光部を近接して配置することにより、装置
全体を小型化できる。なお、請求項1で前述のように、
照射側面の形状を光源から発する入射光が入射面に誘導
されるような形状にしたり、反射側面の形状を検出面か
らの検出光が受光部に誘導されるような形状にしたりす
ることができるので、照射制御面の光軸が入射面の光軸
と方向が異なったり、反射制御面の光軸が検出面の光軸
と方向が異なっても、問題は生じない。
In this case, if the optical axis of each of the irradiation control surface and the reflection control surface is determined so that the light source and the light receiving unit are easily arranged close to the irradiation control surface and the reflection control surface, respectively, By arranging the parts close to each other, the entire device can be downsized. In addition, as described above in claim 1,
The shape of the irradiation side surface can be made such that incident light emitted from the light source is guided to the incidence surface, or the shape of the reflection side surface can be made such that detection light from the detection surface is guided to the light receiving portion. Therefore, no problem occurs even if the direction of the optical axis of the irradiation control surface is different from the direction of the optical axis of the incident surface, or the direction of the optical axis of the reflection control surface is different from the direction of the optical axis of the detection surface.

【0051】請求項13の位置測定装置において、前記
照射制御面および前記反射制御面の一方の光軸は、前記
仮想照射光導波路および前記仮想反射光導波路の双方の
光軸を含む仮想の平面内において、前記仮想照射光導波
路の光軸と交差する関係となるように定められているこ
とが好ましい。
14. The position measuring device according to claim 13, wherein one of the optical axes of the irradiation control surface and the reflection control surface is within a virtual plane including the optical axes of both the virtual irradiation optical waveguide and the virtual reflection optical waveguide. Is preferably set so as to intersect with the optical axis of the virtual irradiation optical waveguide.

【0052】この位置測定装置では、照射制御面および
反射制御面の一方の光軸が、仮想照射光導波路および仮
想反射光導波路の双方の光軸を含む仮想の平面内におい
て、仮想照射光導波路の光軸と交差する関係となるよう
に定められている。すなわち、照射制御面の光軸を仮想
照射光導波路の光軸と交差する関係となるように定めれ
ば、他方の反射制御面の光軸を仮想反射光導波路の光軸
と合わせても、照射制御面および反射制御面のそれぞれ
の光軸が相互に異なる方向に定められ、逆に反射制御面
の光軸を仮想照射光導波路の光軸と交差する関係となる
ように定めれば、他方の照射制御面の光軸を仮想照射光
導波路の光軸と合わせても、同様に相互に異なる方向に
定められる。
In this position measuring device, one of the optical axes of the irradiation control surface and the reflection control surface is located within a virtual plane including the optical axes of both the virtual irradiation optical waveguide and the virtual reflection optical waveguide. It is determined so as to intersect with the optical axis. That is, if the optical axis of the irradiation control surface is determined so as to intersect with the optical axis of the virtual irradiation optical waveguide, the irradiation can be performed even if the optical axis of the other reflection control surface is aligned with the optical axis of the virtual reflection optical waveguide. If the respective optical axes of the control surface and the reflection control surface are defined in mutually different directions, and conversely, the optical axis of the reflection control surface is defined so as to intersect with the optical axis of the virtual irradiation optical waveguide, the other Even if the optical axis of the irradiation control surface is aligned with the optical axis of the virtual irradiation optical waveguide, the directions are similarly determined to be different from each other.

【0053】これにより、請求項13で前述のように、
照射制御面の光軸に合わせてあるいは所定の入射角とな
るように光源を近接して配置し、反射制御面の光軸に合
わせて受光部を近接して配置し易くなり、装置全体を小
型化できる。なお、この場合、光軸の交差する角度を直
角、すなわち直交するようにすれば、光源や受光部を第
1仮想側面等と平行に配置でき、さらに配置し易くな
る。
Thus, as described above in claim 13,
The light source is arranged close to the optical axis of the irradiation control surface or at a predetermined angle of incidence, and the light receiving unit is easily arranged close to the optical axis of the reflection control surface. Can be In this case, if the angle at which the optical axes intersect is set to be a right angle, that is, orthogonal, the light source and the light receiving unit can be arranged in parallel with the first virtual side surface and the like, and further easy to arrange.

【0054】請求項13の位置測定装置において、前記
照射制御面および前記反射制御面の一方の光軸は、前記
仮想照射光導波路および前記仮想反射光導波路の双方の
光軸を含む仮想の平面に対して交差する関係となるよう
に定められていることが好ましい。
14. The position measuring device according to claim 13, wherein one of the optical axes of the irradiation control surface and the reflection control surface is a virtual plane including the optical axes of both the virtual irradiation optical waveguide and the virtual reflection optical waveguide. It is preferable that the relationship is set so as to intersect with each other.

【0055】この位置測定装置では、照射制御面および
反射制御面の一方の光軸が、仮想照射光導波路および仮
想反射光導波路の双方の光軸を含む仮想の平面に対して
交差する関係となるように定められている。すなわち、
照射制御面の光軸を上記の仮想平面と交差するように定
めれば、他方の反射制御面の光軸を仮想反射光導波路の
光軸と合わせても、照射制御面および反射制御面のそれ
ぞれの光軸が相互に異なる方向に定められ、逆に反射制
御面の光軸を上記仮想平面と交差するように定めれば、
他方の照射制御面の光軸を仮想照射光導波路の光軸と合
わせても、同様に相互に異なる方向に定められる。
In this position measuring device, one of the optical axes of the irradiation control surface and the reflection control surface intersects a virtual plane including the optical axes of both the virtual irradiation optical waveguide and the virtual reflection optical waveguide. It is determined as follows. That is,
If the optical axis of the irradiation control surface is determined to intersect with the virtual plane, even if the optical axis of the other reflection control surface is aligned with the optical axis of the virtual reflection optical waveguide, each of the irradiation control surface and the reflection control surface If the optical axis of the reflection control surface is determined to be different from each other and the optical axis of the reflection control surface is determined to intersect the virtual plane,
Even if the optical axis of the other irradiation control surface is aligned with the optical axis of the virtual irradiation optical waveguide, the directions are similarly determined to be different from each other.

【0056】これにより、請求項13で前述のように、
照射制御面の光軸に合わせてあるいは所定の入射角とな
るように光源を近接して配置し、反射制御面の光軸に合
わせて受光部を近接して配置し易くなり、装置全体を小
型化できる。なお、この場合、光軸の交差する角度を直
角、すなわち直交するようにすれば、光源や受光部を上
記の仮想の平面と平行に配置できる。これは、特に請求
項12で前述の仮想照射光導波路や仮想反射光導波路を
含む部位が四角柱形状の場合に、光源や受光部を第1仮
想側面等と直角な側面に対向して平行に配置でき、配置
し易い。
As a result, as described above,
The light source is arranged close to the optical axis of the irradiation control surface or at a predetermined angle of incidence, and the light receiving unit is easily arranged close to the optical axis of the reflection control surface. Can be In this case, if the angle at which the optical axes intersect is set to be a right angle, that is, orthogonal, the light source and the light receiving unit can be arranged in parallel with the virtual plane. In particular, when the portion including the virtual irradiation optical waveguide and the virtual reflection optical waveguide described in claim 12 has a quadrangular prism shape, the light source and the light receiving unit are opposed to and parallel to the side surface perpendicular to the first virtual side surface and the like. Can be arranged and easy to arrange.

【0057】請求項1ないし15のいずれかの位置測定
装置において、前記受光部を、前記照射光導波路および
前記反射光導波路とともに一体化して、1つのパッケー
ジ内に納めたことが好ましい。
In the position measuring device according to any one of the first to fifteenth aspects, it is preferable that the light receiving unit is integrated with the irradiation light waveguide and the reflection light waveguide and is housed in one package.

【0058】受光部が例えばフォトダイオード等のよう
に小型化が可能なもので構成されている場合、一般的な
電子部品と同様に樹脂等によりモールドしてパッケージ
化できる。この位置測定装置では、受光部を照射光導波
路および反射光導波路とともに一体化して、1つのパッ
ケージ内に納めるので、さらに小型化が可能になり、扱
い易くなるとともに、大量生産が可能になるので、材料
(資材コスト)や製造(製造コスト)などに関して、コ
ストダウンが図れる。特に請求項13ないし15で上述
のように、受光部を反射光導波路に近接できる場合に
は、小型化し易くパッケージ化し易い。
When the light receiving portion is made of a material that can be reduced in size, such as a photodiode, it can be packaged by molding with resin or the like, similarly to general electronic components. In this position measuring device, the light receiving unit is integrated with the irradiation optical waveguide and the reflection optical waveguide and is housed in one package, so that the size can be further reduced, the handling becomes easier, and mass production becomes possible. Cost reduction can be achieved for materials (material costs) and manufacturing (manufacturing costs). In particular, when the light receiving portion can be close to the reflection optical waveguide as described above, it is easy to reduce the size and package.

【0059】請求項1ないし16のいずれかの位置測定
装置において、仮に前記反射光導波路が前記照射光導波
路の左側に配置されていると見て、前記反射光導波路を
左反射光導波路としたとき、この左反射光導波路に対し
て前記照射光導波路を挟んで反対側の右側の位置に配設
され、前記左反射光導波路と同等の構成を有する右反射
光導波路をさらに備えたことが好ましい。
In the position measuring apparatus according to any one of claims 1 to 16, when it is assumed that the reflected light waveguide is disposed on the left side of the irradiation light waveguide, the reflected light waveguide is a left reflected light waveguide. It is preferable to further include a right reflected light waveguide that is disposed at a position on the right side opposite to the left reflected light waveguide with the irradiation light waveguide interposed therebetween, and has the same configuration as the left reflected light waveguide.

【0060】請求項1ないし16で前述の位置測定装置
において、仮に前記反射光導波路が照射光導波路の左側
に配置されていると見ると、前述の平行な4つの側面の
うちの第1仮想側面が最も右側の側面、第4仮想側面が
最も左側の側面となる。ここで、照射面から例えば発散
光を照射すると、その照射(投光)範囲と左側の前記反
射光導波路(左反射光導波路)の受光範囲との重なった
部分からの反射光が、左反射光導波路の受光面に入射さ
れ、測定ギャップの測定に使用されるが、照射光の右側
への反射光は測定に使用されず、測定に対する照射効率
が低い。
In the position measuring device according to any one of claims 1 to 16, if it is assumed that the reflected light waveguide is disposed on the left side of the irradiation light waveguide, the first virtual side surface among the four parallel side surfaces described above. Is the rightmost side, and the fourth virtual side is the leftmost side. Here, for example, when divergent light is irradiated from the irradiation surface, the reflected light from the overlapping portion of the irradiation (light projection) range and the light receiving range of the left reflected light waveguide (left reflected light waveguide) is converted to the left reflected light guide. Although it is incident on the light receiving surface of the wave path and used for measuring the measurement gap, the reflected light to the right of the irradiation light is not used for the measurement, and the irradiation efficiency for the measurement is low.

【0061】そこで、この位置測定装置では、反対側
(右側)にも同等の構成を有する反射光導波路(右反射
光導波路)を配設し、照射光の右側への反射光も測定に
使用できるようにすることにより、測定に対する照射効
率を向上させ、感度(分解能等)をより高くすることが
できる。
Therefore, in this position measuring device, a reflected light waveguide (right reflected light waveguide) having the same configuration is provided on the opposite side (right side), and the reflected light to the right side of the irradiation light can be used for measurement. By doing so, the irradiation efficiency for measurement can be improved, and the sensitivity (resolution, etc.) can be further increased.

【0062】また、レーザ光などの集束性等の強い種類
の光を照射光として利用する場合、入射面から所定の入
射角で入射した入射光を、第1仮想側面と第2仮想側面
との間を反射させながら伝搬させ、照射光として左側の
第2仮想側面側に照射面の光軸と所定の発射角で照射す
ることになるが、この場合、入射光の入射角や照射光導
波路の光路長が(例えば設計値と)僅かに異なれば、本
来左側に照射されるべき照射光の一部または全部が、反
対側の右側に照射されるので、測定に支障が生じる。
When light of a strong type such as laser light or the like having a high convergence property is used as irradiation light, incident light incident from the incident surface at a predetermined incident angle is formed between the first virtual side surface and the second virtual side surface. The light is propagated while being reflected, and the irradiation light is irradiated on the second virtual side surface on the left side at a predetermined launch angle with the optical axis of the irradiation surface. In this case, the incident angle of the incident light and the irradiation light waveguide If the optical path length is slightly different (for example, from a design value), a part or all of the irradiation light that should be radiated to the left side is radiated to the right side on the opposite side.

【0063】この位置測定装置では、右反射光導波路を
配設するため、逆方向の反射光も受光でき、入射光の入
射角や照射光導波路の光路長が設計値と僅かに異なって
も高分解能を維持できるので、製作し易くなり、パッケ
ージ化するような場合にもその歩留まりが向上する。特
に全体が小型化され反射光導波路の材料が安価な(資材
コストが低い)のに対してその製造コストが比較的に高
い場合に、コストダウンが図れる。
In this position measuring device, since the right reflected light waveguide is provided, the reflected light in the opposite direction can also be received. Even if the incident angle of the incident light and the optical path length of the irradiation light waveguide are slightly different from the design values, the position measuring device is high. Since the resolution can be maintained, the production becomes easy, and the yield is improved even in the case of packaging. In particular, cost reduction can be achieved when the whole is miniaturized and the material of the reflected light waveguide is inexpensive (material cost is low), but the manufacturing cost is relatively high.

【0064】請求項17の位置測定装置において、前記
左反射光導波路および前記右反射光導波路は、前記仮想
照射光導波路の光軸を含み前記第1仮想側面と平行な平
面を対称面として、面対称の関係となるように配設され
たことが好ましい。
18. The position measuring apparatus according to claim 17, wherein the left reflected optical waveguide and the right reflected optical waveguide are symmetrical with respect to a plane including the optical axis of the virtual irradiation optical waveguide and being parallel to the first virtual side surface. It is preferable that they are arranged so as to have a symmetrical relationship.

【0065】この位置測定装置では、左反射光導波路お
よび右反射光導波路が、仮想照射光導波路の光軸を含み
第1仮想側面と平行な平面を対称面(鏡映面)として、
面対称(平面対称)の関係となるように配設されている
ので、反射制御面の光軸や反射測定面の光軸も、同様の
面対称の関係となる。この場合、例えば左反射光導波路
の反射測定面の光軸を仮想照射光導波路側に傾けて、反
射光を受光面に入射し易くしていれば、反対側の右反射
光導波路でも、反射光を受光面に入射し易くなってい
る。
In this position measuring device, the left reflected optical waveguide and the right reflected optical waveguide are defined as planes of symmetry (mirror planes) that include the optical axis of the virtual irradiation optical waveguide and are parallel to the first virtual side surface.
Since the optical axis of the reflection control surface and the optical axis of the reflection measurement surface have the same plane symmetry because they are arranged so as to have a plane symmetry (plane symmetry). In this case, for example, if the optical axis of the reflection measurement surface of the left reflected light waveguide is inclined toward the virtual irradiation light waveguide side so that the reflected light can easily enter the light receiving surface, the reflected light can be reflected on the opposite right reflected light waveguide. Is easily incident on the light receiving surface.

【0066】請求項18の位置測定装置において、前記
左反射光導波路および右反射光導波路の各反射制御面
は、前記仮想照射光導波路の光軸と両方の仮想反射光導
波路の光軸を含む仮想の平面に対して、各反射制御面の
光軸が交差する関係となるように設けられていることが
好ましい。
The position measuring apparatus according to claim 18, wherein each of the reflection control surfaces of the left reflected optical waveguide and the right reflected optical waveguide includes a virtual axis including the optical axis of the virtual irradiation optical waveguide and the optical axes of both virtual reflected optical waveguides. Is preferably provided so that the optical axis of each reflection control surface intersects with the plane of.

【0067】この位置測定装置では、左反射光導波路お
よび右反射光導波路の各反射制御面が、仮想照射光導波
路の光軸と両方の仮想反射光導波路の光軸を含む仮想の
平面に対して、各反射制御面の光軸が交差する関係とな
るように設けられている。このため、照射制御面の光軸
が上記の仮想の平面内にあり、それに合わせて光源が近
接して配置されていても、各反射制御面をその仮想の平
面外に設けることができるので、各反射制御面の光軸に
合わせて受光部を近接して配置し易い。
In this position measuring device, each reflection control surface of the left reflected light waveguide and the right reflected light waveguide is positioned with respect to a virtual plane including the optical axis of the virtual irradiation light waveguide and the optical axes of both virtual reflected light waveguides. Are provided so that the optical axes of the respective reflection control surfaces intersect. For this reason, even if the optical axis of the irradiation control surface is in the above-mentioned virtual plane and the light source is arranged close to it, each reflection control surface can be provided outside the virtual plane, It is easy to dispose the light receiving section close to the optical axis of each reflection control surface.

【0068】請求項19の位置測定装置において、前記
各反射制御面の光軸の交差する角度が直角であることを
が好ましい。
In the position measuring apparatus according to the nineteenth aspect, it is preferable that the angle at which the optical axes of the respective reflection control surfaces intersect is a right angle.

【0069】この位置測定装置では、仮想照射光導波路
の光軸と両方の仮想反射光導波路の光軸を含む仮想の平
面に対して、各反射制御面の光軸が交差する角度が直
角、すなわち、直交するので、各反射制御面の光軸は、
第1仮想側面ないし第4仮想側面等を含む平面等と平行
な平面内に含まれ、かつ、仮想照射光導波路や反射光導
波路の光軸と直交する関係となる。
In this position measuring device, the angle at which the optical axis of each reflection control surface intersects at right angles with the virtual plane including the optical axis of the virtual irradiation optical waveguide and the optical axes of both virtual reflection optical waveguides, that is, , So that the optical axis of each reflection control surface is
It is included in a plane parallel to a plane including the first virtual side surface to the fourth virtual side surface and the like, and has a relationship orthogonal to the optical axis of the virtual irradiation optical waveguide or the reflection optical waveguide.

【0070】この場合、上記の仮想の平面に平行な平面
内に各反射制御面を設ければ、各反射制御面と平行かつ
対向するように、双方の受光部を配置できる。また、受
光部と双方の反射制御面との距離を同一距離にできるの
で、双方からの受光量などの受光結果を同等に扱え、受
光部を簡易な構成にし易くなる。
In this case, if each reflection control surface is provided in a plane parallel to the above imaginary plane, both light receiving sections can be arranged so as to be parallel to and opposed to each reflection control surface. In addition, since the distance between the light receiving unit and both reflection control surfaces can be the same, light receiving results such as the amount of light received from both can be treated equally, and the light receiving unit can be easily configured with a simple configuration.

【0071】また、特に請求項12で前述のように、仮
想照射光導波路や仮想反射光導波路を含む部位が四角柱
形状の場合、上記の仮想の平面に平行な側面を有するの
で、その側面を含む平面またはそれと平行な少し内側の
平面内に各反射制御面を設ければ、左反射光導波路およ
び右反射光導波路と近接して、双方の受光部を配置で
き、装置全体を小型化できる。
As described above, when the portion including the virtual irradiation optical waveguide and the virtual reflection optical waveguide has a quadrangular prism shape, the side surface is parallel to the virtual plane. If each reflection control surface is provided in a plane including or a slightly inside plane parallel to the plane, both light receiving sections can be arranged close to the left reflected light waveguide and the right reflected light waveguide, and the entire device can be downsized.

【0072】請求項19または20の位置測定装置にお
いて、前記各反射制御面は、前記仮想の平面の相互に同
一の前後いずれかの方向に向かって、各検出光を発射す
るように設けられていることが好ましい。
21. The position measuring apparatus according to claim 19, wherein each reflection control surface is provided so as to emit each detection light toward any one of front and rear directions of the virtual plane. Is preferred.

【0073】この位置測定装置では、左反射光導波路お
よび右反射光導波路の各反射制御面が、上記の仮想照射
光導波路の光軸と両方の仮想反射光導波路の光軸を含む
仮想の平面に対して各反射制御面の光軸が交差する関係
となる相互に同一の前後いずれかの方向に向かって、各
検出光を発射するように設けられているので、その方向
に各検出光を受光する受光部を配置できる。この場合、
相互に同一の方向なので、双方の検出光を受光する同一
の受光部でも良い。
In this position measuring device, each reflection control surface of the left reflected light waveguide and the right reflected light waveguide is formed on a virtual plane including the optical axis of the virtual irradiation light waveguide and the optical axes of both virtual reflected light waveguides. On the other hand, each detection control surface is provided so as to emit each detection light in the same front or rear direction where the optical axis of each reflection control surface intersects, so that each detection light is received in that direction A light receiving unit to be operated can be arranged. in this case,
Since the directions are mutually the same, the same light receiving unit that receives both detection lights may be used.

【0074】請求項17の位置測定装置において、前記
右反射光導波路は、前記仮想照射光導波路の光軸を対称
中心軸として前記左反射光導波路を180°回転させた
関係となるように配設されたことが好ましい。
17. The position measuring apparatus according to claim 17, wherein the right reflected optical waveguide is disposed so as to have a relationship in which the left reflected optical waveguide is rotated by 180 ° with the optical axis of the virtual irradiation optical waveguide as a central axis of symmetry. It is preferred that

【0075】請求項1で前述のように、(左)反射光導
波路の反射側面の第3仮想側面および第4仮想側面を除
く形状は、任意の形状とすることができるため、例えば
その反射制御面の光軸や反射測定面の光軸を仮想反射光
導波路の光軸と異なる方向に配設して、検出面からの検
出光を受光部で検出し易くしたり反射光を受光面に入射
し易くしたりすることができる。
As described in the first aspect, the shape of the reflection side of the (left) reflection optical waveguide except for the third virtual side and the fourth virtual side can be any shape. The optical axis of the surface and the optical axis of the reflection measurement surface are arranged in a direction different from the optical axis of the virtual reflection optical waveguide, so that the light detected from the detection surface can be easily detected by the light receiving unit or the reflected light enters the light receiving surface Can be made easier.

【0076】この位置測定装置では、右反射光導波路
が、仮想照射光導波路の光軸を対称中心軸として左反射
光導波路を180°回転させた関係となるように配設さ
れているので、反射制御面の光軸や反射測定面の光軸
も、仮想照射光導波路の光軸を中心軸として180°回
転させた関係となる。この場合、請求項18の位置測定
装置と同様に、例えば左反射光導波路の反射測定面の光
軸を仮想照射光導波路側に傾けて反射光を受光面に入射
し易くしていれば、反対側の右反射光導波路でも反射光
を受光面に入射し易くなっている。
In this position measuring device, since the right reflected optical waveguide is disposed so that the left reflected optical waveguide is rotated by 180 ° with the optical axis of the virtual irradiation optical waveguide as the central axis of symmetry, the reflected light is reflected. The optical axis of the control surface and the optical axis of the reflection measurement surface also have a relationship in which the optical axis of the virtual irradiation optical waveguide is rotated by 180 ° around the central axis. In this case, similarly to the position measuring device of claim 18, if, for example, the optical axis of the reflection measurement surface of the left reflected light waveguide is inclined to the virtual irradiation light waveguide side to make the reflected light easily enter the light receiving surface, the opposite is true. The reflected light is also easily incident on the light receiving surface of the right reflected light waveguide on the side.

【0077】請求項18または22の位置測定装置にお
いて、前記左反射光導波路および右反射光導波路の各反
射制御面は、前記照射光導波路側を内側としたときの外
側に向かって、各検出光を発射するように設けられてい
ることが好ましい。
27. The position measuring apparatus according to claim 18, wherein each of the reflection control surfaces of the left reflected light waveguide and the right reflected light waveguide faces each detection light toward the outside when the irradiation light waveguide side is inside. Is preferably provided.

【0078】この位置測定装置では、左反射光導波路お
よび右反射光導波路の各反射制御面が、照射光導波路側
を内側としたときの外側に向かって、各検出光を発射す
るように設けられているので、各検出光を受光する受光
部をそれぞれ個別に外側に配置できる。
In this position measuring device, each reflection control surface of the left reflected light waveguide and the right reflected light waveguide is provided so as to emit each detection light toward the outside when the irradiation light waveguide side is inside. Therefore, the light receiving portions for receiving the respective detection lights can be individually arranged outside.

【0079】請求項23の位置測定装置において、前記
左反射光導波路および右反射光導波路の各反射制御面
は、前記仮想照射光導波路の光軸と両方の仮想反射光導
波路の光軸を含む仮想の平面内において、各反射制御面
の光軸が各仮想反射光導波路の光軸と直交する関係とな
るように設けられていることが好ましい。
[0079] In the position measuring apparatus according to claim 23, each of the reflection control surfaces of the left reflected optical waveguide and the right reflected optical waveguide includes a virtual axis including the optical axis of the virtual irradiation optical waveguide and the optical axes of both virtual reflected optical waveguides. Is preferably provided such that the optical axis of each reflection control surface is orthogonal to the optical axis of each virtual reflection optical waveguide.

【0080】この位置測定装置では、左反射光導波路お
よび右反射光導波路の各反射制御面が、仮想照射光導波
路の光軸と両方の仮想反射光導波路の光軸を含む仮想の
平面内において、各反射制御面の光軸が各仮想反射光導
波路の光軸と直交する関係となるように設けられてい
る。
In this position measuring device, each of the reflection control surfaces of the left reflected light waveguide and the right reflected light waveguide is formed in a virtual plane including the optical axis of the virtual irradiation light waveguide and the optical axes of both virtual reflected light waveguides. The optical axis of each reflection control surface is provided so as to be orthogonal to the optical axis of each virtual reflection optical waveguide.

【0081】すなわち、各反射制御面の光軸は、第1仮
想側面や第4仮想側面等を含む平面等と直交する関係と
なるので、外側の第4仮想側面を含む平面内またはそれ
と平行な少し内側の平面内に各反射制御面を設ければ、
左反射光導波路および右反射光導波路と近接して、各検
出光を受光する受光部を個別に配置でき、装置全体を小
型化できる。
That is, since the optical axis of each reflection control surface is orthogonal to the plane including the first virtual side surface and the fourth virtual side surface, the optical axis is within the plane including the outer fourth virtual side surface or parallel to it. If each reflection control surface is provided in a plane slightly inside,
Light receiving sections for receiving each detection light can be individually arranged in proximity to the left reflected light waveguide and the right reflected light waveguide, and the entire device can be miniaturized.

【0082】請求項1ないし20のいずれかの位置測定
装置において、前記仮想反射光導波路を前記第1仮想側
面と平行な平面で複数に分割したそれぞれを仮想部分反
射光導波路とし、複数の仮想部分反射光導波路の各4つ
の側面のうちの前記第1仮想側面と平行な各2つの側面
のそれぞれを仮想部分平行側面とし、複数の仮想部分平
行側面のうちの前記第3仮想側面および前記第4仮想側
面以外の他の側面のそれぞれを仮想部分接合側面とし、
前記仮想反射光導波路は前記複数の仮想部分反射光導波
路の各1つの仮想部分接合側面同士を4辺が合うように
平行に対向させて隣接または接合して構成されたものと
し、各仮想部分反射光導波路についてその上底面および
下底面のうちの前記受光面を構成する方を部分受光面と
して前記検出面を構成する方を部分検出面としたとき、
前記反射光導波路は、それぞれ前記複数の仮想部分反射
光導波路のうちの各1つに対応してそれを内部に含む複
数の部分反射光導波路を有して、それらの全てを隣接ま
たは接合して構成され、前記複数の部分反射光導波路の
それぞれは、前記反射光の一部または全部を部分反射光
として前記部分受光面に入射して内部の仮想部分反射光
導波路内を伝搬させ、伝搬させた前記部分反射光に対応
する前記検出光の一部または全部を部分検出光として前
記部分検出面から発射させるとともに、前記部分反射光
を前記部分受光面に入射する部分反射測定面と、前記部
分検出面からの前記部分検出光を前記受光部に発射する
部分反射制御面と、前記内部の仮想部分反射光導波路の
前記仮想部分平行側面を含み、前記部分反射測定面が含
む閉じた面のその外周の全ておよび前記部分反射制御面
が含む外周が閉じた面のその外周の全てを連結して、伝
搬する光を内部に閉じこめる部分反射側面と、を有し、
前記反射側面は、前記複数の部分反射光導波路の前記部
分反射側面の全てを含み、かつ、それらに含まれる前記
仮想部分接合側面の全てを前記仮想反射光導波路に対応
するように隣接または接合して構成され、前記反射測定
面は、前記複数の部分反射光導波路の部分反射測定面の
全てを含み、前記反射制御面は、前記複数の部分反射光
導波路の部分反射制御面の全てを含むことが好ましい。
21. The position measuring apparatus according to claim 1, wherein said virtual reflected optical waveguide is divided into a plurality of portions by a plane parallel to said first virtual side surface, and each of said divided portions is defined as a virtual partially reflected optical waveguide. Each of the two side surfaces parallel to the first virtual side surface among the four side surfaces of the reflected light waveguide is defined as a virtual portion parallel side surface, and the third virtual side surface and the fourth side surface of the plurality of virtual portion parallel side surfaces are used. Each of the other sides other than the virtual side is a virtual partial joint side,
The virtual reflected light waveguide is formed by adjoining or joining each one virtual partial junction side of the plurality of virtual partially reflected optical waveguides in parallel so that four sides thereof are aligned with each other. When the light guide surface constituting the light receiving surface of the upper bottom surface and the lower bottom surface of the optical waveguide is a partial light receiving surface and the one constituting the detection surface is a partial detection surface,
The reflected light waveguide has a plurality of partially reflected light waveguides respectively corresponding to each one of the plurality of virtual partially reflected light waveguides, and includes a plurality of partially reflected light waveguides adjacent to or joined to each other. Each of the plurality of partially reflected light waveguides is made to partially or entirely enter the reflected light as the partially reflected light, enter the partial light receiving surface, propagate through the inside virtual partially reflected light waveguide, and propagate the light. A part or all of the detection light corresponding to the partial reflected light is emitted from the partial detection surface as partial detection light, and the partial reflection measurement surface for causing the partial reflected light to enter the partial light receiving surface; A partial reflection control surface for emitting the partial detection light from the surface to the light receiving portion, including the virtual partial parallel side surface of the internal virtual partial reflection optical waveguide, and a closed surface included in the partial reflection measurement surface; By connecting all of the periphery of all and periphery the partial reflection control surface comprises a circumferential closed surface, anda partially reflective side confining therein the light propagating,
The reflective side surface includes all of the partially reflective side surfaces of the plurality of partially reflected optical waveguides, and adjoins or joins all of the virtual partially joined side surfaces included therein so as to correspond to the virtual reflected optical waveguide. The reflection measurement surface includes all of the partial reflection measurement surfaces of the plurality of partially reflected light waveguides, and the reflection control surface includes all of the partial reflection control surfaces of the plurality of partially reflected light waveguides. Is preferred.

【0083】この位置測定装置において、複数の部分反
射光導波路の部分反射側面に含まれる仮想部分平行側面
は、同一サイズの平行な平面であり、そのうちの第3仮
想側面および第4仮想側面以外の側面である仮想部分接
合側面は、それぞれ他の1つの仮想部分接合側面と4辺
が合うように平行に対向させて隣接または接合してい
る。この場合、各仮想部分接合側面は同一サイズの平面
同士なので接合し易く、また、円柱状の光ファイバを接
合する場合のような間隙は生じない。
In this position measuring device, the virtual partial parallel side surfaces included in the partial reflection side surfaces of the plurality of partial reflection optical waveguides are parallel planes of the same size, of which the planes other than the third virtual side surface and the fourth virtual side surface are included. The imaginary part joining side faces, which are side faces, are adjacent to or joined to each other in parallel so that the four sides are in parallel with one other imaginary part joining side face. In this case, since the imaginary partial bonding side faces are planes of the same size, they can be easily bonded to each other, and there is no gap as in the case of bonding cylindrical optical fibers.

【0084】この位置測定装置では、反射側面が、複数
の部分反射光導波路の部分反射側面の全てを含み、か
つ、それらに含まれる仮想部分接合側面の全てを仮想反
射光導波路に対応するように隣接または接合して構成さ
れるため、反射光導波路が、複数の部分反射光導波路の
全てを隣接または接合して構成されても、円柱状の光フ
ァイバを接合するより接合し易く、かつリニアリティを
害するような間隙が生じにくい。
In this position measuring device, the reflection side surface includes all of the partial reflection side surfaces of the plurality of partially reflected light waveguides, and all of the virtual partial junction side surfaces included therein correspond to the virtual reflection light waveguide. Because they are configured to be adjacent or joined, even if the reflected optical waveguide is configured to adjoin or join all of the plurality of partially reflected optical waveguides, it is easier to join than joining the columnar optical fibers, and the linearity is improved. It is unlikely that harmful gaps will occur.

【0085】一方、各部分反射光導波路は、反射光の一
部または全部を部分反射光として部分受光面に入射して
内部の仮想部分反射光導波路内を伝搬させ、伝搬させた
部分反射光に対応する検出光の一部または全部を部分検
出光として部分検出面から発射させ、反射光導波路は、
それらの部分反射光導波路の全てを隣接または接合して
構成される。
On the other hand, each of the partially reflected light waveguides receives a part or all of the reflected light as partially reflected light, enters the partial light receiving surface, propagates the inside of the internal virtual partially reflected light waveguide, and transmits the partially reflected light to the propagated partial reflected light. Part or all of the corresponding detection light is emitted from the partial detection surface as partial detection light, and the reflected light waveguide is
All of these partially reflected optical waveguides are adjacent or joined.

【0086】このため、この位置測定装置における反射
光導波路も、仮想反射光導波路の全てを含み、反射光を
受光面に入射して仮想反射光導波路内を伝搬させ、検出
面から検出光として発射させることになるので、請求項
1ないし23で前述の位置測定装置における反射光導波
路と同等の機能を果たすことができる。また、部分反射
光導波路単位で製造できるので、製造単位を小さくで
き、その分扱い易く、製造コストの低減が可能になる。
For this reason, the reflected light waveguide in this position measuring device also includes all of the virtual reflected light waveguides, and the reflected light enters the light receiving surface, propagates through the virtual reflected light waveguide, and is emitted from the detection surface as detection light. Therefore, the same function as the reflected light waveguide in the position measuring device described above can be achieved. In addition, since the device can be manufactured in units of the partially reflected optical waveguide, the manufacturing unit can be reduced, and it is easy to handle, and the manufacturing cost can be reduced.

【0087】また、この位置測定装置では、複数の部分
反射光導波路からの各部分検出光の受光結果による差分
を得ることができる。すなわち、差動型光ファイバ変位
計(精密工学会春季大会学術講演会講演論文集、p36
5〜366(1997)参照)と同様の原理により、入
射光量等の影響による光導波路内での光の減衰や測定対
象物の反射率に依存せずに、測定ギャップおよびその変
化を求められる。
Further, in this position measuring device, it is possible to obtain a difference based on a result of receiving each partial detection light from a plurality of partial reflection optical waveguides. That is, a differential type optical fiber displacement meter (Precision Engineering Society Spring Conference Academic Lectures, p36
5 to 366 (1997)), the measurement gap and its change can be obtained without depending on the attenuation of the light in the optical waveguide due to the influence of the amount of incident light and the reflectance of the object to be measured.

【0088】請求項25の位置測定装置において、前記
複数のうちの少なくとも2つの部分反射光導波路は、そ
れぞれの部分検出面から部分反射制御面までの光路長が
相互に異なることが好ましい。
In the position measuring apparatus according to the twenty-fifth aspect, it is preferable that at least two of the plurality of partially reflected optical waveguides have different optical path lengths from the respective partial detection surfaces to the partial reflection control surfaces.

【0089】この位置測定装置では、複数のうちの少な
くとも2つの部分反射光導波路において、それぞれの部
分検出面から部分反射制御面までの光路長が異なるた
め、個別に受光しやすい。すなわち、受光部分(例えば
フォトダイオード等のディテクタ)を(少なくとも)2
つ有する受光部で一括して受光するにしても、個別に配
置した受光部でそれぞれを受光するにしても、各部分反
射光導波路からの受光量を区別できる。このため、各部
分反射光導波路からの受光量の光量差を求め、差動型光
ファイバ変位計と同様の原理により、入射光量等の影響
による光導波路内での光の減衰や測定対象物の反射率に
依存せずに、測定ギャップおよびその変化を求められ
る。
In this position measuring device, at least two of the plurality of partially reflected optical waveguides have different optical path lengths from the respective partial detection surfaces to the partial reflection control surfaces, so that individual light is easily received. That is, the light receiving portion (for example, a detector such as a photodiode) is (at least) 2
The amount of light received from each of the partially reflected optical waveguides can be distinguished whether the light is received at one time by the light receiving units provided or by the individually arranged light receiving units. Therefore, the difference in the amount of light received from each of the partially reflected optical waveguides is determined, and the same principle as that of the differential optical fiber displacement meter is used to attenuate the light in the optical waveguide due to the influence of the amount of incident light and the like, and to measure The measurement gap and its change can be determined independently of the reflectivity.

【0090】請求項25または26の位置測定装置にお
いて、前記複数のうちの少なくとも2つの部分反射光導
波路の各部分反射制御面の光軸は、それぞれの仮想部分
反射光導波路の光軸を含む仮想の平面内に含まれること
が好ましい。
The position measuring apparatus according to claim 25 or 26, wherein an optical axis of each partial reflection control surface of at least two of said plurality of partially reflected optical waveguides includes an optical axis of each virtual partially reflected optical waveguide. Are preferably included in the plane.

【0091】この位置測定装置では、少なくとも2つの
部分反射光導波路の各部分反射制御面の光軸が、それぞ
れの仮想部分反射光導波路の光軸を含む仮想の平面内に
含まれるので、各部分反射制御面の光軸に合わせて双方
の部分検出光を一括して受光する受光部を配置するのに
適している。
In this position measuring device, the optical axis of each partial reflection control surface of at least two partially reflected optical waveguides is included in a virtual plane including the optical axis of each virtual partially reflected optical waveguide. It is suitable for arranging a light receiving unit that collectively receives both partial detection lights in accordance with the optical axis of the reflection control surface.

【0092】請求項25または26の位置測定装置にお
いて、前記複数のうちの少なくとも2つの部分反射光導
波路の各部分反射制御面は、それぞれの部分検出光が相
互に異なる方向に発射するように設けられていることが
好ましい。
27. The position measuring apparatus according to claim 25, wherein each of the partial reflection control surfaces of at least two of the plurality of partial reflection optical waveguides is provided such that respective partial detection lights are emitted in mutually different directions. Preferably.

【0093】この位置測定装置では、少なくとも2つの
部分反射光導波路の各部分反射制御面が、それぞれの部
分検出光が相互に異なる方向に発射するように設けられ
ているので、それぞれの部分検出光を受光する受光部を
個別に近接して配置するのに適している。
In this position measuring device, each partial reflection control surface of at least two partial reflection optical waveguides is provided so that each partial detection light is emitted in a direction different from each other. This is suitable for arranging the light receiving units for receiving light in close proximity to each other.

【0094】請求項28の位置測定装置において、前記
複数のうちの少なくとも2つの部分反射光導波路の各部
分反射制御面は、対応する少なくとも2つの仮想部分反
射光導波路の光軸を含む仮想の平面に対して、各部分反
射制御面の光軸が交差する関係となるように設けられて
いることが好ましい。
29. The position measuring apparatus according to claim 28, wherein each partial reflection control surface of at least two of the plurality of partially reflected optical waveguides is a virtual plane including optical axes of at least two corresponding virtual partially reflected optical waveguides. It is preferable that the partial reflection control surfaces are provided so as to intersect with each other.

【0095】この位置測定装置では、少なくとも2つの
部分反射制御面が、対応する仮想部分反射光導波路の光
軸を含む仮想の平面に対して、各部分反射制御面の光軸
が交差する関係となるように設けられている。このた
め、請求項19と同様に、照射制御面の光軸が上記の仮
想の平面内にあり、それに合わせて光源が近接して配置
されていても、各部分反射制御面をその仮想の平面外に
設けることができるので、各反射制御面の光軸に合わせ
て受光部を近接して配置し易い。
In this position measuring device, at least two partial reflection control surfaces are arranged so that the optical axis of each partial reflection control surface intersects a virtual plane including the optical axis of the corresponding virtual partial reflection optical waveguide. It is provided so that it becomes. For this reason, even if the optical axis of the irradiation control surface is in the above-mentioned virtual plane and the light source is arranged close to it in the virtual plane, the respective partial reflection control surfaces are placed in the virtual plane. Since it can be provided outside, it is easy to arrange the light receiving portion close to the optical axis of each reflection control surface.

【0096】なお、この場合、上記の各部分反射制御面
の光軸が交差する関係となるように設けられた少なくと
も2つの部分反射光導波路は、請求項28のそれぞれの
部分検出光が相互に異なる方向に発射するように設けら
れた少なくとも2つの部分反射制御面と一致していても
いなくとも良い。
In this case, at least two partial reflection optical waveguides provided so that the optical axes of the respective partial reflection control surfaces intersect each other are such that the respective partial detection lights of claim 28 can be mutually connected. It may or may not coincide with at least two partial reflection control surfaces provided to launch in different directions.

【0097】請求項29の位置測定装置において、前記
各部分反射制御面の光軸の交差する角度が直角であるこ
とが好ましい。
In the position measuring apparatus according to claim 29, it is preferable that the angle at which the optical axes of the respective partial reflection control surfaces intersect is a right angle.

【0098】この位置測定装置では、少なくとも2つの
仮想部分反射光導波路の光軸を含む仮想の平面に対し
て、各部分反射制御面の光軸が直交するので、各部分反
射制御面の光軸は、第1仮想側面ないし第4仮想側面等
を含む平面等と平行な平面内に含まれ、かつ、仮想照射
光導波路や各仮想部分反射光導波路の光軸と直交する関
係となる。
In this position measuring device, the optical axis of each partial reflection control surface is orthogonal to the virtual plane including the optical axes of at least two virtual partial reflection optical waveguides. Is included in a plane parallel to a plane including the first virtual side to the fourth virtual side and the like, and has a relationship orthogonal to the optical axis of the virtual irradiation optical waveguide and the virtual partial reflection optical waveguides.

【0099】このため、請求項20と同様に、上記の仮
想の平面に平行な平面内に各部分反射制御面を設けれ
ば、各部分反射制御面と平行かつ対向するように、双方
の受光部を配置できる。また、受光部と双方の反射制御
面との距離を同一距離にすれば、双方からの受光量など
の受光結果を同等に扱え、受光部を簡易な構成にし易く
なる。特に請求項12で前述の仮想照射光導波路や仮想
反射光導波路を含む部位が四角柱形状の場合、上記の仮
想の平面に平行な側面を含む平面またはそれと平行な少
し内側の平面内に各部分反射制御面を設ければ、各部分
反射光導波路と近接して、双方の受光部を配置でき、装
置全体を小型化できる。
For this reason, similarly to the twentieth aspect, if each partial reflection control surface is provided in a plane parallel to the virtual plane, both light receiving surfaces are parallel and opposed to the respective partial reflection control surfaces. Parts can be arranged. Further, if the distance between the light receiving section and both reflection control surfaces is the same, light receiving results such as the amount of light received from both sides can be treated equally, and the light receiving section can be easily simplified. In particular, in the case where the portion including the virtual irradiation optical waveguide and the virtual reflection optical waveguide according to claim 12 has a quadrangular prism shape, each portion is included in a plane including a side surface parallel to the virtual plane or a slightly inner plane parallel thereto. If the reflection control surface is provided, both light receiving sections can be arranged close to each partially reflected optical waveguide, and the entire device can be miniaturized.

【0100】請求項28ないし30のいずれかの位置測
定装置において、前記部分検出光の相互に異なる方向
は、その部分検出光を発射する少なくとも2つの仮想部
分反射光導波路の双方の光軸を含む仮想の平面の互いに
反対面側の方向であることが好ましい。
30. The position measuring apparatus according to claim 28, wherein the mutually different directions of the partial detection light include both optical axes of at least two virtual partial reflection optical waveguides emitting the partial detection light. The directions are preferably opposite to each other with respect to the virtual plane.

【0101】この位置測定装置では、少なくとも2つの
部分反射光導波路の各部分反射制御面が、それらの仮想
部分反射光導波路の双方の光軸を含む仮想の平面の互い
に反対面側に各部分検出光を発射するように設けられて
いるので、それぞれ他方と反対面側に、各部分反射制御
面の光軸に合わせて近接して受光部を個別に配置でき、
さらに装置を小型化できる。
In this position measuring device, each partial reflection control surface of at least two partially reflected optical waveguides is located on the opposite side of a virtual plane including both optical axes of the virtual partially reflected optical waveguides. Since it is provided so as to emit light, the light receiving unit can be individually arranged close to the optical axis of each partial reflection control surface on the side opposite to the other side,
Further, the device can be downsized.

【0102】また、上記の仮想の平面の互いに反対面側
に各部分検出光を発射するように設けられた少なくとも
2つの部分反射光導波路が、請求項29や請求項30に
おいて、各部分反射制御面の光軸が仮想の平面に交差す
る関係となるように設けられた少なくとも2つの部分反
射光導波路と一致する場合、これらの2つの部分反射光
導波路を同一形状として互いに反対側に向けるだけで実
現できるので、この場合、大量生産等に適し、さらに製
造コストの低減が可能になる。
Further, at least two partial reflection optical waveguides provided to emit the respective partial detection lights on the opposite sides of the above-mentioned imaginary plane are provided in each of the partial reflection control circuits according to the present invention. If at least two partially reflected optical waveguides are provided so that the optical axis of the surface intersects the virtual plane, these two partially reflected optical waveguides need only be made to have the same shape and directed to opposite sides. Since this can be realized, in this case, it is suitable for mass production and the like, and furthermore, the manufacturing cost can be reduced.

【0103】本発明の請求項32の厚み測定装置は、請
求項1ないし31のいずれかに記載の位置測定装置を有
して、その位置測定装置の照射面が測定対象物の表裏2
面のうちの一方に対向するように設けられ、自己の前記
照射面から前記表裏2面のうちの一方までの第1距離を
求める第1変位計と、請求項1ないし31のいずれかに
記載の位置測定装置を有して、その位置測定装置の照射
面が前記測定対象物の表裏2面のうちの他方に対向し、
かつ、その照射面と前記第1変位計の照射面との相互間
が前記測定対象物を非接触で挿入可能な所定距離となる
ように設けられ、自己の前記照射面から前記表裏2面の
うちの他方までの第2距離を求める第2変位計と、前記
第1距離、第2距離および前記所定距離に基づいて、前
記測定対象物の厚みを求める制御手段と、を備えたこと
を特徴とする厚み測定装置。
A thickness measuring device according to a thirty-second aspect of the present invention has the position measuring device according to any one of the first to thirty-first aspects, and the irradiation surface of the position measuring device is arranged so that the irradiation surface of the object is the front and back.
32. A first displacement meter which is provided so as to face one of the surfaces and obtains a first distance from its own irradiation surface to one of the front and back surfaces, and a first displacement meter. Having a position measuring device, the irradiation surface of the position measuring device faces the other of the front and back two surfaces of the measurement object,
In addition, a distance between the irradiation surface and the irradiation surface of the first displacement meter is provided so as to be a predetermined distance in which the object to be measured can be inserted in a non-contact manner. A second displacement meter for obtaining a second distance to the other of the two, and control means for obtaining a thickness of the object to be measured based on the first distance, the second distance, and the predetermined distance. Thickness measuring device.

【0104】この厚み測定装置では、第1変位計を、そ
の照射面が測定対象物の表裏2面のうちの一方と対向す
るように設けているので、照射面からその表裏2面のう
ちの一方までの第1距離(第1測定ギャップ)が得られ
る。また、第2変位計は、その照射面が表裏2面のうち
の他方に対向しているので、その他方までの第2距離
(第2測定ギャップ)が得られる。そして、第1変位計
と第2変位計は、それらの照射面の相互間が所定距離と
なるように設けられているので、その所定距離から双方
で求めた第1および第2測定ギャップを引けば測定対象
物の厚みを求められる。また、この所定距離(測定面間
ギャップ)は、測定対象物を非接触で挿入可能な距離な
ので、非接触の状態で測定対象物の厚みを測定できる。
In this thickness measuring apparatus, the first displacement meter is provided so that the irradiation surface thereof faces one of the two front and back surfaces of the object to be measured. A first distance (a first measurement gap) up to one is obtained. In addition, since the irradiation surface of the second displacement meter faces the other of the front and back surfaces, a second distance (a second measurement gap) to the other surface can be obtained. Since the first displacement meter and the second displacement meter are provided such that the distance between their irradiation surfaces is a predetermined distance, subtract the first and second measurement gaps determined from both from the predetermined distance. For example, the thickness of the object to be measured can be obtained. Since the predetermined distance (gap between the measurement surfaces) is a distance in which the measurement target can be inserted in a non-contact manner, the thickness of the measurement target can be measured in a non-contact state.

【0105】また、照射光を利用した光による測定なの
で、測定対象物の導電率に拘らずに、測定できる。ま
た、これにより、静電容量センサのような測定面間ギャ
ップの制限がないので、厚さの大小による制限も生じな
い。また、空気マイクロメータのような力学的作用を及
ぼすことも無く測定できる。
Further, since the measurement is performed using light using irradiation light, the measurement can be performed regardless of the conductivity of the object to be measured. In addition, since there is no limitation on the gap between the measurement surfaces unlike the capacitance sensor, there is no limitation due to the thickness. Further, the measurement can be performed without exerting a mechanical action such as an air micrometer.

【0106】したがって、この厚み測定装置では、請求
項1ないし31いずれかの位置測定装置を有する2つの
変位計を利用することにより、測定対象物の導電率や厚
みの大小などの属性に拘らず、また、力学的作用を及ぼ
すこと無く、非接触の状態で測定対象物の厚みを測定で
きる。
Therefore, in this thickness measuring device, by using two displacement meters having the position measuring device according to any one of claims 1 to 31, regardless of the attributes such as the conductivity and the thickness of the object to be measured. Also, the thickness of the measurement object can be measured in a non-contact state without exerting a mechanical action.

【0107】なお、第1変位計が有する位置測定装置と
第2変位計が有する位置測定装置とは同タイプである必
要はないが、同タイプであれば、装置としての特性等が
同等になるので、制御手段内の処理が簡易になるなど、
より好ましい。
The position measuring device of the first displacement meter and the position measuring device of the second displacement meter do not need to be of the same type, but if they are of the same type, the characteristics and the like of the device become equivalent. Therefore, processing in the control means is simplified,
More preferred.

【0108】請求項32の厚み測定装置において、前記
第1変位計および第2変位計のそれぞれの位置測定装置
の各照射光の発射角は、前記測定対象物が透過性を有す
る場合に、各照射面からの各照射光の照射により前記測
定対象物を透過する各透過光が、対向する他方の位置測
定装置の受光面内に入らない所定の発射角に定められて
いることが好ましい。
[0108] In the thickness measuring device according to claim 32, the emission angle of each irradiation light of each of the position measuring devices of the first displacement meter and the second displacement meter may be different when the object to be measured has transparency. It is preferable that each transmitted light transmitted through the object to be measured by irradiation of each irradiation light from the irradiation surface is set to a predetermined launch angle that does not enter the light receiving surface of the other opposing position measuring device.

【0109】この厚み測定装置では、各照射光の発射角
が、前記測定対象物が透過性を有する場合に、各照射面
からの各照射光の照射により前記測定対象物を透過する
各透過光が、対向する他方の位置測定装置の受光面内に
入らない所定の発射角に定められているため、対向する
他方の変位計からの透過光を反射光として受光するなど
の誤検出を防止でき、これにより、問題なく厚み測定が
できる。また、特にレーザ光を照射光として利用した変
位計を用いれば、その集束性や指向性により光路以外へ
の影響を最小限にできる。なお、各測定ギャップより測
定対象物の厚さが十分に大きければ、発射角が小さくて
も透過光の誤検出を防止できる。
In this thickness measuring apparatus, when the emission angle of each irradiation light is such that the object to be measured has transparency, each transmitted light transmitted through the object to be measured by the irradiation of each irradiation light from each irradiation surface. However, since the predetermined launch angle is set so as not to enter the light receiving surface of the other opposing position measuring device, it is possible to prevent erroneous detection such as receiving transmitted light from the other opposing displacement meter as reflected light. Thus, the thickness can be measured without any problem. Further, in particular, if a displacement meter using laser light as irradiation light is used, the influence on portions other than the optical path can be minimized due to its convergence and directivity. Note that if the thickness of the measurement object is sufficiently larger than each measurement gap, erroneous detection of transmitted light can be prevented even if the emission angle is small.

【0110】以下、本発明の一実施形態に係る位置測定
装置および厚み測定装置を適用した厚み測定装置につい
て、添付図面を参照しながら詳細に説明する。
Hereinafter, a position measuring apparatus and a thickness measuring apparatus to which the thickness measuring apparatus according to one embodiment of the present invention is applied will be described in detail with reference to the accompanying drawings.

【0111】図1は厚み測定装置1の全体構成を示す概
略ブロック図であり、同図に示すように、厚み測定装置
1は、基本的な構成として、操作部10、制御部20、
測定部50を備え、外部に測定結果等を印刷するための
プリンタやプロッタ等の印刷装置(以下「プリンタ」で
代表する)6、ハードディスクや光磁気ディスク等の外
部記憶装置(以下「ハードディスク」で代表する)7な
どを接続できるようになっている。
FIG. 1 is a schematic block diagram showing the overall configuration of the thickness measuring device 1. As shown in FIG. 1, the thickness measuring device 1 has an operating unit 10, a control unit 20,
A printing device such as a printer or plotter (hereinafter referred to as a “printer”) 6 having a measuring unit 50 for printing measurement results and the like externally, and an external storage device (hereinafter a “hard disk”) such as a hard disk or a magneto-optical disk 7) can be connected.

【0112】操作部10は、ユーザとのインタフェース
を行うためのブラウン管や液晶等のディスプレイ3、キ
ーボード4、および、マウスやディジタイザやタブレッ
ト等のポインティングディバイス(以下「マウス」で代
表する)5を備えている。
The operation unit 10 includes a display 3 such as a cathode ray tube or a liquid crystal for interfacing with a user, a keyboard 4, and a pointing device (hereinafter, represented by a "mouse") 5 such as a mouse, a digitizer, and a tablet. ing.

【0113】ユーザは、ディスプレイ3の操作画面上
で、キーボード4やマウス5により、測定のための各種
指示やデータ(例えば測定対象物(ターゲット)Tの座
標や測定範囲、測定面間ギャップDなど)を入力した
り、入力結果や処理結果をディスプレイ4の画面に表示
して編集でき、また、厚み測定の結果を、画面表示で確
認したり、プリンタ6に出力して印刷結果により確認で
きる。また、この測定結果は、その印刷結果の用紙とし
て、あるいはデータとしてハードディスク7に記憶する
ことにより、保存できる。
The user uses the keyboard 4 and the mouse 5 on the operation screen of the display 3 to perform various instructions and data for measurement (for example, the coordinates and measurement range of the measurement target (target) T, the gap D between measurement surfaces, etc.). ), The input result and the processing result can be displayed on the screen of the display 4 and edited, and the thickness measurement result can be confirmed on the screen display or output to the printer 6 to confirm the print result. Further, the measurement result can be stored as a sheet of the print result or by storing it in the hard disk 7 as data.

【0114】測定部50は、第1測定ギャップ(第1距
離)y1を求める第1変位計30と、第2測定ギャップ
(第2距離)y2を求める第2変位計40と、ターゲッ
トTを搭載してその位置を3次元の各方向に移動・調整
可能なキャリア510と、第1変位計30と第2変位計
40との相互間がターゲットTを非接触で挿入可能な所
定距離(測定面間ギャップ)Dとなるように調整可能な
ガイド511、512と、を備えている。なお、この測
定部50については、さらに詳細に後述する。
The measuring section 50 includes a first displacement meter 30 for obtaining a first measurement gap (first distance) y1, a second displacement meter 40 for obtaining a second measurement gap (second distance) y2, and a target T. The carrier 510 whose position can be moved and adjusted in each of the three-dimensional directions, and a predetermined distance (measurement surface) between the first displacement meter 30 and the second displacement meter 40 where the target T can be inserted in a non-contact manner. And guides 511 and 512 that can be adjusted so as to provide a gap D. The measuring section 50 will be described later in more detail.

【0115】制御部20は、CPU210、ROM22
0、キャラクタジェネレータROM(CG−ROM)2
30、RAM240、光学系コントローラ(OPC)2
50、I/Oコントローラ(IOC)260、ハードデ
ィスクドライブ(HDD)270を備え、互いに内部バ
ス260により接続されている。また、この制御部20
には、電源部290が搭載されている。
The control unit 20 includes a CPU 210, a ROM 22
0, character generator ROM (CG-ROM) 2
30, RAM 240, optical system controller (OPC) 2
50, an I / O controller (IOC) 260, and a hard disk drive (HDD) 270, which are connected to each other by an internal bus 260. Also, the control unit 20
Is equipped with a power supply unit 290.

【0116】この電源部290は、電源ユニット291
の他、外部から着脱可能なニッカド、アルカリ等の乾電
池、蓄電池などから成るバッテリ292と、ACアダプ
タ接続口293とを備え、電源ユニット291は、これ
らに接続されて電力の供給を受け、昇圧・降圧や安定化
の処理を行った後、厚み測定装置1の各部に電力を供給
する。
The power supply unit 290 includes a power supply unit 291
In addition, the power supply unit 291 is provided with a battery 292 made of a nickel-cadmium or alkaline dry battery, a storage battery, and the like, and an AC adapter connection port 293. After performing the process of step-down and stabilization, power is supplied to each part of the thickness measuring device 1.

【0117】ROM220は、CPU210で処理する
制御プログラムを記憶する制御プログラム領域221の
他、後述の送り位置制御データや測定面間ギャップ制御
データ(、また、後述のように必要に応じて、入射角制
御データや比率−ギャップ変換テーブル)などを含む制
御データを記憶する制御データ領域222を有してい
る。
The ROM 220 stores, in addition to a control program area 221 for storing a control program to be processed by the CPU 210, feed position control data and measurement plane gap control data to be described later (and an incident angle as needed, as will be described later). It has a control data area 222 for storing control data including control data and a ratio-gap conversion table).

【0118】CG−ROM230は、厚み測定装置1の
入力・編集のために用意されている文字、記号、図形等
のフォントデータを記憶していて、文字等を特定するコ
ードデータが与えられたときに、対応するフォントデー
タを出力する。
The CG-ROM 230 stores font data such as characters, symbols, and figures prepared for inputting and editing of the thickness measuring device 1 and receives code data for specifying characters and the like. To output the corresponding font data.

【0119】RAM240は、各種レジスタ群241の
他、測定部50の第1変位計30から入力される第1測
定ギャップy1などの各種の第1測定データを記憶する
第1変位データ領域242、同様に第2変位計40から
の各種の第2測定データを記憶する第2変位データ領域
243、厚み測定その他の処理結果データを記憶する処
理結果データ領域244、各種バッファ領域245など
の領域を有している。
The RAM 240 includes, in addition to the various register groups 241, a first displacement data area 242 for storing various first measurement data such as a first measurement gap y1 input from the first displacement meter 30 of the measuring section 50. A second displacement data area 243 for storing various second measurement data from the second displacement meter 40, a processing result data area 244 for storing thickness measurement and other processing result data, and various buffer areas 245. ing.

【0120】このRAM240は、キーボード4の図外
の電源キーの操作により電源がオフにされても、記憶し
たデータを保持しておくようにバックアップされてい
て、各種制御処理のための作業領域として使用される。
The RAM 240 is backed up so as to retain the stored data even when the power is turned off by operating a power key (not shown) on the keyboard 4, and serves as a work area for various control processes. used.

【0121】IOC260には、CPU210の機能を
補うとともに周辺回路等とのインタフェース信号を取り
扱うための回路が、ゲートアレイやカスタムLSIなど
により構成されて組み込まれている。例えば種々の計時
を行うタイマなどもIOC260内の機能として組み込
まれている。
The IOC 260 incorporates a circuit for supplementing the function of the CPU 210 and for handling interface signals with peripheral circuits and the like, constituted by a gate array, a custom LSI, and the like. For example, a timer or the like for performing various timings is also incorporated as a function in the IOC 260.

【0122】このため、IOC260は、ディスプレイ
3、キーボード4、マウス5、プリンタ6等と接続さ
れ、キーボード4やマウス5からの各種指示や入力デー
タなどをそのままあるいは加工して内部バス280に取
り込むとともに、CPU210と連動して、CPU21
0等から内部バス280に出力されたデータや制御信号
を、そのままあるいは加工してディスプレイ3やプリン
タ6に出力するなど、これらの周辺回路や周辺機器との
間の各種制御信号および各種データの入出力を制御す
る。
For this reason, the IOC 260 is connected to the display 3, the keyboard 4, the mouse 5, the printer 6, and the like. , In conjunction with the CPU 210, the CPU 21
For example, data or control signals output to the internal bus 280 from 0 or the like are output to the display 3 or the printer 6 as they are or processed, and various control signals and various data are input to and from these peripheral circuits and peripheral devices. Control the output.

【0123】HDD24は、CPU210からの指令に
従い、ハードディスク7を制御・駆動して、ハードディ
スク7との間の各種制御信号および各種データの入出力
を制御する。
The HDD 24 controls and drives the hard disk 7 according to instructions from the CPU 210, and controls the input and output of various control signals and various data with the hard disk 7.

【0124】OPC250には、CPU21の機能を補
うとともに、測定部50の光学系各部とのインタフェー
ス信号を取り扱うための回路が組み込まれ、光学系各部
を制御し、また、それらとの間の入出力を制御する。
The OPC 250 supplements the functions of the CPU 21 and incorporates a circuit for handling interface signals with the optical system components of the measuring unit 50, controls the optical system components, and performs input / output between them. Control.

【0125】例えばキャリア510によるターゲットT
の3次元の位置制御、ガイド511やガイド512によ
る測定面間ギャップDの調整制御、第1変位計30や第
2変位計40により求める第1測定ギャップy1や第2
測定ギャップy2を入力して、CPU210と連動して
またはその機能を補うことにより、ターゲットTの厚み
dを求めるなど、の処理を行う。
For example, the target T by the carrier 510
Three-dimensional position control, adjustment control of the gap D between the measurement planes by the guides 511 and 512, the first measurement gap y1 and the second measurement gap obtained by the first displacement meter 30 and the second displacement meter 40, respectively.
Processing such as obtaining the thickness d of the target T is performed by inputting the measurement gap y2 and interlocking with or supplementing the function of the CPU 210.

【0126】なお、論理回路セルの他にアナログ回路等
を混在するディジタル/アナログ混在セルアレイLSI
や、複数のベアチップを搭載したフリップチップ方式等
によるチップサイズのマルチチップモジュールなどによ
り構成して、第1変位計30や第2変位計40の制御部
CN(図41、図45参照)の一部の機能を分担するよ
うにしても良い。
A digital / analog mixed cell array LSI in which analog circuits and the like are mixed in addition to the logic circuit cells
Or a multi-chip module having a chip size of a flip chip type or the like on which a plurality of bare chips are mounted, and one of the control units CN (see FIGS. 41 and 45) of the first displacement meter 30 and the second displacement meter 40. The functions of the units may be shared.

【0127】そして、CPU210は、上記の構成によ
り、ROM220内の制御プログラムに従い、制御デー
タを参照して、CG−ROM230からのフォントデー
タやRAM240内の各種データ等を処理し、IOC2
60を介して周辺回路等と各種指示や各種データの授受
を行うとともに、OPC250を介して光学系各部を制
御することにより、測定結果となるターゲットTの厚み
dを求めるなど、厚み測定装置1全体を制御する。
The CPU 210 processes the font data from the CG-ROM 230 and various data in the RAM 240 by referring to the control data in accordance with the control program in the ROM 220 by the above-described configuration.
The whole thickness measuring device 1 is transmitted and received with peripheral circuits and the like via the OPC 250, and various parts of the optical system are controlled via the OPC 250, thereby obtaining the thickness d of the target T as a measurement result. Control.

【0128】ところで、厚み測定装置1では、測定部5
0の一対の変位計30、40に、本発明の一実施形態に
係る位置測定装置2が利用されている。そこで、以下、
位置測定装置2の原理およびそれを適用した構成につい
て説明する。
By the way, in the thickness measuring apparatus 1, the measuring section 5
The position measuring device 2 according to one embodiment of the present invention is used for a pair of displacement gauges 30 and 40 of zero. Therefore,
The principle of the position measuring device 2 and a configuration to which the principle is applied will be described.

【0129】まず、図2に示すように、各6面の全てが
長方形の2つの仮想の四角柱を考えて、2つの仮想の光
導波路とし、それぞれ仮想照射光導波路IGIおよび仮
想反射光導波路IGRとする。
First, as shown in FIG. 2, considering two virtual quadrangular prisms each having a rectangular shape on all six surfaces, two virtual optical waveguides are formed, and a virtual irradiation optical waveguide IGI and a virtual reflection optical waveguide IGR are respectively provided. And

【0130】ここで、仮想照射光導波路IGIの上底面
および下底面のうちの一方(例えば図示では下底面)を
照射面GIdとし、他方(例えば図示では上底面)を入
射面GIuとして、照射面GIdを、ターゲット(測定
対象物)Tの表面(ターゲット面)Tfと平行になるよ
うに対向して配置する。
Here, one of the upper and lower bottom surfaces (for example, the lower bottom surface in the drawing) of the virtual irradiation optical waveguide IGI is set as the irradiation surface GId, and the other (for example, the upper bottom surface in the drawing) is set as the incident surface GIu. The GId is arranged to face the surface of the target (measurement target) T (target surface) Tf so as to be parallel to the surface.

【0131】また、仮想照射光導波路IGIの4つの側
面のうち、平行に対向する2組のうちの片方の1組の2
つの側面をそれぞれ第1仮想側面G1、第2仮想側面G
2とし、他の1組の2つの側面をそれぞれ第7仮想側面
G7、第8仮想側面G8とする。
[0131] Of the four side surfaces of the virtual irradiation optical waveguide IGI, one of the two sets facing each other in parallel is set as one of the two sets.
The first side and the second side G
2, and the other set of two side surfaces is a seventh virtual side surface G7 and an eighth virtual side surface G8, respectively.

【0132】一方、仮想反射光導波路IGRは、4つの
側面のうちの2つが、上記の第1仮想側面G1や第2仮
想側面G2と同一サイズで対向し、かつ平行な2面とな
っていて、これらの2面をそれぞれ第3仮想側面G3お
よび第4仮想側面G4とし、他の2つの側面をそれぞれ
第9仮想側面G9、第10仮想側面G10とする。
On the other hand, the virtual reflection optical waveguide IGR has two surfaces, two of the four side surfaces, which are the same size as the first virtual side surface G1 and the second virtual side surface G2 and are parallel to each other. These two surfaces are referred to as a third virtual side surface G3 and a fourth virtual side surface G4, respectively, and the other two side surfaces are referred to as a ninth virtual side surface G9 and a tenth virtual side surface G10, respectively.

【0133】また、上記の第3仮想側面G3を第2仮想
側面G3と4辺が合うように平行に対向させて、第1仮
想側面G1、第2仮想側面G2、第3仮想側面G3およ
び第4仮想側面G4が平行な4つの側面となるように、
仮想反射光導波路IGRを仮想照射光導波路IGIに隣
接して配置する。
The third virtual side face G3 is opposed to the second virtual side face G3 in parallel so that the four sides thereof are aligned with each other, and the first virtual side face G1, the second virtual side face G2, the third virtual side face G3, and the third virtual side face G3. So that the four virtual side surfaces G4 become four parallel side surfaces,
The virtual reflection optical waveguide IGR is arranged adjacent to the virtual irradiation optical waveguide IGI.

【0134】したがって、図2では、各6面の全てが長
方形の2つの仮想の四角柱の各4つの側面のうち、互い
に同一サイズの各1つの側面同士を4辺が合うように平
行に対向させて、2つの仮想の四角柱を隣接し、対向す
る前記各1つの側面を含む平行な4つの側面を一方の端
からそれぞれ第1仮想側面G1、第2仮想側面G2、第
3仮想側面G3および第4仮想側面G4とし、2つの仮
想の四角柱のうち、第1仮想側面G1および第2仮想側
面G2を側面として有する一方を仮想照射光導波路IG
Iとして他方を仮想反射光導波路IGRとする。
Accordingly, in FIG. 2, out of the four side surfaces of the two imaginary quadrangular prisms, all six surfaces of which are rectangular, one side surface of the same size is opposed to each other in parallel so that the four sides match. Then, two virtual quadrangular prisms are adjacent to each other, and four parallel side surfaces including the opposing one side surface are respectively separated from one end by a first virtual side surface G1, a second virtual side surface G2, and a third virtual side surface G3. And the fourth virtual side surface G4, one of the two virtual square pillars having the first virtual side surface G1 and the second virtual side surface G2 as side surfaces is a virtual irradiation optical waveguide IG.
As I, the other is a virtual reflection optical waveguide IGR.

【0135】また、仮想照射光導波路IGIの上底面お
よび下底面のうちの一方(図示では下底面)とターゲッ
ト(測定対象物)Tの表面(ターゲット面)Tfとを平
行に対向させて照射面GIdとし、他方(例えば図示で
は上底面)を入射面GIuとし、仮想反射光導波路IG
Rの上底面および下底面のうちの照射面IGIと同一側
の一方を受光面GRdとして他方を検出面GRuとす
る。
Further, one of the upper bottom surface and the lower bottom surface (lower bottom surface in the drawing) of the virtual irradiation optical waveguide IGI and the surface (target surface) Tf of the target (measurement object) T face the irradiation surface in parallel. GId, and the other (for example, the upper bottom surface in the drawing) is the incident surface GIu, and the virtual reflected light waveguide IG
One of the upper and lower bottom surfaces of R on the same side as the irradiation surface IGI is defined as a light receiving surface GRd, and the other is defined as a detection surface GRu.

【0136】従来の一般的な光ファイバ変位計では、照
射面から測定対象物に対してその光軸を中心とする円錐
状の発散光線束(発散光)を照射光として照射し、測定
対象物上の照射(投光)範囲と開口数(NA)で決まる
受光範囲との重なった部分からの反射光を利用する。
In a conventional general optical fiber displacement meter, a divergent light beam (divergent light) having a conical shape centered on the optical axis of the object to be measured is irradiated from the irradiation surface as irradiation light. The reflected light from the overlapping portion of the upper irradiation (light projection) range and the light receiving range determined by the numerical aperture (NA) is used.

【0137】そこで、図3に示すように、ここでは図外
の光源からの入射光を入射面GIuに入射して仮想照射
光導波路IGI内を伝搬させ、照射面GIdから発散光
を照射光としてターゲットTに対して発射(照射)し、
ターゲット面Tf上の投光範囲Iaと開口数(NA)で
決まる受光範囲Raとの重なった部分Caからの照射光
に対応する反射光を受光面GRdに入射して、仮想反射
光導波路IGR内を伝搬させ、検出面GRuから検出光
として発射し、ここでは図外の受光部で受光して、その
受光結果に基づいてターゲット面Tfと照射面GIdと
の距離(測定ギャップ)yを求める。
Therefore, as shown in FIG. 3, here, incident light from a light source (not shown) is incident on the incident surface GIu and propagates through the virtual irradiation optical waveguide IGI, and divergent light from the irradiation surface GId is used as irradiation light. Fire (irradiate) on the target T,
The reflected light corresponding to the irradiation light from the overlapping portion Ca of the light projecting range Ia on the target surface Tf and the light receiving range Ra determined by the numerical aperture (NA) is incident on the light receiving surface GRd, and is reflected in the virtual reflected light waveguide IGR. Is transmitted as detection light from the detection surface GRu. Here, light is received by a light receiving unit (not shown), and a distance (measurement gap) y between the target surface Tf and the irradiation surface GId is obtained based on the light reception result.

【0138】ここで、図示のC1−C2−C3−C4の
仮想平面を含む断面(以下、「断面C」という。)にお
いて、原理を概念的かつ模式的に説明すると、上記の場
合、図4に示すように、仮想照射光導波路IGIの照射
面Idとターゲット面Tfとの間の測定ギャップyの相
違により、照射光LIに対する反射光LR(の受光量P
R)は異なる。
Here, the principle will be conceptually and schematically described in a section including a virtual plane of C1-C2-C3-C4 (hereinafter, referred to as "section C"). In the above case, FIG. As shown in the figure, due to the difference in the measurement gap y between the irradiation surface Id of the virtual irradiation optical waveguide IGI and the target surface Tf, the amount of reflected light LR (
R) are different.

【0139】このため、この反射光LR(の受光量P
R)が、測定ギャップyと所定の関係を持つように変化
すれば(例えば図35参照)、その反射光LRを受光面
GRdから入射して受光することにより、その反射光L
R(の受光量PR)の変化から測定ギャップyの変化
(ターゲット(測定対象物)Tの変位)を求められる。
For this reason, the received light amount P of the reflected light LR (
R) changes so as to have a predetermined relationship with the measurement gap y (see, for example, FIG. 35), the reflected light LR is incident on the light receiving surface GRd and received, thereby receiving the reflected light L.
The change in the measurement gap y (the displacement of the target (measurement object) T) can be obtained from the change in R (the amount of received light PR).

【0140】そこで、この原理を適用した位置測定装置
2aについて、図5を参照して説明する。同図に示すよ
うに、まず、照射光導波路GIは、光源311からの入
射光Lを入射面GIuに入射する照射制御面GIUと、
照射面GIdからの照射光LIをターゲットTのターゲ
ット面Tfに発射する照射測定面GIDと、照射側面G
IMとを有している。
The position measuring apparatus 2a to which this principle is applied will be described with reference to FIG. As shown in the figure, first, the irradiation light waveguide GI includes an irradiation control surface GIU that makes incident light L from the light source 311 incident on the incident surface GIu,
An irradiation measurement surface GID for emitting irradiation light LI from the irradiation surface GId to the target surface Tf of the target T;
IM.

【0141】同図では、照射制御面GIUは、1つの外
周が閉じた面により構成されているが、例えば2つの光
源からの光を入射するためにその2つの光源に対応して
対向させた2つの外周が閉じた面により構成しても良い
し、それ以上の数で構成しても良い。照射測定面GID
も同様であり、図示では1つであるが、2つ以上の外周
が閉じた面により構成しても良い。
In the figure, the irradiation control surface GIU is constituted by a surface having one closed outer periphery. For example, in order to receive light from two light sources, the irradiation control surface GIU is opposed to the two light sources. The outer periphery may be constituted by two closed surfaces, or may be constituted by a larger number. Irradiation measurement surface GID
This is the same, and although one is shown in the figure, two or more outer peripheries may be closed.

【0142】照射側面GIMは、照射制御面GIUが含
む外周が閉じた面のその外周の全ておよび照射測定面G
IDが含む外周が閉じた面のその外周の全てを連結し
て、伝搬する光を内部に閉じこめる役目を果たしてい
る。また、照射側面GIMには、第1仮想側面G1およ
び第2仮想側面G2が含まれている。
The irradiation side surface GIM is formed by the irradiation control surface GIU including the entire outer periphery of the closed outer periphery and the irradiation measurement surface G.
The outer circumference included in the ID has a function of connecting all the outer circumferences of the closed surface and confining the propagating light inside. Further, the irradiation side surface GIM includes a first virtual side surface G1 and a second virtual side surface G2.

【0143】上記の構成により、照射光導波路GIは、
内部に仮想照射光導波路IGIを含み、入射光Lを入射
面GIuに入射して仮想照射光導波路IGI内を伝搬さ
せ、照射面GIdから照射光LIとしてターゲット面T
fに対して発射させる。
With the above configuration, the irradiation optical waveguide GI is
A virtual illumination optical waveguide IGI is included therein, and the incident light L is incident on the incident surface GIu and propagates in the virtual illumination optical waveguide IGI, and the target surface T is emitted from the illumination surface GId as the illumination light LI.
Fire at f.

【0144】次に、反射光導波路GRは、ターゲット面
Tfからの照射光LIに対応する反射光LRを受光面G
Rdに入射する反射測定面GRDと、検出面GRuから
の検出光LSを受光部320に発射する反射制御面GR
Uと、反射側面GRMとを有している。
Next, the reflected light waveguide GR transmits the reflected light LR corresponding to the irradiation light LI from the target surface Tf to the light receiving surface G.
A reflection measurement surface GRD incident on Rd and a reflection control surface GR for emitting detection light LS from the detection surface GRu to the light receiving unit 320
U and a reflective side surface GRM.

【0145】反射制御面GRUも照射制御面GIU等と
同様に、例えば2つの受光部等に対応して2つ以上の外
周が閉じた面により構成しても良く、反射測定面GRD
も同様であり、図示では1つであるが、2つ以上の外周
が閉じた面により構成しても良い。
Similarly to the irradiation control surface GIU, for example, the reflection control surface GRU may be constituted by two or more surfaces whose outer peripheries are closed corresponding to two light receiving sections, for example.
This is the same, and although one is shown in the figure, two or more outer peripheries may be closed.

【0146】反射側面GRMは、照射側面GIMと同様
に、反射測定面GRDが含む外周が閉じた面のその外周
の全ておよび反射制御面GRUが含む外周が閉じた面の
そのの外周の全てを連結して、伝搬する光を内部に閉じ
こめる役目を果たしている。また、反射側面GRMに
は、第3仮想側面G3および第4仮想側面G4が含まれ
ている。
The reflection side surface GRM is, like the irradiation side surface GIM, the entire outer periphery of the closed outer periphery included in the reflection measurement surface GRD and the entire outer periphery of the closed outer periphery included in the reflection control surface GRU. It is linked and serves to confine the propagating light inside. Further, the reflection side surface GRM includes a third virtual side surface G3 and a fourth virtual side surface G4.

【0147】上記の構成により、反射光導波路GRは、
内部に仮想反射光導波路IGRを含み、ターゲット面T
fからの照射光LIに対応する反射光LRを受光面GR
dに入射して仮想反射光導波路IGR内を伝搬させ、検
出面GRuから検出光LSとして発射させる。
With the above configuration, the reflection optical waveguide GR is
The target surface T includes a virtual reflection optical waveguide IGR inside.
The reflected light LR corresponding to the irradiation light LI from the light receiving surface GR
d, and propagates through the virtual reflection optical waveguide IGR, and is emitted as detection light LS from the detection surface GRu.

【0148】そして、位置測定装置2aは、上記の照射
光導波路GIと反射光導波路GRの他、入射光Lを発す
る光源311と、検出光LSを受光する受光部320
と、光源311を制御するとともに、受光部320の受
光結果に基づいてターゲットTと照射面GIdとの距離
(測定ギャップ)yを求める図外の制御部とを備えるこ
とにより、位置測定装置(変位計)としての機能を果た
している。
The position measuring device 2a includes a light source 311 for emitting incident light L and a light receiving section 320 for receiving detection light LS, in addition to the above-described irradiation light guide GI and reflection light guide GR.
And a control unit (not shown) that controls the light source 311 and obtains a distance (measurement gap) y between the target T and the irradiation surface GId based on the light reception result of the light receiving unit 320. Function).

【0149】上述のように、この位置測定装置2aで
は、光源311からの入射光Lを入射面GIuに入射し
て仮想照射光導波路IGI内を伝搬させ、照射面GId
から照射光LIとしてターゲットTに対して発射(照
射)し、ターゲット面Tfからの照射光LIに対応する
反射光LRを受光面GRdに入射して仮想反射光導波路
IGR内を伝搬させ、検出面GRuから検出光LSとし
て発射し、受光部320で受光して、その受光結果に基
づいて測定ギャップyを求める。
As described above, in the position measuring device 2a, the incident light L from the light source 311 is incident on the incident surface GIu, propagates through the virtual irradiation optical waveguide IGI, and
From the target surface Tf, the reflected light LR corresponding to the irradiated light LI is incident on the light receiving surface GRd, and propagates through the virtual reflected light waveguide IGR. The detection light LS is emitted from the GRu, is received by the light receiving unit 320, and the measurement gap y is obtained based on the light reception result.

【0150】この場合、照射面GIdからの照射光LI
に対する反射光LRが、測定ギャップyと所定の関係を
持つように変化すれば(図35参照)、その反射光LR
を受光面GRdから入射して受光することにより、反射
光LRの変化から測定ギャップyの変化(測定対象物の
変位)を求められる。
In this case, the irradiation light LI from the irradiation surface GId
Is changed so as to have a predetermined relationship with the measurement gap y (see FIG. 35), the reflected light LR
Is incident on the light receiving surface GRd and received, whereby a change in the measurement gap y (displacement of the measurement object) can be obtained from a change in the reflected light LR.

【0151】すなわち、この位置測定装置2aでは、従
来の光ファイバ変位計と同等の原理に基づいて測定ギャ
ップyやその変化(変位)を求めることができるので、
測定対象物の適用範囲が広く、非接触測定のため測定対
象物に汚染や変形等を与える心配がなく、高分解能・高
安定度を有するなど、光ファイバ変位計と同等の利点を
得られる。
That is, in the position measuring device 2a, the measurement gap y and its change (displacement) can be obtained based on the same principle as the conventional optical fiber displacement meter.
The same advantages as the optical fiber displacement meter can be obtained, such as a wide application range of the measuring object, non-contact measurement, and no risk of contamination or deformation of the measuring object, high resolution and high stability.

【0152】一方、図2で前述のように、第1仮想側面
G1〜第4仮想側面G4の4つの側面は、同一サイズの
平行な平面であり、そのうちの第2仮想側面G2と第3
仮想側面G3は、4辺が合うように平行に対向させて隣
接している。もちろん、単に隣接させるだけでなく、接
合させても良い。その場合、第2仮想側面G2と第3仮
想側面G3は同一サイズの平面同士なので接合し易く、
また、円柱状の光ファイバを接合する場合のような間隙
は生じない。
On the other hand, as described above with reference to FIG. 2, the four side surfaces of the first virtual side surface G1 to the fourth virtual side surface G4 are parallel planes of the same size, of which the second virtual side surface G2 and the third virtual side surface G3 are the same.
The imaginary side surfaces G3 are adjacent to each other in parallel so that the four sides are aligned. Of course, it is also possible to join them not only to make them adjacent to each other. In that case, since the second virtual side surface G2 and the third virtual side surface G3 are planes of the same size, they are easy to join,
In addition, there is no gap as in the case where a cylindrical optical fiber is joined.

【0153】上記の位置測定装置2aでは、照射光導波
路GIの側面である照射側面GIMには、仮想照射光導
波路IGIの第2仮想側面G2が含まれ、反射光導波路
GRの側面である反射側面GRMには、仮想反射光導波
路IGRの第3仮想側面G3が含まれるので、照射側面
GIMの第2仮想側面G2と反射側面GRMの第3仮想
側面G3とを接合すれば、円柱状の光ファイバを接合す
るより接合し易く、かつ線形性(リニアリティ)を害す
るような間隙が生じにくい。
In the position measuring device 2a, the irradiation side GIM, which is the side of the irradiation light guide GI, includes the second virtual side G2 of the virtual irradiation light guide IGI, and the reflection side which is the side of the reflection light guide GR. Since the GRM includes the third virtual side surface G3 of the virtual reflection optical waveguide IGR, if the second virtual side surface G2 of the irradiation side surface GIM and the third virtual side surface G3 of the reflection side surface GRM are joined, a columnar optical fiber is obtained. Are easier to join than when joining, and a gap that impairs linearity is hardly generated.

【0154】ここで、例えば、図35(a)は、変位計
測(変位計)に利用する反射光LRの受光量PRと測定
ギャップyとの理想的な関係を示している。受光量PR
が測定ギャップyに対して図示のような関係(特性)を
持てば、図示の受光量PRの特性の立ち上がり部分また
は立ち下がり部分に相当する測定ギャップyに対して一
次関数となるので、その範囲を実用範囲WR(Working
Range :立ち上がり側をWRu、立ち下がり側をWR
d、代表してWRとする)として、受光量PRから測定
ギャップyを求められる。
Here, for example, FIG. 35A shows an ideal relationship between the received light amount PR of the reflected light LR used for displacement measurement (displacement meter) and the measurement gap y. Received light PR
Has a relationship (characteristic) as shown with respect to the measurement gap y, it becomes a linear function with respect to the measurement gap y corresponding to the rising portion or the falling portion of the illustrated characteristic of the received light amount PR. Working range WR (Working
Range: WRu on rising side, WR on falling side
d, representatively WR), the measurement gap y is obtained from the received light amount PR.

【0155】前述のように、光ファイバ変位計の光ファ
イバ束の各光ファイバは円柱状なので、例えば上記の場
合、照射用の光ファイバ(照射ファイバ)FIとそれに
近接または接合した受光用の光ファイバ(受光ファイ
バ)FAの測定面内での形状は円形となり、円形相互間
の接合は点接合となるので、接合(製造)しにくい。
As described above, since each optical fiber of the optical fiber bundle of the optical fiber displacement meter has a columnar shape, for example, in the above case, the optical fiber for irradiation (irradiation fiber) FI and the optical fiber for light reception close to or bonded to it. The shape of the fiber (light receiving fiber) FA in the measurement plane is circular, and the bonding between the circles is a point bonding, so that it is difficult to bond (manufacture).

【0156】また、どのようにうまく接合しても、円形
相互間の接合点以外の部分には間隙ができてしまい、そ
の部分への反射光は受光できないので、その範囲の測定
ギャップyと受光量PRとの関係の線形性(リニアリテ
ィ)が確保できず、例えば同図(b)に示すような狭い
実用範囲FWRとなる。
Also, no matter how well the joint is made, a gap is formed at a portion other than the junction between the circles, and the reflected light to that portion cannot be received. The linearity (linearity) of the relationship with the quantity PR cannot be ensured, and for example, a narrow practical range FWR as shown in FIG.

【0157】これに対し、第2仮想側面G2と第3仮想
側面G3は同一サイズの平面同士なので接合し易く、上
記の位置測定装置2aでは、照射側面GIMの第2仮想
側面G2と反射側面GRMの第3仮想側面G3とを接合
できるので、円柱状の光ファイバを接合するより接合し
易く、かつ線形性(リニアリティ)を害するような間隙
が生じにくいので、同図(a)のような理想型に近い受
光量PRの特性がえられる。すなわち、接合(製造)し
易い分だけ製造コストを抑止することができ、間隙が生
じない分だけ広範囲のリニアリティを確保できる。
On the other hand, the second imaginary side surface G2 and the third imaginary side surface G3 are easy to be joined because they are planes having the same size. Can be bonded to the third virtual side surface G3, so that it is easier to bond than a columnar optical fiber is bonded, and a gap that impairs linearity (linearity) is less likely to occur. The characteristic of the light receiving amount PR close to that of the mold is obtained. That is, the manufacturing cost can be suppressed by the ease of joining (manufacturing), and a wide range of linearity can be ensured by the absence of a gap.

【0158】なお、第2仮想側面G2と第3仮想側面G
3とを接合せず、所定の間隔を持たせて隣接すれば、そ
の所定の間隔に対応した測定ギャップyから測定可能と
なるため、図示の受光量PRの特性が全体的に右方向
(測定ギャップyが大きくなる方向)に平行移動したも
のとなるだけで、本質的な特性は同じなので、以下の説
明では隣接の場合と接合の場合とを特に列記せず同等に
扱う。
Note that the second virtual side face G2 and the third virtual side face G
3 are not joined, but are adjacent to each other with a predetermined space therebetween, the measurement can be performed from the measurement gap y corresponding to the predetermined space. Since the essential characteristics are the same only in the case of parallel movement in the direction of increasing the gap y), in the following description, the case of adjoining and the case of joining will be treated equally without special listing.

【0159】また、上記の図35では、仮想反射光導波
路IGRの幅(第3仮想側面G3と第4仮想側面G4の
間の距離)を仮想照射光導波路IGIの3倍で図示した
が、上述の位置測定装置2aでは、これが約2倍なの
で、実際には図36(a)に示すような実用範囲WRと
なる。もちろん、これが約1倍ならば、同図(b)に示
すようになる。
In FIG. 35, the width of the virtual reflection optical waveguide IGR (the distance between the third virtual side face G3 and the fourth virtual side face G4) is shown as three times the virtual irradiation optical waveguide IGI. In the position measuring device 2a, this is about twice as large, so that it actually becomes a practical range WR as shown in FIG. Of course, if this is about one time, it will be as shown in FIG.

【0160】なお、上記の位置測定装置2aの場合、照
射側面GIMの第1仮想側面G1および第2仮想側面G
2を除く形状や、反射側面GRMの第3仮想側面G3お
よび第4仮想側面G4を除く形状は、最低限、上記の第
2仮想側面G2と第3仮想側面G3との近接を妨害しな
い形状であれば、任意の形状で良い。
In the case of the position measuring device 2a, the first virtual side face G1 and the second virtual side face G1 of the irradiation side face GIM are used.
2 and the shape of the reflective side surface GRM except for the third virtual side surface G3 and the fourth virtual side surface G4 are at least shapes that do not obstruct the proximity between the second virtual side surface G2 and the third virtual side surface G3. Any shape may be used.

【0161】このため、図5に示すように、照射側面G
IMの形状を、光源311から発する入射光Lが入射面
GIuに誘導されるような形状にしたり、照射光LIを
誘導してターゲット(測定対象物)の反射光導波路GR
に近い位置に照射する(すなわち反射光LRの反射角を
変える)形状にしたり、反射側面GRMの形状を、反射
光LRが受光面GRdに誘導されるような形状にした
り、検出面GRuからの検出光LSが受光部320に誘
導されるような形状にしたりすることができる。
For this reason, as shown in FIG.
The shape of the IM is changed so that the incident light L emitted from the light source 311 is guided to the incident surface GIu, or the reflected light waveguide GR of the target (measurement target) by guiding the irradiation light LI.
(That is, the reflection angle of the reflected light LR is changed), the shape of the reflection side surface GRM is made to be such that the reflection light LR is guided to the light receiving surface GRd, or the shape from the detection surface GRu is changed. The shape may be such that the detection light LS is guided to the light receiving unit 320.

【0162】また、照射測定面GIDが照射面GIdを
含む平面、および反射測定面GRDが受光面GRdを含
む平面となるように構成しても良い(図9参照)。この
場合、照射測定面GIDと反射測定面GRDが仮想の同
一平面内に位置すること(面一)になるので、それらに
含まれる照射面GIdと受光面GRdをターゲットTに
近接させることができ、これにより、微小の測定ギャッ
プyまで測定でき、測定可能範囲を広げることができ
る。
Further, the irradiation measurement surface GID may be configured to be a plane including the irradiation surface GId, and the reflection measurement surface GRD may be configured to be a plane including the light receiving surface GRd (see FIG. 9). In this case, since the irradiation measurement surface GID and the reflection measurement surface GRD are located in the same virtual plane (the same plane), the irradiation surface GId and the light receiving surface GRd included in them can be brought close to the target T. Thereby, the measurement can be performed up to the minute measurement gap y, and the measurable range can be expanded.

【0163】ところで、前述のように、一般的な光ファ
イバ変位計では、照射面からターゲット(測定対象物)
に対して発散光を照射光として照射し、ターゲット(測
定対象物)上の照射(投光)範囲と開口数(NA)で決
まる受光範囲との重なった部分からの反射光を利用す
る。
As described above, in a general optical fiber displacement meter, a target (measurement object) is viewed from an irradiation surface.
Divergent light is emitted as irradiation light, and reflected light from a portion where an irradiation (light projection) range on a target (object to be measured) and a light receiving range determined by a numerical aperture (NA) overlap is used.

【0164】このため、レーザ光などの集束性の強い平
行光線束(平行光、視準光、コリメート光)を光軸に沿
って照射したのでは、照射面と受光面が仮に隣接してい
ても投光範囲と受光範囲に重なりが生じないので、照射
光として利用できない。また、レーザ光などを利用した
のでは、その集束性、可干渉性、高輝度・単色性、指向
性など(以下「集束性等」)の強さにより、光軸上で全
面反射して元の照射面に戻って干渉し合ってしまう。
For this reason, if a parallel light beam (parallel light, collimated light, collimated light) such as laser light having a high converging property is irradiated along the optical axis, the irradiated surface and the light receiving surface are temporarily adjacent to each other. Also, since no overlap occurs between the light projecting range and the light receiving range, it cannot be used as irradiation light. In addition, when a laser beam or the like is used, the light is totally reflected on the optical axis due to its convergence, coherence, high brightness / monochromaticity, and directivity (hereinafter referred to as “convergence, etc.”). Return to the irradiation surface and interfere with each other.

【0165】そこで、次に、照射光としてレーザ光を利
用する位置測定装置2bについて、図6〜図9を参照し
て説明する。なお、図示では、平行光線束の代表として
使用するレーザ光の光軸のみ(中心光の光路)を主に図
示し、それにより、レーザ光およびその光路を表現す
る。
Next, a position measuring device 2b that uses laser light as irradiation light will be described with reference to FIGS. In the drawing, only the optical axis of the laser light used as a representative of the parallel light flux (the optical path of the central light) is mainly illustrated, and the laser light and its optical path are thereby expressed.

【0166】図6および図7に示すように、この位置測
定装置2bでは、入射面GIuの光軸に対する入射光L
の入射角θは、照射光LIが照射面GIdの光軸と所定
の発射角θを有するように定められている。
As shown in FIGS. 6 and 7, in this position measuring device 2b, the incident light L with respect to the optical axis of the incident surface GIu
Is determined such that the irradiation light LI has a predetermined emission angle θ with the optical axis of the irradiation surface GId.

【0167】すなわち、前述のように、照射側面GIM
の形状を、照射光LIを誘導して反射光LRの反射角を
変える形状にすることもできるが(図8参照)、ここで
は、照射測定面GIDを照射面GIdを含む平面とし、
入射光Lの入射角θを設定することにより、照射光LI
が照射面GIdの光軸と所定の発射角θを有するように
定めている。
That is, as described above, the irradiation side surface GIM
May be changed to a shape that guides the irradiation light LI and changes the reflection angle of the reflected light LR (see FIG. 8). Here, the irradiation measurement surface GID is a plane including the irradiation surface GId,
By setting the incident angle θ of the incident light L, the irradiation light LI
Has a predetermined emission angle θ with the optical axis of the irradiation surface GId.

【0168】このため、図9に示すように、照射測定面
GIDと反射測定面GRDが面一で、かつ、レーザ光
(平行光線束)を入射光Lとして伝搬させて(その平行
光線束を)照射光LIとして利用しても、ターゲット
(測定対象物)Tから所定の反射角θの反射光LRが得
られる。
Therefore, as shown in FIG. 9, the irradiation measurement surface GID and the reflection measurement surface GRD are flush with each other, and the laser light (parallel light beam) is propagated as incident light L (the parallel light beam is ) Even when used as irradiation light LI, reflected light LR having a predetermined reflection angle θ can be obtained from target (measurement target) T.

【0169】この場合、前述の断面Cにおいては、図1
0に示すように、仮想照射光導波路IGIの照射面GI
dとターゲット面Tfとの間の測定ギャップyの変化に
応じて、照射光LIに対する反射光LRの受光面GRd
に入射される光量やその入射位置が変化し、この結果、
受光部320における受光量PRが変化する。
In this case, in the above-described cross section C, FIG.
0, the irradiation surface GI of the virtual irradiation optical waveguide IGI
The light receiving surface GRd of the reflected light LR with respect to the irradiation light LI according to a change in the measurement gap y between the target light Td and the target surface Tf.
The amount of light incident on and the incident position change, and as a result,
The light reception amount PR in the light receiving section 320 changes.

【0170】なお、図10は第2仮想側面G3と第3仮
想側面とを隣接させた例を示すが、前述の位置測定装置
2aと同様に(図11(a)参照)、第2仮想側面G3
と第3仮想側面とを接合しても同様に変化する(同図
(b)参照)。
FIG. 10 shows an example in which the second virtual side surface G3 and the third virtual side surface are adjacent to each other. However, similar to the above-described position measuring device 2a (see FIG. 11 (a)), the second virtual side surface G3 is similar to the second virtual side surface G3. G3
The same applies to the case where the third virtual side surface is joined to the third virtual side surface (see FIG. 3B).

【0171】すなわち、この場合の反射光LRも、図3
5や図36で前述のように、測定ギャップyと所定の関
係を持つように変化することになるので、その反射光L
Rを受光面GRdから入射して受光することにより、そ
の反射光LRの受光量PRの変化に基づいて、測定ギャ
ップyおよびその変化(ターゲット(測定対象物)Tの
変位)を求められる。
That is, the reflected light LR in this case is also shown in FIG.
As described above with reference to FIG. 5 and FIG. 36, the reflected light L is changed so as to have a predetermined relationship with the measurement gap y.
By receiving and receiving R from the light receiving surface GRd, the measurement gap y and its change (displacement of the target (measurement target) T) can be obtained based on the change in the amount PR of the reflected light LR.

【0172】このため、この位置測定装置2bでは、レ
ーザ光などの集束性等の強い種類の光を照射光LIとし
て利用できる。
For this reason, in the position measuring device 2b, light of a strong type such as convergence such as laser light can be used as the irradiation light LI.

【0173】また、光源311としてレーザ光源LDを
使用し、レーザ光(集束性等の強い種類の光)を入射光
Lとして利用することにより、それを仮想照射光導波路
IGI内に閉じこめた状態で伝搬させ易くなり、また、
それを照射面GIdから照射光LIとして照射すること
により、発散光を利用する場合より、反射光LRを仮想
反射光導波路IGRの受光面GRdに入射し易くなる。
Further, by using a laser light source LD as the light source 311 and using laser light (light of a strong type such as focusing property) as the incident light L, the laser light is confined in the virtual irradiation optical waveguide IGI. Easier to propagate,
By irradiating it as irradiation light LI from the irradiation surface GId, the reflected light LR is more likely to be incident on the light receiving surface GRd of the virtual reflected light waveguide IGR than when diverging light is used.

【0174】また、この位置測定装置2bでは、集束性
等の強いレーザ光Lを照射光LIとして利用しているの
で、高密度の照射ができる。すなわち、レーザ光は、光
量を大きくすることが容易なので、光量を大きくするこ
とにより、分解能を向上させ、帯域幅を広げることがで
きる。
In the position measuring device 2b, since the laser beam L having strong convergence and the like is used as the irradiation light LI, high-density irradiation can be performed. That is, since the amount of laser light can be easily increased, the resolution can be improved and the bandwidth can be increased by increasing the amount of laser light.

【0175】すなわち、照射光(レーザ光)LIやその
反射光LRの光路とそれ以外との光量の差が顕著となっ
て他の光の影響を受けにくくなるばかりでなく、減衰し
ても結果的な受光量が多いので、高分解能などの光ファ
イバ変位計と同等の利点をさらに向上させ、かつ、広範
囲のリニアリティをさらに確保し易くなる。なお、光路
における透過率の高い波長(例えば多成分系ガラスの場
合830nm程度)の単色光を利用することにより、減
衰を少なくすることもできる。
That is, the difference between the light path of the irradiation light (laser light) LI and the light path of the reflected light LR and the light amount of the other light becomes remarkable, so that not only is it hardly affected by other light, but also if the light is attenuated, Since the light receiving amount is large, the same advantages as the optical fiber displacement meter such as high resolution can be further improved, and the linearity in a wide range can be easily secured. The attenuation can be reduced by using monochromatic light having a wavelength with a high transmittance in the optical path (for example, about 830 nm in the case of multi-component glass).

【0176】また、前述のように、照射測定面GIDと
反射測定面GRDが面一であっても、入射光Lの入射角
θを、照射光LIが照射面GIdの光軸と所定の発射角
θを有するように定めることにより、ターゲット(測定
対象物)Tから所定の反射角θの反射光LRが得られ、
それによって、測定ギャップyを求めることができ、一
方、照射測定面GIDと反射測定面GRDを面一とする
ことにより、照射面GIdと受光面GRdをターゲット
Tに近接させ、微小の測定ギャップyまで測定でき、測
定可能範囲を広げることができるので、以下の説明で
は、照射測定面GIDと反射測定面GRDが面一の場合
のみについて説明する。
As described above, even if the irradiation measurement surface GID and the reflection measurement surface GRD are flush with each other, the incident angle θ of the incident light L can be determined by changing the irradiation light LI from the optical axis of the irradiation surface GId to a predetermined emission angle. By determining the angle to have an angle θ, reflected light LR having a predetermined reflection angle θ is obtained from a target (measurement target) T,
Thereby, the measurement gap y can be obtained. On the other hand, by making the irradiation measurement surface GID and the reflection measurement surface GRD flush, the irradiation surface GId and the light receiving surface GRd are brought close to the target T, and the minute measurement gap y is obtained. In the following description, only the case where the irradiation measurement surface GID and the reflection measurement surface GRD are flush with each other will be described.

【0177】もちろん、以下に説明する例において、微
小の測定ギャップyまで測定可能ということ以外に関し
ては、照射測定面GIDと反射測定面GRDが面一でな
くても、照射側面GIMの形状を、照射光LIを誘導し
て反射光LRの反射角を変える形状にすることで、同様
のことができることは言うまでもない。
Of course, in the example described below, the shape of the irradiation side surface GIM can be changed even if the irradiation measurement surface GID and the reflection measurement surface GRD are not flush except that the measurement can be performed up to the minute measurement gap y. It is needless to say that the same can be achieved by guiding the irradiation light LI and changing the reflection angle of the reflected light LR.

【0178】また、以下の説明では、レーザ光の入射角
や発射角を所定の固定値とするが、例えば光源311以
外に、全て図外のコンデンサレンズやコリメートレンズ
等を有する集光器や、集光されたレーザ光Lの入射角θ
を調整する入射ユニットなどを備えることにより、可変
値とすることもできる。
In the following description, the incident angle and the emission angle of the laser beam are set to predetermined fixed values. For example, in addition to the light source 311, a concentrator having a condenser lens, a collimator lens, and the like (not shown), Incident angle θ of focused laser light L
By providing an incident unit or the like that adjusts the value, a variable value can be obtained.

【0179】この場合、例えば入射ユニットは、全て図
外の回転角度をパルス数により精密に制御可能なステッ
ピングモータ等から成る駆動源と、所定の減速ギア機構
等を介してその駆動源により回転するミラー(回転ミラ
ー)やプリズム(回転プリズム)等から成る結合機構と
を有することにより、照射光導波路GIに対してその光
軸と所定の入射角θとなるように、レーザ光Lの入射角
θを調整可能に構成できる。
In this case, for example, the incident unit is rotated by a driving source such as a stepping motor capable of precisely controlling the rotation angle (not shown) by the number of pulses, and the driving source via a predetermined reduction gear mechanism. By having a coupling mechanism including a mirror (rotating mirror) and a prism (rotating prism), the incident angle θ of the laser light L is set so that the optical axis is at a predetermined incident angle θ with respect to the irradiation optical waveguide GI. Can be configured to be adjustable.

【0180】また、任意の入射角θに対する例えばステ
ッピングモータへのパルス数などの制御データは、実測
データ等に基づいて、前述のROM220の制御データ
領域222内に、入射角制御データとして規定すれば、
OPC250とCPU210とが連動してこの入射角制
御データを参照することにより、設定された所定の入射
角θに合うように、入射角θを調整できる。
The control data such as the number of pulses to the stepping motor for an arbitrary incident angle θ is defined as the incident angle control data in the control data area 222 of the ROM 220 based on the actual measurement data and the like. ,
By referring to the incident angle control data in cooperation with the OPC 250 and the CPU 210, the incident angle θ can be adjusted to match the set predetermined incident angle θ.

【0181】また、その入射角θは、前述のキーボード
4やマウス5によりディスプレイ3で確認しながら任意
に設定できるようにもできるし、厚み測定装置1では一
対で使用する位置測定装置2の各入射角θ(例えばθ
1、θ2)を相互に異なる値に設定することもできる。
Further, the incident angle θ can be arbitrarily set while confirming on the display 3 with the keyboard 4 and the mouse 5 described above. In the thickness measuring device 1, each of the position measuring devices 2 used as a pair is used. Incident angle θ (eg, θ
1, θ2) can be set to mutually different values.

【0182】また、レーザ光源としては、ルビーレー
ザ、ガラスレーザ、YAGレーザ等の固体レーザでも、
アルゴンレーザ、金属イオンレーザ等のガスレーザで
も、ラマンレーザ、ダイレーザ等の液体レーザでも、そ
の発光と入射面への入射角が制御できれば、適用は可能
であるが、小型化等のため、以下に説明する位置測定装
置では、半導体レーザ、特にレーザダイオードを利用
し、その入射面GIuの光軸に対する入射角θを固定値
とする。
As a laser light source, a solid-state laser such as a ruby laser, a glass laser, a YAG laser or the like may be used.
A gas laser such as an argon laser or a metal ion laser, or a liquid laser such as a Raman laser or a die laser can be applied as long as the light emission and the incident angle on the incident surface can be controlled. In the position measuring device, a semiconductor laser, in particular, a laser diode is used, and the incident angle θ of the incident surface GIu with respect to the optical axis is a fixed value.

【0183】上述のように、上記の位置測定装置2bお
よび以下に説明する他の位置測定装置では、レーザ光L
を利用する利点、すなわち、光ファイバ変位計と同等の
利点の他、広範囲のリニアリティを確保できるという利
点を有し、かつ、レーザ光源LDがレーザダイオードな
ので、小型化が可能になるとともに、大量生産が可能に
なるので、材料(資材コスト)や製造(製造コスト)な
どに関して、コストダウンが図れる。
As described above, in the position measuring device 2b and other position measuring devices described below, the laser beam L
In other words, in addition to the advantage equivalent to the optical fiber displacement meter, it has the advantage that a wide range of linearity can be secured, and since the laser light source LD is a laser diode, miniaturization is possible and mass production is possible. Thus, costs can be reduced with respect to materials (material costs) and manufacturing (manufacturing costs).

【0184】また、以下に説明する位置測定装置では、
一般的な電子部品を樹脂等によりモールドしてパッケー
ジ化するのと同様に、レーザ光源LDであるレーザダイ
オードを照射光導波路GIおよび反射光導波路GRとと
もに一体化して、1つのパッケージ内に納めることを目
標とする。これにより、さらに小型化が可能になり、ま
た、扱い易いものとなる。
In the position measuring device described below,
As in the case where a general electronic component is molded with a resin or the like and packaged, a laser diode which is a laser light source LD is integrated with the irradiation optical waveguide GI and the reflection optical waveguide GR and is housed in one package. Target. As a result, further miniaturization becomes possible, and it becomes easy to handle.

【0185】上述のように、小型化等を目的に光源31
1をレーザダイオードで構成するレーザ光源LDとする
ことに定まったので、次に、光源LD以外の構成要件に
ついて説明する。
As described above, the light source 31 is used for the purpose of miniaturization and the like.
Since it has been decided that 1 is a laser light source LD composed of a laser diode, components other than the light source LD will be described next.

【0186】まず、照射側面GIMを構成する照射光導
波路GIの外周部位および反射側面GRMを構成する反
射光導波路GRの外周部位には、内部に伝搬する光を反
射させるクラッド領域が形成され、このクラッド領域に
囲まれる部位には、光を伝搬するためのコア領域が形成
されていることが好ましい。
First, a cladding region for reflecting light propagating inside is formed on the outer peripheral portion of the irradiation optical waveguide GI constituting the irradiation side surface GIM and the outer peripheral portion of the reflection optical waveguide GR constituting the reflection side surface GRM. It is preferable that a core region for transmitting light is formed in a portion surrounded by the cladding region.

【0187】この場合、照射光導波路や反射光導波路
が、光ファイバ変位計の光ファイバと同様の構成を有す
るので、光を問題なく伝搬させることができ、光ファイ
バ変位計と同様の利点を問題なく得られる。
In this case, since the irradiation optical waveguide and the reflection optical waveguide have the same configuration as the optical fiber of the optical fiber displacement meter, light can be propagated without any problem, and the same advantages as those of the optical fiber displacement meter can be obtained. Obtained without.

【0188】また、上記のコア領域は、石英系ガラス、
多成分系ガラスおよびプラスチックのいずれかから成る
ことが好ましい。この場合、光を伝搬させるコア領域
が、光ファイバのコア領域と同等の材質から成るので、
光を問題なく伝搬させることができる。
The core region is made of quartz glass,
It is preferred to be composed of any of multi-component glass and plastic. In this case, since the core region for transmitting light is made of the same material as the core region of the optical fiber,
Light can be propagated without any problem.

【0189】また、内部に伝搬する光を反射させるクラ
ッド領域は、例えば金などの光を反射する金属系の物質
や、コア領域より屈折率の低い誘電体から成ることが好
ましい。この場合、内部の光をコア領域とクラッド領域
の境界で反射させることができ、これにより、光を問題
なく伝搬させることができる。
It is preferable that the cladding region for reflecting the light propagating inside is made of, for example, a metal material that reflects light, such as gold, or a dielectric material having a lower refractive index than the core region. In this case, the light inside can be reflected at the boundary between the core region and the cladding region, so that the light can be propagated without any problem.

【0190】また、これらの場合、照射光導波路GIお
よび反射光導波路GRが、金などの金属等の電気めっき
法、真空蒸着やスパッタリングなどの物理気相合成法、
および、熱CVDやプラズマCVDなどの化学気相合成
法のいずれかの方法で作製されることが好ましい。
In these cases, the irradiation optical waveguide GI and the reflection optical waveguide GR are formed by electroplating a metal such as gold, physical vapor synthesis such as vacuum evaporation or sputtering,
Further, it is preferable to be manufactured by any one of chemical vapor synthesis methods such as thermal CVD and plasma CVD.

【0191】この場合、他の装置や部品等を作製するた
めにも一般的に用いられる方法によって作製できるた
め、他の目的で購入した既存の設備等を使用して作製し
易く、特別な設備投資等が不要となる。また、いずれの
方法も光導波路の表面を平面化し易いので、例えば照射
光導波路GIの第2仮想側面G2を含む照射側面GIM
と反射光導波路GRの第3仮想側面GRを含む反射側面
GRMとを接合する場合も接合し易い。
In this case, since it can be manufactured by a generally used method for manufacturing other devices and parts, it is easy to manufacture using existing equipment and the like purchased for other purposes, and special equipment can be used. No investment is required. In addition, since the surface of the optical waveguide is easily planarized by any of the methods, for example, the irradiation side surface GIM including the second virtual side surface G2 of the irradiation optical waveguide GI
In the case where the reflective side surface GRM including the third virtual side surface GR of the reflected optical waveguide GR is bonded to the reflective side surface GRM, the bonding is easy.

【0192】そこで、次に、照射側面GIMや反射側面
GRMの形状であるが、これらは、少なくとも入射面G
Iuおよび検出面GRuを含む仮想の平面と照射面GI
dおよび受光面GRdを含む仮想の平面の2つの平行な
仮想の平面間において、照射側面GIMの第1仮想側面
G1と第2仮想側面G2の間を連結する側面や、反射側
面GRMの第3仮想側面G3と第4仮想側面G4の間を
連結する側面が、複数の平面、特に4つの平面から成る
ことが好ましい。
Then, next, the shapes of the irradiation side surface GIM and the reflection side surface GRM will be described.
A virtual plane including Iu and the detection surface GRu and an irradiation surface GI
between the first virtual side G1 and the second virtual side G2 of the irradiation side GIM, and the third side of the reflection side GRM, between two parallel virtual planes including the virtual plane d and the light receiving plane GRd. It is preferable that the side surface connecting between the virtual side surface G3 and the fourth virtual side surface G4 be composed of a plurality of planes, particularly four planes.

【0193】すなわち、この場合、照射光導波路GIの
仮想照射光導波路IGIを含む部位や反射光導波路GR
の仮想反射光導波路IGRを含む部位は、複数の平側面
を有する角柱形状となる。このため、光ファイバ等のよ
うに曲面を含む場合に比べて、製造が容易になるので、
製造コストを低減できる。
That is, in this case, the portion of the irradiation light guide GI including the virtual irradiation light guide IGI and the reflection light guide GR
The portion including the virtual reflected optical waveguide IGR has a prism shape having a plurality of flat side surfaces. For this reason, as compared to a case including a curved surface such as an optical fiber, manufacturing becomes easier,
Manufacturing costs can be reduced.

【0194】例えば、図12および図13に示す位置測
定装置2cは、入射面GIuおよび検出面GRuを含む
仮想の平面と、照射面GIdおよび受光面GRdを含む
仮想の平面、の2つの平行な仮想平面の間の部位、すな
わち照射光導波路GIの仮想照射光導波路IGIを含む
部位や反射光導波路GRの仮想反射光導波路IGRを含
む部位が、4つの平側面を有する四角柱形状となってい
る。
For example, the position measuring device 2c shown in FIGS. 12 and 13 has two parallel planes: a virtual plane including the incident surface GIu and the detection surface GRu, and a virtual plane including the irradiation surface GId and the light receiving surface GRd. A portion between the virtual planes, that is, a portion of the irradiation light guide GI including the virtual irradiation light guide IGI and a portion of the reflection light guide GR including the virtual reflection light waveguide IGR have a quadrangular prism shape having four flat side surfaces. .

【0195】すなわち、この位置測定装置2cでは、照
射光導波路GIの仮想照射光導波路IGIを含む部位や
反射光導波路GRの仮想反射光導波路IGRを含む部位
が四角柱形状なので、角柱の中でも最も扱い易く製造し
易いものとなり、さらに製造コストを低減でき、コスト
ダウンが図れる。
That is, in the position measuring device 2c, since the portion of the irradiation light guide GI including the virtual irradiation light guide IGI and the portion of the reflection light guide GR including the virtual reflection light guide IGR are quadrangular prism-shaped, they are most treated among prisms. It is easy and easy to manufacture, and the manufacturing cost can be further reduced, and the cost can be reduced.

【0196】なお、図12の側面の部位の黒塗り部分
は、クラッド領域を明示するためであり、内部と色が異
なる等の特別な意味を持つものではない。後述の図14
も同様である。また、これらにより、考え方だけ理解で
きればそれ以降ではクラッド領域を明示する必要もない
と考えられ、逆に見ずらくなる可能性もあるので、黒塗
りで示していない。
The black portions on the side surfaces in FIG. 12 are for clearly indicating the cladding region, and have no special meaning such as a different color from the inside. FIG. 14 to be described later.
The same is true for In addition, if only the concept can be understood from these, it is considered that there is no need to specify the cladding region thereafter, and it is difficult to see the cladding region.

【0197】また、上述の図12や図13から明らかな
ように、この位置測定装置2cでは、照射光導波路GI
の仮想照射光導波路IGIを含む部位の全体を、幅の広
い第1仮想側面G1や第2仮想側面G2を有する仮想照
射光導波路IGIとし、反射光導波路GRの仮想反射光
導波路IGRを含む部位の全体を、幅広の第3仮想側面
G3や第4仮想側面G4を有する仮想反射光導波路IG
Rとして扱うこともできる。
As is clear from FIGS. 12 and 13, the position measuring device 2c uses the irradiation optical waveguide GI.
The entire portion including the virtual irradiation optical waveguide IGI is a virtual irradiation optical waveguide IGI having a wide first virtual side surface G1 and a second virtual side surface G2, and the portion including the virtual reflection optical waveguide IGR of the reflection light guide GR is used. The whole is a virtual reflection optical waveguide IG having wide third virtual side surfaces G3 and fourth virtual side surfaces G4.
It can be treated as R.

【0198】また、図示とは異なる位置、すなわち図示
上の奥行き方向の任意の位置に、仮想照射光導波路IG
Iや仮想反射光導波路IGRを想定することもできる。
Further, a virtual irradiation optical waveguide IG is provided at a position different from that shown in the figure, that is, at an arbitrary position in the depth direction in the figure.
I and a virtual reflection optical waveguide IGR can also be assumed.

【0199】すなわち、仮想照射光導波路IGIを含む
部位が四角柱形状の照射光導波路GIや、仮想反射光導
波路IGRを含む部位が四角柱形状の反射光導波路GR
は、本発明の位置測定装置を適用するのに適した形状な
ので、以下では、主に、四角柱形状を主体とした照射側
面GIMや反射側面GRMの形状を有する位置測定装置
について説明する。
That is, a portion including the virtual irradiation optical waveguide IGI is a square pillar-shaped irradiation optical waveguide GI, and a portion including the virtual reflected light waveguide IGR is a square column-shaped reflection optical waveguide GR.
Is a shape suitable for applying the position measuring device of the present invention. Therefore, hereinafter, a position measuring device mainly having a shape of an irradiation side surface GIM or a reflection side surface GRM mainly having a quadrangular prism shape will be described.

【0200】ところで、位置測定装置2cでは、照射側
面GIMや反射側面GRMの形状として、上記の仮想照
射光導波路IGIを含む部位や仮想反射光導波路IGR
を含む部位以外にも工夫が加えられている。
By the way, in the position measuring device 2c, the shape including the irradiation side surface GIM and the reflection side surface GRM may be changed to a portion including the virtual irradiation light guide IGI or the virtual reflection light guide IGR.
Ingenuity has been added to parts other than those containing.

【0201】仮想照射光導波路IGIの光軸と仮想反射
光導波路IGRとの光軸は、双方を含む仮想の平面(前
述の断面Cに相当)内において平行なので、それらと一
致する入射面GIuの光軸と検出面GRuの光軸とは平
行となるが、この位置測定装置2cでは、照射制御面G
IUおよび反射制御面GRUのそれぞれの光軸が相互に
異なる方向に定められている。
The optical axis of the virtual irradiation optical waveguide IGI and the optical axis of the virtual reflection optical waveguide IGR are parallel in a virtual plane (corresponding to the above-described cross section C) including both, so that the incident surface GIu coincident therewith. Although the optical axis and the optical axis of the detection surface GRu are parallel to each other, in this position measurement device 2c, the irradiation control surface G
The optical axes of the IU and the reflection control surface GRU are set in mutually different directions.

【0202】具体的には、位置測定装置2cでは、図1
2に示すように、反射制御面GRUの光軸が、前述の断
面C内において、仮想照射光導波路IGI(および仮想
反射光導波路IGR)の光軸と交差(図示ではほぼ直
交)する関係となるように定められている。
Specifically, in the position measuring device 2c, FIG.
As shown in FIG. 2, the optical axis of the reflection control surface GRU intersects (substantially orthogonal in the drawing) the optical axis of the virtual irradiation optical waveguide IGI (and the virtual reflection optical waveguide IGR) in the cross section C described above. It is determined as follows.

【0203】また、図示のように、照射制御面GIUの
光軸を仮想照射光導波路IGIの光軸と合わせ、これに
より、照射制御面GIUおよび反射制御面GRUのそれ
ぞれの光軸が相互に異なる方向に定められている。
As shown in the figure, the optical axis of the irradiation control surface GIU is aligned with the optical axis of the virtual irradiation optical waveguide IGI, so that the optical axes of the irradiation control surface GIU and the reflection control surface GRU are different from each other. The direction is determined.

【0204】光源LDが発する入射光Lの光軸が照射制
御面GIUの光軸に合うように、あるいは所定の入射角
θとなるように光源LDを配置し、反射制御面GRUか
ら発射される検出光LSを受光しやすいように反射制御
面GRUの光軸に合わせて受光部PD(前述の受光部3
20に相当)を配置する場合、照射制御面GIUの光軸
と反射制御面GRUの光軸の方向を同じにすると、光源
LDと受光部PDを同じ方向に配置する必要があり、配
置し難い。
The light source LD is arranged so that the optical axis of the incident light L emitted from the light source LD matches the optical axis of the irradiation control surface GIU or has a predetermined incident angle θ, and is emitted from the reflection control surface GRU. The light receiving unit PD (the light receiving unit 3 described above) is aligned with the optical axis of the reflection control surface GRU so as to easily receive the detection light LS.
20), if the direction of the optical axis of the irradiation control surface GIU is the same as the direction of the optical axis of the reflection control surface GRU, the light source LD and the light receiving unit PD need to be disposed in the same direction, which is difficult. .

【0205】この位置測定装置2cでは、上述のよう
に、照射制御面GIUおよび反射制御面GRUのそれぞ
れの光軸が相互に異なる方向に定められているので、光
源LDと受光部PDを配置し易くなっている。
In the position measuring device 2c, as described above, since the respective optical axes of the irradiation control surface GIU and the reflection control surface GRU are determined in mutually different directions, the light source LD and the light receiving portion PD are arranged. It's easier.

【0206】この場合、光源LDや受光部PDをそれぞ
れ照射制御面GIUや反射制御面GRUに近接して配置
し易いように、照射制御面GIUおよび反射制御面GR
Uのそれぞれの光軸を定めておけば、光源LDや受光部
PDを近接して配置することにより、装置全体を小型化
できる。
In this case, the irradiation control surface GIU and the reflection control surface GR are so arranged that the light source LD and the light receiving portion PD can be easily arranged close to the irradiation control surface GIU and the reflection control surface GRU, respectively.
If the respective optical axes of U are determined, the entire device can be miniaturized by arranging the light source LD and the light receiving unit PD close to each other.

【0207】なお、レーザ光Lを入射角θで入射させ易
くして、照射制御面GIUに対する入射光量を少しでも
増大させるために、照射制御面GIUの光軸を光源LD
側に傾けて図示の照射制御面GIU2のようにしても良
い。
In order to make the laser beam L easily incident at the incident angle θ and to increase the amount of light incident on the irradiation control surface GIU even slightly, the optical axis of the irradiation control surface GIU is set to the light source LD.
The irradiation control surface GIU2 may be inclined to the side.

【0208】これらの場合、図9等でも前述のように、
照射側面GIMの形状を光源LDから発する入射光Lが
入射面GIuに誘導されるような形状にしたり、反射側
面GRMの形状を検出面GRuからの検出光LSが受光
部PDに誘導されるような形状にしたりすることができ
るので、照射制御面GIUの光軸が入射面GIuの光軸
と方向が異なったり、反射制御面GRUの光軸が検出面
GRuの光軸と方向が異なっても、問題は生じない。
In these cases, as described above in FIG.
The shape of the irradiation side surface GIM may be made such that the incident light L emitted from the light source LD is guided to the incidence surface GIu, or the shape of the reflection side surface GRM may be guided to the light receiving portion PD with the detection light LS from the detection surface GRu. And the direction of the optical axis of the irradiation control surface GIU is different from the direction of the optical axis of the incident surface GIu, or the direction of the optical axis of the reflection control surface GRU is different from the direction of the optical axis of the detection surface GRu. No problem.

【0209】また、上記の位置測定装置2cでは、反射
制御面GRUの光軸を仮想照射光導波路IGRの光軸と
交差する関係となるように定めたが、照射制御面GIU
の光軸を仮想照射光導波路IGIの光軸と交差する関係
となるように定めても良い。
In the position measuring device 2c, the optical axis of the reflection control surface GRU is determined so as to intersect with the optical axis of the virtual irradiation optical waveguide IGR.
May be determined so as to intersect the optical axis of the virtual irradiation optical waveguide IGI.

【0210】この場合、他方の反射制御面GRUの光軸
を仮想反射光導波路IGRの光軸と合わせても、照射制
御面GIUおよび反射制御面GRUのそれぞれの光軸
が、同様に相互に異なる方向に定められ、これにより、
照射制御面GIUの光軸に合わせてあるいは所定の入射
角θとなるように光源LDを近接して配置し、反射制御
面GRUの光軸に合わせて受光部PDを近接して配置し
易くなり、装置全体を小型化できる。
In this case, even if the optical axis of the other reflection control surface GRU is aligned with the optical axis of the virtual reflection optical waveguide IGR, the respective optical axes of the irradiation control surface GIU and the reflection control surface GRU are similarly different from each other. Direction, so that
The light source LD is arranged close to the optical axis of the irradiation control surface GIU or at a predetermined incident angle θ, and the light receiving unit PD is easily arranged close to the optical axis of the reflection control surface GRU. In addition, the size of the entire apparatus can be reduced.

【0211】なお、これらの場合、照射制御面GIUま
たは反射制御面GRUの光軸の交差する角度を直角、す
なわち直交するようにすれば、光源LDや受光部PDを
第1仮想側面G1等と平行に配置でき、さらに配置し易
くなる。
In these cases, the light source LD and the light receiving portion PD can be made to correspond to the first virtual side surface G1 and the like by making the angle at which the optical axis of the irradiation control surface GIU or the reflection control surface GRU intersects a right angle, that is, orthogonal. They can be arranged in parallel, making them easier to arrange.

【0212】ところで、照射制御面GIUおよび反射制
御面GRUのそれぞれの光軸を相互に異なる方向に定め
るには、照射制御面GIUの光軸が入射面GIuの光軸
と所定の角度を有するように定めるか、反射制御面GR
Uの光軸が検出面GRuの光軸と所定の角度を有するよ
うに定めるか、または双方とも所定の角度にかつ相互に
異なるように定めるかのいずれかで良い。
By the way, in order to determine the respective optical axes of the irradiation control surface GIU and the reflection control surface GRU in mutually different directions, it is necessary that the optical axis of the irradiation control surface GIU has a predetermined angle with the optical axis of the incident surface GIu. Or the reflection control surface GR
Either the optical axis of U may be determined to have a predetermined angle with the optical axis of the detection surface GRu, or both may be determined to have a predetermined angle and be different from each other.

【0213】このため、上述のように、照射制御面GI
Uや反射制御面GRUの一方の光軸を、断面C内におい
て仮想照射光導波路IGIの光軸と交差する関係となる
ように定めるばかりでなく、その他の方法も考えられ
る。
For this reason, as described above, the irradiation control surface GI
Not only the U or one optical axis of the reflection control surface GRU is determined so as to intersect the optical axis of the virtual irradiation optical waveguide IGI in the cross section C, but other methods are also conceivable.

【0214】すなわち、例えば照射制御面GIUおよび
反射制御面GRUの一方の光軸が、断面Cに対して交差
する関係となるように定めることもできる。
That is, for example, one of the optical axes of the irradiation control surface GIU and the reflection control surface GRU may be determined so as to intersect the cross section C.

【0215】例えば、図14および図15に示す位置測
定装置2dは、反射制御面GRUの光軸が、断面Cに対
して交差(図示ではほぼ直交)する関係となるように定
められている。また、他方の照射制御面GIUの光軸を
仮想照射光導波路IGIの光軸と合わせているので、照
射制御面GIUおよび反射制御面GRUのそれぞれの光
軸が相互に異なる方向に定められている。
For example, the position measuring device 2d shown in FIGS. 14 and 15 is defined such that the optical axis of the reflection control surface GRU intersects (substantially orthogonal in the drawing) the cross section C. In addition, since the optical axis of the other irradiation control surface GIU is aligned with the optical axis of the virtual irradiation optical waveguide IGI, the respective optical axes of the irradiation control surface GIU and the reflection control surface GRU are set in directions different from each other. .

【0216】そして、これにより、例えば照射光導波路
GIの上方に、レーザ光Lが照射制御面GIUの光軸に
対して入射角θとなるように図外の光源LDを近接して
配置し、図示の手前側に反射制御面GRUの光軸と合う
ように受光部PDを近接して配置できる。
Thus, for example, a light source LD (not shown) is arranged close to the irradiation optical waveguide GI so that the laser beam L has an incident angle θ with respect to the optical axis of the irradiation control surface GIU. The light receiving unit PD can be disposed close to the front side of the figure so as to match the optical axis of the reflection control surface GRU.

【0217】もちろん、これとは逆に照射制御面GIU
の光軸を断面Cと交差するように定めても良い。この場
合も、例えば他方の反射制御面GRUの光軸を仮想反射
光導波路IGRの光軸と合わせれば、照射制御面GIU
および反射制御面GRUのそれぞれの光軸が相互に異な
る方向に定められる。
Of course, on the contrary, the irradiation control surface GIU
May be set so as to intersect with the cross section C. Also in this case, for example, if the optical axis of the other reflection control surface GRU is aligned with the optical axis of the virtual reflection optical waveguide IGR, the irradiation control surface GIU
The respective optical axes of the reflection control surface GRU and the reflection control surface GRU are determined in mutually different directions.

【0218】そして、この場合も、照射制御面GIUの
光軸に合わせてあるいは所定の入射角θとなるように図
外の光源LDを近接して配置し、反射制御面GRUの光
軸に合わせて受光部PDを近接して配置し易くなり、装
置全体を小型化できる。
In this case as well, a light source LD (not shown) is arranged close to the optical axis of the irradiation control surface GIU or at a predetermined incident angle θ so as to align with the optical axis of the reflection control surface GRU. As a result, it is easy to arrange the light receiving unit PD in close proximity, and the entire device can be downsized.

【0219】なお、この場合、光軸の交差する角度を直
角、すなわち直交するようにすれば、光源LDや受光部
PDを上記の断面C(仮想の平面)と平行に配置でき
る。これは、特に本例の位置測定装置2dのように仮想
照射光導波路IGIや仮想反射光導波路IGRを含む部
位が四角柱形状の場合に、光源LDや受光部PDを第1
仮想側面G1等と直角な側面に対向して(本例では手前
側に)平行に配置でき、配置し易い。
In this case, if the angle at which the optical axes intersect is set to be a right angle, that is, orthogonal, the light source LD and the light receiving unit PD can be arranged in parallel with the cross section C (virtual plane). This is because the light source LD and the light receiving unit PD are connected to the first position when the portion including the virtual irradiation optical waveguide IGI and the virtual reflection optical waveguide IGR has a quadrangular prism shape as in the position measuring device 2d of the present example.
It can be arranged in parallel (facing to the front side in this example) facing the side surface perpendicular to the virtual side surface G1 and the like, and is easy to arrange.

【0220】また、この場合、反射制御面GRUから検
出光LSを発射させるためにその光路を変更する反射側
面GRMの一部の部位GRMSを、断面Cおよび検出面
GRu等の双方に45゜の角度となるように設けるだけ
で、仮想反射光導波路IGRの光軸に沿って断面C内に
反射・伝搬してきた光を、断面Cと垂直かつ検出面GR
u等と平行な仮想の平面内に伝搬する検出光LSとなる
ように光路変更できるので、作製し易い。
In this case, a part GRMS of the reflection side surface GRM for changing the optical path for emitting the detection light LS from the reflection control surface GRU is set at 45 ° to both the section C and the detection surface GRu. By simply providing the light at an angle, the light reflected and propagated in the section C along the optical axis of the virtual reflection optical waveguide IGR is perpendicular to the section C and the detection surface GR.
Since the optical path can be changed so that the detection light LS propagates in a virtual plane parallel to u and the like, it is easy to manufacture.

【0221】なお、以下では、受光部320を例えばフ
ォトダイオード等のように小型化が可能なもので構成
し、この場合の受光部320を受光部PDと呼ぶ。上述
の位置測定装置2cや位置測定装置2d等の説明におい
て、受光部320を受光部PDとして説明したのは、位
置測定装置2cや位置測定装置2dにおいても、受光部
320を例えばフォトダイオード等のように小型化が可
能な受光部PDで構成するのが好ましいからである。
[0221] In the following, the light receiving section 320 is made of a small-sized element such as a photodiode, for example, and the light receiving section 320 in this case is referred to as a light receiving section PD. In the above description of the position measuring device 2c and the position measuring device 2d, the light receiving unit 320 is described as the light receiving unit PD. In the position measuring device 2c and the position measuring device 2d, the light receiving unit 320 is, for example, a photodiode. This is because it is preferable to constitute the light receiving unit PD which can be downsized.

【0222】このような受光部PDの場合、前述のレー
ザダイオード等から構成されるレーザ光源LDと同様
に、また、一般的な電子部品と同様に、樹脂等によりモ
ールドしてパッケージ化できる。
In the case of such a light receiving portion PD, it can be molded and packaged with a resin or the like in the same manner as the laser light source LD including the above-described laser diode or the like, or similar to a general electronic component.

【0223】これらの場合、受光部PDを照射光導波路
GIおよび反射光導波路GRとともに一体化して、1つ
のパッケージ内に納めるので、さらに小型化が可能にな
り、扱い易くなるとともに、大量生産が可能になるの
で、材料(資材コスト)や製造(製造コスト)などに関
して、コストダウンが図れる。特に上述した位置測定装
置2dや位置測定装置2cのように、受光部PDを反射
光導波路GRに近接できる場合には、小型化し易くパッ
ケージ化し易い。
In these cases, the light receiving section PD is integrated with the irradiation light guide GI and the reflection light guide GR and is housed in one package, so that further miniaturization becomes possible, handling becomes easy, and mass production becomes possible. Therefore, costs can be reduced with respect to materials (material costs) and manufacturing (manufacturing costs). In particular, when the light receiving unit PD can be brought close to the reflected light waveguide GR as in the position measuring device 2d and the position measuring device 2c described above, it is easy to reduce the size and package.

【0224】上述の位置測定装置2cや位置測定装置2
dでは、前述のように、仮想反射光導波路IGRの幅
(第3仮想側面G3と第4仮想側面G4の間の距離)が
仮想照射光導波路IGIの幅(第1仮想側面G1と第2
仮想側面G2の間の距離)の約2倍のため、受光量PR
が測定ギャップyに対して図36(a)のようになり、
実用範囲WRの立ち上がり側WRuと立ち下がり側WR
dが不連続となる。
The position measuring device 2c and the position measuring device 2 described above are used.
In d, as described above, the width of the virtual reflection optical waveguide IGR (the distance between the third virtual side face G3 and the fourth virtual side face G4) is equal to the width of the virtual irradiation optical waveguide IGI (the first virtual side face G1 and the second virtual side face G1).
About twice the distance between the virtual side surfaces G2), the received light amount PR
Is as shown in FIG. 36A with respect to the measurement gap y,
Rise side WRu and fall side WR of the practical range WR
d becomes discontinuous.

【0225】そこで、実用範囲WRを同図(b)のよう
に連続させるため、位置測定装置2cや位置測定装置2
dのそれぞれの仮想反射光導波路IGRの幅を仮想照射
光導波路IGIの幅と合わせる(1倍にする)と、それ
ぞれ、図16および図17に示す位置測定装置2e、図
18および図19に示す位置測定装置2fのようにな
る。
In order to keep the practical range WR continuous as shown in FIG.
When the width of each virtual reflection optical waveguide IGR of d is matched with (increased by one) the width of the virtual irradiation optical waveguide IGI, the position measuring device 2e shown in FIGS. 16 and 17 and FIGS. It looks like a position measuring device 2f.

【0226】なお、図35で前述のように、第2仮想側
面G2と第3仮想側面G3の間に所定の間隔を持たせて
も、受光量PRの特性が全体的に測定ギャップyが大き
くなる方向に平行移動するだけで、本質的な特性は同じ
なので、以下では(特に図示の簡略化のために)、第2
仮想側面G2と第3仮想側面G3のクラッド領域が共有
されて接合されているものについて説明する。
As described above with reference to FIG. 35, even if a predetermined interval is provided between the second virtual side surface G2 and the third virtual side surface G3, the characteristic of the received light amount PR has a large measurement gap y overall. In the following (especially for simplicity of illustration), the second
The case where the cladding regions of the virtual side surface G2 and the third virtual side surface G3 are shared and joined will be described.

【0227】また、図41以降で後述の位置測定装置2
の説明までは、主に反射光導波路GRの構成について説
明するので、光源LDはレーザ光Lを発射する方向に配
設され、受光部PDは検出光LS(後述のLSA、LS
Bを含む)を受光する方向に配設されているものとし
て、図示および詳述は省略する。
The position measuring device 2 described later with reference to FIG.
Until the description, the configuration of the reflected light waveguide GR will be mainly described. Therefore, the light source LD is disposed in the direction in which the laser light L is emitted, and the light receiving unit PD is provided with the detection light LS (LSA, LS described later).
B (including B) is shown in the direction in which the light is received.

【0228】ところで、上述した種々の位置測定装置2
a〜2fにおいて、仮に反射光導波路GRが照射光導波
路GIの左側に配置されていると見ると、前述の平行な
4つの側面のうちの第1仮想側面G1が最も右側の側
面、第4仮想側面G4が最も左側の側面となる。
By the way, the various position measuring devices 2 described above
In a to 2f, if it is assumed that the reflected light guide GR is disposed on the left side of the irradiation light guide GI, the first virtual side face G1 among the four parallel side faces is the rightmost side face and the fourth virtual side face. The side surface G4 is the leftmost side surface.

【0229】そこで、例えば図16および図17で前述
の位置測定装置2eにおいて、仮想照射光導波路IGI
の光軸を含み第1仮想側面G1と平行な平面を対称面と
して、前述の反射光導波路GRを左反射光導波路GRL
とし、その左反射光導波路GRLに対して面対称の関係
となるように右側にも反射光導波路GRを配設して右反
射光導波路GRRとし、図20および図21に示すよう
に配設して、位置測定装置2gとする。
Therefore, for example, in the position measuring device 2e described above with reference to FIGS.
The above-described reflected light guide GR is replaced with the left reflected light guide GRL by setting a plane including the optical axis of the above and parallel to the first virtual side surface G1 as a symmetric surface.
The right-side reflected light guide GRR is disposed on the right side so that the left-side reflected light guide GRL has a plane-symmetric relationship with respect to the left-side reflected light guide GRL, and is disposed as shown in FIGS. Thus, the position measuring device is 2 g.

【0230】この位置測定装置2gでは、左反射光導波
路GRLおよび右反射光導波路GRRが、仮想照射光導
波路IGIの光軸を含み第1仮想側面G1と平行な平面
を対称面(鏡映面)として、面対称(平面対称)の関係
となるように配設されているので、反射制御面GRUの
光軸や反射測定面GRDの光軸も、同様の面対称の関係
となる。
In the position measuring device 2g, the left reflection optical waveguide GRL and the right reflection optical waveguide GRR are arranged such that a plane including the optical axis of the virtual irradiation optical waveguide IGI and parallel to the first virtual side face G1 is a plane of symmetry (mirror plane). Since the optical axis of the reflection control surface GRU and the optical axis of the reflection measurement surface GRD have the same plane symmetry, they are arranged so as to have a plane symmetry (plane symmetry).

【0231】なお、同様のことを例えば図5で前述の位
置測定装置2aに適用した場合、左反射光導波路GR
(GRL)の反射測定面GRDの光軸が仮想照射光導波
路側IGIに傾いて、反射光LR(LRL)が受光面G
Rdに入射し易くなっているので、反対側の右反射光導
波路GR(GRR)でも、反射光LR(LRR)を受光
面GRdに入射し易くなる。
When the same is applied to the position measuring device 2a described above with reference to FIG. 5, for example, the left reflected light waveguide GR
The optical axis of the reflection measurement surface GRD of (GRL) is inclined to the virtual irradiation optical waveguide side IGI, and the reflected light LR (LRL) is reflected by the light receiving surface G.
Since the light is easily incident on Rd, the reflected light LR (LRR) is also easily incident on the light receiving surface GRd even on the right reflected optical waveguide GR (GRR) on the opposite side.

【0232】また、図5の位置測定装置2aにおいて、
照射面GIdから発散光LIを照射すると、その照射
(投光)範囲と左側の反射光導波路(左反射光導波路)
GR(GRL)の受光範囲との重なった部分からの反射
光LR(LRL)が、左反射光導波路GR(GRL)の
受光面GRdに入射され、測定ギャップyの測定に使用
されるが、照射光LIの右側への反射光は測定に使用さ
れず、測定に対する照射効率が低い。
In the position measuring device 2a shown in FIG.
When the diverging light LI is irradiated from the irradiation surface GId, the irradiation (light projection) range and the reflected light waveguide on the left side (left reflected light waveguide)
Reflected light LR (LRL) from a portion overlapping the light receiving range of GR (GRL) is incident on the light receiving surface GRd of the left reflected optical waveguide GR (GRL), and is used for measurement of the measurement gap y. The reflected light to the right of the light LI is not used for the measurement, and the irradiation efficiency for the measurement is low.

【0233】そこで、この左反射光導波路GR(GR
L)に対して照射光導波路GIを挟んで反対側(右側)
にも同等の構成を有する反射光導波路(右反射光導波
路)GR(GRR)を配設し、照射光LIの右側への反
射光LR(LRR)も測定に使用できるようにすること
により、測定に対する照射効率を向上させ、感度(分解
能等)をより高くすることができる。
Therefore, the left reflection optical waveguide GR (GR
L) on the opposite side (right side) across the irradiation optical waveguide GI
By providing a reflected light waveguide (right reflected light waveguide) GR (GRR) having the same configuration as above, the reflected light LR (LRR) to the right of the irradiation light LI can also be used for the measurement. And the sensitivity (resolution, etc.) can be increased.

【0234】なお、この場合、照射光導波路GIの第2
仮想側面G2の対称となる面は、照射光導波路GIの第
1仮想側面G1であり、左反射光導波路GRLの第3仮
想側面G3の対称となる面は、右反射光導波路GRRの
第3仮想側面G3であって、照射光導波路GIの第1仮
想側面G1と右反射光導波路GRRの第3仮想側面G3
は同一サイズの平面同士なので接合し易く、また、円柱
状の光ファイバを接合する場合のような間隙は生じな
い。
In this case, the second position of the irradiation optical waveguide GI
The symmetrical surface of the virtual side surface G2 is the first virtual side surface G1 of the irradiation optical waveguide GI, and the symmetrical surface of the third virtual side surface G3 of the left reflected optical waveguide GRL is the third virtual side surface of the right reflected optical waveguide GRR. A side surface G3, a first virtual side surface G1 of the irradiation light guide GI and a third virtual side surface G3 of the right reflection light guide GRR;
Are easy to join because they are the same size planes, and there is no gap as in the case where cylindrical optical fibers are joined.

【0235】すなわち、図5で前述の(左)反射光導波
路GR(GRL)と照射光導波路GIとの接合と同様
に、照射光導波路GIの照射側面GIMの第1仮想側面
G1と右反射光導波路GRRの反射側面GRMの第3仮
想側面G3とを接合すれば、円柱状の光ファイバを接合
するより接合し易く、かつ線形性(リニアリティ)を害
するような間隙が生じにくい。
That is, similarly to the connection of the (left) reflected light guide GR (GRL) and the irradiation light guide GI in FIG. 5, the first virtual side face G1 of the irradiation side face GIM of the irradiation light guide GI and the right reflected light guide are used. By joining the third virtual side surface G3 of the reflection side surface GRM of the wave path GRR, it is easier to join than joining a columnar optical fiber, and a gap that impairs linearity (linearity) hardly occurs.

【0236】一方、例えば図16および図17で前述の
位置測定装置2eのように、レーザ光などの集束性等の
強い種類の光を照射光LIとして利用する場合、入射面
GIuから所定の入射角θで入射した入射光Lを、第1
仮想側面G1と第2仮想側面G2との間を反射させなが
ら伝搬させ、照射光LIとして左側の第2仮想側面G2
側に照射面GIdの光軸と所定の発射角θで照射する。
On the other hand, when light of a strong type such as convergence, such as laser light, is used as the irradiation light LI, as in the position measuring device 2e described above with reference to FIGS. The incident light L incident at an angle θ is
The light is propagated while being reflected between the virtual side surface G1 and the second virtual side surface G2, and the second virtual side surface G2 on the left side as the irradiation light LI.
Is irradiated at a predetermined launch angle θ with the optical axis of the irradiation surface GId.

【0237】この場合、入射光Lの入射角θや照射光導
波路GIの光路長が(例えば設計値と)僅かに異なれ
ば、本来(設計では)左側に照射されるべき照射光LI
(LIL:図20参照)の一部または全部が、反対側の
右側に照射されることになり、このような場合、十分な
受光量を得られないなど、測定に支障が生じる。
In this case, if the incident angle θ of the incident light L and the optical path length of the irradiation optical waveguide GI are slightly different (for example, from the design value), the irradiation light LI to be originally irradiated (in the design) on the left side
A part or the whole of the LIL (see FIG. 20) is irradiated to the right side on the opposite side, and in such a case, the measurement is hindered such that a sufficient amount of received light cannot be obtained.

【0238】図20および図21で前述の位置測定装置
2gでは、右反射光導波路GR(GRR)を配設するた
め、逆方向の反射光LR(LRR)も受光でき、入射光
Lの入射角θや照射光導波路GIの光路長が設計値と僅
かに異なっても高分解能を維持できるので、製作し易く
なり、パッケージ化するような場合にもその歩留まりが
向上する。特に全体が小型化され反射光導波路GRの材
料が安価な(資材コストが低い)のに対してその製造コ
ストが比較的に高い場合に、コストダウンが図れる。
In the position measuring device 2g described above with reference to FIGS. 20 and 21, since the right reflected optical waveguide GR (GRR) is provided, the reflected light LR (LRR) in the opposite direction can also be received, and the incident angle of the incident light L Even if θ or the optical path length of the irradiation optical waveguide GI is slightly different from the design value, high resolution can be maintained, so that it is easy to manufacture and the yield is improved even in the case of packaging. In particular, cost reduction can be achieved when the whole is downsized and the manufacturing cost is relatively high while the material of the reflection optical waveguide GR is inexpensive (material cost is low).

【0239】なお、左反射光導波路GRLに対して照射
光導波路GIを挟んで反対側の右側の位置に、左反射光
導波路GRLと同等の構成を有する右反射光導波路GR
Rを配設するために、上述では、面対称となるようにし
たが、仮想照射光導波路IGIの光軸を対称中心軸とし
て左反射光導波路GRLを180°回転させた関係とな
るように、右反射光導波路を配設しても良い。
The right reflection optical waveguide GR having the same configuration as the left reflection optical waveguide GRL is provided on the right side opposite to the left reflection optical waveguide GRL with the irradiation optical waveguide GI interposed therebetween.
In order to dispose R, in the above description, it is made to be plane symmetric.However, such that the left reflection optical waveguide GRL is rotated by 180 ° with the optical axis of the virtual irradiation optical waveguide IGI as the central axis of symmetry, A right reflection optical waveguide may be provided.

【0240】前述のように、(左)反射光導波路GR
(GRL)の反射側面GRMの第3仮想側面G3および
第4仮想側面を除く形状は、任意の形状とすることがで
きるため、例えばその反射制御面GRUの光軸や反射測
定面GRDの光軸を仮想反射光導波路IGRの光軸と異
なる方向に配設して、検出面GRuからの検出光LS
(LSL)を受光部PDで検出し易くしたり反射光LR
(LRL)を受光面GRdに入射し易くしたりすること
ができる。
As described above, the (left) reflected optical waveguide GR
Since the shape excluding the third virtual side surface G3 and the fourth virtual side surface of the reflection side surface GRM of (GRL) can be any shape, for example, the optical axis of the reflection control surface GRU or the optical axis of the reflection measurement surface GRD Are arranged in a direction different from the optical axis of the virtual reflection optical waveguide IGR, and the detection light LS from the detection surface GRu is detected.
(LSL) can be easily detected by the light receiving unit PD or the reflected light LR
(LRL) can easily be incident on the light receiving surface GRd.

【0241】上記の場合、右反射光導波路GRRが、仮
想照射光導波路IGIの光軸を対称中心軸として左反射
光導波路IGRを180°回転させた関係となるように
配設されるので、反射制御面GRUの光軸や反射測定面
GRDの光軸も、仮想照射光導波路IGIの光軸を中心
軸として180°回転させた関係となる。
In the above case, since the right reflection optical waveguide GRR is disposed such that the left reflection optical waveguide IGR is rotated by 180 ° with the optical axis of the virtual irradiation optical waveguide IGI as the central axis of symmetry, The optical axis of the control surface GRU and the optical axis of the reflection measurement surface GRD also have a relationship in which the optical axis of the virtual irradiation optical waveguide IGI is rotated by 180 ° around the central axis.

【0242】すなわち、この場合も、例えば図5で前述
の位置測定装置2aに適用すれば、左反射光導波路GR
(GRL)の反射測定面GRDの光軸が仮想照射光導波
路側IGIに傾いて、反射光LR(LRL)が受光面G
Rdに入射し易くなっているので、反対側の右反射光導
波路GR(GRR)でも、反射光LR(LRR)を受光
面GRdに入射し易くなる。
That is, also in this case, for example, if the present invention is applied to the position measuring device 2a described above with reference to FIG.
The optical axis of the reflection measurement surface GRD of (GRL) is inclined to the virtual irradiation optical waveguide side IGI, and the reflected light LR (LRL) is reflected by the light receiving surface G.
Since the light is easily incident on Rd, the reflected light LR (LRR) is also easily incident on the light receiving surface GRd even on the right reflected optical waveguide GR (GRR) on the opposite side.

【0243】なお、図20および図21で前述の位置測
定装置2gは、前述の面対称ばかりでなく、上述の左反
射光導波路IGRと右反射光導波路GRRが仮想照射光
導波路IGIの光軸を対称中心軸として180°回転さ
せた関係(以下、「回転対称」という)も満足してい
る。
The position measuring device 2g described above with reference to FIGS. 20 and 21 has not only the plane symmetry described above, but also the left reflection optical waveguide IGR and the right reflection optical waveguide GRR that make the optical axis of the virtual irradiation optical waveguide IGI. The relationship of 180 ° rotation as the center axis of symmetry (hereinafter referred to as “rotational symmetry”) is also satisfied.

【0244】また、この位置測定装置2gでは、左反射
光導波路GR(GRL)および右反射光導波路GR(G
RR)の各反射制御面GRUが、照射光導波路GI側を
内側としたときの外側に向かって、各検出光LS(LS
L、LSR)を発射するように設けられているので、各
検出光LSL、LSRを受光する受光部PDを、それぞ
れ個別に外側に配置できる。
In the position measuring device 2g, the left reflected light guide GR (GRL) and the right reflected light guide GR (G
RR), the respective reflection control surfaces GRU face the respective detection lights LS (LS) toward the outside when the irradiation optical waveguide GI side is inside.
L, LSR), so that the light receiving sections PD that receive the respective detection lights LSL, LSR can be individually arranged outside.

【0245】さらに、この位置測定装置2gでは、左反
射光導波路GR(GRL)および右反射光導波路GR
(GRR)の各反射制御面GRUが、仮想照射光導波路
IGIの光軸と両方の仮想反射光導波路IGRの光軸を
含む仮想の平面(すなわち前述の断面C)内において、
各反射制御面GRUの光軸が各仮想反射光導波路IGR
の光軸と直交する関係となるように設けられている。
Further, in the position measuring device 2g, the left reflected light guide GR (GRL) and the right reflected light guide GR
Each of the reflection control surfaces GRU of (GRR) is in a virtual plane including the optical axis of the virtual irradiation optical waveguide IGI and the optical axes of both virtual reflection optical waveguides IGR (that is, the cross section C described above).
The optical axis of each reflection control surface GRU is equal to each virtual reflection optical waveguide IGR.
Are provided so as to have a relationship orthogonal to the optical axis.

【0246】すなわち、各反射制御面GRUの光軸は、
第1仮想側面G1や第4仮想側面G4等を含む平面等と
直交する関係となるので、外側の第4仮想側面G4を含
む平面内またはそれと平行な少し内側の平面内に各反射
制御面GRUを設けることにより、左反射光導波路GR
(GRL)および右反射光導波路GR(GRR)と近接
して、各検出光LSL、LSRを受光する受光部PDを
個別に配置でき、装置全体を小型化できる。
That is, the optical axis of each reflection control surface GRU is
Since each of the reflection control surfaces GRU has a relationship orthogonal to a plane including the first virtual side surface G1 and the fourth virtual side surface G4 and the like, the reflection control surface GRU is provided in a plane including the outer fourth virtual side surface G4 or a slightly inner plane parallel thereto. To provide the left reflection optical waveguide GR
(GRL) and the right reflection optical waveguide GR (GRR), the light receiving units PD for receiving the respective detection lights LSL and LSR can be individually arranged, and the entire device can be miniaturized.

【0247】なお、当然ながら、上述の面対称の関係を
有しつつ、回転対称の関係は有さないように、左反射光
導波路GR(GRL)および右反射光導波路GR(GR
R)を配設することもできる。
It is needless to say that the left reflection optical waveguide GR (GRL) and the right reflection optical waveguide GR (GR) have the above-mentioned plane symmetric relation but not rotational symmetry relation.
R) can also be provided.

【0248】例えば図18および図19で前述の位置測
定装置2fにおいて、仮想照射光導波路IGIの光軸を
含み第1仮想側面G1と平行な平面を対称面(鏡映面)
として、前述の反射光導波路GRを左反射光導波路GR
Lとし、その左反射光導波路GRLに対して面対称の関
係となるように右側にも反射光導波路GRを配設して右
反射光導波路GRRとし、図22および図23に示すよ
うに配設して、位置測定装置2hとする。
For example, in the position measuring device 2f described above with reference to FIGS. 18 and 19, a plane including the optical axis of the virtual irradiation optical waveguide IGI and parallel to the first virtual side face G1 is referred to as a symmetry plane (mirror plane).
As described above, the above-described reflected light guide GR is replaced with the left reflected light guide GR.
L, and a reflection optical waveguide GR is also disposed on the right side so as to have a plane-symmetric relationship with respect to the left reflection optical waveguide GRL, and a right reflection optical waveguide GRR is disposed, as shown in FIGS. 22 and 23. Then, the position measuring device 2h is obtained.

【0249】この位置測定装置2hでも、上述の位置測
定装置2gと同様に、左反射光導波路GRLおよび右反
射光導波路GRRが、面対称(平面対称)の関係となる
ように配設されているので、反射制御面GRUの光軸や
反射測定面GRDの光軸も、同様の面対称の関係とな
る。
In this position measuring device 2h, similarly to the above-described position measuring device 2g, the left reflected optical waveguide GRL and the right reflected optical waveguide GRR are arranged so as to have a plane-symmetric (plane-symmetric) relationship. Therefore, the optical axis of the reflection control surface GRU and the optical axis of the reflection measurement surface GRD also have a similar plane symmetric relationship.

【0250】一方、この位置測定装置2hでは、上述の
位置測定装置2gとは異なり、左反射光導波路GR(G
RL)および右反射光導波路GR(GRR)の各反射制
御面GRUが、前述の断面Cに対して、各反射制御面G
RUの光軸が交差する関係となるように設けられてい
る。
On the other hand, in the position measuring device 2h, unlike the above-described position measuring device 2g, the left reflection optical waveguide GR (G
RL) and the reflection control surface GRU of the right reflection optical waveguide GR (GRR),
The RUs are provided so as to intersect with each other.

【0251】このため、照射制御面GIUの光軸が断面
(仮想の平面)C内にあり、それに合わせて光源LDが
近接して配置されていても、各反射制御面GRUをその
断面C外に設けることができるので、各反射制御面GR
Uの光軸に合わせて受光部PDを近接して配置し易い。
For this reason, even when the optical axis of the irradiation control surface GIU is within the cross section (virtual plane) C and the light source LD is arranged close to it, each reflection control surface GRU is moved outside the cross section C. At each reflection control surface GR.
It is easy to arrange the light receiving unit PD close to the optical axis of U.

【0252】さらに、この位置測定装置2hでは、断面
Cに対して各反射制御面GRUの光軸が交差する角度が
直角、すなわち、直交している。このため、各反射制御
面GRUの光軸は、第1仮想側面G1〜第4仮想側面G
4等を含む平面等と平行な平面内に含まれ、かつ、仮想
照射光導波路IGIや反射光導波路IGRの光軸と直交
する関係となる。
Further, in the position measuring device 2h, the angle at which the optical axis of each reflection control surface GRU intersects the cross section C is a right angle, that is, orthogonal. For this reason, the optical axis of each reflection control surface GRU is the first virtual side surface G1 to the fourth virtual side surface GRU.
4 and the like, and are perpendicular to the optical axes of the virtual irradiation optical waveguide IGI and the reflection optical waveguide IGR.

【0253】この場合、断面Cに平行な平面内に各反射
制御面GRUを設けることにより、各反射制御面GRU
と平行かつ対向するように、双方の受光部PDを配置で
きる。また、受光部PDと双方の反射制御面GRUとの
距離を同一距離にできるので、双方からの受光量などの
受光結果を同等に扱え、受光部PDを簡易な構成にし易
くなる。
In this case, by providing each reflection control surface GRU in a plane parallel to the cross section C, each reflection control surface GRU
Both light receiving units PD can be arranged so as to be parallel to and opposed to. In addition, since the distance between the light receiving unit PD and the two reflection control surfaces GRU can be the same, light receiving results such as the amount of light received from both can be treated equally, and the light receiving unit PD can be easily simplified.

【0254】また、特に本例の位置測定装置2hのよう
に、仮想照射光導波路IGIや仮想反射光導波路IGR
を含む部位が四角柱形状の場合、上記の断面Cに平行な
側面を有するので、その側面を含む平面またはそれと平
行な少し内側の平面内に各反射制御面GRUを設けるこ
とにより、左反射光導波路GR(GRL)および右反射
光導波路GR(GRR)と近接して、双方の受光部PD
を配置でき、装置全体を小型化できる。
In addition, in particular, as in the position measuring device 2h of this embodiment, the virtual irradiation optical waveguide IGI and the virtual reflection optical waveguide IGR are used.
In the case where the portion including is a quadrangular prism shape, it has a side surface parallel to the above-mentioned cross section C. Therefore, by providing each reflection control surface GRU in a plane including the side surface or a plane slightly in parallel with the side surface, the left reflected light guide is provided. The two light receiving sections PD are located close to the optical path GR (GRL) and the right reflection optical waveguide GR (GRR).
Can be arranged, and the entire device can be miniaturized.

【0255】また、図19および図19で前述の位置測
定装置2fと同様に、左反射光導波路GR(GRL)お
よび右反射光導波路GR(GRR)の反射側面GRMの
一部の部位GRMSを、断面Cおよび検出面GRu等の
双方に45゜の角度となるように設けるだけで、仮想反
射光導波路IGRの光軸に沿って断面C内に反射・伝搬
してきた光を、断面Cと垂直かつ検出面GRu等と平行
な双方の反射制御面GRUの光軸を含む仮想の平面内に
伝搬する各検出光LS(LSL、LSR)となるように
光路変更できるので、作製し易い。
As in the position measuring device 2f described above with reference to FIGS. 19 and 19, a part of the reflection side surface GRM of the left reflection light guide GR (GRL) and the right reflection light guide GR (GRR) is partially replaced with a part GRMS. The light reflected and propagated in the cross section C along the optical axis of the virtual reflection optical waveguide IGR is provided perpendicularly to the cross section C by merely providing the cross section C and the detection surface GRu at an angle of 45 °. Since the optical path can be changed so that each detection light LS (LSL, LSR) propagates in a virtual plane including the optical axis of both reflection control surfaces GRU parallel to the detection surface GRu and the like, it is easy to manufacture.

【0256】また、位置測定装置2hでは、左反射光導
波路GR(GRL)および右反射光導波路GR(GR
R)の各反射制御面GRUが、断面C(仮想の平面)に
対して各反射制御面GRUの光軸が交差する関係となる
相互に同一の前後いずれか(本例では図示のように手前
側)の方向に向かって、各検出光LS(LSL、LS
R)を発射するように設けられているので、その方向に
各検出光LS(LSL、LSR)を受光する受光部PD
を配置できる。この場合、相互に同一の方向なので、双
方の検出光LSL、LSRを受光する同一の受光部PD
でも良い。
In the position measuring device 2h, the left reflected light waveguide GR (GRL) and the right reflected light waveguide GR (GR
R), each of the reflection control surfaces GRU is located before or after the same as the cross section C (virtual plane) in which the optical axis of each reflection control surface GRU intersects (in this example, as shown in the drawing) Side), each detection light LS (LSL, LS
R), so that the light receiving unit PD receives each detection light LS (LSL, LSR) in that direction.
Can be arranged. In this case, since the directions are the same, the same light receiving unit PD that receives both detection lights LSL and LSR is used.
But it is good.

【0257】次に、上述してきた仮想反射光導波路IG
Rを複数の仮想部分反射光導波路に分割することを考え
る。ここでは、例えば図7で前述の仮想反射光導波路I
GRを2分割する場合について説明する。
Next, the virtual reflection optical waveguide IG described above is used.
Consider dividing R into a plurality of virtual partially reflected optical waveguides. Here, for example, the virtual reflection optical waveguide I described above with reference to FIG.
A case where the GR is divided into two will be described.

【0258】図24に示すように、まず、仮想反射光導
波路IGRを第1仮想側面G1等と平行な平面で複数に
分割したそれぞれを仮想部分反射光導波路とする。同図
では、2つ(複数)に分割してそれぞれを仮想部分反射
光導波路IGAおよび仮想部分反射光導波路IGBとし
ている。
As shown in FIG. 24, first, the virtual reflection optical waveguide IGR is divided into a plurality of parts by a plane parallel to the first virtual side surface G1 and the like, and each is defined as a virtual partial reflection optical waveguide. In the figure, the light beam is divided into two (a plurality), and each is a virtual partially reflected light waveguide IGA and a virtual partially reflected light waveguide IGB.

【0259】また、複数の仮想部分反射光導波路の各4
つの側面のうちの第1仮想側面G1と平行な各2つの側
面のそれぞれを仮想部分平行側面とする。ここでは、2
つの仮想部分反射光導波路IGA、IGBの各4つの側
面のうちの第1仮想側面G1と平行な各2つの側面のそ
れぞれを仮想部分平行側面G3、G4、G5、G6とす
る。
Also, each of the plurality of virtual partially reflected optical waveguides 4
Each of the two side surfaces parallel to the first virtual side surface G1 of the two side surfaces is defined as a virtual part parallel side surface. Here, 2
Of the four side surfaces of each of the four virtual partial reflection optical waveguides IGA and IGB, each of the two side surfaces parallel to the first virtual side surface G1 is referred to as virtual part parallel side surfaces G3, G4, G5, and G6.

【0260】また、複数の仮想部分平行側面のうちの第
3仮想側面G3および第4仮想側面G4以外の他の側面
のそれぞれを仮想部分接合側面とする。ここでは、仮想
部分平行側面G3、G4、G5、G6のうちの仮想部分
平行側面G5、G6がそれぞれ仮想部分接合側面G5、
G6となる。
In addition, each of the side surfaces other than the third virtual side surface G3 and the fourth virtual side surface G4 of the plurality of virtual portion parallel side surfaces is defined as a virtual part joint side surface. Here, the virtual part parallel side surfaces G5, G6 of the virtual part parallel side surfaces G3, G4, G5, G6 are respectively the virtual part joint side surfaces G5,
G6.

【0261】そして、仮想反射光導波路IGRは複数の
仮想部分反射光導波路の各1つの仮想部分接合側面同士
を4辺が合うように平行に対向させて隣接または接合し
て構成されたものとする。ここでは、仮想部分反射光導
波路IGAの仮想部分接合側面G5と、仮想部分反射光
導波路IGBの仮想部分接合側面G6とを4辺が合うよ
うに平行に対向させて接合することにより、仮想反射光
導波路IGRが構成される。
The virtual reflection optical waveguide IGR is formed by adjoining or bonding one virtual partial junction side of each of a plurality of virtual partial reflection optical waveguides in parallel so that four sides thereof are aligned with each other. . Here, the virtual reflected light guide is formed by joining the virtual partially joined side face G5 of the virtual partially reflected light waveguide IGA and the virtual partially joined side face G6 of the virtual partially reflected light waveguide IGB in parallel so that the four sides are aligned. A wave path IGR is configured.

【0262】また、各仮想部分反射光導波路IGA、I
GBについて、その上底面および下底面のうちの受光面
GRdを構成する方を部分受光面GAd、GBdとし、
検出面GRuを構成する方を部分検出面GAu、GBu
とする。
Each virtual partially reflected optical waveguide IGA, IGA
With respect to GB, the side constituting the light receiving surface GRd of the upper bottom surface and the lower bottom surface is defined as partial light receiving surfaces GAd and GBd,
The part constituting the detection surface GRu is referred to as a partial detection surface GAu, GBu.
And

【0263】なお、ここで、仮に仮想反射光導波路IG
Rを3つの仮想部分反射光導波路IGA、IGB、IG
Cに分割した場合を考え、仮想部分平行側面G3、G
4、G5、G6以外に仮想部分平行側面G5’、G6’
があり、仮想部分反射光導波路IGAが仮想部分平行側
面G3、G5を有し、仮想部分反射光導波路IGBが仮
想部分平行側面G6、G5’を有し、仮想部分反射光導
波路IGCが仮想部分平行側面G6’、G4を有すると
すると、仮想部分平行側面G5、G6、G5’、G6’
を仮想部分接合側面として、同様に仮想部分接合側面G
5、G6を互いに接合し、仮想部分接合側面G5’、G
6’を互いに接合すれば、元の仮想反射光導波路IGR
が構成できる。
Here, suppose that the virtual reflection optical waveguide IG
Let R be three virtual partially reflected optical waveguides IGA, IGB, IG
Considering the case of division into C, the imaginary part parallel side surfaces G3, G
4, G5 ', G6 other than virtual part parallel side surface G5', G6 '
The virtual partial reflection optical waveguide IGA has virtual partial parallel side surfaces G3 and G5, the virtual partial reflection optical waveguide IGB has virtual partial parallel side surfaces G6 and G5 ′, and the virtual partial reflection optical waveguide IGC has virtual partial parallel surfaces. Assuming that there are the side surfaces G6 'and G4, the virtual part parallel side surfaces G5, G6, G5' and G6 '
Is the virtual partial joint side, and similarly, the virtual partial joint side G
5, G6 are joined to each other, and the imaginary partial joining side faces G5 ′,
6 'are joined together, the original virtual reflected optical waveguide IGR
Can be configured.

【0264】次に、上記の2つ(複数)の仮想部分反射
光導波路IGA、IGBのうちのそれぞれ各1つに対応
してそれを内部に含む2つ(複数)の部分反射光導波路
GA、GBを考え、反射光導波路GRはそれらの全てを
接合して構成されるものとする。例えば図9で前述の位
置測定装置2bに適用すれば、その反射光導波路GRは
図25に示す位置測定装置2iのようになる。
Next, two (plural) partially-reflected optical waveguides GA, each including one of the above-mentioned two (plural) virtual partially-reflected optical waveguides IGA and IGB, respectively, Considering GB, it is assumed that the reflected optical waveguide GR is configured by joining all of them. For example, if the present invention is applied to the above-described position measuring device 2b in FIG. 9, the reflected light guide GR becomes like the position measuring device 2i shown in FIG.

【0265】また、この場合、同図に示すように、上記
の2つ(複数)の部分反射光導波路GA、GBのそれぞ
れは、反射光LRの一部または全部を部分反射光LA、
LBとして、部分受光面GAd、GBdに入射して内部
の仮想部分反射光導波路IGA、IGB内を伝搬させ、
伝搬させた部分反射光LA、LBに対応する検出光LS
の一部または全部を部分検出光LSA、LSBとして、
部分検出面GAu、GBuから発射させる。
In this case, as shown in the figure, each of the two (plural) partially reflected light waveguides GA and GB converts a part or all of the reflected light LR into partially reflected light LA,
As LB, it is incident on the partial light receiving surfaces GAd and GBd and propagates inside the internal virtual partially reflected optical waveguides IGA and IGB,
Detection light LS corresponding to propagated partially reflected lights LA and LB
A part or the whole as partial detection light LSA, LSB,
The light is emitted from the partial detection surfaces GAu and GBu.

【0266】また、この場合、部分反射光導波路GA、
GBは、それぞれ、部分反射光LA、LBを部分受光面
GAd、GBdに入射する部分反射測定面(ただし、こ
こでは位置測定装置2bと同様に、部分受光面GAd、
GBdと面一とする。)GAD、GBDと、部分検出面
GAu、GBuからの部分検出光LSA、LSBを受光
部PDに発射する部分反射制御面GAU、GBUとを有
している。
In this case, the partially reflected optical waveguide GA,
GB is a partial reflection measurement surface (partially a partial light reception surface GAd, similar to the position measurement device 2b) in which the partially reflected lights LA and LB are incident on the partial light reception surfaces GAd and GBd, respectively.
It is flush with GBd. ) GAD, GBD and partial reflection control surfaces GAU, GBU for emitting the partial detection lights LSA, LSB from the partial detection surfaces GAu, GBu to the light receiving unit PD.

【0267】なお、部分反射制御面GAU、GBUも、
照射制御面GIU、照射測定面GID、反射制御面GR
U、反射測定面GRD等と同様に、例えば2つの受光部
等に対応して2つ以上の外周が閉じた面により構成して
も良く、部分反射測定面GAD、GBDも同様であり、
図示では1つであるが、2つ以上の外周が閉じた面によ
り構成しても良い。
Incidentally, the partial reflection control surfaces GAU and GBU are also
Irradiation control surface GIU, irradiation measurement surface GID, reflection control surface GR
U, similar to the reflection measurement surface GRD, etc., may be configured by two or more outer peripheral closed surfaces corresponding to, for example, two light receiving units and the like, and the same applies to the partial reflection measurement surfaces GAD, GBD.
Although one is shown in the figure, it may be constituted by a surface having two or more outer circumferences closed.

【0268】また、部分反射光導波路GAは、内部の仮
想部分反射光導波路IGAの仮想部分平行側面G5を含
み、部分反射測定面GADが含む閉じた面のその外周の
全ておよび部分反射制御面GBUが含む外周が閉じた面
のその外周の全てを連結して、伝搬する光を内部に閉じ
こめる部分反射側面GAMを有している。
The partial reflection optical waveguide GA includes the virtual partial parallel side surface G5 of the internal virtual partial reflection optical waveguide IGA, and all of the outer periphery of the closed surface included in the partial reflection measurement surface GAD and the partial reflection control surface GBU. Has a partially reflecting side surface GAM that connects all the outer circumferences of the closed outer circumference and confine the propagating light inside.

【0269】また、部分反射光導波路GBは、内部の仮
想部分反射光導波路IGBの仮想部分平行側面G6を含
み、部分反射測定面GBDが含む閉じた面のその外周の
全ておよび部分反射制御面GBUが含む外周が閉じた面
のその外周の全てを連結して、伝搬する光を内部に閉じ
こめる部分反射側面GBMを有している。
The partial reflection optical waveguide GB includes the virtual partial parallel side surface G6 of the internal virtual partial reflection optical waveguide IGB, and all of the outer periphery of the closed surface included in the partial reflection measurement surface GBD and the partial reflection control surface GBU. Has a partially reflecting side surface GBM that connects all the outer circumferences of the closed outer circumference to confine propagating light inside.

【0270】そして、反射光導波路GRの反射側面GR
Mは、上記の2つ(複数)の部分反射光導波路GA、G
Bの部分反射側面GAM、GBMの全てを含み、かつ、
それらに含まれる仮想部分接合側面G5、G6(および
前述のG5’、G6’等)の全てを仮想反射光導波路I
GA、IGB(およびIGC等)に対応するように接合
して構成される。
Then, the reflection side surface GR of the reflection optical waveguide GR
M is the two (plural) partially reflected optical waveguides GA, G
B includes all of the partial reflection side surfaces GAM and GBM, and
All of the virtual partial junction side surfaces G5 and G6 (and G5 ′ and G6 ′ described above) included therein are connected to the virtual reflection optical waveguide I.
It is configured to be joined so as to correspond to GA, IGB (and IGC, etc.).

【0271】また、反射測定面GRDは、2つ(複数)
の部分反射光導波路GA、GBの部分反射測定面GA
D、GBD等の全てを含み、反射制御面GRUは、2つ
(複数)の部分反射光導波路GA、GBの部分反射制御
面GAU、GBU等の全てを含むことになる。
Further, two (plural) reflection measurement surfaces GRD are provided.
Partial reflection optical waveguide GA, Partial reflection measurement surface GA of GB
D, GBD, and the like, and the reflection control surface GRU includes all (two or more) partial reflection control surfaces GAU, GB, and all of the partial reflection control surfaces GAU, GBU, and the like.

【0272】図24で前述のように、2つ(複数)の部
分反射光導波路GA、GB(およびGC等)の部分反射
側面GAM、GBMに含まれる仮想部分平行側面G3、
G4、G5、G6(およびG5’、G6’等)は、同一
サイズの平行な平面であり、そのうちの第3仮想側面G
3および第4仮想側面G4以外の側面である仮想部分接
合側面G5、G6(およびG5’、G6’等)は、それ
ぞれ他の1つの仮想部分接合側面G6、G5(およびG
6’、G5’等)と4辺が合うように平行に対向させて
接合している。この場合、各仮想部分接合側面G6、G
5(およびG6’、G5’等)は同一サイズの平面同士
なので接合し易く、また、円柱状の光ファイバを接合す
る場合のような間隙は生じない。
As described above with reference to FIG. 24, the two (plural) partially reflected optical waveguides GA, the virtual partially parallel side surfaces G3 included in the partially reflected side surfaces GAM and GBM (including GC),
G4, G5, G6 (and G5 ′, G6 ′, etc.) are parallel planes of the same size, of which the third virtual side surface G
The virtual partial joint side surfaces G5, G6 (and G5 ′, G6 ′, etc.) which are the side surfaces other than the third and fourth virtual side surfaces G4 are respectively one other virtual partial joint side surfaces G6, G5 (and G
6 ′, G5 ′, etc.) and the four sides are joined in parallel and opposed to each other. In this case, each virtual partial joint side surface G6, G
5 (and G6 ', G5', etc.) are easy to join because they are planes of the same size, and there is no gap as in the case of joining cylindrical optical fibers.

【0273】図25の位置測定装置2iでは、反射側面
GRMが、2つ(複数)の部分反射光導波路GA、GB
(およびGC等)の部分反射側面GAM、GBM等の全
てを含み、かつ、それらに含まれる仮想部分接合側面G
5、G6(およびG5’、G6’等)の全てを仮想反射
光導波路IGA、IGBに対応するように接合して構成
されるため、反射光導波路GRが、2つ(複数)の部分
反射光導波路GA、GB等の全てを接合して構成されて
も、円柱状の光ファイバを接合するより接合し易く、か
つリニアリティを害するような間隙が生じにくい。
In the position measuring device 2i shown in FIG. 25, the reflection side surface GRM has two (plural) partially reflected optical waveguides GA and GB.
(And GC, etc.) and all of the partial reflection side surfaces GAM, GBM, etc., and the virtual partial junction side surfaces G included therein
5, G6 (and G5 ', G6', etc.) are all joined together so as to correspond to the virtual reflection optical waveguides IGA and IGB, so that the reflection optical waveguide GR has two (plural) partially reflected light guides. Even when all of the waveguides GA, GB, and the like are joined, it is easier to join than joining columnar optical fibers, and a gap that impairs linearity is less likely to occur.

【0274】一方、各部分反射光導波路GA、GBは、
反射光LRの一部または全部を部分反射光LA、LBと
して部分受光面GAd、GBdに入射して内部の仮想部
分反射光導波路IGA、IGB内を伝搬させ、伝搬させ
た部分反射光LA、LBに対応する検出光LSの一部ま
たは全部を部分検出光LSA、LSBとして部分検出面
GAu、GBuから発射させ、反射光導波路GRは、そ
れらの部分反射光導波路GA、GB等の全てを接合して
構成される。
On the other hand, each partially reflected optical waveguide GA, GB
Part or all of the reflected light LR is incident on the partial light receiving surfaces GAd, GBd as partially reflected light LA, LB, and propagates inside the internal virtual partially reflected light waveguides IGA, IGB, and the partially reflected light LA, LB propagated. Are partially or entirely emitted from the partial detection surfaces GAu and GBu as the partial detection light LSA and LSB, and the reflected light waveguide GR joins all of the partially reflected light waveguides GA and GB. It is composed.

【0275】このため、この位置測定装置2iにおける
反射光導波路GRも、仮想反射光導波路IGRの全てを
含み、反射光LRを受光面GRdに入射して仮想反射光
導波路IGR内を伝搬させ、検出面GRuから検出光L
Sとして発射させることになるので、図9で前述の位置
測定装置2bにおける反射光導波路GRと同等の機能を
果たすことができる。
For this reason, the reflected light waveguide GR in the position measuring device 2i also includes all of the virtual reflected light waveguide IGR, and the reflected light LR is incident on the light receiving surface GRd and propagates through the virtual reflected light waveguide IGR. Detection light L from surface GRu
Since the light is emitted as S, the same function as the reflected light guide GR in the position measuring device 2b described above in FIG. 9 can be performed.

【0276】例えば、図9の位置測定装置2bでは、図
5で前述の位置測定装置2a、図12および図13で前
述の位置測定装置2c、並びに、図14および図15で
前述の位置測定装置2d等と同様に、仮想反射光導波路
IGRの幅(第3仮想側面G3と第4仮想側面G4の間
の距離:第9仮想側面G9または第10仮想側面G10
の幅)が仮想照射光導波路IGIの約2倍なので、受光
量PRと測定ギャップyの関係が図36(a)で前述の
ようになる。
For example, in the position measuring device 2b of FIG. 9, the position measuring device 2a described above with reference to FIG. 5, the position measuring device 2c described above with reference to FIGS. 12 and 13, and the position measuring device 2c described above with reference to FIGS. Similarly to 2d and the like, the width of the virtual reflected optical waveguide IGR (the distance between the third virtual side surface G3 and the fourth virtual side surface G4: the ninth virtual side surface G9 or the tenth virtual side surface G10
Is about twice the virtual irradiation optical waveguide IGI, the relationship between the received light amount PR and the measurement gap y is as described above with reference to FIG.

【0277】これに対し、位置測定装置2iでは、各仮
想部分反射光導波路IGA、IGBからの部分検出光L
SA、LSBによる受光量PA、PBが測定ギャップy
に対して、図37に示す関係を有するので、全光量Ps
=PA+PBを求めれば、図36(a)の受光量PRと
同じになる。すなわち、位置測定装置2bと同じ受光量
PR=全光量Psを求められる。
On the other hand, in the position measuring device 2i, the partial detection light L from each of the virtual partial reflection optical waveguides IGA and IGB is used.
The received light amount PA and PB by SA and LSB is the measurement gap y.
37, the total light amount Ps
= PA + PB is the same as the received light amount PR in FIG. That is, the same amount of received light PR = total light amount Ps as in the position measuring device 2b can be obtained.

【0278】なお、仮想部分接合側面G5(以下、「第
5仮想側面G5」)と仮想部分接合側面G6(以下、
「第6仮想側面G6」)とを接合せず、所定の間隔を持
たせて隣接すれば、図示の受光量PBの特性がその所定
の間隔に対応して全体的に右方向(測定ギャップyが大
きくなる方向)に平行移動したものとなる。
It should be noted that the imaginary part joining side face G5 (hereinafter, “fifth imaginary side face G5”) and the imaginary part joining side face G6 (hereinafter, “fifth side face G5”)
If the light receiving amount PB shown in the figure is not joined to the “sixth virtual side surface G6” and is adjacent to the light receiving surface PB at a predetermined interval, the characteristic of the light receiving amount PB shown in the drawing corresponds to the predetermined interval as a whole to the right (the measurement gap y). (In the direction in which becomes larger).

【0279】すなわち、この場合、受光量PBによる測
定の実用範囲WRB(立ち上がり側をWRBu、立ち下
がり側をWRBd、代表してWRBとする)が測定ギャ
ップyの大きくなる方向に平行移動するが、受光量PA
による測定の実用範囲WRA(立ち上がり側をWRA
u、立ち下がり側をWRAd、代表してWRAとする)
と重なり方が変わるだけで、本質的な特性は同じなの
で、前述の位置測定装置2a等の場合と同様に、以下の
説明でも、隣接と接合の場合とを区別せず同等に扱う。
That is, in this case, the practical range WRB (the rising side is WRBu, and the falling side is WRBd, representatively WRB) of the measurement based on the received light amount PB moves parallel to the direction in which the measurement gap y increases. Received light amount PA
Practical range of measurement by WRA
u, the falling side is WRAd, representatively WRA)
Since the essential characteristics are the same except for the way in which they overlap, the same applies to the following description, as in the case of the position measuring device 2a and the like, without distinguishing between the case of adjoining and the case of joining.

【0280】上述の位置測定装置2iでは、前述の位置
測定装置2bと同様に受光量PR=全光量Psを求めら
れるのに加え、部分反射光導波路単位で製造できるの
で、製造単位を小さくでき、その分扱い易く、製造コス
トの低減が可能になる。
In the above-described position measuring device 2i, the received light amount PR = total light amount Ps can be obtained in the same manner as in the above-described position measuring device 2b. It is easy to handle and the manufacturing cost can be reduced.

【0281】さらに、この位置測定装置2iでは、2つ
(複数)の部分反射光導波路GA、GBからの各部分検
出光LSA、LSBの受光結果による差分を得ることが
できる。
Further, in the position measuring device 2i, it is possible to obtain a difference based on the result of receiving the respective partial detection lights LSA and LSB from the two (plural) partially reflected light waveguides GA and GB.

【0282】すなわち、差動型光ファイバ変位計(精密
工学会春季大会学術講演会講演論文集、p365〜36
6(1997)参照)と同様の原理により、入射光量等
の影響による光導波路内での光の減衰やターゲット(測
定対象物)Tの(ターゲット面Tfの)反射率に依存せ
ずに、測定ギャップyおよびその変化を求められる。
That is, a differential optical fiber displacement meter (Precision Engineering Society of Japan Spring Conference Proceedings, p. 365-36)
6 (1997)) without depending on the attenuation of light in the optical waveguide due to the influence of the amount of incident light or the reflectance of the target (measurement target) T (of the target surface Tf). The gap y and its change are determined.

【0283】ここで、光ファイバ束Fによって測定ギャ
ップyを測定する差動型光ファイバ変位計の原理の概略
を紹介しておく。
Here, the principle of the differential type optical fiber displacement meter for measuring the measurement gap y with the optical fiber bundle F will be introduced.

【0284】差動型光ファイバ変位計の場合、光ファイ
バ束Fの照射面とターゲット面Tfとの間の測定ギャッ
プyに対して、本発明の部分反射光導波路GA、GBに
相当する受光ファイバFA、FBによる部分反射光L
A、LBの受光量PA、PBは、図38(a)に示すよ
うに変化する。
In the case of the differential type optical fiber displacement meter, a light receiving fiber corresponding to the partially reflected optical waveguides GA and GB of the present invention is provided for the measurement gap y between the irradiation surface of the optical fiber bundle F and the target surface Tf. Partially reflected light L by FA and FB
The light reception amounts PA and PB of A and LB change as shown in FIG.

【0285】ここで、全光量Pa=PA+PBに対する
光量差Ps=PB−PAの比率r=Ps/Paを求める
と、同図(b)に示すように、実用範囲FWR内におい
て、測定ギャップyのほぼ一次関数となる。
Here, when the ratio r = Ps / Pa of the light amount difference Ps = PB-PA with respect to the total light amount Pa = PA + PB is obtained, as shown in FIG. It is almost a linear function.

【0286】また、本発明の照射光導波路GIに相当す
る照射ファイバFIに入射する入射光量等の影響による
光ファイバ束F内での光の減衰、ターゲット面Tfの反
射率などの変化に対し、全光量Paも光量差Psも比例
して変化するため、比率rは、これらの変化に依存しな
い値となる。
In addition, with respect to the attenuation of light in the optical fiber bundle F and the change in the reflectance of the target surface Tf due to the influence of the amount of light incident on the irradiation fiber FI corresponding to the irradiation optical waveguide GI of the present invention, Since both the total light amount Pa and the light amount difference Ps change in proportion, the ratio r is a value that does not depend on these changes.

【0287】したがって、同図(b)で上述のような比
率rと測定ギャップyとの関係を、既知のレーザ干渉計
などを用いた実測等により求めておき、比率rから測定
ギャップyを求める比率−ギャップ変換テーブルとして
記憶しておけば、受光量PAおよび受光量PBに基づい
て、全光量Pa=PA+PBに対する光量差Ps=PB
−PAの比率r=Ps/Paを求め、上述の比率−ギャ
ップ変換テーブルを参照することにより、測定ギャップ
yを求められる。
Accordingly, the relationship between the ratio r and the measurement gap y as described above is obtained by actual measurement using a known laser interferometer or the like, and the measurement gap y is determined from the ratio r in FIG. If stored as a ratio-gap conversion table, the light amount difference Ps = PB with respect to the total light amount Pa = PA + PB based on the received light amount PA and the received light amount PB.
The measurement gap y can be obtained by obtaining the ratio of PA = r / Ps / Pa and referring to the above-described ratio-gap conversion table.

【0288】差動型光ファイバ変位計は、上述の原理を
利用して、比率rから測定ギャップyを求めるものであ
り、位置測定装置2iでは、2つ(複数)の部分反射光
導波路GA、GBからの各部分検出光LSA、LSBを
個別に受光でき、それらから全光量Paも光量差Psも
求められるので、上述の差動型光ファイバ変位計と同様
の原理により、入射光量等の影響による光導波路内での
光の減衰やターゲット面Tfの反射率に依存せずに、測
定ギャップyおよびその変化を求められる。
The differential type optical fiber displacement meter obtains the measurement gap y from the ratio r using the above-described principle. In the position measuring device 2i, two (plural) partially reflected optical waveguides GA, Each of the partial detection lights LSA and LSB from the GB can be individually received, and the total light amount Pa and the light amount difference Ps can be obtained therefrom. The measurement gap y and its change can be obtained without depending on the attenuation of light in the optical waveguide due to the above and the reflectivity of the target surface Tf.

【0289】すなわち、図37に示すように、後述する
制御部CN(図41参照)などにより、受光量PAおよ
び受光量PBに基づいて、全光量Pa=PA+PBに対
する光量差Ps=PB−PAの比率rs=Ps/Paを
求め、上述の比率−ギャップ変換テーブルを参照し、ま
たはそれと同等の演算をすることにより、測定ギャップ
yを求められる。
That is, as shown in FIG. 37, based on the received light amount PA and the received light amount PB, the light amount difference Ps = PB-PA with respect to the total light amount Pa = PA + PB is controlled by a control unit CN (see FIG. 41) described later. The measurement gap y can be obtained by calculating the ratio rs = Ps / Pa, referring to the above-described ratio-gap conversion table, or performing an operation equivalent thereto.

【0290】また、前述のように、上述の光ファイバ束
Fでも各光ファイバは円柱状なので、受光ファイバFA
とそれに近接または接合した受光ファイバFBの測定面
内での形状は円形となり、円形相互間の接合は点接合と
なるので、接合(製造)しにくい。
Further, as described above, even in the above-described optical fiber bundle F, since each optical fiber is cylindrical, the light-receiving fiber FA
The shape of the light receiving fiber FB which is close to or joined to it in the measurement plane is circular, and the joining between the circles is point joining, so that it is difficult to join (manufacture).

【0291】また、どのようにうまく接合しても、円形
相互間の接合点以外の部分には間隙ができてしまい、そ
の部分への反射光は受光できないので、測定ギャップy
に対する受光量PA、PB、比率r等のリニアリティが
確保できず、例えば図38(b)に示すような狭い実用
範囲FWRとなる。
Also, no matter how well the joint is made, a gap is formed in a portion other than the junction between the circles, and the reflected light to that portion cannot be received.
38, linearity such as the light receiving amounts PA, PB, and the ratio r cannot be ensured, and for example, a narrow practical range FWR as shown in FIG.

【0292】これに対し、第5仮想側面G5と第6仮想
側面G6は同一サイズの平面同士なので接合し易く、図
25で前述の位置測定装置2iでは、部分反射側面GA
Mの第5仮想側面G5と部分反射側面GBMの第6仮想
側面G6とを接合できるので、円柱状の光ファイバを接
合するより接合し易く、かつ線形性(リニアリティ)を
害するような間隙が生じにくいので、図37のような理
想型に近い受光量PA、PB、比率rsの特性がえられ
る。すなわち、接合(製造)し易い分だけ製造コストを
抑止することができ、間隙が生じない分だけ広範囲のリ
ニアリティを確保できる。
On the other hand, the fifth imaginary side surface G5 and the sixth imaginary side surface G6 are easy to be joined because they are planes of the same size, and the position measuring device 2i shown in FIG.
Since the fifth virtual side surface G5 of the M and the sixth virtual side surface G6 of the partial reflection side surface GBM can be joined, a gap that is easier to join than joining a columnar optical fiber and that degrades linearity occurs. 37, it is possible to obtain characteristics of the light receiving amounts PA and PB and the ratio rs close to the ideal type as shown in FIG. That is, the manufacturing cost can be suppressed by the ease of joining (manufacturing), and a wide range of linearity can be ensured by the absence of a gap.

【0293】なお、上記の比率−ギャップ変換テーブル
は、厚み測定装置1として、図1で前述のROM220
の制御データ領域222内に記憶し、それを参照して、
OPC250とCPU210とが連動して、測定ギャッ
プy(y1、y2)を求めても良いし、後述の制御部C
N内に内蔵ROMを用意して比率−ギャップ変換テーブ
ルを記憶して制御部CN内で測定ギャップyまで求めて
から出力しても良い。
The ratio-gap conversion table described above is used as the thickness measuring device 1 in the ROM 220 shown in FIG.
And stored in the control data area 222 of
The OPC 250 and the CPU 210 may work together to determine the measurement gap y (y1, y2), or a control unit C described later.
A built-in ROM may be prepared in N, the ratio-gap conversion table may be stored, and the measurement gap y may be obtained in the control unit CN before being output.

【0294】また、もちろん、制御部CN内で測定ギャ
ップyまで求めて、またはその途中まで求めて(例えば
アナログ回路のみで可能な全光量Paや光量差Psまで
求めて、あるいは比率rsまで求めて)出力しても良
い。これらの場合、厚み測定装置1の制御部200側の
負担を分散させることにより、その他の内部処理の処理
速度を向上させることが可能になるなどの利点がある。
In addition, it is needless to say that the measurement gap y is obtained in the control unit CN or is obtained halfway (for example, the total light amount Pa or the light amount difference Ps that can be obtained only by the analog circuit is obtained, or the ratio rs is obtained). ) May be output. In these cases, there is an advantage that the processing speed of other internal processing can be improved by dispersing the load on the control unit 200 side of the thickness measuring device 1.

【0295】そこで、後述するように、本実施形態で
は、比率−ギャップ変換テーブルの代わりにそれに相当
する回路を制御部CN内に設け、制御部CN内で測定ギ
ャップyまで求めてから出力する。このため、制御部C
Nは、論理回路セルの他にアナログ回路等を混在するデ
ィジタル/アナログ混在セルアレイLSIや、複数のベ
アチップを搭載したフリップチップ方式等によるチップ
サイズのマルチチップモジュールなどにより構成され
る。
Therefore, as described later, in the present embodiment, a circuit corresponding to the ratio-gap conversion table is provided in the control unit CN, and the measurement gap y is obtained in the control unit CN and then output. Therefore, the control unit C
N is composed of a digital / analog mixed cell array LSI in which analog circuits and the like are mixed in addition to the logic circuit cells, a flip-chip type chip-size multi-chip module on which a plurality of bare chips are mounted, and the like.

【0296】なお、図35(a)に対応して、前述のよ
うに、仮想反射光導波路IGRを3つの仮想部分反射光
導波路IGA、IGB、IGCに分割した場合の受光量
PA、PB、PCは、(前述の図37に相当するものと
して)測定ギャップyに対して、図39(a)に示すよ
うに変化し、全光量Pa=PA+PB+PCに対する光
量差Ps=PB−PA(−PC)の比率rs=Ps/P
aおよび光量差Pt=PC−(PA+PB)の比率rt
=Pt/Paを求めると、同図(b)に示すように、実
用範囲WRs内および実用範囲WRt内において、測定
ギャップyのほぼ一次関数となる。
In addition, corresponding to FIG. 35 (a), as described above, the light receiving amounts PA, PB, and PC when the virtual reflected optical waveguide IGR is divided into three virtual partially reflected optical waveguides IGA, IGB, and IGC. Changes as shown in FIG. 39A with respect to the measurement gap y (corresponding to FIG. 37 described above), and the light amount difference Ps = PB-PA (-PC) with respect to the total light amount Pa = PA + PB + PC Ratio rs = Ps / P
a and the ratio rt of the light amount difference Pt = PC- (PA + PB)
= Pt / Pa, as shown in FIG. 3B, becomes a substantially linear function of the measurement gap y in the practical range WRs and the practical range WRt.

【0297】すなわち、この場合、実用範囲WRを2つ
設けることができる。もちろん、上記の考え方を進め
て、反射光導波路GRをさらに分割(受光量の扱いをさ
らに分類)して、さらに多くの実用範囲を設けることも
できる。これらの場合、測定ギャップyに応じてその実
用範囲を切り替えられるようにすれば、実質的に作動
(測定可能)範囲が広い位置測定装置とすることができ
る。
That is, in this case, two practical ranges WR can be provided. Of course, by proceeding with the above concept, the reflected light waveguide GR can be further divided (the treatment of the amount of received light is further classified) to provide a more practical range. In these cases, if the practical range can be switched according to the measurement gap y, a position measuring device having a substantially wide operating (measurable) range can be obtained.

【0298】また、図40は、差動型光ファイバ変位計
のデータであるが、本発明において、発射角θを変化さ
せれば、図37(b)で前述の比率rsと測定ギャップ
yとの関係は、原理的に、図40で図示の比率rと測定
ギャップyの関係のリニアリティをさらに増したものと
なる。
FIG. 40 shows the data of the differential type optical fiber displacement meter. In the present invention, if the firing angle θ is changed, the ratio rs and the measurement gap y shown in FIG. In principle, the linearity of the relationship between the ratio r and the measurement gap y shown in FIG. 40 is further increased.

【0299】発射角θを変化させる場合、前述と同様の
方法で測定ギャップyを求めることもできるが、図40
から明らかなように、各発射角θに対して比率rがゼロ
(0)となる測定ギャップyを記憶しておけば(同図の
yθ1〜yθ5の各点参照)、比率r=0の発射角θに
基づいて、測定ギャップyを求められる。
When the firing angle θ is changed, the measurement gap y can be obtained by the same method as described above.
As is clear from FIG. 7, if the measurement gap y at which the ratio r becomes zero (0) is stored for each firing angle θ (refer to each point of yθ1 to yθ5 in the drawing), the firing at the ratio r = 0 is performed. The measurement gap y is obtained based on the angle θ.

【0300】この場合、前述の比率−ギャップ変換テー
ブルの代わりに(またはそれと併用できるように)、発
射角−ギャップ変換テーブルを用意しておくだけで実現
でき、また、発射角(=入射角)θを変化させて、比率
r=0、すなわち受光量PA=受光量PBとなったこと
を検出するだけで良いので、加算や除算等のための回路
が不要となり、回路を簡易化することができる。
In this case, in place of (or in combination with) the above-described ratio-gap conversion table, it can be realized only by preparing a firing angle-gap conversion table. In addition, the firing angle (= incident angle) It is only necessary to change θ to detect that the ratio r = 0, that is, the received light amount PA = the received light amount PB, so that a circuit for addition or division becomes unnecessary, and the circuit can be simplified. it can.

【0301】ただし、本実施形態では、前述のように、
一般的な電子部品を樹脂等によりモールドしてパッケー
ジ化するのと同様に、レーザ光源LDであるレーザダイ
オードを照射光導波路GIおよび反射光導波路GRとと
もに一体化して、1つのパッケージ内に納めることを目
標とするので、集光器や入射ユニットなどを省略して入
射角θや発射角θを固定値とする。
However, in the present embodiment, as described above,
As in the case where a general electronic component is molded with a resin or the like and packaged, a laser diode which is a laser light source LD is integrated with the irradiation optical waveguide GI and the reflection optical waveguide GR and is housed in one package. Since the target is set, the condenser and the incident unit are omitted, and the incident angle θ and the emission angle θ are fixed values.

【0302】なお、図5で前述の位置測定装置2aや図
9で前述の位置測定装置2b等と同様に、反射側面GR
Mの第3仮想側面G3、第4仮想側面G4、第5仮想側
面G5および第6仮想側面を除く形状は、最低限、上記
の第2仮想側面G2と第3仮想側面G3との近接を妨害
しない形状であれば、任意の形状で良い(図25参照)
が、前述のように四角柱形状を基本にするのが理想的な
ので、以下では、任意形状の位置測定装置2aや位置測
定装置2bの変形例についての説明は省略する。
Incidentally, similarly to the position measuring device 2a described above in FIG. 5 and the position measuring device 2b described above in FIG.
The shape of M excluding the third virtual side surface G3, the fourth virtual side surface G4, the fifth virtual side surface G5, and the sixth virtual side surface at least obstructs the proximity of the second virtual side surface G2 and the third virtual side surface G3. Any shape may be used as long as the shape is not used (see FIG. 25).
However, since it is ideally based on a quadrangular prism shape as described above, a description of a modified example of the position measuring device 2a or the position measuring device 2b having an arbitrary shape will be omitted below.

【0303】そこで、次に図26に示す位置測定装置2
jは、図12および図13で前述の位置測定装置2cの
仮想反射光導波路IGRを2つの仮想部分反射光導波路
IGA、IGBに分割し、また、仮想反射光導波路IG
Rを含む反射光導波路GRを2つに分割して、その上部
を部分検出光LSAが図外の受光部PD(図12参照)
に誘導され易いように変形し、それぞれ仮想部分反射光
導波路IGA、IGBを含む2つの部分反射光導波路G
A、GBとしたものである。
Then, the position measuring device 2 shown in FIG.
j divides the virtual reflected light waveguide IGR of the position measuring device 2c described above with reference to FIGS. 12 and 13 into two virtual partially reflected light waveguides IGA and IGB, and also outputs the virtual reflected light waveguide IG.
The reflected light waveguide GR including R is divided into two parts, and the upper part thereof receives the partial detection light LSA with the light receiving part PD (not shown) (see FIG. 12).
And the two partially reflected optical waveguides G including the virtual partially reflected optical waveguides IGA and IGB, respectively.
A and GB.

【0304】このため、この位置測定装置2jにおける
反射光導波路GRも、仮想反射光導波路IGRの全てを
含み、反射光LR(LA、LB)を受光面GRd(GA
d、GBd)に入射して仮想反射光導波路IGR(IG
A、IGB)内を伝搬させ、検出面GRu(GAu、G
Bu)から検出光LS(LSA、LSB)として発射さ
せることになるので、図12および図13で前述の位置
測定装置2cにおける反射光導波路GRと同等の機能を
果たすことができる。
Therefore, the reflected light guide GR in the position measuring device 2j also includes all of the virtual reflected light guide IGR, and transmits the reflected light LR (LA, LB) to the light receiving surface GRd (GA).
d, GBd) and a virtual reflected optical waveguide IGR (IG
A, IGB) to propagate through the detection surface GRu (GAu, G
Bu) is emitted as detection light LS (LSA, LSB), so that the same function as the reflected light waveguide GR in the position measuring device 2c described above with reference to FIGS. 12 and 13 can be achieved.

【0305】また、この場合の部分反射光導波路GA、
GBも、互いに同一サイズの仮想部分接合側面G5、G
6等を含みかつ四角柱形状を基本にするので、円柱状の
光ファイバを接合するより接合し易く、かつリニアリテ
ィを害するような間隙が生じにくい。また、図示とは異
なる位置、すなわち図示上の奥行き方向の任意の位置
に、仮想照射光導波路IGIや仮想反射光導波路IGR
を想定することもできる。すなわち、接合(製造)し易
い分だけ製造コストを抑止することができ、間隙が生じ
ない分だけ広範囲のリニアリティを確保できる。
In this case, the partially reflected optical waveguide GA,
GB also has virtual part joining side surfaces G5 and G of the same size.
6 and the like and are basically in the shape of a quadratic prism, so that it is easier to join than to join cylindrical optical fibers, and a gap that impairs linearity is less likely to occur. Further, a virtual irradiation optical waveguide IGI or a virtual reflection optical waveguide IGR is provided at a position different from that shown in the drawing, that is, at an arbitrary position in the depth direction in the drawing.
Can also be assumed. That is, the manufacturing cost can be suppressed by the ease of joining (manufacturing), and a wide range of linearity can be ensured by the absence of a gap.

【0306】また、前述の位置測定装置2cと比べ、部
分反射光導波路GA、GBの単位で製造できるので、製
造単位を小さくでき、その分扱い易く、さらに製造コス
トの低減が可能になる。
Further, as compared with the above-described position measuring device 2c, since it can be manufactured in units of the partially reflected optical waveguides GA and GB, the manufacturing unit can be made smaller, which makes it easier to handle and further reduces the manufacturing cost.

【0307】また、2つ(複数)の部分反射光導波路G
A、GBからの各部分検出光LSA、LSBの受光結果
による差分を得ることができるので、図37で前述の差
動型光ファイバ変位計と同様の原理(以下、「差動型の
原理」)により、入射光量等の影響による光導波路内で
の光の減衰やターゲット面Tf(測定対象物)の反射率
(以下、「反射率等」)に依存せずに、測定ギャップy
およびその変化を求められる。
The two (plural) partially reflected optical waveguides G
Since the difference based on the light receiving results of the respective partial detection lights LSA and LSB from A and GB can be obtained, the same principle as that of the differential optical fiber displacement meter described above with reference to FIG. ), The measurement gap y does not depend on the attenuation of light in the optical waveguide due to the influence of the amount of incident light or the reflectance of the target surface Tf (object to be measured) (hereinafter, “reflectance or the like”).
And its change.

【0308】すなわち、光ファイバ変位計と同様に、タ
ーゲットTの適用範囲が広く、非接触測定のため汚染や
変形等の心配がなく、高分解能・高安定度などの利点を
有するばかりでなく、差動型の原理により、さらに分解
能を向上できる。
That is, similarly to the optical fiber displacement meter, the applicable range of the target T is wide, and there is no concern about contamination or deformation due to non-contact measurement, and it has advantages such as high resolution and high stability. The resolution can be further improved by the principle of the differential type.

【0309】さらにまた、この位置測定装置2jでは、
2つ(複数のうちの少なくとも2つ)の部分反射光導波
路GA、GBにおいて、それぞれの部分検出面GAu、
GBuから部分反射制御面GAU、GBUまでの光路長
が異なるため、個別に受光しやすい。すなわち、受光部
分(例えばフォトダイオード等のディテクタ)を(少な
くとも)2つ有する受光部PDで一括して受光するにし
ても、個別に配置した受光部PDでそれぞれを受光する
にしても、各部分反射光導波路GA、GBからの受光量
PA、PBを区別できる。
Furthermore, in this position measuring device 2j,
In two (at least two of the plurality) partially reflected optical waveguides GA, GB, respective partial detection surfaces GAu,
Since the optical path lengths from GBu to the partial reflection control surfaces GAU and GBU are different, it is easy to individually receive light. That is, regardless of whether the light receiving unit PD having (at least) two light receiving portions (for example, detectors such as photodiodes) collectively receives light, or whether the light receiving unit PD individually arranged receives light, The amounts PA and PB of light received from the reflection optical waveguides GA and GB can be distinguished.

【0310】このため、各部分反射光導波路GA、GB
からの受光量PA、PBの光量差Psを求め、差動型の
原理により、反射率等に依存せずに、測定ギャップyお
よびその変化を求めることもできる。
Therefore, each of the partially reflected optical waveguides GA, GB
The light amount difference Ps between the received light amounts PA and PB is obtained, and the measurement gap y and its change can be obtained by the differential principle without depending on the reflectance or the like.

【0311】また、この位置測定装置2jでは、(少な
くとも)2つの部分反射光導波路GA、GBの各部分反
射制御面GAU、GBUの光軸が、それぞれの仮想部分
反射光導波路IGA、IGBの光軸を含む仮想の平面
(前述の断面C)内に含まれるので、各部分反射制御面
GAU、GBUの光軸に合わせて双方の部分検出光LS
A、LSBを一括して受光する受光部PDを配置するの
に適している。
In the position measuring device 2j, the optical axes of the (at least) two partial reflection control surfaces GAU and GBU of the two partial reflection optical waveguides GA and GB correspond to the light of the respective virtual partial reflection optical waveguides IGA and IGB. Since it is included in a virtual plane including the axis (the above-described cross section C), both partial detection lights LS are aligned with the optical axes of the respective partial reflection control surfaces GAU and GBU.
It is suitable for arranging a light receiving unit PD that collectively receives A and LSB.

【0312】さらに、前述の位置測定装置2cと同様
に、反射制御面GRU(の各部分反射制御面GAU、G
BU)の光軸が、断面C内において、仮想照射光導波路
IGIの光軸とほぼ直交する関係となるように定められ
ているので、受光部PDを第1仮想側面G1等と平行に
配置でき、反射制御面GRUの光軸に合わせて受光部P
Dをさらに近接して配置し易く、装置全体の小型化に適
している。
Further, similarly to the above-described position measuring device 2c, each partial reflection control surface GAU, GAU of the reflection control surface GRU (
Since the optical axis of (BU) is determined so as to be substantially orthogonal to the optical axis of the virtual irradiation optical waveguide IGI in the cross section C, the light receiving unit PD can be arranged in parallel with the first virtual side surface G1 and the like. , The light receiving portion P in accordance with the optical axis of the reflection control surface GRU.
It is easy to arrange D more closely, which is suitable for miniaturization of the entire device.

【0313】次に、図27および図28に示す位置測定
装置2kは、上述の位置測定装置2jをさらに変形し、
図16および図17で前述の位置測定装置2eの反射光
導波路GRを、上記の部分反射光導波路GAとして利用
したものである。
Next, the position measuring device 2k shown in FIGS. 27 and 28 is a further modification of the position measuring device 2j described above.
In FIG. 16 and FIG. 17, the reflected light guide GR of the position measuring device 2e described above is used as the partially reflected light guide GA.

【0314】このため、上述した位置測定装置2jと同
様に、この位置測定装置2kにおける反射光導波路GR
も、仮想反射光導波路IGR(仮想部分反射光導波路I
GA、IGB)の全てを含み、図12および図13で前
述の位置測定装置2cにおける反射光導波路GRと同等
の機能を果たせる。
For this reason, similarly to the position measuring device 2j described above, the reflected light guide GR in the position measuring device 2k is used.
Also, the virtual reflection optical waveguide IGR (virtual partial reflection optical waveguide I)
GA, IGB), and can perform the same function as the reflected light waveguide GR in the position measuring device 2c described above with reference to FIGS.

【0315】また、部分反射光導波路GA、GBも、同
一サイズの仮想部分接合側面G5、G6等を含む四角柱
形状を基本にするので、接合し易く、広範囲のリニアリ
ティを確保でき、また、図示上の奥行き方向の任意の位
置に、仮想照射光導波路IGIや仮想反射光導波路IG
Rを想定することもでき、また、位置測定装置2cよ
り、製造単位が小さくて扱い易く、製造コストを抑止す
ることができる。
Also, since the partially reflected optical waveguides GA and GB are basically formed in the shape of a quadrangular prism including the imaginary partially joined side surfaces G5 and G6 of the same size, they can be easily joined and a wide range of linearity can be secured. The virtual irradiation optical waveguide IGI or the virtual reflection optical waveguide IG is located at an arbitrary position in the depth direction above.
R can be assumed, and the production unit is smaller and easier to handle than the position measurement device 2c, and the production cost can be suppressed.

【0316】また、各部分検出光LSA、LSBの差分
を得ることができるので、差動型の原理により、反射率
等に依存せずに、測定ギャップyおよびその変化を求め
られ、これにより、光ファイバ変位計と同様に、ターゲ
ットTの適用範囲が広く、非接触測定のため汚染や変形
等の心配がなく、高分解能・高安定度などの利点を有す
るばかりでなく、差動型の原理により、さらに分解能を
向上できる。
Further, since the difference between the respective partial detection lights LSA and LSB can be obtained, the measurement gap y and its change can be obtained by the differential principle without depending on the reflectivity and the like. Like the optical fiber displacement meter, the target T has a wide range of application, and because it is a non-contact measurement, there is no need to worry about contamination or deformation, and it has advantages such as high resolution and high stability, as well as the differential principle. Thereby, the resolution can be further improved.

【0317】また、各部分反射光導波路GA、GBの部
分検出面GAu、GBuから受光部PDまでの光路長が
異なるため、個別に受光しやすく、各部分反射光導波路
GA、GBからの受光量PA、PBを区別でき、それら
の光量差Psを求め、差動型の原理により、反射率等に
依存せずに、測定ギャップyおよびその変化を求めるこ
ともできる。
Further, since the optical path lengths from the partial detection surfaces GAu, GBu of each of the partially reflected optical waveguides GA, GB to the light receiving portion PD are different, it is easy to individually receive light, and the light receiving amounts from each of the partially reflected optical waveguides GA, GB. PA and PB can be distinguished, the light amount difference Ps between them can be obtained, and the measurement gap y and its change can be obtained by the differential principle without depending on the reflectance or the like.

【0318】また、各部分反射光導波路GA、GBの各
部分反射制御面GAU、GBUの光軸が、前述の断面C
内に含まれ、かつ、仮想照射光導波路IGIの光軸とほ
ぼ直交するので、各部分反射制御面GAU、GBUの光
軸に合わせて双方の部分検出光LSA、LSBを一括し
て受光する受光部PDを第1仮想側面G1等と平行に配
置でき、受光部PDをさらに近接して配置し易く、装置
全体の小型化に適している。
The optical axis of each of the partial reflection control surfaces GAU and GBU of each of the partial reflection optical waveguides GA and GB is the same as that of the aforementioned cross section C.
, And substantially orthogonal to the optical axis of the virtual irradiation optical waveguide IGI, so that both the partial detection lights LSA and LSB are collectively received according to the optical axes of the respective partial reflection control surfaces GAU and GBU. The unit PD can be arranged in parallel with the first virtual side surface G1 and the like, and the light receiving unit PD can be easily arranged closer to it, which is suitable for miniaturization of the entire device.

【0319】次に、例えば図16および図17で前述の
位置測定装置2eにおいて、反射光導波路GRを左反射
光導波路GRLとし、その左反射光導波路GRLに面対
称の右反射光導波路GRRを配設して、図20および図
21で前述の位置測定装置2gとしたのと同様に、上述
の位置測定装置2kの反射光導波路GR(部分反射光導
波路GA+部分反射光導波路GB)を左反射光導波路G
RL(左内側部分反射光導波路GAL+左外側部分反射
光導波路GBL)とし、その左反射光導波路GRLに面
対称の右反射光導波路GRR(右内側部分反射光導波路
GAR+右外側部分反射光導波路GBR)を配設して、
図29および図30に示す位置測定装置2lとする。
Next, in the position measuring device 2e described above with reference to FIGS. 16 and 17, for example, the reflected light guide GR is a left reflected light guide GRL, and a plane symmetric right reflected light guide GRR is arranged on the left reflected light guide GRL. 20 and FIG. 21, the reflected light guide GR (partially reflected light guide GA + partially reflected light guide GB) of the above-described position measuring device 2k is changed to the left reflected light guide in the same manner as the position measuring device 2g described above. Wave path G
RL (left inner partially reflected optical waveguide GAL + left outer partially reflected optical waveguide GBL), and right reflected optical waveguide GRR (right inner partially reflected optical waveguide GAR + right outer partially reflected optical waveguide GBR) plane-symmetric to the left reflected optical waveguide GRL. Arrange,
It is assumed that the position measuring device 21 shown in FIGS. 29 and 30 is used.

【0320】この場合、位置測定装置2lは、上述の位
置測定装置2kの利点に、位置測定装置2eを位置測定
装置2gとしたことによる前述の利点が付加されること
になる。
[0320] In this case, the position measuring device 2l has the same advantages as the position measuring device 2k described above in that the position measuring device 2e is replaced by the position measuring device 2g.

【0321】すなわち、上述の位置測定装置2kの利点
に加え、位置測定装置2lでは、左側に照射される照射
光LI(LIL)に対応する反射光LR(LRL)ばか
りでなく、逆方向の照射光LI(LIR)に対応する反
射光LR(LRR)も受光できるので、反射光LR(L
RR)も測定に使用できることにより、照射光LIの測
定に対する照射効率を向上させ、感度(分解能等)をよ
り高くすることができる。
That is, in addition to the advantage of the position measuring device 2k described above, in the position measuring device 21, not only the reflected light LR (LRL) corresponding to the irradiation light LI (LIL) irradiated to the left side but also the irradiation in the opposite direction. Since the reflected light LR (LRR) corresponding to the light LI (LIR) can also be received, the reflected light LR (L
Since RR) can also be used for the measurement, the irradiation efficiency for the measurement of the irradiation light LI can be improved, and the sensitivity (resolution or the like) can be further increased.

【0322】また、これにより、入射光Lの入射角θや
照射光導波路GIの光路長が設計値と僅かに異なっても
高分解能を維持できるので、製作し易くなり、パッケー
ジ化するような場合にもその歩留まりが向上し、特に全
体が小型化され反射光導波路GRの資材コストが低いの
に対してその製造コストが比較的に高い場合に、コスト
ダウンが図れる。
Further, since high resolution can be maintained even when the incident angle θ of the incident light L and the optical path length of the irradiation optical waveguide GI are slightly different from the design values, it is easy to manufacture the device, and in the case of packaging. In addition, the yield is improved, and the cost can be reduced particularly when the whole is downsized and the material cost of the reflection optical waveguide GR is low, but the manufacturing cost is relatively high.

【0323】次に、図31および図32に示す位置測定
装置2mは、図14および図15で前述の位置測定装置
2dの仮想反射光導波路IGRを2つの仮想部分反射光
導波路IGA、IGBに分割し、また、仮想反射光導波
路IGRを含む反射光導波路GRを2つの部分反射光導
波路GA、GBに分割して、図18および図19で前述
の位置測定装置2fの反射光導波路GRを、上記の部分
反射光導波路GAとして利用して配設し、その反射光導
波路GRを部分反射光導波路GAと反対向きに、部分反
射光導波路GBとして利用したて配設したものである。
Next, the position measuring device 2m shown in FIGS. 31 and 32 divides the virtual reflected light waveguide IGR of the position measuring device 2d described above with reference to FIGS. 14 and 15 into two virtual partially reflected light waveguides IGA and IGB. In addition, the reflected light guide GR including the virtual reflected light guide IGR is divided into two partially reflected light guides GA and GB, and the reflected light guide GR of the position measuring device 2f described above with reference to FIGS. The partial reflection optical waveguide GA is disposed by using the partial reflection optical waveguide GA, and the reflection optical waveguide GR is disposed in the opposite direction to the partial reflection optical waveguide GA by using the partial reflection optical waveguide GB.

【0324】このため、この位置測定装置2mにおける
反射光導波路GRも、前述の位置測定装置2dの仮想反
射光導波路IGR(仮想部分反射光導波路IGA、IG
B)の全てを含み、図14および図15で前述の位置測
定装置2dにおける反射光導波路GRと同等の機能を果
たせる。
For this reason, the reflected optical waveguide GR of the position measuring device 2m is also the virtual reflected optical waveguide IGR (virtual partially reflected optical waveguide IGA, IG) of the position measuring device 2d.
B), the same function as the reflected light guide GR in the position measuring device 2d described above with reference to FIGS. 14 and 15 can be achieved.

【0325】また、部分反射光導波路GA、GBも、同
一サイズの仮想部分接合側面G5、G6等を含む四角柱
形状を基本にするので、接合し易く、広範囲のリニアリ
ティを確保でき、また、図示上の奥行き方向の任意の位
置に、仮想照射光導波路IGIや仮想反射光導波路IG
Rを想定することもでき、また、位置測定装置2dよ
り、製造単位が小さくて扱い易く、製造コストを抑止す
ることができる。
Also, since the partially reflected optical waveguides GA and GB are basically formed in the shape of a quadrangular prism including the imaginary partially joined side surfaces G5 and G6 of the same size, they can be easily joined and a wide range of linearity can be secured. The virtual irradiation optical waveguide IGI or the virtual reflection optical waveguide IG is located at an arbitrary position in the depth direction above.
R can be assumed, and the production unit is smaller and easier to handle than the position measuring device 2d, and the production cost can be suppressed.

【0326】また、各部分検出光LSA、LSBの差分
を得ることができるので、差動型の原理により、反射率
等に依存せずに、測定ギャップyおよびその変化を求め
られ、これにより、光ファイバ変位計と同様に、ターゲ
ットTの適用範囲が広く、非接触測定のため汚染や変形
等の心配がなく、高分解能・高安定度などの利点を有す
るばかりでなく、差動型の原理により、さらに分解能を
向上できる。
Further, since the difference between the respective partial detection lights LSA and LSB can be obtained, the measurement gap y and its change can be obtained by the differential principle without depending on the reflectance or the like. Like the optical fiber displacement meter, the target T has a wide range of application, and because it is a non-contact measurement, there is no need to worry about contamination or deformation, and it has advantages such as high resolution and high stability, as well as the differential principle. Thereby, the resolution can be further improved.

【0327】また、この位置測定装置2mでは、(少な
くとも)2つの部分反射光導波路GA、GBの各部分反
射制御面GAU、GBUが、それぞれの部分検出光LS
A、LSBが相互に異なる方向に発射するように設けら
れているので、それぞれの部分検出光LSA、LSBを
受光する受光部PDを個別に近接して配置するのに適し
ている。
In the position measuring device 2m, each of the (at least) two partial reflection control surfaces GAU and GBU of the partial reflection optical waveguides GA and GB are connected to the respective partial detection light LS
Since A and LSB are provided so as to emit in mutually different directions, it is suitable for arranging the light receiving units PD for receiving the respective partial detection lights LSA and LSB separately and closely.

【0328】また、前述の位置測定装置2dと同様に、
(少なくとも)2つの部分反射制御面GAU、GBU
が、対応する仮想部分反射光導波路IGA、IGBの光
軸を含む仮想の平面(前述の断面C)に対して、各部分
反射制御面GAU、GBUの光軸が交差(直交)する関
係となるように設けられている。
Also, similarly to the above-described position measuring device 2d,
(At least) two partial reflection control surfaces GAU, GBU
However, the optical axes of the respective partial reflection control surfaces GAU and GBU intersect (orthogonal) with a virtual plane (the above-described cross section C) including the optical axes of the corresponding virtual partially reflected optical waveguides IGA and IGB. It is provided as follows.

【0329】また、照射制御面GIUの光軸が断面C内
にあり、仮想照射光導波路IGIの光軸と合わせている
ので、それに合わせて光源LDを近接して配置しても、
各部分反射制御面GAU、GBUを断面C外に設けるこ
とができ、各反射制御面GAU、GBUの光軸に合わせ
て受光部PD(PDA、PDB)を近接して配置し易い
(図41参照)。
Also, since the optical axis of the irradiation control surface GIU is within the cross section C and is aligned with the optical axis of the virtual irradiation optical waveguide IGI, even if the light source LD is arranged close to it,
Each of the partial reflection control surfaces GAU and GBU can be provided outside the section C, and the light receiving units PD (PDA and PDB) can be easily arranged close to the optical axis of each of the reflection control surfaces GAU and GBU (see FIG. 41). ).

【0330】なお、この位置測定装置2mでは、位置測
定装置2dの仮想反射光導波路IGRを含む反射光導波
路GRを2つの部分反射光導波路GA、GBに分割して
いるので、各部分反射制御面(GAU、GBU)の光軸
が交差する関係となるように設けられた少なくとも2つ
の部分反射光導波路(GA、GB)と、それぞれの部分
検出光(LSA、LSB)が相互に異なる方向に発射す
るように設けられた少なくとも2つの部分反射制御面
(GA、GB)とが一致している。
In the position measuring device 2m, the reflected light guide GR including the virtual reflected light guide IGR of the position measuring device 2d is divided into two partially reflected light guides GA and GB. At least two partially reflected optical waveguides (GA, GB) provided so that the optical axes of (GAU, GBU) cross each other, and respective partial detection light beams (LSA, LSB) are emitted in mutually different directions. At least two partial reflection control surfaces (GA, GB) provided so as to match each other.

【0331】しかし、これらは一致している必要はな
い。すなわち、例えば反射光導波路GRを3つの部分反
射光導波路GA、GBおよびGCに分割した場合、部分
反射光導波路GA、GBはその光軸が断面Cと交差する
関係となるように設けられ、そのうちの少なくとも一方
と部分反射光導波路GCの部分検出光(部分検出光LS
A、LSBの少なくとも一方と例えば部分検出光LS
C)が相互に異なる方向に発射するように設けられてい
れば、両方の条件を満足する。
However, they need not match. That is, for example, when the reflected light waveguide GR is divided into three partially reflected light waveguides GA, GB, and GC, the partially reflected light waveguides GA, GB are provided so that their optical axes intersect with the cross section C. And the partial detection light (partial detection light LS) of the partially reflected optical waveguide GC.
A, LSB and, for example, the partial detection light LS
Both conditions are satisfied if C) is provided to fire in mutually different directions.

【0332】そして、その場合も、両方の利点を有す
る。すなわち、各部分反射制御面GAU、GBUを断面
C外に設けることができるので、各反射制御面GAU、
GBUの光軸に合わせて受光部PDを近接して配置し易
く、また、それらの部分検出光LSA、LSBの少なく
とも一方と部分検出光LSCが相互に異なる方向に発射
されるので、それを受光する受光部PDを個別に近接し
て配置するのに適している。
In this case, both advantages are obtained. That is, since each partial reflection control surface GAU, GBU can be provided outside the cross section C, each reflection control surface GAU, GBU,
It is easy to arrange the light receiving portion PD close to the optical axis of the GBU, and because at least one of the partial detection lights LSA and LSB and the partial detection light LSC are emitted in mutually different directions, the light is received. This is suitable for individually arranging the light receiving units PD close to each other.

【0333】特に位置測定装置2mでは、断面Cに対し
て、各部分反射制御面GAU、GBUの光軸が直交する
ので、各部分反射制御面GAU、GBUの光軸は、第1
仮想側面G1〜第4仮想側面G4等を含む平面等と平行
な平面内に含まれ、かつ、仮想照射光導波路IGIや各
仮想部分反射光導波路IGA、IGBの光軸と直交する
関係となる。
In particular, in the position measuring device 2m, since the optical axes of the respective partial reflection control surfaces GAU and GBU are orthogonal to the cross section C, the optical axes of the respective partial reflection control surfaces GAU and GBU are equal to the first axis.
It is included in a plane parallel to a plane including the virtual side surface G1 to the fourth virtual side surface G4 and the like, and has a relationship orthogonal to the optical axis of the virtual irradiation optical waveguide IGI and the virtual partial reflection optical waveguides IGA and IGB.

【0334】このため、上記の断面Cに平行な平面内に
各部分反射制御面GAU、GBUを設けることにより、
各部分反射制御面GAU、GBUと平行かつ対向するよ
うに、双方の受光部PD(PDA、PDB)を配置でき
る(図41参照)。
For this reason, by providing each partial reflection control surface GAU, GBU in a plane parallel to the cross section C,
Both light receiving units PD (PDA, PDB) can be arranged so as to be parallel to and face each of the partial reflection control surfaces GAU, GBU (see FIG. 41).

【0335】また、受光部PD(PDA、PDB)と双
方の反射制御面GAU、GBUとの距離を同一距離にす
れば、双方からの受光量PA、PBなどの受光結果を同
等に扱え、受光部PDを簡易な構成にし易くなる。
If the distance between the light receiving unit PD (PDA, PDB) and both of the reflection control surfaces GAU, GBU is the same, light receiving results such as light receiving amounts PA, PB from both can be treated equally, It becomes easy to make the unit PD a simple configuration.

【0336】特に位置測定装置2mでは、前述の位置測
定装置2c等と同様に四角柱形状を基本とするので、断
面Cに平行な側面を含む平面またはそれと平行な少し内
側の平面内に各部分反射制御面GAU、GBUを設ける
ことにより、各部分反射光導波路GA、GBと近接し
て、双方の受光部PD(PDA、PDB)を配置でき、
装置全体を小型化できる。
In particular, since the position measuring device 2m is basically in the form of a quadrangular prism similarly to the above-described position measuring device 2c and the like, each part is placed in a plane including a side surface parallel to the cross section C or a plane slightly inward parallel thereto. By providing the reflection control surfaces GAU, GBU, both the light receiving units PD (PDA, PDB) can be arranged close to the respective partially reflected optical waveguides GA, GB,
The entire device can be downsized.

【0337】さらに、この位置測定装置2mでは、(少
なくとも)2つの部分反射光導波路GA、GBの各部分
反射制御面GAU、GBUが、断面Cの互いに反対面側
に各部分検出光LSA、LSBを発射するように設けら
れているので、それぞれ他方と反対面側に、各部分反射
制御面GAU、GBUの光軸に合わせて近接して受光部
PDA、PDBを個別に配置でき、さらに装置を小型化
できる。
Furthermore, in the position measuring device 2m, each of the (at least) two partial reflection control surfaces GAU and GBU of the partial reflection optical waveguides GA and GB are provided with the respective partial detection lights LSA and LSB on opposite sides of the cross section C. , So that the light receiving units PDA and PDB can be individually arranged in close proximity to the optical axes of the respective partial reflection control surfaces GAU and GBU on the side opposite to the other, respectively. Can be downsized.

【0338】また、この位置測定装置2mでは、断面C
の互いに反対面側に各部分検出光(LSA、LSB)を
発射するように設けられた少なくとも2つの部分反射光
導波路(GA、GB)が、各部分反射制御面(GAU、
GBU)の光軸が断面Cに交差(直交)する関係となる
ように設けられた少なくとも2つの部分反射光導波路
(GA、GB)と一致する。
In this position measuring device 2m, the section C
At least two partial reflection optical waveguides (GA, GB) provided to emit the respective partial detection lights (LSA, LSB) on the mutually opposite surfaces of each of the partial reflection control surfaces (GAU,
GBU) coincides with at least two partially-reflected optical waveguides (GA, GB) provided such that the optical axis intersects (orthogonally) with the cross section C.

【0339】すなわち、(少なくとも)2つの部分反射
光導波路GA、GBは、各部分反射制御面GAU、GB
Uの光軸が断面Cに交差(直交)し、かつ、断面Cの互
いに反対面側に各部分検出光LSA、LSBを発射する
ように設けられている。
That is, the (at least) two partially reflected optical waveguides GA, GB are connected to the respective partially reflected control surfaces GAU, GB.
The optical axis of U intersects (orthogonally) with the cross section C, and is provided so as to emit the respective partial detection lights LSA and LSB to the mutually opposite surfaces of the cross section C.

【0340】この場合、これらの2つの部分反射光導波
路GA、GBを(前述の位置測定装置2fの反射光導波
路GRを利用して)同一形状として互いに反対側に向け
るだけで実現できるので、大量生産等に適し、さらに製
造コストの低減が可能になる。
In this case, since these two partially reflected optical waveguides GA and GB can be realized only by making them the same shape (using the above-described reflected optical waveguide GR of the position measuring device 2f) and directing them to opposite sides, a large amount of It is suitable for production and the like, and further enables reduction of manufacturing cost.

【0341】なお、この位置測定装置2mでは、前述の
位置測定装置2dと同様に、各部分反射制御面GAU、
GBUから部分検出光LSA、LSBを発射させるため
にその光路を変更する部分反射側面GAM、GBMの一
部の部位GAMS、GBMSを、断面Cおよび検出面G
Ru等の双方に45゜の角度となるように設けるだけ
で、仮想部分反射光導波路IGA、IGBの光軸に沿っ
て断面C内に反射・伝搬してきた光を、断面Cと垂直か
つ検出面GAu、GBu等と平行な仮想の平面内に伝搬
する検出光LSとなるように光路変更できるので、作製
し易い。
In the position measuring device 2m, similarly to the position measuring device 2d, each partial reflection control surface GAU,
A partial reflection side surface GAM that changes the optical path of the GBU to emit the partial detection light LSA, LSB from the GBU, a part GAMS, GBMS of the GBM, a cross section C and a detection surface G
The light reflected and propagated in the section C along the optical axis of the virtual partially reflected optical waveguides IGA and IGB is provided only on the Ru and the like at an angle of 45 °. Since the optical path can be changed so that the detection light LS propagates in a virtual plane parallel to GAu, GBu, or the like, it is easy to manufacture.

【0342】次に、前述の位置測定装置2kを応用して
位置測定装置2lを構成したのと同様に、上述の位置測
定装置2mの反射光導波路GR(部分反射光導波路GA
+部分反射光導波路GB)を左反射光導波路GRL(左
内側部分反射光導波路GAL+左外側部分反射光導波路
GBL)とし、その左反射光導波路GRLに面対称の右
反射光導波路GRR(右内側部分反射光導波路GAR+
右外側部分反射光導波路GBR)を配設して、図33お
よび図34に示す位置測定装置2nとする。
Next, similarly to the configuration of the position measuring device 21 by applying the above-described position measuring device 2k, the reflected light waveguide GR (partially reflected light waveguide GA) of the position measuring device 2m described above is used.
The + partially reflected light waveguide GB is a left reflected light waveguide GRL (left inner partially reflected light waveguide GAL + left outer partially reflected light waveguide GBL), and the right reflected light waveguide GRR (right inner part) is plane-symmetric to the left reflected light waveguide GRL. Reflected optical waveguide GAR +
The right outside partially reflected light waveguide GBR) is provided to obtain a position measuring device 2n shown in FIGS.

【0343】この場合、位置測定装置2nは、上述の位
置測定装置2nの利点に、反射光導波路GRを両側に配
設した前述の利点が付加される。すなわち、左側の照射
光LILに対応する反射光LRLばかりでなく、逆方向
の右側の照射光LIRに対応する反射光LRRも受光で
き、測定に使用できるので、照射光LI(LIL、LI
R)の測定に対する照射効率を向上させ、感度(分解能
等)をより高くすることができる。
In this case, the position measuring device 2n has the same advantage as that of the above-described position measuring device 2n, in which the above-described advantage of disposing the reflected light guide GR on both sides is added. That is, not only the reflected light LRL corresponding to the left irradiation light LIL but also the reflected light LRR corresponding to the right irradiation light LIR in the opposite direction can be received and used for measurement, so that the irradiation light LI (LIL, LI) can be used.
The irradiation efficiency for the measurement of R) can be improved, and the sensitivity (resolution or the like) can be further increased.

【0344】また、これにより、入射光Lの入射角θや
照射光導波路GIの光路長が設計値と僅かに異なっても
高分解能を維持できるので、製作し易くなり、パッケー
ジ化するような場合にもその歩留まりが向上し、特に全
体が小型化され反射光導波路GRの資材コストが低いの
に対してその製造コストが比較的に高い場合に、コスト
ダウンが図れる。
In addition, even if the incident angle θ of the incident light L or the optical path length of the irradiation optical waveguide GI is slightly different from the design value, high resolution can be maintained. In addition, the yield is improved, and the cost can be reduced particularly when the whole is downsized and the material cost of the reflection optical waveguide GR is low, but the manufacturing cost is relatively high.

【0345】上述のように、位置測定装置2a〜2nの
いずれにおいても、従来の光ファイバ変位計と同等の原
理に基づいて測定ギャップyやその変化を求めることが
できるので、ターゲット(測定対象物)Tの適用範囲が
広く、非接触測定のためターゲット(測定対象物)Tに
汚染や変形等を与える心配がなく、高分解能・高安定度
を有するなど、光ファイバ変位計と同等の利点を得られ
る。
As described above, in any of the position measuring devices 2a to 2n, the measurement gap y and its change can be obtained based on the same principle as that of the conventional optical fiber displacement meter. ) The applicable range of T is wide, non-contact measurement does not cause contamination or deformation of the target (measurement target) T, and has the same advantages as an optical fiber displacement meter, such as high resolution and high stability. can get.

【0346】また、各光導波路の側面に第2仮想側面等
の同一サイズの平行な仮想平面が含まれるので、それら
を接合することにより、円柱状の光ファイバを接合する
より接合(製造)し易い分だけ製造コストを抑止するこ
とができ、かつリニアリティを害するような間隙が生じ
にくい分だけ広範囲のリニアリティを確保できる。すな
わち、光ファイバ変位計と同等の利点を有しつつ、広範
囲のリニアリティを確保でき、かつコストダウンが図れ
る。
Also, since the side surfaces of each optical waveguide include parallel virtual planes of the same size, such as the second virtual side surface, by joining them, it is possible to join (manufacture) rather than join cylindrical optical fibers. The manufacturing cost can be suppressed by an easy amount, and a wide range of linearity can be secured by an amount that hardly causes a gap that impairs the linearity. That is, while having the same advantages as the optical fiber displacement meter, a wide range of linearity can be secured and the cost can be reduced.

【0347】したがって、後述の位置測定装置2とし
て、上述の位置測定装置2a〜2nのいずれをも適用で
きるが、本実施形態の位置測定装置2には、これらのう
ち、本発明の目的に対して有益な利点を同時に最も多く
有していると考えられる位置測定装置2nの原理(構
成)を応用する。そこで、上述の位置測定装置2nの利
点、特にその光導波路群GGの構成の利点を、以下にま
とめておく。
Therefore, any of the above-described position measuring devices 2a to 2n can be applied as the position measuring device 2 described later, but the position measuring device 2 of the present embodiment is not limited to the object of the present invention. The principle (configuration) of the position measuring device 2n, which is considered to have the most useful advantages at the same time, is applied. Therefore, the advantages of the above-described position measurement device 2n, particularly, the advantages of the configuration of the optical waveguide group GG are summarized below.

【0348】図33および図34に示すように、位置測
定装置2nの光導波路群GGは、仮想照射光導波路IG
Iを含む照射光導波路GIと、それぞれ仮想反射光導波
路IGR(IGRL、IGRR)を含む左右一対の反射
光導波路GRL、GRRから成る反射光導波路GRを備
えている。
As shown in FIGS. 33 and 34, the optical waveguide group GG of the position measuring device 2n includes a virtual irradiation optical waveguide IG.
An illumination light guide GI including an I and a reflection light guide GR including a pair of left and right reflection light guides GRL and GRR each including a virtual reflection light guide IGR (IGRL, IGRR) are provided.

【0349】反射光導波路GRの左側を構成する左反射
光導波路GRLは、照射光導波路GI側(左内側)に配
設され仮想部分反射光導波路IGALを含む左内側部分
反射光導波路GALと、照射光導波路GIとは逆側(左
外側)に配設され仮想部分反射光導波路IGBLを含む
左外側部分反射光導波路GBLとを有している。
The left reflected light waveguide GRL constituting the left side of the reflected light guide GR is disposed on the irradiation light guide GI side (left inside) and includes the left inner partially reflected light waveguide GAL including the virtual partially reflected light waveguide IGAL, and the irradiation light. It has a left outer partially reflected light waveguide GBL disposed on the opposite side (left outside) to the optical waveguide GI and including a virtual partially reflected light waveguide IGBL.

【0350】ここで、左内側部分反射光導波路GAL
は、前述の仮想部分接合側面G5等を含む四角柱形状を
基本とし、部分反射制御面GAUの光軸が断面Cに交差
(直交)し、かつ、断面Cの前面側(図示の手前側)に
部分検出光LSALを発射するように、その部分反射制
御面GAUから部分検出光LSALを発射させるために
その光路を変更する部分反射側面GAMの一部の部位
(以下「誘導面」)GAMSを、断面Cおよび検出面G
Ru等の双方に45゜の角度となるように設けた四角柱
を基本とする光導波路として構成され、その部分反射制
御面GAUが断面Cの前面側に向くように配設されてい
る。
Here, the left inner partially reflected light waveguide GAL is used.
Is based on a quadrangular prism shape including the above-described virtual partial joint side surface G5 and the like, and the optical axis of the partial reflection control surface GAU intersects (orthogonally) with the cross section C, and the front side of the cross section C (on the front side in the drawing). In order to emit the partial detection light LSAL from the partial reflection control surface GAU, a part of the partial reflection side surface GAM (hereinafter, “guide surface”) GAMS for changing the optical path to emit the partial detection light LSAL from the partial reflection control surface GAU is formed. , Section C and detection plane G
It is configured as an optical waveguide based on a quadrangular prism provided at an angle of 45 ° to both of Ru and the like, and its partial reflection control surface GAU is disposed so as to face the front side of the cross section C.

【0351】一方、左外側部分反射光導波路GBLは、
左内側部分反射光導波路GALと同一形状の光導波路と
して構成され、部分反射制御面GAUの光軸が断面Cに
交差(直交)し、かつ、断面Cの後面側(図示の奥側)
に部分検出光LSBLを発射するように、その部分反射
制御面GBUが断面Cの後面側に向くように配設されて
いる。
On the other hand, the left outer partially reflected light waveguide GBL is
It is configured as an optical waveguide having the same shape as the left inside partial reflection optical waveguide GAL, and the optical axis of the partial reflection control surface GAU intersects (orthogonally intersects) with the cross section C, and the rear side of the cross section C (the back side in the drawing).
The partial reflection control surface GBU is disposed so as to face the rear surface side of the cross section C so as to emit the partial detection light LSBL.

【0352】反射光導波路GRの右側を構成する右反射
光導波路GRRは、照射光導波路GI側(右内側)に配
設され仮想部分反射光導波路IGARを含む右内側部分
反射光導波路GARと、照射光導波路GIとは逆側(右
外側)に配設され仮想部分反射光導波路IGBLを含む
右外側部分反射光導波路GBLとを有している。
The right reflected light waveguide GRR constituting the right side of the reflected light waveguide GR is provided on the irradiation light guide GI side (inside right) and includes a right inner partially reflected light waveguide GAR including a virtual partially reflected light waveguide IGAR, and an irradiation light. It has a right outside partially reflected light waveguide GBL disposed on the opposite side (right outside) to the optical waveguide GI and including a virtual partially reflected light waveguide IGBL.

【0353】ここで、右内側部分反射光導波路GARも
右外側部分反射光導波路GBRも、左内側部分反射光導
波路GALと同一形状の光導波路として構成され、部分
反射制御面GAUの光軸が断面Cに交差(直交)し、か
つ、相互に反対面側、すなわちそれぞれ断面Cの前面側
および後面側に部分検出光LSARおよびLSBRを発
射するように、その部分反射制御面GAUおよびGBU
が断面Cの前面側および後面側に向くように配設されて
いる。
Here, both the right inner partially reflected optical waveguide GAR and the right outer partially reflected optical waveguide GBR are configured as optical waveguides having the same shape as the left inner partially reflected optical waveguide GAL, and the optical axis of the partial reflection control surface GAU is cross-sectioned. The partial reflection control surfaces GAU and GBU intersect (perpendicularly) with C and emit partial detection light LSAR and LSBR on the opposite surface sides, that is, on the front surface side and the rear surface side of the cross section C, respectively.
Are disposed so as to face the front side and the rear side of the cross section C.

【0354】すなわち、位置測定装置2nは、それぞれ
四角柱形状を基本とする5つの光導波路から成る光導波
路群GGを備え、光導波路群GGは、前記5つの光導波
路として、仮想照射光導波路IGIを含む照射光導波路
GIと、その左右に配設された4つの部分反射光導波路
から構成され仮想反射光導波路GRを含む反射光導波路
GRと、を有し、反射光導波路GRは、前記4つの部分
反射光導波路として、それぞれ仮想反射光導波路IGR
の一部である仮想部分反射光導波路IGAL、IGB
L、IGARおよびIGBLを含む左内側部分反射光導
波路GAL、左外側部分反射光導波路GBL、右内側部
分反射光導波路GARおよび右外側部分反射光導波路G
BRを有している。
That is, the position measuring device 2n includes an optical waveguide group GG composed of five optical waveguides each having a square pillar shape, and the optical waveguide group GG is a virtual irradiation optical waveguide IGI as the five optical waveguides. And a reflected light guide GR including a virtual reflected light guide GR composed of four partially reflected light guides disposed on the left and right of the irradiated light guide GI. The virtual reflection optical waveguide IGR is used as the partially reflected optical waveguide.
Virtual reflection optical waveguides IGAL and IGB which are part of
L, left inner partially reflected optical waveguide GAL, left outer partially reflected optical waveguide GBL, right inner partially reflected optical waveguide GAR and right outer partially reflected optical waveguide G including IGAR and IGBL
It has BR.

【0355】また、4つの部分反射光導波路GAL、G
BL、GAR、GBLは、それぞれの誘導面GRMS
(GAMSまたはGBMS)を断面Cおよび検出面GR
u等の双方に45゜の角度となるように設けた、四角柱
を基本とする同一形状の光導波路として構成され、各部
分反射制御面GRU(GAUまたはGBU)の光軸は断
面Cに交差(直交)するとともに、左内側部分反射光導
波路GALおよび右内側部分反射光導波路GARは、断
面Cの前面側にそれぞれ部分検出光LSALおよびLS
ARを発射するように、それぞれの部分反射制御面GA
Uが断面Cの前面側に向くように配設され、左外側部分
反射光導波路GBLおよび右外側部分反射光導波路GB
Rは、断面Cの後面側にそれぞれ部分検出光LSBLお
よびLSBRを発射するように、それぞれの部分反射制
御面GBUが断面Cの後面側に向くように配設されてい
る。
The four partially reflected optical waveguides GAL, G
BL, GAR, GBL are the respective guiding surfaces GRMS
(GAMS or GBMS) in section C and detection plane GR
u, etc., are formed as optical waveguides of the same shape based on a quadrangular prism provided at an angle of 45 °, and the optical axis of each partial reflection control surface GRU (GAU or GBU) intersects the cross section C. (Orthogonal), and the left inner partially reflected light waveguide GAL and the right inner partially reflected light waveguide GAR are respectively provided on the front side of the cross section C with the partial detection lights LSAL and LS.
Each partial reflection control surface GA to fire AR
U is disposed so as to face the front side of the cross section C, and the left outer partially reflected light waveguide GBL and the right outer partially reflected light waveguide GB
R is disposed such that the respective partial reflection control surfaces GBU face the rear surface of the section C so as to emit the partial detection lights LSBL and LSBR to the rear surface of the section C, respectively.

【0356】したがって、位置測定装置2nでは、光導
波路群GGがその構成において下記の利点〜を有す
る。
Therefore, in the position measuring device 2n, the optical waveguide group GG has the following advantages in its configuration.

【0357】 4つの部分反射光導波路GAL、GB
L、GAR、GBRは、断面Cおよび検出面GRu等の
双方に45゜の誘導面GRMSを設けた四角柱を基本と
する同一形状の光導波路として構成でき、また、この誘
導面GRMSも単に45゜の角度にすればよいので作製
し易く、製造単位が小さくて扱い易く、大量生産等に適
しているので、コストダウンが図れる。
[0357] Four partially reflected optical waveguides GAL, GB
L, GAR, and GBR can be configured as optical waveguides of the same shape based on a quadrangular prism provided with a guide plane GRMS of 45 ° on both the cross-section C and the detection plane GRu. Since the angle of よ い may be set, it is easy to manufacture, the unit of manufacture is small and easy to handle, and it is suitable for mass production and the like, so that the cost can be reduced.

【0358】 また、照射光導波路GIに対して上記
の同一形状の光導波路の(各部分反射制御面の)向きを
変えて接合するだけで、光導波路群GGを構成(作製)
できるので、単純で作製し易い分だけ、コストダウンが
図れる。
Further, the optical waveguide group GG is formed (made) by merely changing the orientation (of each partial reflection control surface) of the optical waveguide having the same shape with respect to the irradiation optical waveguide GI and joining the same.
As a result, the cost can be reduced by the simple and easy to manufacture.

【0359】 また、上記の4つの部分反射光導波路
GAL、GBL、GAR、GBRの他、照射光導波路G
Iも含めて、光導波路群GGの5つの光導波路が全て第
1仮想側面G1等を含む四角柱形状を基本にするので、
円柱状の光ファイバを接合するより接合(製造)し易い
分だけコストダウンが図れ、かつリニアリティを害する
ような間隙が生じにくい分だけ広範囲のリニアリティを
確保できる。
In addition to the above-mentioned four partially reflected optical waveguides GAL, GBL, GAR, and GBR, the irradiation optical waveguide G
Since all five optical waveguides of the optical waveguide group GG, including I, are basically formed in a quadrangular prism shape including the first virtual side surface G1 and the like,
The cost can be reduced by the easier joining (manufacturing) than the joining of the columnar optical fibers, and a wide range of linearity can be secured because the gap that impairs the linearity is less likely to occur.

【0360】 また、同様に、四角柱形状を基本にす
るので、図示とは異なる位置、すなわち図示上の奥行き
方向の任意の位置に、仮想照射光導波路IGIや仮想反
射光導波路IGRを想定できる。逆に言えば、設計時に
想定した光路と僅かに異なっても十分な光を伝搬でき、
高分解能・高安定度を維持できるので、作製し易く、パ
ッケージ化するような場合にもその歩留まりが向上する
ので、コストダウンが図れる。
[0360] Similarly, since the shape is basically a quadratic prism shape, the virtual irradiation optical waveguide IGI and the virtual reflection optical waveguide IGR can be assumed at a position different from that shown in the drawing, that is, at an arbitrary position in the depth direction in the drawing. Conversely, enough light can be propagated even if it is slightly different from the optical path assumed at the time of design,
Since high resolution and high stability can be maintained, the production is easy, and the yield is improved even in the case of packaging, so that the cost can be reduced.

【0361】 また、反射光導波路GRを構成する上
記の4つの部分反射光導波路GAL、GBL、GAR、
GBRを照射光導波路GIの左右に配設するので、左側
の照射光LILに対応する反射光LRLばかりでなく、
逆方向の右側の照射光LIRに対応する反射光LRRも
受光でき、測定に使用できるので、照射光LI(LI
L、LIR)の測定に対する照射効率を向上させ、感度
(分解能等)をより高くすることができる。また、入射
光Lの入射角θや照射光導波路GIの光路長が設計値と
僅かに異なっても高分解能を維持できるので、製作し易
くなり、パッケージ化するような場合にもその歩留まり
が向上し、特に全体が小型化され反射光導波路GRの資
材コストが低いのに対してその製造コストが比較的に高
い場合に、コストダウンが図れる。
In addition, the above-mentioned four partially reflected light waveguides GAL, GBL, GAR, which constitute the reflected light waveguide GR,
Since the GBRs are disposed on the left and right of the irradiation light waveguide GI, not only the reflected light LRL corresponding to the irradiation light LIL on the left side,
The reflected light LRR corresponding to the irradiation light LIR on the right side in the opposite direction can also be received and used for measurement, so that the irradiation light LI (LI
L, LIR) can be improved, and the sensitivity (resolution, etc.) can be increased. Further, even if the incident angle θ of the incident light L and the optical path length of the irradiation optical waveguide GI are slightly different from the design values, high resolution can be maintained, so that it is easy to manufacture and the yield is improved even in the case of packaging. In particular, the cost can be reduced when the whole is miniaturized and the material cost of the reflection optical waveguide GR is low, but the manufacturing cost is relatively high.

【0362】 また、上記の4つの部分反射光導波路
GAL、GBL、GAR、GBRの各部分反射制御面G
RU(GAUまたはGBU)は、断面Cに平行な側面に
含まれ、それらの光軸は断面Cに交差(直交)するの
で、それらからの部分検出光LSAL、LSBL、LS
AR、LSBRを受光する受光部PDを、各部分反射光
導波路GAL、GBL、GAR、GBRに近接して配置
でき、小型化が図れ、特にパッケージ化するような場合
に有利となる。
In addition, each of the partial reflection control surfaces G of the four partial reflection optical waveguides GAL, GBL, GAR, and GBR described above.
The RUs (GAU or GBU) are included on the side surface parallel to the cross section C, and their optical axes intersect (orthogonal) with the cross section C. Therefore, the partial detection lights LSAL, LSBL, LS from them.
The light receiving unit PD for receiving the AR and LSBR can be arranged close to each of the partially reflected optical waveguides GAL, GBL, GAR, and GBR, so that the size can be reduced, which is advantageous particularly in the case of packaging.

【0363】 また、上記の4つの部分反射光導波路
GAL、GBL、GAR、GBRの各部分反射制御面G
RU(GAUまたはGBU)のうち、左内側部分反射光
導波路GALおよび右内側部分反射光導波路GARのそ
れぞれの部分反射制御面GAUは、断面Cの前面側にそ
れぞれ部分検出光LSALおよびLSARを発射するよ
うに、断面Cの前面側に向くように配設され、左外側部
分反射光導波路GBLおよび右外側部分反射光導波路G
BRのそれぞれの部分反射制御面GBUは、断面Cの後
面側にそれぞれ部分検出光LSBLおよびLSBRを発
射するように、断面Cの後面側に向くように配設されて
いるので、部分検出光LSALおよびLSARを受光す
る受光部PD(PDA)を断面Cの前面側に、部分検出
光LSBLおよびLSBRを受光する受光部PD(PD
B)を断面Cの後面側に、すなわちそれぞれ他方と反対
面側に、各部分反射制御面GAU、GBUの光軸に合わ
せて近接して受光部PDA、PDBを個別に配置でき、
小型化が図れ、特にパッケージ化するような場合に有利
となる。
In addition, each of the partial reflection control surfaces G of the four partial reflection optical waveguides GAL, GBL, GAR, and GBR described above.
Of the RU (GAU or GBU), the respective partial reflection control surfaces GAU of the left inner partially reflected light waveguide GAL and the right inner partially reflected light waveguide GAR emit the partial detection lights LSAL and LSAR respectively on the front surface side of the cross section C. And the left outer partially reflected optical waveguide GBL and the right outer partially reflected optical waveguide G are disposed so as to face the front side of the cross section C.
Each of the partial reflection control surfaces GBU of the BR is disposed so as to emit the partial detection light beams LSBL and LSBR to the rear surface side of the cross section C and to face the rear surface side of the cross section C, respectively. A light receiving unit PD (PDA) that receives the partial detection lights LSBL and LSBR is provided with a light receiving unit PD (PDA) that receives
B) on the rear side of the cross section C, that is, on the side opposite to the other side, the light receiving units PDA and PDB can be individually arranged close to the optical axes of the respective partial reflection control surfaces GAU and GBU,
The size can be reduced, which is advantageous particularly in the case of packaging.

【0364】 また、上記の場合、各受光部PD(P
DA、PDB)と各部分反射制御面GRU(GAUまた
はGBU)の距離を同一距離にすることにより、各受光
量PA、PBなどの受光結果を同等に扱え、受光部PD
(PDA、PDB)を簡易な構成にでき、コストダウン
が図れる。
In the above case, each light receiving unit PD (P
DA, PDB) and the respective partial reflection control surfaces GRU (GAU or GBU) are set to the same distance, so that the light reception results such as the respective light reception amounts PA and PB can be treated equally, and the light receiving unit PD
(PDA, PDB) can be simplified, and cost can be reduced.

【0365】 また、反射光導波路GRは、仮想部分
反射光導波路IGAL、IGBL、IGARおよびIG
BLを含む上記4つの部分反射光導波路(左内側部分反
射光導波路GAL、左外側部分反射光導波路GBL、右
内側部分反射光導波路GARおよび右外側部分反射光導
波路GBL)の全てを有しているので、仮想部分反射光
導波路IGA(IGAL+IGAR)、IGB(IGA
L+IGAR)からの部分検出光LSA(LSAL+L
SAR)、LSB(LSAL+LSAR)を受光して、
それぞれに対応する受光量PA(PAL+PAR)、受
光量PB(PBL、PBR)に基づいて、全光量Pa=
PA+PBを求められる。また、各部分検出光LSA、
LSBの差分に相当する光量差Ps=PB−PAやそれ
らの比率rs=Ps/Paを得ることができるので、差
動型の原理により、反射率等に依存せずに、測定ギャッ
プyおよびその変化を求められ、これにより、光ファイ
バ変位計と同様に、ターゲットTの適用範囲が広く、非
接触測定のため汚染や変形等の心配がなく、高分解能・
高安定度などの利点を有するばかりでなく、差動型の原
理により、さらに分解能を向上できる(図37参照)。
[0365] The reflected optical waveguide GR is composed of the virtual partially reflected optical waveguides IGAL, IGBL, IGAR, and IG.
It has all of the above four partially reflected optical waveguides including BL (left inner partially reflected optical waveguide GAL, left outer partially reflected optical waveguide GBL, right inner partially reflected optical waveguide GAR, and right outer partially reflected optical waveguide GBL). Therefore, the virtual partially reflected optical waveguide IGA (IGAL + IGAR), IGB (IGA
L + IGAR) from the partial detection light LSA (LSAL + L)
SAR) and LSB (LSAL + LSAR)
Based on the corresponding light receiving amount PA (PAL + PAR) and light receiving amount PB (PBL, PBR), the total light amount Pa =
PA + PB is required. In addition, each partial detection light LSA,
Since the light amount difference Ps = PB-PA corresponding to the LSB difference and the ratio rs = Ps / Pa thereof can be obtained, the measurement gap y and the measurement gap y can be obtained by the differential principle without depending on the reflectance or the like. As a result, the target T can be applied in a wide range, as in the case of the optical fiber displacement meter.
In addition to advantages such as high stability, the resolution can be further improved by the differential principle (see FIG. 37).

【0366】次に、本実施形態の厚み測定装置1に適用
する位置測定装置2について説明する。
Next, the position measuring device 2 applied to the thickness measuring device 1 of the present embodiment will be described.

【0367】図41〜図44に示すように、位置測定装
置2は、5つの光導波路を有する光導波路群GGと、レ
ーザダイオードを有して入射光(レーザ光)Lを発する
光源LDと、2つの部分受光部PDAおよびPDBを有
する受光部PDと、光源LDを制御するとともに、受光
部PDの受光結果に基づいて測定ギャップyを求める制
御部CNとを備えている。
As shown in FIGS. 41 to 44, the position measuring device 2 includes an optical waveguide group GG having five optical waveguides, a light source LD having a laser diode and emitting incident light (laser light) L, A light receiving unit PD having two partial light receiving units PDA and PDB, and a control unit CN that controls the light source LD and obtains the measurement gap y based on the light receiving result of the light receiving unit PD.

【0368】光導波路群GGは、上記の5つの光導波路
として、石英ガラスから成る厚みgd=0.1mm〜1
mm程度、幅gw=1mm〜5mm程度、長さ(高さ)
gh=10mm〜30mm程度の平板(四角柱の一種:
以下「ガラス平板」)をそれぞれ所要の形状に研削・研
磨加工して製造された照射光導波路GI、左内側部分反
射光導波路GAL、左外側部分反射光導波路GBL、右
内側部分反射光導波路GARおよび右外側部分反射光導
波路GBRを有している。
The optical waveguide group GG has a thickness gd of quartz glass of 0.1 mm to 1 mm as the above five optical waveguides.
mm, width gw = 1mm-5mm, length (height)
gh = a flat plate of about 10 mm to 30 mm (a kind of square pole:
Hereinafter, an “illuminated optical waveguide GI”, a left inner partially reflected optical waveguide GAL, a left outer partially reflected optical waveguide GBL, a right inner partially reflected optical waveguide GAR manufactured by grinding and polishing each of the “glass flat plate” into a required shape. It has a right outside partially reflected light waveguide GBR.

【0369】なお、前述のように、この位置測定装置2
には前述の位置測定装置2nの原理(構成)を適用する
ので、光導波路群GGの照射光導波路GIは、仮想照射
光導波路IGIを含むが、前述の利点でも述べたよう
に、四角柱形状を基本にする場合、図示上の奥行き方向
(上記の幅gw方向)の任意の位置に、仮想照射光導波
路IGIを想定できるので、この位置測定装置2の光導
波路群GGの照射光導波路GIでは、同一サイズの第1
仮想側面G1等を想定できる接合側面全て(すなわち図
42の厚みgd×幅gw×高さghのガラス平板の幅g
w×高さghの表面のうちの幅gw×高さghiの面全
体)を仮想照射光導波路IGIの第1仮想側面G1等と
する。
As described above, the position measuring device 2
Applies the principle (configuration) of the position measuring device 2n described above, so that the irradiation optical waveguide GI of the optical waveguide group GG includes the virtual irradiation optical waveguide IGI. , A virtual irradiation optical waveguide IGI can be assumed at an arbitrary position in the depth direction in the drawing (the above-described width gw direction). Therefore, in the irradiation optical waveguide GI of the optical waveguide group GG of the position measuring device 2, The first of the same size
All of the bonding side surfaces that can assume the virtual side surface G1 and the like (ie, the thickness gd × width gw × height gh of the glass flat plate g in FIG. 42)
The entirety of the surface of w × height gh and the width gw × height ghi) is defined as the first virtual side surface G1 of the virtual irradiation optical waveguide IGI and the like.

【0370】これにより、照射光導波路GIのうち、図
示の入射面GIuと照射面GIdの間は、仮想照射光導
波路IGIを兼ね、照射光導波路GIの照射測定面GI
Dは、仮想照射光導波路IGIの照射面GIdを兼ねる
ことになる。
As a result, of the irradiation optical waveguide GI, between the incident surface GIu and the irradiation surface GId shown in the drawing, the virtual irradiation optical waveguide IGI also serves as the irradiation measurement surface GI of the irradiation light waveguide GI.
D also serves as the irradiation surface GId of the virtual irradiation optical waveguide IGI.

【0371】また、4つの部分反射光導波路GAL、G
BL、GAR、GBRも、それぞれ仮想部分反射光導波
路IGAL、IGBL、IGARおよびIGBLを含
み、上記の仮想照射光導波路IGIの第1仮想側面G1
と同一サイズの接合側面全てを前述の第3仮想側面G3
等として、図示の入射面GIuと照射面GIdの間は、
それぞれ仮想部分反射光導波路IGAL、IGBL、I
GARおよびIGBLを兼ね、そのぞれの部分反射測定
面GRDは部分受光面GRdを兼ねることになる(利点
参照)。
In addition, the four partially reflected optical waveguides GAL, G
BL, GAR, and GBR also include virtual partial reflection optical waveguides IGAL, IGBL, IGAR, and IGBL, respectively, and the first virtual side surface G1 of the virtual illumination optical waveguide IGI described above.
All the joint side surfaces of the same size as the above-mentioned third virtual side surface G3
For example, between the incident surface GIu and the irradiation surface GId shown in FIG.
Virtually partially reflected optical waveguides IGAL, IGBL, I
The partial reflection measurement surface GRD also serves as the GAR and IGBL, and also serves as the partial light receiving surface GRd (see advantages).

【0372】上述の照射光導波路GIは、光源LDから
のレーザ光Lを入射角θ(ここではθ=10〜30°程
度:図40参照)で入射し易くして入射光量を少しでも
増大させ、また、光源LDを近接して配置し易いよう
に、図12で図示の照射制御面GIU2と同様に、ガラ
ス平板の上端面を角度θで図示のように研削・研磨加工
して照射制御面GIUとし、その光軸が光源LD側に傾
くように作製(製造)される。
The above-described irradiation light waveguide GI facilitates the incidence of the laser beam L from the light source LD at the incident angle θ (here, θ = about 10 to 30 °: see FIG. 40), and increases the amount of incident light even slightly. Also, in order to facilitate the arrangement of the light source LD in proximity, similarly to the irradiation control surface GIU2 shown in FIG. 12, the upper end surface of the glass plate is ground and polished at an angle θ as shown in FIG. The GIU is manufactured (manufactured) such that its optical axis is inclined toward the light source LD.

【0373】左外側部分反射光導波路GBLは、図43
(a)に示すように、ガラス平板の上端面を45°の傾
斜に研削・研磨加工して誘導面GBMSとし、内部に含
む仮想部分反射光導波路IGBLの光軸に沿って反射・
伝搬してきた光を、照射面GId、入射面GIu、検出
面GRu等と平行な仮想の平面内に伝搬する部分検出光
LSB(LSBL)とするための誘導面GBMSを設け
た形状に作製(製造)される。
The left outer partially reflected light waveguide GBL is shown in FIG.
As shown in (a), the upper end surface of the glass flat plate is ground and polished at an inclination of 45 ° to form a guide surface GBMS, which is reflected along the optical axis of the virtual partially reflected optical waveguide IGBL included therein.
Producing (manufacturing) a shape provided with a guiding surface GBMS for making the transmitted light into a partial detection light LSB (LSBL) that propagates in a virtual plane parallel to the irradiation surface GId, the incidence surface GIu, the detection surface GRu, and the like. ) Is done.

【0374】そして、他の3つの部分反射光導波路GA
L、GAR、GBRも、上記の左外側部分反射光導波路
GBLと同様に45゜の誘導面GRMS(GAMSまた
はGBMS)を設けた同一形状に作製(製造)される
(利点参照)。
The other three partially reflected optical waveguides GA
The L, GAR, and GBR are also manufactured (manufactured) in the same shape provided with a 45-degree guide surface GRMS (GAMS or GBMS) similarly to the left outer partially reflected light waveguide GBL described above (see advantages).

【0375】照射光導波路GI、左内側部分反射光導波
路GAL、左外側部分反射光導波路GBL、右内側部分
反射光導波路GARおよび右外側部分反射光導波路GB
Rは、上述の形状に切削され、表面処理等の加工がされ
た後、その表面全体に金めっきを施され、照射制御面G
IU、部分反射制御面GAU、GBU、照射測定面GI
U、部分反射測定面GAD、GBDに相当する部位の金
めっきのみをサンドペーパ等により削り落とされ、各光
導波路の単品として完成する(利点参照)。
The irradiation optical waveguide GI, the left inner partially reflected optical waveguide GAL, the left outer partially reflected optical waveguide GBL, the right inner partially reflected optical waveguide GAR, and the right outer partially reflected optical waveguide GB
R is cut into the shape described above, and after processing such as surface treatment, the entire surface is plated with gold.
IU, partial reflection control surface GAU, GBU, irradiation measurement surface GI
Only the gold plating of the portion corresponding to the U and the partial reflection measurement surfaces GAD and GBD is scraped off by sandpaper or the like to complete each optical waveguide as a single product (see advantages).

【0376】すなわち、光導波路としては、元になった
ガラス平板の研削・研磨加工後の部分がそのコア領域と
なり、金めっきの残った部分がクラッド領域となり、金
めっきを削り落とした部分が、各光導波路としての光の
入射面または発射面となる。
That is, as the optical waveguide, the portion of the original glass plate after grinding and polishing becomes the core region, the portion where the gold plating remains becomes the cladding region, and the portion where the gold plating is removed is the It becomes a light incident surface or a light emitting surface as each optical waveguide.

【0377】そして、上記の同一形状の光導波路の各部
分反射制御面GAU、GBU等の向きを図示のように順
次変えた4つの部分反射光導波路GAL、GBL、GA
R、GBRの側面(仮想部分反射光導波路IGAL等の
第3仮想側面G3等を含む側面)を、照射光導波路GI
の左右の側面(第1仮想側面G1、第2仮想側面G2を
含む側面)に対して、図示のように順次、接着剤等によ
り接合することにより、光導波路群GGとして完成する
(利点、、参照)。
Then, four partial reflection optical waveguides GAL, GBL, GA in which the directions of the partial reflection control surfaces GAU, GBU, etc. of the above-mentioned optical waveguide having the same shape are sequentially changed as shown in the figure.
The side surfaces of R and GBR (the side surfaces including the third virtual side surface G3 of the virtual partial reflection optical waveguide IGAL and the like) are illuminated by the irradiation optical waveguide GI.
The optical waveguide group GG is completed by sequentially joining the left and right side surfaces (side surfaces including the first virtual side surface G1 and the second virtual side surface G2) with an adhesive or the like as shown in FIG. reference).

【0378】光源LDは、前述のように、レーザ光Lを
発するレーザダイオードを有するレーザ光源であり、上
述の照射光導波路GI(に含む仮想照射光導波路IG
I)の光軸に対して、照射光LIが発射角θを有するよ
うに、レーザ光Lの入射角θが定められ、上述の照射制
御面GIUに近接(あるいは密着)して配設される。
As described above, the light source LD is a laser light source having a laser diode that emits a laser beam L, and is a virtual irradiation optical waveguide IG included in the above-described irradiation light waveguide GI.
The incident angle θ of the laser light L is determined such that the irradiation light LI has the emission angle θ with respect to the optical axis of I), and is disposed close to (or close to) the above-described irradiation control surface GIU. .

【0379】逆に言えば、発射角θを有することによっ
て、ターゲット面Tfからの反射角θの部分反射光LA
(LAL+LAR)、LB(LBL+LBR)が得ら
れ、それらに対応する部分検出光LSA(LSAL+L
SAR)、LSB(LSBL+LSBR)が得られ(図
33参照)、それらの受光量PA(PAL+PAR)、
PB(PBL+PBR)が測定ギャップyと所定の関係
(図37、利点参照)となる。
Conversely, by having the firing angle θ, the partially reflected light LA at the reflection angle θ from the target surface Tf
(LAL + LAR) and LB (LBL + LBR) are obtained, and the corresponding partial detection light LSA (LSAL + L) is obtained.
SAR) and LSB (LSBL + LSBR) (see FIG. 33), and their received light amounts PA (PAL + PAR),
PB (PBL + PBR) has a predetermined relationship with the measurement gap y (see FIG. 37, advantage).

【0380】すなわち、前述のように、発射角θを有す
ることによって、測定ギャップyと所定の関係を有する
受光量PA(PAL+PAR)、PB(PBL+PB
R)が得られ、レーザ光Lを変位計測に利用できる。
That is, as described above, by having the firing angle θ, the received light amounts PA (PAL + PAR) and PB (PBL + PB) having a predetermined relationship with the measurement gap y.
R) is obtained, and the laser beam L can be used for displacement measurement.

【0381】受光部PDは、前述のように、上記の部分
検出光LSA(LSAL+LSAR)を受光して受光量
PA(PAL+PAR)を得るための部分受光部PDA
と、部分検出光LSB(LSBL+LSBR)を受光し
て受光量PB(PBL+PBR)を得るための部分受光
部PDBとを有している。
As described above, the light receiving portion PD receives the partial detection light LSA (LSAL + LSAR) and obtains the light receiving amount PA (PAL + PAR) as described above.
And a partial light receiving portion PDB for receiving the partial detection light LSB (LSBL + LSBR) to obtain a light receiving amount PB (PBL + PBR).

【0382】部分受光部PDAは、それぞれフォトダイ
オード等あるいはそれと同等の機能を果たすようにフォ
トトランジスタ等を有して部分検出光LSAL、LSA
Rを受光し、それぞれの受光量PAL、PARに対応す
る電圧VAL、VARを出力する図外の2つのフォトセ
ンサと、それらの和、すなわち受光量PA=PAL+P
ARに対応する電圧VA=VAL+VARを求めて出力
する図外の加算回路とを備え、左内側部分反射光導波路
GALおよび右内側部分反射光導波路GARのそれぞれ
の部分反射制御面GAUに近接(あるいは密着)して配
設される。
Each of the partial light receiving sections PDA has a photodiode or the like or a phototransistor or the like so as to perform the same function as the partial detection light LSAL or LSA.
R, and two photosensors (not shown) that output the voltages VAL, VAR corresponding to the respective received light amounts PAL, PAR, and the sum of them, that is, the received light amount PA = PAL + P
An adder circuit (not shown) that calculates and outputs a voltage VA = VAL + VAR corresponding to the AR, and which is close to (or close to) the respective partial reflection control surfaces GAU of the left inner partially reflected light waveguide GAL and the right inner partially reflected light waveguide GAR. ).

【0383】部分受光部PDBも、部分受光部PDAと
同様に構成され、部分検出光LSBL、LSBRを受光
する2つのフォトセンサと、それぞれの受光量PBL、
PBRの和である受光量PB=PBL+PBRに対応す
る電圧VB=VBL+VBRを求めて出力する加算回路
とを備え、左外側部分反射光導波路GBLおよび右外側
部分反射光導波路GBRのそれぞれの部分反射制御面G
BUに、各受光部PDA、PDBと各部分反射制御面G
AU、GBUの距離が同一距離となるように近接(ある
いは密着)して配設される(利点〜参照)。
The partial light receiving portion PDB is also configured in the same manner as the partial light receiving portion PDA, and has two photosensors for receiving the partial detection lights LSBL and LSBR, and the respective light receiving amounts PBL and
An adder circuit for obtaining and outputting a voltage VB = VBL + VBR corresponding to a light receiving amount PB = PBL + PBR which is a sum of PBR, and a partial reflection control surface of each of the left outer partially reflected light waveguide GBL and the right outer partially reflected light waveguide GBR. G
BU, each light receiving section PDA, PDB and each partial reflection control surface G
The AU and the GBU are arranged close to each other (or close to each other) so that the distance between the AUs and the GBUs is the same.

【0384】なお、この場合、部分受光部PDA、PD
Bでは、各部分検出光LSAL、LSAR、LSBL、
LSBRの受光量PAL、PAR、PBL、PBRに対
応する電圧VAL、VAR、VBL、VBRを求めて出
力するようにし、その後の処理は下記の制御部CNで行
うようにしても良い。
In this case, the partial light receiving units PDA, PD
In B, each partial detection light LSAL, LSAR, LSBL,
The voltages VAL, VAR, VBL, VBR corresponding to the received light amounts PAL, PAR, PBL, PBR of the LSBR may be determined and output, and the subsequent processing may be performed by the following control unit CN.

【0385】制御部CNは、前述のように、ディジタル
/アナログ混在セルアレイLSIや、チップサイズのマ
ルチチップモジュールなどにより構成され、測定ギャッ
プyを求める。すなわち、受光部PD(PDA、PD
B)から出力された受光量PA、PB(に対応する電圧
VA、VB)に基づいて、全光量Pa=PA+PBに対
する光量差Ps=PB−PAの比率rs=Ps/Paを
求め、比率rsに基づいて比率rs−測定ギャップyの
関係(図37参照)から測定ギャップyを求める。
As described above, the control unit CN is constituted by a digital / analog mixed cell array LSI, a chip size multi-chip module, or the like, and determines the measurement gap y. That is, the light receiving unit PD (PDA, PD
The ratio rs = Ps / Pa of the light amount difference Ps = PB-PA with respect to the total light amount Pa = PA + PB is obtained based on the light receiving amounts PA and PB (corresponding to the voltages VA and VB) output from B), and the ratio rs Based on the relationship between the ratio rs and the measurement gap y (see FIG. 37), the measurement gap y is obtained.

【0386】なお、この場合、前述のように、例えば制
御部CN内に内蔵ROMを用意して比率−ギャップ変換
テーブルを記憶し、それを参照するようにしても良い
し、固定化された演算であれば、論理演算回路などを内
部に設けることもできる。また、図1の厚み測定装置1
に適用する場合には、制御部CN内の処理の一部を例え
ば厚み測定装置1内のOPC250等によって行っても
良い。
In this case, as described above, for example, a built-in ROM may be prepared in the control unit CN to store the ratio-gap conversion table and refer to it, or a fixed operation may be performed. If so, a logical operation circuit or the like can be provided inside. In addition, the thickness measuring device 1 shown in FIG.
In the case where the present invention is applied, a part of the processing in the control unit CN may be performed by, for example, the OPC 250 or the like in the thickness measuring device 1.

【0387】この位置測定装置2では、光導波路群GG
が完成すると、次に、図42や図44(a)に示すよう
に、光源LDや受光部PDが近接(あるいは密着)して
配置され、また、各受光部PD(PDA、PDB)と各
部分反射制御面GRU(GAUまたはGBU)の距離が
同一距離となるように配置されて、制御部CNととも
に、図44(a)に示すように、樹脂等により一体とし
てモールドされ1つのパッケージ内に納められ、位置測
定装置2が完成する(利点〜参照)。
In this position measuring device 2, the optical waveguide group GG
Then, as shown in FIG. 42 and FIG. 44 (a), the light source LD and the light receiving unit PD are arranged in close proximity (or close contact), and each light receiving unit PD (PDA, PDB) is The partial reflection control surfaces GRU (GAU or GBU) are arranged so as to have the same distance, and together with the control unit CN, are integrally molded with a resin or the like as shown in FIG. Then, the position measuring device 2 is completed (see advantages).

【0388】上述のように作製(構成、製造)されるこ
とにより、位置測定装置2では、前述の利点〜に加
え、レーザ光を照射光として利用できるため、光量を大
きくして高密度の照射ができ、帯域幅を広げることがで
き、照射光(レーザ光)LIやその反射光LRの光路と
それ以外との光量の差が顕著となって、他の光の影響を
受けにくく、結果的な受光量が多いので、より精度の高
い変位測定ができ、これにより、高分解能などの光ファ
イバ変位計と同等の利点をさらに向上させ、かつ、広範
囲のリニアリティをさらに確保し易くなり、また、特に
透過率の高い波長(例えば多成分系ガラスの場合830
nm程度)の単色光を利用することにより、減衰を少な
くすることもできる。
By manufacturing (constructing and manufacturing) as described above, the position measuring device 2 can use laser light as irradiation light in addition to the above advantages (1) to (3), so that the amount of light can be increased to increase the density of irradiation. And the bandwidth can be widened, the difference between the light path of the irradiation light (laser light) LI and the light path of the reflected light LR and the other light amount becomes remarkable, and it is hardly affected by other light, and as a result, Since the amount of received light is large, more accurate displacement measurement can be performed, thereby further improving the same advantages as an optical fiber displacement meter such as high resolution, and further facilitating further securing a wide range of linearity. Particularly, a wavelength having a high transmittance (for example, 830 in the case of a multi-component glass).
By using monochromatic light (about nm), attenuation can be reduced.

【0389】また、光源LDには、レーザダイオードを
用い、受光部PD(PDA、PDB)には、フォトダイ
オード等を用いるので、小型化しやすく、それらを照射
光導波路GI、反射光導波路GR(各部分反射光導波路
GAL、GBL、GAR、GBR)および制御部CNと
ともに一体化して、1つのパッケージ内に納めることに
より、さらに小型化でき、扱い易くなるとともに、大量
生産が可能になるので、材料(資材コスト)や製造(製
造コスト)などに関して、コストダウンが図れる。
Also, since a laser diode is used for the light source LD and a photodiode or the like is used for the light receiving section PD (PDA, PDB), it is easy to reduce the size, and these can be easily illuminated with the irradiation optical waveguide GI and the reflection optical waveguide GR (each By integrating with the partially reflected optical waveguides GAL, GBL, GAR, and GBR) and the control unit CN and putting them in one package, it is possible to further reduce the size, to make it easier to handle, and to make mass production possible. Costs can be reduced for materials costs) and manufacturing (manufacturing costs).

【0390】したがって、この位置測定装置2では、タ
ーゲットTの適用範囲が広く、非接触測定のため汚染や
変形等の心配がなく、高分解能・高安定度などの光ファ
イバ変位計と同等の利点を有しつつ、広範囲のリニアリ
ティを確保でき、かつ、小型化やコストダウンが図れ
る。特に、差動型の原理により、反射率等に依存せず
に、測定ギャップyおよびその変化を求められるので、
さらに分解能を向上できる(図37参照)。
Therefore, in the position measuring device 2, the target T can be applied in a wide range, and there is no risk of contamination or deformation due to non-contact measurement, and the same advantages as an optical fiber displacement meter such as high resolution and high stability can be obtained. , A wide range of linearity can be secured, and downsizing and cost reduction can be achieved. In particular, the measurement gap y and its change can be obtained by the differential principle without depending on the reflectance and the like.
The resolution can be further improved (see FIG. 37).

【0391】また、厚み測定装置1でも後述のように、
ターゲットTを真空チャック等の浮力支持機構により支
持する場合にも、レーザ光を利用した測定であるため、
力学的作用を及ぼすこと無く微妙なバランスを維持で
き、浮力による支持等ができるので、完全に非接触の状
態で変位測定ができる。このため、例えばハードディス
クドライブの磁気ヘッドの浮上量測定等にも適用でき
る。
[0391] In the thickness measuring device 1, as described later,
Even when the target T is supported by a buoyancy support mechanism such as a vacuum chuck, since measurement is performed using laser light,
A delicate balance can be maintained without exerting a mechanical action, and support by buoyancy can be performed, so that displacement measurement can be performed in a completely non-contact state. Therefore, the present invention can be applied to, for example, measurement of the flying height of a magnetic head of a hard disk drive.

【0392】なお、前述のように、コア領域の元になる
平板としては、上述の石英系ガラスばかりでなく、多成
分系ガラスやプラスチックでもよい。また、クラッド領
域も上述の金めっきばかりでなく、光を反射する他の金
属系の物質でも良いし、コア領域より屈折率の低い誘電
体でも良い。
As described above, the flat plate from which the core region is formed may be not only the above-mentioned quartz glass but also a multi-component glass or plastic. Further, the clad region may be made of not only the above-mentioned gold plating but also other metal-based materials that reflect light, or a dielectric material having a lower refractive index than the core region.

【0393】また、上述では金めっきを施したので、電
気めっき法により作製されることになるが、上述の平板
は、厚みgd=0.1mm〜1mm程度であり、いわば
薄膜なので、照射光導波路GIや反射光導波路GR(各
部分反射光導波路GAL、GBL、GAR、GBR)等
を、物理気相合成法や化学気相合成法などにより作製し
ても良い。
Also, since the above-described plate is gold-plated, it is manufactured by an electroplating method. However, the above-mentioned flat plate has a thickness gd = about 0.1 mm to 1 mm and is a thin film, so The GI, the reflected light waveguide GR (each of the partially reflected light waveguides GAL, GBL, GAR, GBR) and the like may be manufactured by a physical vapor synthesis method, a chemical vapor synthesis method, or the like.

【0394】すなわち、これらの作製方法によれば、い
わゆる薄膜化されたコア領域やクラッド領域を作製で
き、小型化に有効であるとともに、各光導波路を薄くで
きることにより、感度を向上させ、さらに高分解能・広
帯域の特性を有する位置測定装置2とすることができ
る。
In other words, according to these manufacturing methods, a so-called thinned core region or clad region can be manufactured, which is effective for miniaturization, and since each optical waveguide can be thinned, the sensitivity can be improved, and The position measuring device 2 having characteristics of resolution and wide band can be obtained.

【0395】また、これらの作製方法は、他の装置や部
品等を作製するためにも一般的に用いられる作製方法で
あるため、他の目的で購入した既存の設備等を使用して
作製し易く、この場合、特別な設備投資等が不要とな
る。また、いずれの方法も光導波路の表面を平面化し易
いので、例えば照射光導波路GIの第2仮想側面G1を
含む照射側面GIMと反射光導波路GRの第3仮想側面
G3を含む反射側面GRMとを接合する場合等にも接合
し易い。
Also, since these manufacturing methods are generally used for manufacturing other devices and parts, they are manufactured using existing facilities and the like purchased for other purposes. In this case, no special capital investment is required. In addition, since both methods make it easy to flatten the surface of the optical waveguide, for example, the irradiation side surface GIM including the second virtual side surface G1 of the irradiation light guide GI and the reflection side surface GRM including the third virtual side surface G3 of the reflection light guide GR are formed. It is easy to join when joining.

【0396】なお、光源LDと光導波路群GG間および
各受光部PD(PDA、PDB)と光導波路群GG間
は、密着させたり、あるいは上述のクラッド領域を形成
する材質のもので、光学的に閉じられるように(すなわ
ち光が漏れないように)、一体としてモールドしてパッ
ケージ化することが好ましい。
The material between the light source LD and the optical waveguide group GG and between the light receiving portions PD (PDA, PDB) and the optical waveguide group GG are made of a material that is closely adhered or that forms the above-mentioned cladding region. It is preferable to mold and package as a single unit so as to be closed (ie, so as not to leak light).

【0397】図44(b)は、樹脂等によりモールドさ
れ1つのパッケージ内に納められた同図(a)の位置測
定装置2をイメージ化した模式図であり、図1および以
下の説明で参照する図では、この模式図により位置測定
装置2を表現する。
FIG. 44 (b) is a schematic diagram of the position measuring device 2 of FIG. 44 (a) molded with resin or the like and housed in one package, and is referred to in FIG. 1 and the following description. In this figure, the position measuring device 2 is represented by this schematic diagram.

【0398】ここで、以下、この位置測定装置2を適用
した図1の厚み測定装置1の説明に戻る。
Here, the description returns to the thickness measuring apparatus 1 of FIG. 1 to which the position measuring apparatus 2 is applied.

【0399】図1で前述のように、測定部50は、第1
変位計30と、第2変位計40と、ターゲットTを搭載
してその位置を3次元の各方向に移動・調整可能なキャ
リア510と、ターゲットTを非接触で挿入可能な測定
面間ギャップDとなるように調整可能なガイド511、
512と、を備えている。
As described above with reference to FIG.
A displacement meter 30, a second displacement meter 40, a carrier 510 on which a target T is mounted and whose position can be moved and adjusted in three-dimensional directions, and a measurement surface gap D into which the target T can be inserted in a non-contact manner. Guide 511 that can be adjusted to be
512.

【0400】第1変位計30は、前述の位置測定装置2
を有して、その照射面GIdがターゲット(測定対象
物)Tの表裏2面のうちの一方のターゲット面Tf1に
対向するように設けられ(図45参照)、自己の照射面
GIdからの第1測定ギャップ(第1距離)y1を求め
る。
[0400] The first displacement meter 30 is provided with the position measuring device 2 described above.
The irradiation surface GId is provided so as to face one of the two front surfaces Tf1 of the front and back surfaces of the target (measurement target) T (see FIG. 45). One measurement gap (first distance) y1 is obtained.

【0401】第2変位計40も同様に、前述の位置測定
装置2を有して、その照射面GIdがターゲットTの表
裏2面のうちの他方のターゲット面Tf2に対向するよ
うに設けられ(図45参照)、自己の照射面GIdから
の第2測定ギャップ(第2距離)y2を求める。
Similarly, the second displacement meter 40 has the above-described position measuring device 2 and is provided so that the irradiation surface GId faces the other target surface Tf2 of the front and back surfaces of the target T ( 45, and a second measurement gap (second distance) y2 from its own irradiation surface GId is obtained.

【0402】キャリア510は、例えば水平面上のX
軸、Y軸およびそれらと垂直なZ軸の3次元の各方向
に、それぞれステッピングモータ等から成る図外のX動
モータ、Y動モータ、Z動モータを駆動源とする各種の
ギア機構やネジ機構を介して、図外のX軸ステージ、Y
軸ステージ、Z軸ステージにより、移動可能に構成され
ている。
The carrier 510 is, for example, an X on a horizontal plane.
In the three-dimensional directions of the axis, the Y axis, and the Z axis perpendicular to them, various gear mechanisms and screws, each of which is driven by an unillustrated X motion motor, a Y motion motor, or a Z motion motor, each of which includes a stepping motor or the like. An X-axis stage (not shown), Y
It is configured to be movable by a shaft stage and a Z-axis stage.

【0403】なお、上記のターゲットTの3次元の座標
や厚み測定の対象となる測定範囲も、キーボード4やマ
ウス5によりディスプレイ3で確認しながら任意に設定
でき、また、任意の座標位置に対するキャリア510の
駆動源の(例えばパルス数などの)制御データは、実測
データ等に基づいて、前述の制御データ領域222内
に、送り位置制御データとして規定されている。
The three-dimensional coordinates of the target T and the measurement range to be measured for the thickness can be arbitrarily set with the keyboard 4 and the mouse 5 on the display 3. Control data (for example, the number of pulses) of the drive source 510 is defined as feed position control data in the above-described control data area 222 based on actual measurement data and the like.

【0404】ガイド511およびガイド512は、前述
のようにパッケージ化され小型化されたことによりプロ
ーブ的に扱うことが可能になった第1変位計30および
第2変位計40を、同様のZ動モータを駆動源とする各
種のギア機構やネジ機構を介して上下動させ、この上下
動により照射測定面GID(照射面GId)等の相互間
の距離となる測定面間ギャップDを調整可能に構成され
ている。
[0404] The guides 511 and 512 are formed by mounting the first displacement meter 30 and the second displacement meter 40, which have been packaged and miniaturized as described above and can be handled as a probe, by the same Z-motion. It is moved up and down through various gear mechanisms and screw mechanisms using a motor as a drive source, and the up and down movement makes it possible to adjust the gap D between the measurement surfaces, which is the distance between the irradiation measurement surfaces GID (irradiation surface GId) and the like. It is configured.

【0405】なお、この測定面間ギャップDも、キーボ
ード4やマウス5によりディスプレイ3で確認しながら
任意に設定でき、また、任意の測定面間ギャップDに対
するファイバガイド511、512の駆動源の(例えば
パルス数などの)制御データは、実測データ等に基づい
て、前述の制御データ領域222内に、測定面間ギャッ
プ制御データとして規定されている。
The gap D between the measurement planes can also be set arbitrarily while confirming it on the display 3 with the keyboard 4 and the mouse 5. Further, the drive source of the fiber guides 511 and 512 for the arbitrary gap D between the measurement planes is determined by ( The control data (for example, the number of pulses) is defined as the inter-measurement-plane gap control data in the above-described control data area 222 based on actual measurement data and the like.

【0406】このため、OPC250は、CPU210
と連動してこの測定面間ギャップ制御データを参照する
ことにより、設定された所定の値に合うように、測定面
間ギャップDを調整できる。
[0406] Therefore, the OPC 250
By referring to the inter-measurement-plane gap control data in conjunction with, the inter-measurement-plane gap D can be adjusted to match the set predetermined value.

【0407】また、CPU210は、単独でまたはOP
C250と連動して、調整された上記の測定面間ギャッ
プDから前述の測定ギャップy1および測定ギャップy
2を引く(減算する)ことにより、ターゲットTの厚み
dを求める。
[0407] The CPU 210 can operate alone or in the OP.
In conjunction with C250, the above-described measurement gap y1 and measurement gap y are adjusted based on the adjusted measurement surface gap D.
By subtracting (subtracting) 2, the thickness d of the target T is obtained.

【0408】この場合、測定面間ギャップDは、ターゲ
ット(測定対象物)Tを非接触で挿入可能に調整できる
ので、非接触の状態でターゲット(測定対象物)Tの厚
みdを測定できる。
[0408] In this case, the gap D between the measurement surfaces can be adjusted so that the target (measurement target) T can be inserted in a non-contact manner, so that the thickness d of the target (measurement target) T can be measured in a non-contact state.

【0409】なお、上記の構成では、水平面上(X軸、
Y軸方向)の座標(偏位)は、キャリア510のX、Y
方向の移動に依存したので、例えばターゲットTの(設
定された)所定の測定範囲の厚み分布等を得たい場合、
キャリア510(およびターゲットT)を水平面上で移
動させることになるが、これを避けたい場合やその他の
事情に合わせて、ガイド511、512側を水平面上で
移動できる構成とすることもできるし、双方ともに移動
可能にしてそれらを併用できるようにしても良い。
[0409] In the above configuration, on the horizontal plane (X axis,
The coordinates (deflection) in the Y-axis direction are X and Y of the carrier 510.
For example, when it is desired to obtain a thickness distribution or the like of a predetermined (set) measurement range of the target T,
The carrier 510 (and the target T) is moved on the horizontal plane. However, if it is desired to avoid this and other circumstances, the guides 511 and 512 may be configured to be movable on the horizontal plane. Both may be movable so that they can be used together.

【0410】また、キャリア510は、ターゲットTを
空気(ガス)等の圧力などの浮力により支える真空チャ
ック、エアーベアリング(エアーテーブル)等(以下
「真空チャック等」)と呼ばれる浮力支持機構を有して
いることが好ましい。この場合、浮力による支持や移動
ができるので、完全に非接触の状態で測定できる。
The carrier 510 has a buoyancy support mechanism called a vacuum chuck, an air bearing (air table) or the like (hereinafter, “vacuum chuck”) that supports the target T by buoyancy such as pressure of air (gas). Is preferred. In this case, since measurement can be performed by supporting or moving by buoyancy, measurement can be performed in a completely non-contact state.

【0411】上述のように、厚み測定装置1では、非接
触の状態でターゲット(測定対象物)Tの厚みdを測定
できる。また、この場合、照射光(特にここではレーザ
光)を利用した光による測定を行うので、ターゲットT
の導電率に拘らず、すなわちターゲットTが導電体か絶
縁体かなどの属性に拘らずに、測定できる。また、これ
により、静電容量センサのような測定面間ギャップの制
限がないので、厚さの大小による制限も生じない。
[0411] As described above, the thickness measuring device 1 can measure the thickness d of the target (measurement target) T in a non-contact state. Further, in this case, since measurement is performed using light using irradiation light (particularly, laser light in this case), the target T
Can be measured irrespective of the conductivity of the target T, that is, regardless of whether the target T is a conductor or an insulator. In addition, since there is no limitation on the gap between the measurement surfaces unlike the capacitance sensor, there is no limitation due to the thickness.

【0412】なお、仮に空気マイクロメータのノズル
を、静電容量センサの測定電極のように、測定対象物の
両面のそれぞれに各ノズル先端が対向するように一対で
配設し、一対の各ノズル先端と測定対象物との間の距離
(測定ギャップ)と、ノズル先端相互間の所定距離(測
定面間ギャップ)に基づいて、測定対象物の厚みを求め
ようとしても、例えば薄い測定対象物では、対向するノ
ズル先端からの空気(ガス)圧等により振動してしまう
など、測定対象物に力学的な作用を及ぼすので、正確な
測定ができない。
[0412] It is assumed that a pair of nozzles of the air micrometer is provided such that the tip ends of the nozzles face each other on both sides of the object to be measured, like the measurement electrodes of the capacitance sensor. Based on the distance between the tip and the measurement target (measurement gap) and the predetermined distance between the nozzle tips (measurement surface gap), for example, in the case of a thin measurement target, Since a mechanical action is exerted on the object to be measured, such as vibration due to air (gas) pressure from the tip of the opposing nozzle, accurate measurement cannot be performed.

【0413】また、例えば前述のように、キャリア51
0に真空チャック等の浮力支持機構を採用した場合、空
気(ガス)等の圧力と流量および重力を微妙に(程良
く)バランスさせることになるが、従来の空気マイクロ
メータ等では、ノズル先端からの空気(ガス)圧等によ
り、このバランスを崩してしまうので、採用できない。
Further, for example, as described above, the carrier 51
When a buoyancy support mechanism such as a vacuum chuck is adopted for the zero, the pressure, flow rate and gravity of air (gas) and the like are delicately (moderately) balanced. This balance is destroyed by the air (gas) pressure and the like, and cannot be adopted.

【0414】これに対し、厚み測定装置1では、レーザ
光を利用した測定を行うため、空気マイクロメータのよ
うな力学的作用を及ぼすことも無く測定でき、これによ
り、圧力、流量、重力等の微妙なバランスを維持するこ
とができるので、真空チャック等の浮力支持機構をも、
問題なく採用することができる。そして、この場合、浮
力による支持や移動ができるので、完全に非接触の状態
で測定できる。
On the other hand, the thickness measuring device 1 performs measurement using a laser beam, so that the thickness can be measured without exerting a mechanical action such as an air micrometer. Because a delicate balance can be maintained, buoyancy support mechanisms such as vacuum chucks
Can be adopted without any problems. Then, in this case, the measurement can be performed in a completely non-contact state because the buoyancy can support and move.

【0415】したがって、この厚み測定装置1では、位
置測定装置2を有する2つの変位計30、40を利用す
ることにより、ターゲット(測定対象物)Tの導電率や
厚みの大小などの属性に拘らず、また、力学的作用を及
ぼすこと無く、非接触の状態でターゲットTの厚みdを
測定できる。
[0415] Therefore, in the thickness measuring device 1, by using the two displacement gauges 30 and 40 having the position measuring device 2, the target (measurement target) T is affected by attributes such as conductivity and thickness. In addition, the thickness d of the target T can be measured in a non-contact state without exerting a mechanical action.

【0416】なお、前述のように、位置測定装置2とし
て、前述した位置測定装置2a〜2nのいずれをも適用
できるので、第1変位計30が有する位置測定装置2と
第2変位計40が有する位置測定装置2とは同タイプで
ある必要はないが、同タイプであれば、装置としての特
性等が同等になるので、制御部(制御手段)20内の処
理が簡易になるなど、より好ましい。
[0416] As described above, any of the above-described position measuring devices 2a to 2n can be applied as the position measuring device 2, so that the position measuring device 2 and the second displacement meter 40 of the first displacement meter 30 can be used. It is not necessary that the position measuring device 2 has the same type as the position measuring device 2. However, if the position measuring device 2 has the same type, the characteristics and the like of the device become equal, so that the processing in the control unit (control means) 20 is simplified. preferable.

【0417】また、ターゲット(測定対象物)Tが例え
ば液晶パネル等のガラスなどのように透過性を有する場
合、すなわち透明物体から成るターゲットTを測定対象
とする場合、第1変位計30および第2変位計40のそ
れぞれの位置測定装置2の各照射光LIの発射角θは、
ターゲットTを透過する各透過光が、対向する他方の位
置測定装置2の受光面GRd内に入らない所定の発射角
θに定められていることが好ましい。
When the target (measurement target) T has transparency, for example, glass such as a liquid crystal panel, that is, when the target T made of a transparent object is the measurement target, the first displacement meter 30 and the second The emission angle θ of each irradiation light LI of each position measuring device 2 of the two displacement meters 40 is
It is preferable that each transmission light transmitted through the target T is set to a predetermined emission angle θ that does not enter the light receiving surface GRd of the other opposing position measuring device 2.

【0418】例えば、第1変位計30の各構成要素と第
2変位計40の各構成要素を区別するため、第1変位計
30側を〜1、第2変位計40側を〜2(図46参照)
とし、第1変位計30の(位置測定装置2の)光導波路
群GG1の照射光導波路GI1の照射面GId1から発
射角θ1で照射光LI1を照射すると、その照射光LI
1に対応する反射光LR1(LA1、LB1等)が反射
光導波路GR1(部分反射光導波路GAL1、GAR
1、GBL1、GBR1)の受光面GRd(部分受光面
GAd、GBd等)に入射される。
For example, to distinguish each component of the first displacement meter 30 from each component of the second displacement meter 40, the first displacement meter 30 side is 〜1 and the second displacement meter 40 side is 22 (see FIG. (See 46)
When the irradiation light LI1 is emitted from the irradiation surface GId1 of the irradiation optical waveguide GI1 of the optical waveguide group GG1 (of the position measuring device 2) of the first displacement meter 30 at an emission angle θ1, the irradiation light LI
The reflected light LR1 (LA1, LB1, etc.) corresponding to No. 1 is reflected by the reflected light waveguide GR1 (partially reflected light waveguide GAL1, GAR).
1, GBL1, GBR1) on the light receiving surface GRd (partial light receiving surface GAd, GBd, etc.).

【0419】ここで、ターゲットTが透過性を有する場
合、照射光LI1に対する透過光LT1がいわゆるスネ
ルの法則による屈折角Θ1でターゲットTを透過して
(図46参照)、対向する第2変位計40の(位置測定
装置2の)光導波路群GG2の反射光導波路GR2(部
分反射光導波路GAL2、GAR2、GBL2、GBR
2)の受光面GRd(部分受光面GAd、GBd等)に
入射され、第2変位計40の受光量PA2、PB2等が
誤検出となる可能性がある。そして、このことは、対向
する第2変位計40側の照射光LI2に対しても同じで
あり、第1変位計30の受光量PA1、PB1等が誤検
出となる可能性がある。
Here, when the target T has transparency, the transmitted light LT1 with respect to the irradiation light LI1 is transmitted through the target T at a refraction angle Θ1 according to the so-called Snell's law (see FIG. 46), and the opposed second displacement meter 40 (of the position measurement device 2) reflected optical waveguides GR2 (partially reflected optical waveguides GAL2, GAR2, GBL2, GBR) of the optical waveguide group GG2
The light is incident on the light receiving surface GRd (partial light receiving surface GAd, GBd, etc.) of 2), and the light receiving amounts PA2, PB2, etc. of the second displacement meter 40 may be erroneously detected. This is the same for the irradiation light LI2 on the side of the opposing second displacement meter 40, and the received light amounts PA1, PB1, etc. of the first displacement meter 30 may be erroneously detected.

【0420】このため、図46に示すように、第1変位
計30および第2変位計40のそれぞれの位置測定装置
2の各照射光LI1、LI2の発射角θ1、θ2を、測
定対象となるターゲットTを透過する各透過光LT1、
LT2が、対向する他方の位置測定装置2の受光面GR
d内に入らない所定の発射角θに定めることにより、対
向する他方の変位計からの透過光を反射光として受光す
るなどの誤検出を防止でき、これにより、問題なく厚み
測定ができる。
For this reason, as shown in FIG. 46, the emission angles θ1 and θ2 of the irradiation lights LI1 and LI2 of the respective position measuring devices 2 of the first displacement meter 30 and the second displacement meter 40 are measured. Each transmitted light LT1 transmitting through the target T,
LT2 is a light receiving surface GR of the other position measurement device 2 facing the LT2.
By setting the predetermined firing angle θ so as not to be within d, it is possible to prevent erroneous detection such as receiving the transmitted light from the other opposing displacement meter as reflected light, thereby enabling the thickness measurement without any problem.

【0421】また、特にレーザ光Lを照射光LIとして
利用した(例えば前述の位置測定装置2を有する第1変
位計30や第2変位計40のような)変位計を用いれ
ば、その集束性や指向性により光路以外への影響を最小
限にできる。なお、各測定ギャップy1、y2よりター
ゲット(測定対象物)Tの厚さdが十分に大きければ、
発射角θが小さくても透過光LT1、LT2等の誤検出
を防止できる。
In particular, if a displacement meter using the laser beam L as the irradiation light LI (such as the first displacement meter 30 or the second displacement meter 40 having the above-described position measuring device 2) is used, the convergence of the beam can be improved. And the directivity can minimize the influence on other than the optical path. If the thickness d of the target (measurement target) T is sufficiently larger than the measurement gaps y1 and y2,
Even if the firing angle θ is small, erroneous detection of the transmitted light LT1, LT2, etc. can be prevented.

【0422】なお、図1で前述の厚み測定装置1では、
測定部50において、測定面間ギャップDを調整可能と
したが、測定面間ギャップDを固定値として、より簡易
な構成にすることもできる。また、厚み測定装置1で利
用する位置測定装置2としても、前述のように、反射光
導波路GRの分割数を3以上としても良いし(図39参
照)、入射角θを調整して発射角θを制御することも考
えられる(図40参照)。
[0422] In the thickness measuring device 1 described above with reference to FIG.
In the measuring section 50, the gap D between the measurement planes is adjustable, but the gap D between the measurement planes can be set as a fixed value, and a simpler configuration can be adopted. Also, as described above, the position measuring device 2 used in the thickness measuring device 1 may be such that the number of divisions of the reflected light guide GR is three or more (see FIG. 39), and the incidence angle θ is adjusted to adjust the emission angle. It is also conceivable to control θ (see FIG. 40).

【0423】すなわち、各構成要件を可変とするか否か
だけでも、種々の構成のバリエーションが考えられる。
もちろん、その他、本発明の要旨を逸脱しない範囲で、
適宜変更が可能である。
That is, various types of configuration variations are conceivable only by making each component requirement variable.
Of course, otherwise, without departing from the gist of the present invention,
It can be changed as appropriate.

【0424】[0424]

【発明の効果】上述のように、本発明の位置測定装置に
よれば、測定対象物の適用範囲が広く、非接触測定のた
め汚染や変形等の心配がなく、高分解能・高安定度など
の光ファイバ変位計と同等の利点を有しつつ、広範囲の
リニアリティを確保でき、かつ、小型化やコストダウン
が図れる。特に、差動型では、入射光量や反射率等に依
存せずに、測定ギャップおよびその変化(変位)を求め
られるので、さらに分解能を向上できる。また、光を利
用した測定であるため、力学的作用を及ぼすこと無く微
妙なバランスを維持でき、浮力による支持等ができるの
で、例えばハードディスクドライブの磁気ヘッドの浮上
量測定等にも適用できる、などの効果がある。
As described above, according to the position measuring apparatus of the present invention, the applicable range of the object to be measured is wide, and there is no fear of contamination or deformation due to non-contact measurement, and high resolution and high stability can be obtained. While having the same advantages as the optical fiber displacement meter, a wide range of linearity can be ensured, and downsizing and cost reduction can be achieved. In particular, in the case of the differential type, the measurement gap and its change (displacement) can be obtained without depending on the incident light amount, the reflectance, and the like, so that the resolution can be further improved. In addition, since the measurement uses light, it is possible to maintain a delicate balance without exerting a mechanical effect and to support by buoyancy, so that it can be applied to, for example, measurement of the flying height of a magnetic head of a hard disk drive, etc. Has the effect.

【0425】また、本発明の厚み測定装置によれば、測
定対象物の導電率や厚みの大小などの属性に拘らず、ま
た、力学的作用を及ぼすこと無く、非接触の状態で測定
対象物の厚みを測定できる。また、これにより、特に従
来の非接触式の代表である静電容量センサでは困難であ
った絶縁体の厚みの測定や、光による厚み測定が採用さ
れなかった主な要因とも言えるガラス等の透明体の厚み
の測定など、従来困難とされた測定対象物の厚みが、非
接触の状態で問題なく測定できる、などの効果がある。
Further, according to the thickness measuring apparatus of the present invention, regardless of the attributes such as the conductivity and the thickness of the object to be measured, and without exerting a mechanical action, the object to be measured can be in a non-contact state. Can be measured. In addition, this makes it difficult to measure the thickness of an insulator, which is difficult with a conventional capacitance sensor, which is a typical non-contact type sensor. There is an effect that the thickness of an object to be measured, which has been conventionally difficult, such as measurement of body thickness, can be measured without any problem in a non-contact state.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係る厚み測定装置の全体
構成を示す概略ブロック図である。
FIG. 1 is a schematic block diagram illustrating an overall configuration of a thickness measuring device according to an embodiment of the present invention.

【図2】図1の厚み測定装置に適用する位置測定装置の
原理説明のための仮想的な光導波路である仮想照射光導
波路および仮想反射光導波路の一例を示す斜視説明図で
ある。
FIG. 2 is a perspective explanatory view showing an example of a virtual irradiation optical waveguide and a virtual reflection optical waveguide which are virtual optical waveguides for explaining the principle of a position measuring device applied to the thickness measuring device of FIG.

【図3】図2と対応して、照射光として発散光線束を利
用した位置(または変位)測定の原理説明のための、図
2と同様の斜視説明図である。
FIG. 3 is a perspective view similar to FIG. 2 for explaining the principle of position (or displacement) measurement using a divergent light beam as irradiation light, corresponding to FIG. 2;

【図4】図3に対応する断面説明図である。FIG. 4 is an explanatory sectional view corresponding to FIG. 3;

【図5】図2の仮想照射光導波路および仮想反射光導波
路を内部に含む照射光導波路および反射光導波路を備
え、図3に対応して、照射光として発散光線束を利用し
た位置測定装置の一例を示す斜視説明図である。
FIG. 5 is a diagram illustrating a position measuring apparatus including an irradiation light guide and a reflection light guide including the virtual irradiation light guide and the virtual reflection light guide shown in FIG. 2 therein, and corresponding to FIG. It is a perspective explanatory view showing an example.

【図6】図2と対応して、照射光として平行光線束を利
用した位置(または変位)測定の原理説明のための断面
説明図である。
6 is a cross-sectional explanatory view corresponding to FIG. 2 for explaining the principle of position (or displacement) measurement using a parallel light beam as irradiation light.

【図7】照射光として平行光線束を利用した一例を示
す、図3と同様の断面説明図である。
FIG. 7 is an explanatory sectional view similar to FIG. 3, showing an example in which a parallel light beam is used as irradiation light.

【図8】図7に対応して別の例を示す、図5と同様の斜
視説明図である。
FIG. 8 is a perspective explanatory view similar to FIG. 5, showing another example corresponding to FIG. 7;

【図9】仮想照射光導波路の照射面および仮想反射光導
波路の受光面、並びに、それらを含む照射光導波路の照
射測定面および反射光導波路の反射測定面を面一にした
さらに別の位置測定装置の例を示す、図8と同様の斜視
説明図である。
FIG. 9 shows still another position measurement in which the irradiation surface of the virtual irradiation light waveguide and the light receiving surface of the virtual reflection light waveguide, and the irradiation measurement surface of the irradiation light waveguide including them and the reflection measurement surface of the reflection light waveguide are flush with each other. FIG. 9 is a perspective explanatory view similar to FIG. 8, showing an example of the device.

【図10】図7と対応して、照射光として平行光線束を
利用した位置(または変位)測定の原理説明のための、
図4と同様の断面説明図である。
FIG. 10 corresponds to FIG. 7 for explaining the principle of position (or displacement) measurement using a parallel light beam as irradiation light;
FIG. 5 is an explanatory sectional view similar to FIG. 4.

【図11】図4および図10に対応して、第2仮想側面
と第3仮想側面を接合したときの様子を示す断面説明図
である。
FIG. 11 is an explanatory sectional view showing a state where the second virtual side surface and the third virtual side surface are joined, corresponding to FIGS. 4 and 10;

【図12】仮想照射光導波路を含む照射光導波路の部位
および仮想反射光導波路を含む反射光導波路の部位が四
角柱形状の光導波路群を備えた、四角柱形状を基本とす
る位置測定装置のクラッド領域を明示した断面説明図で
ある。
FIG. 12 shows a quadrangular prism-based position measuring device in which a portion of an irradiation optical waveguide including a virtual irradiation optical waveguide and a portion of a reflection optical waveguide including a virtual reflection optical waveguide include a group of optical waveguides having a quadrangular prism shape. FIG. 3 is an explanatory cross-sectional view clearly showing a cladding region.

【図13】図12に対応する光導波路群の例を、さらに
別の位置測定装置の例として示す、図9と同様の斜視説
明図である。
FIG. 13 is a perspective explanatory view similar to FIG. 9, showing an example of an optical waveguide group corresponding to FIG. 12 as yet another example of a position measuring device.

【図14】クラッド領域を明示して4面図で示した光導
波路群のさらに別の例を、さらに別の位置測定装置の例
として示す4面説明図である
FIG. 14 is a four-side explanatory view showing still another example of the optical waveguide group shown in the four-sided view with the clad region explicitly shown, as still another example of the position measuring device.

【図15】図14に対応する、図13と同様の斜視説明
図である。
FIG. 15 is a perspective explanatory view corresponding to FIG. 14 and similar to FIG. 13;

【図16】光導波路群のさらに別の例を、さらに別の位
置測定装置の例として示す4面説明図である。
FIG. 16 is an explanatory view of four surfaces showing still another example of the optical waveguide group as still another example of the position measuring device.

【図17】図16に対応する、図13と同様の斜視説明
図である。
17 is an explanatory perspective view corresponding to FIG. 16 and similar to FIG. 13;

【図18】さらに別の例を示す、図16と同様の4面説
明図である。
FIG. 18 is a four-sided explanatory view similar to FIG. 16, showing still another example.

【図19】図18に対応する、図13と同様の斜視説明
図である。
FIG. 19 is a perspective explanatory view similar to FIG. 13 and corresponding to FIG. 18;

【図20】図16の反射光導波路を照射光導波路の左右
に面対称または回転対称となるように配設した、さらに
別の位置測定装置の例を示す、図16と同様の4面説明
図である。
FIG. 20 is an explanatory view similar to FIG. 16, showing another example of a position measuring device in which the reflected light waveguide of FIG. 16 is disposed so as to be plane-symmetric or rotationally symmetric on the left and right of the irradiation light waveguide. It is.

【図21】図20に対応する、図13と同様の斜視説明
図である。
21 is an explanatory perspective view similar to FIG. 13 and corresponding to FIG. 20;

【図22】図18の反射光導波路を照射光導波路の左右
に面対称となるように配設した、さらに別の例を示す、
図16と同様の4面説明図である。
FIG. 22 shows still another example in which the reflected light waveguide of FIG. 18 is disposed so as to be plane-symmetrical on the left and right of the irradiation light waveguide.
FIG. 17 is an explanatory view similar to FIG. 16 illustrating four surfaces.

【図23】図22に対応する、図13と同様の斜視説明
図である。
FIG. 23 is an explanatory perspective view corresponding to FIG. 22 and similar to FIG. 13;

【図24】差動型の原理を適用可能な仮想照射光導波路
および仮想反射光導波路の一例を示す、図7と同様の斜
視説明図である。
FIG. 24 is a perspective explanatory view similar to FIG. 7, showing an example of a virtual irradiation optical waveguide and a virtual reflection optical waveguide to which the differential principle can be applied.

【図25】図9との比較において、図7に対応した光導
波路群の例を、さらに別の位置測定装置の例として示す
斜視説明図である。、
FIG. 25 is a perspective explanatory view showing an example of an optical waveguide group corresponding to FIG. 7 as another example of a position measuring device in comparison with FIG. 9; ,

【図26】図12および図13との比較において、図7
に対応した光導波路群の別の例を、さらに別の位置測定
装置の例として示す、図16と同様の4面説明図であ
る。
FIG. 26 shows a comparison with FIG. 12 and FIG.
FIG. 17 is an explanatory view similar to FIG. 16, showing another example of the optical waveguide group corresponding to FIG. 16 as yet another example of the position measuring device.

【図27】さらに別の例を示す、図26と同様の4面説
明図である。
FIG. 27 is an explanatory view similar to FIG. 26, but showing still another example.

【図28】図27に対応する、図13と同様の斜視説明
図である。
FIG. 28 is an explanatory perspective view similar to FIG. 13 and corresponding to FIG. 27;

【図29】図27の反射光導波路を照射光導波路の左右
に面対称または回転対称となるように配設した、さらに
別の位置測定装置の例を示す、図27と同様の4面説明
図である。
FIG. 29 is an explanatory view similar to FIG. 27, showing another example of a position measuring device in which the reflected light waveguide of FIG. 27 is disposed on the left and right sides of the irradiation light waveguide so as to be plane-symmetric or rotationally symmetric. It is.

【図30】図29に対応する、図28と同様の斜視説明
図である。
30 is a perspective explanatory view similar to FIG. 28, corresponding to FIG. 29;

【図31】図14および図15との比較において、図7
に対応した光導波路群のさらに別の例を、さらに別の位
置測定装置の例として示す、図27と同様の4面説明図
である。
FIG. 31 shows a comparison with FIG. 14 and FIG.
FIG. 28 is a four-surface explanatory diagram similar to FIG. 27, showing still another example of the optical waveguide group corresponding to FIG.

【図32】図31に対応する、図28と同様の斜視説明
図である。
32 is an explanatory perspective view similar to FIG. 28, corresponding to FIG. 31.

【図33】図31の反射光導波路を照射光導波路の左右
に面対称となるように配設した、さらに別の位置測定装
置の例を示す、図27と同様の4面説明図である。
FIG. 33 is a view similar to FIG. 27 but showing another example of a position measuring device in which the reflected light waveguide of FIG. 31 is disposed so as to be plane-symmetric to the left and right of the irradiation light waveguide.

【図34】図33に対応する、図28と同様の斜視説明
図である。
34 is an explanatory perspective view corresponding to FIG. 33 and similar to FIG. 28;

【図35】(仮想)反射光導波路の幅を(仮想)照射光
導波路の幅の3倍としたときの、位置(または変位)計
測に利用する反射光の受光量と測定ギャップyとの関係
を示す説明図である。
FIG. 35 shows the relationship between the received light amount of reflected light used for position (or displacement) measurement and the measurement gap y when the width of the (virtual) reflected light waveguide is set to three times the width of the (virtual) irradiated light waveguide. FIG.

【図36】(仮想)反射光導波路の幅を(仮想)照射光
導波路の幅の2倍および1倍としたときの、図35と同
様の説明図である。
FIG. 36 is an explanatory view similar to FIG. 35, wherein the width of the (virtual) reflected light waveguide is twice and one times the width of the (virtual) irradiated light waveguide.

【図37】差動型の原理を適用できる場合の測定ギャッ
プに対する各受光量、全光量、光量差、比率の関係を示
す説明図である。
FIG. 37 is an explanatory diagram showing the relationship between each light receiving amount, the total light amount, the light amount difference, and the ratio with respect to the measurement gap when the differential principle can be applied.

【図38】差動型光ファイバ変位計の場合の図37相当
の関係を示す説明図である。
FIG. 38 is an explanatory diagram showing a relationship corresponding to FIG. 37 in the case of a differential optical fiber displacement meter.

【図39】受光量をさらに細分化して扱う場合の、図3
7と同様の説明図である。
FIG. 39 shows a case where the received light amount is further subdivided and handled.
It is explanatory drawing similar to 7.

【図40】発射角を変化させた場合の、図38(b)相
当の図である。
FIG. 40 is a diagram corresponding to FIG. 38 (b) when the firing angle is changed.

【図41】図1の厚み測定装置に適用する位置測定装置
の主要部を誇張して示した斜視模式図である。
41 is an exaggerated perspective view schematically showing a main part of a position measuring device applied to the thickness measuring device of FIG. 1;

【図42】図41の位置測定装置の光導波路群の4面説
明図である。
FIG. 42 is an explanatory diagram of four surfaces of an optical waveguide group of the position measuring device of FIG. 41.

【図43】図42に対応する斜視説明図である。FIG. 43 is an explanatory perspective view corresponding to FIG. 42;

【図44】図41の位置測定装置をモールドして1つの
パッケージ内に納めるイメージおよびイメージ化した模
式図を示す説明図である。
FIG. 44 is an explanatory diagram showing an image in which the position measuring device of FIG. 41 is molded and housed in one package, and an imaged schematic diagram.

【図45】図44(b)の模式図で表現した位置測定装
置を備えた、図1の厚み測定装置の測定部の説明図であ
る。
FIG. 45 is an explanatory diagram of a measuring unit of the thickness measuring device of FIG. 1 including the position measuring device represented by the schematic diagram of FIG. 44 (b).

【図46】ターゲットが透過性を有する場合の測定部の
各種作用の説明図である。
FIG. 46 is an explanatory diagram of various operations of the measurement unit when the target has transparency.

【符号の説明】[Explanation of symbols]

1 厚み測定装置 2 位置測定装置 10 操作部 20 制御部(制御手段) 30 第1変位計 40 第2変位計 50 測定部 311 光源 320 受光部 CN 制御部 d 厚み D 測定面間ギャップ(所定距離) G1 第1仮想側面 G2 第2仮想側面 G3 第3仮想側面 G4 第4仮想側面 G5 第5仮想側面(仮想部分接合側面) G6 第6仮想側面(仮想部分接合側面) GI 照射光導波路 GId 照射面 GID 照射測定面 GIM 照射側面 GIu 入射面 GIU 照射制御面 GA、GB …… 部分反射光導波路 GAd、GBd …… 部分受光面 GAD、GBD …… 部分反射測定面 GAM、GBM …… 部分反射側面 GAu、GBu …… 部分検出面 GAU、GBU …… 部分反射制御面 GR 反射光導波路 GRd 受光面 GRD 反射測定面 GRM 反射側面 GRu 検出面 GRU 反射制御面 IGI 仮想照射光導波路 IGA、IGB …… 仮想部分反射光導波路 IGR 仮想反射光導波路 L 入射光 LD 光源 PD 受光部 LI 照射光 LA、LB …… 部分反射光 LR 反射光 LS 検出光 LSA、LSB …… 部分検出光 LI1、LI2 …… 照射光 LA1、LA2 …… 反射光 LB1、LB2 …… 反射光 LT1、LT2 …… 透過光 PA 受光量 PB 受光量 PC 受光量 rs、rt …… 比率 T ターゲット(測定対象物) y、y1、y2 …… 測定ギャップ θ 入射角、発射角 θ1、θ2 …… 発射角 Reference Signs List 1 thickness measuring device 2 position measuring device 10 operation unit 20 control unit (control means) 30 first displacement meter 40 second displacement meter 50 measuring unit 311 light source 320 light receiving unit CN control unit d thickness D gap between measurement surfaces (predetermined distance) G1 First virtual side surface G2 Second virtual side surface G3 Third virtual side surface G4 Fourth virtual side surface G5 Fifth virtual side surface (virtual partially bonded side surface) G6 Sixth virtual side surface (virtual partially bonded side surface) GI Irradiation optical waveguide GId Irradiation surface GID Irradiation measurement surface GIM Irradiation side surface GIu Incident surface GIU Irradiation control surface GA, GB ... Partially reflected optical waveguide GAd, GBd ... Partial light receiving surface GAD, GBD ... Partial reflection measurement surface GAM, GBM ... Partial reflection side surface GAu, GBu ... Partial detection surface GAU, GBU ... Partial reflection control surface GR Reflected light waveguide GRd Light receiving surface GRD Reflection measurement surface GRM Reflection side surface GRu Detection surface GRU Reflection control surface IGI Virtual irradiation optical waveguide IGA, IGB ... Virtual partial reflection optical waveguide IGR Virtual reflection optical waveguide L Incident light LD Light source PD Receiver LI Irradiation light LA, LB ... Partial reflected light LR Reflection Light LS Detection light LSA, LSB ... Partial detection light LI1, LI2 ... Irradiation light LA1, LA2 ... Reflection light LB1, LB2 ... Reflection light LT1, LT2 ... Transmission light PA Light reception amount PB Light reception amount PC Light reception amount rs , Rt ... Ratio T Target (measurement object) y, y1, y2 ... Measurement gap θ Incident angle, launch angle θ1, θ2 ... launch angle

Claims (33)

【特許請求の範囲】[Claims] 【請求項1】 各6面の全てが長方形の2つの仮想の四
角柱の各4つの側面のうち、互いに同一サイズの各1つ
の側面同士を4辺が合うように平行に対向させて、前記
2つの仮想の四角柱を隣接または接合し、対向する前記
各1つの側面を含む平行な4つの側面を一方の端からそ
れぞれ第1仮想側面、第2仮想側面、第3仮想側面およ
び第4仮想側面とし、前記2つの仮想の四角柱のうち、
前記第1仮想側面および前記第2仮想側面を側面として
有する一方を仮想照射光導波路として他方を仮想反射光
導波路とし、前記仮想照射光導波路の上底面および下底
面のうちの一方を測定対象物に平行に対向させて照射面
として他方を入射面とし、前記仮想反射光導波路の上底
面および下底面のうちの前記照射面と同一側の一方を受
光面として他方を検出面としたとき、 内部に前記仮想照射光導波路を含み、入射光を前記入射
面に入射して前記仮想照射光導波路内を伝搬させ、前記
照射面から照射光として前記測定対象物に対して発射さ
せる照射光導波路と、 内部に前記仮想反射光導波路を含み、前記測定対象物か
らの前記照射光に対応する反射光を前記受光面に入射し
て前記仮想反射光導波路内を伝搬させ、前記検出面から
検出光として発射させる反射光導波路と、 前記入射光を発する光源と、 前記検出光を受光する受光部と、 前記光源を制御するとともに、前記受光部の受光結果に
基づいて前記測定対象物と前記照射面との距離を求める
制御部と、を備え、 前記照射光導波路は、 前記光源からの前記入射光を前記入射面に入射する照射
制御面と、 前記照射面からの前記照射光を前記測定対象物に発射す
る照射測定面と、 前記第1仮想側面および前記第2仮想側面を含み、前記
照射制御面が含む外周が閉じた面のその外周の全ておよ
び前記照射測定面が含む外周が閉じた面のその外周の全
てを連結して、伝搬する光を内部に閉じこめる照射側面
と、を有し、 前記反射光導波路は、 前記測定対象物からの前記反射光を前記受光面に入射す
る反射測定面と、 前記検出面からの前記検出光を前記受光部に発射する反
射制御面と、 前記第3仮想側面および前記第4仮想側面を含み、前記
反射測定面が含む外周が閉じた面のその外周の全ておよ
び前記反射制御面が含む外周が閉じた面のそのの外周の
全てを連結して、伝搬する光を内部に閉じこめる反射側
面と、を有することを特徴とする位置測定装置。
1. A method according to claim 1, wherein, out of the four side surfaces of each of the two imaginary rectangular prisms, all six surfaces of which are rectangular, each one side surface of the same size is opposed to each other in parallel so that the four sides match each other. Two virtual quadrangular prisms are adjacent or joined to each other, and four parallel side surfaces including the opposing one side surface are respectively separated from one end by a first virtual side surface, a second virtual side surface, a third virtual side surface, and a fourth virtual side surface. As a side surface, of the two virtual square pillars,
One having the first virtual side surface and the second virtual side surface as a side surface is a virtual irradiation optical waveguide, the other is a virtual reflection light waveguide, and one of the upper bottom surface and the lower bottom surface of the virtual irradiation light waveguide is a measurement target. When the other is an incident surface as an irradiation surface facing in parallel, when one of the upper and lower bottom surfaces of the virtual reflected light waveguide is on the same side as the light receiving surface and the other is a detection surface, An irradiation light waveguide including the virtual irradiation light waveguide, making incident light incident on the incident surface, propagating through the virtual irradiation light waveguide, and emitting the irradiation light from the irradiation surface to the measurement object as irradiation light; Including the virtual reflected light waveguide, reflected light corresponding to the irradiation light from the object to be measured is incident on the light receiving surface and propagates through the virtual reflected light waveguide, as detection light from the detection surface A reflected light waveguide to be emitted, a light source that emits the incident light, a light receiving unit that receives the detection light, and a light source that controls the light source, and based on a light receiving result of the light receiving unit, the measurement object and the irradiation surface. And a control unit for determining the distance of the irradiation light waveguide, the irradiation light waveguide, the irradiation control surface to enter the incident light from the light source to the incident surface, the irradiation light from the irradiation surface to the measurement object An irradiation measurement surface to be fired, including the first virtual side surface and the second virtual side surface, all of the outer periphery of the closed outer periphery included in the irradiation control surface and the outer closed surface included in the irradiation measurement surface. An irradiation side surface that connects all of its outer peripheries to confine propagating light inside, and the reflected light waveguide is a reflection measurement surface that enters the reflected light from the object to be measured into the light receiving surface. From the detection surface A reflection control surface that emits the detection light to the light receiving unit; and a reflection control surface including the third virtual side surface and the fourth virtual side surface; And a reflecting side surface that connects all of the outer circumferences of the closed outer circumferences included therein to confine propagating light inside.
【請求項2】 前記照射測定面が前記照射面を含む平面
であり、前記反射測定面が前記受光面を含む平面である
ことを特徴とする、請求項1に記載の位置測定装置。
2. The position measuring device according to claim 1, wherein the irradiation measurement surface is a plane including the irradiation surface, and the reflection measurement surface is a plane including the light receiving surface.
【請求項3】 前記入射面の光軸に対する前記入射光の
入射角は、前記照射光が前記照射面の光軸と所定の発射
角を有するように定められていることを特徴とする、請
求項1または2に記載の位置測定装置。
3. An incident angle of the incident light with respect to an optical axis of the incident surface is determined such that the irradiation light has a predetermined emission angle with respect to an optical axis of the irradiation surface. Item 3. The position measuring device according to item 1 or 2.
【請求項4】 前記光源は、レーザ光を発するレーザ光
源であることを特徴とする、請求項3に記載の位置測定
装置。
4. The position measuring device according to claim 3, wherein the light source is a laser light source that emits a laser beam.
【請求項5】 前記レーザ光源は、レーザダイオードで
あることを特徴とする、請求項4に記載の位置測定装
置。
5. The position measuring device according to claim 4, wherein said laser light source is a laser diode.
【請求項6】 前記レーザ光源を、前記照射光導波路お
よび前記反射光導波路とともに一体化して、1つのパッ
ケージ内に納めたことを特徴とする、請求項5に記載の
位置測定装置。
6. The position measuring device according to claim 5, wherein the laser light source is integrated with the irradiation light waveguide and the reflection light waveguide and housed in one package.
【請求項7】 前記照射側面を構成する前記照射光導波
路の外周部位および前記反射側面を構成する前記反射光
導波路の外周部位には、内部に伝搬する光を反射させる
クラッド領域が形成され、このクラッド領域に囲まれる
部位には、光を伝搬するためのコア領域が形成されてい
ることを特徴とする、請求項1ないし6のいずれかに記
載の位置測定装置。
7. A cladding region for reflecting light propagating inside is formed in an outer peripheral portion of the irradiation optical waveguide forming the irradiation side surface and an outer peripheral portion of the reflection light waveguide forming the reflection side surface. 7. The position measuring device according to claim 1, wherein a core region for transmitting light is formed in a portion surrounded by the cladding region.
【請求項8】 前記コア領域は、石英系ガラス、多成分
系ガラスおよびプラスチックのいずれかから成ることを
特徴とする、請求項7に記載の位置測定装置。
8. The position measuring apparatus according to claim 7, wherein said core region is made of one of quartz-based glass, multi-component glass, and plastic.
【請求項9】 前記クラッド領域は、光を反射する金属
系の物質または前記コア領域より屈折率の低い誘電体か
ら成ることを特徴とする、請求項7に記載の位置測定装
置。
9. The position measuring apparatus according to claim 7, wherein the cladding region is made of a metal material that reflects light or a dielectric material having a lower refractive index than the core region.
【請求項10】 前記照射光導波路および前記反射光導
波路は、電気めっき法、物理気相合成法および化学気相
合成法のいずれかを含む作製方法により作製されること
を特徴とする、請求項7ないし9のいずれかに記載の位
置測定装置。
10. The method according to claim 1, wherein the irradiation optical waveguide and the reflection optical waveguide are manufactured by a manufacturing method including any one of an electroplating method, a physical vapor synthesis method, and a chemical vapor synthesis method. 10. The position measuring device according to any one of 7 to 9.
【請求項11】 前記入射面および前記検出面を含む仮
想の平面と前記照射面および前記受光面を含む仮想の平
面の2つの平行な仮想の平面間において、前記照射側面
の前記第1仮想側面と前記第2仮想側面の間を連結する
側面および/または前記反射側面の前記第3仮想側面と
前記第4仮想側面の間を連結する側面が、複数の平面か
ら成ることを特徴とする、請求項1ないし10のいずれ
かに記載の位置測定装置。
11. The first virtual side surface of the irradiation side surface between two parallel virtual planes including a virtual plane including the incident surface and the detection surface and a virtual plane including the irradiation surface and the light receiving surface. The side surface connecting between the third virtual side surface and the fourth virtual side surface of the reflection side surface and / or the side surface connecting between the third virtual side surface and the second virtual side surface comprises a plurality of planes. Item 10. The position measuring device according to any one of Items 1 to 10.
【請求項12】 前記複数の平面は、4つの平面である
ことを特徴とする、請求項11に記載の位置測定装置。
12. The position measuring device according to claim 11, wherein the plurality of planes are four planes.
【請求項13】 前記照射制御面および前記反射制御面
のそれぞれの光軸が相互に異なる方向に定められている
ことを特徴とする、請求項1ないし12のいずれかに記
載の位置測定装置。
13. The position measuring apparatus according to claim 1, wherein optical axes of the irradiation control surface and the reflection control surface are set in directions different from each other.
【請求項14】 前記照射制御面および前記反射制御面
の一方の光軸は、前記仮想照射光導波路および前記仮想
反射光導波路の双方の光軸を含む仮想の平面内におい
て、前記仮想照射光導波路の光軸と交差する関係となる
ように定められていることを特徴とする、請求項13に
記載の位置測定装置。
14. An optical axis of one of the illumination control surface and the reflection control surface, wherein the virtual illumination optical waveguide is located in a virtual plane including both optical axes of the virtual illumination optical waveguide and the virtual reflection optical waveguide. 14. The position measuring device according to claim 13, wherein the position is determined so as to intersect with the optical axis.
【請求項15】 前記照射制御面および前記反射制御面
の一方の光軸は、前記仮想照射光導波路および前記仮想
反射光導波路の双方の光軸を含む仮想の平面に対して交
差する関係となるように定められていることを特徴とす
る、請求項13に記載の位置測定装置。
15. An optical axis of one of the irradiation control surface and the reflection control surface intersects a virtual plane including both optical axes of the virtual irradiation light guide and the virtual reflection light guide. 14. The position measuring device according to claim 13, wherein the position measuring device is defined as follows.
【請求項16】 前記受光部を、前記照射光導波路およ
び前記反射光導波路とともに一体化して、1つのパッケ
ージ内に納めたことを特徴とする、請求項1ないし15
のいずれかに記載の位置測定装置。
16. The light receiving unit according to claim 1, wherein the light receiving unit is integrated with the irradiation light waveguide and the reflection light waveguide and housed in one package.
The position measuring device according to any one of the above.
【請求項17】 仮に前記反射光導波路が前記照射光導
波路の左側に配置されていると見て、前記反射光導波路
を左反射光導波路としたとき、この左反射光導波路に対
して前記照射光導波路を挟んで反対側の右側の位置に配
設され、前記左反射光導波路と同等の構成を有する右反
射光導波路をさらに備えたことを特徴とする、請求項1
ないし16のいずれかに記載の位置測定装置。
17. Assume that the reflected light waveguide is disposed on the left side of the irradiation light guide and that the reflection light waveguide is a left reflection light waveguide, and the irradiation light guide is provided to the left reflection light waveguide. 2. The device according to claim 1, further comprising a right reflected light waveguide disposed at a position on the right side opposite to the wave path and having a configuration equivalent to that of the left reflected light waveguide.
17. The position measuring device according to any one of claims 16 to 16.
【請求項18】 前記左反射光導波路および前記右反射
光導波路は、前記仮想照射光導波路の光軸を含み前記第
1仮想側面と平行な平面を対称面として、面対称の関係
となるように配設されたことを特徴とする、請求項17
に記載の位置測定装置。
18. The left reflected optical waveguide and the right reflected optical waveguide have a plane-symmetric relationship with a plane including the optical axis of the virtual irradiation optical waveguide and being parallel to the first virtual side surface as a plane of symmetry. 18. The arrangement according to claim 17, wherein the arrangement is arranged.
The position measuring device according to claim 1.
【請求項19】 前記左反射光導波路および右反射光導
波路の各反射制御面は、前記仮想照射光導波路の光軸と
両方の仮想反射光導波路の光軸を含む仮想の平面に対し
て、各反射制御面の光軸が交差する関係となるように設
けられていることを特徴とする、請求項18に記載の位
置測定装置。
19. The reflection control surface of each of the left reflection optical waveguide and the right reflection optical waveguide is provided with respect to a virtual plane including the optical axis of the virtual irradiation optical waveguide and the optical axes of both virtual reflection optical waveguides. 19. The position measuring apparatus according to claim 18, wherein the reflection control surface is provided so as to intersect with each other.
【請求項20】 前記各反射制御面の光軸の交差する角
度が直角であることを特徴とする、請求項19に記載の
位置測定装置。
20. The position measuring apparatus according to claim 19, wherein an angle at which an optical axis of each reflection control surface intersects is a right angle.
【請求項21】 前記各反射制御面は、前記仮想の平面
の相互に同一の前後いずれかの方向に向かって、各検出
光を発射するように設けられていることを特徴とする、
請求項19または20に記載の位置測定装置。
21. The reflection control surface is provided so as to emit each detection light toward any one of front and rear directions of the virtual plane.
The position measuring device according to claim 19 or 20.
【請求項22】 前記右反射光導波路は、前記仮想照射
光導波路の光軸を対称中心軸として前記左反射光導波路
を180°回転させた関係となるように配設されたこと
を特徴とする、請求項17に記載の位置測定装置。
22. The right reflection optical waveguide is arranged so that the left reflection optical waveguide is rotated by 180 ° about the optical axis of the virtual irradiation optical waveguide as a central axis of symmetry. The position measuring device according to claim 17.
【請求項23】 前記左反射光導波路および右反射光導
波路の各反射制御面は、前記照射光導波路側を内側とし
たときの外側に向かって、各検出光を発射するように設
けられていることを特徴とする、請求項18または22
に記載の位置測定装置。
23. Each of the reflection control surfaces of the left reflected light waveguide and the right reflected light waveguide is provided so as to emit each detection light toward the outside when the irradiation light waveguide side is inside. 23. The method according to claim 18, wherein:
The position measuring device according to claim 1.
【請求項24】 前記左反射光導波路および右反射光導
波路の各反射制御面は、前記仮想照射光導波路の光軸と
両方の仮想反射光導波路の光軸を含む仮想の平面内にお
いて、各反射制御面の光軸が各仮想反射光導波路の光軸
と直交する関係となるように設けられていることを特徴
とする、請求項23に記載の位置測定装置。
24. Each of the reflection control surfaces of the left reflected light waveguide and the right reflected light waveguide has a respective reflection control surface in a virtual plane including the optical axis of the virtual irradiation light waveguide and the optical axes of both virtual reflected light waveguides. 24. The position measuring device according to claim 23, wherein the optical axis of the control surface is provided so as to be orthogonal to the optical axis of each virtual reflection optical waveguide.
【請求項25】 前記仮想反射光導波路を前記第1仮想
側面と平行な平面で複数に分割したそれぞれを仮想部分
反射光導波路とし、複数の仮想部分反射光導波路の各4
つの側面のうちの前記第1仮想側面と平行な各2つの側
面のそれぞれを仮想部分平行側面とし、複数の仮想部分
平行側面のうちの前記第3仮想側面および前記第4仮想
側面以外の他の側面のそれぞれを仮想部分接合側面と
し、前記仮想反射光導波路は前記複数の仮想部分反射光
導波路の各1つの仮想部分接合側面同士を4辺が合うよ
うに平行に対向させて隣接または接合して構成されたも
のとし、各仮想部分反射光導波路についてその上底面お
よび下底面のうちの前記受光面を構成する方を部分受光
面として前記検出面を構成する方を部分検出面としたと
き、 前記反射光導波路は、それぞれ前記複数の仮想部分反射
光導波路のうちの各1つに対応してそれを内部に含む複
数の部分反射光導波路を有して、それらの全てを隣接ま
たは接合して構成され、 前記複数の部分反射光導波路のそれぞれは、 前記反射光の一部または全部を部分反射光として前記部
分受光面に入射して内部の仮想部分反射光導波路内を伝
搬させ、伝搬させた前記部分反射光に対応する前記検出
光の一部または全部を部分検出光として前記部分検出面
から発射させるとともに、 前記部分反射光を前記部分受光面に入射する部分反射測
定面と、 前記部分検出面からの前記部分検出光を前記受光部に発
射する部分反射制御面と、 前記内部の仮想部分反射光導波路の前記仮想部分平行側
面を含み、前記部分反射測定面が含む閉じた面のその外
周の全ておよび前記部分反射制御面が含む外周が閉じた
面のその外周の全てを連結して、伝搬する光を内部に閉
じこめる部分反射側面と、を有し、 前記反射側面は、前記複数の部分反射光導波路の前記部
分反射側面の全てを含み、かつ、それらに含まれる前記
仮想部分接合側面の全てを前記仮想反射光導波路に対応
するように隣接または接合して構成され、 前記反射測定面は、前記複数の部分反射光導波路の部分
反射測定面の全てを含み、 前記反射制御面は、前記複数の部分反射光導波路の部分
反射制御面の全てを含むことを特徴とする、請求項1な
いし23のいずれかに記載の位置測定装置。
25. A virtual partially reflected optical waveguide, wherein each of the virtual reflected optical waveguides is divided into a plurality of planes by a plane parallel to the first virtual side surface, and each of the plurality of virtual partially reflected optical waveguides is divided into four.
Each of the two side surfaces parallel to the first virtual side surface of the one side surface is defined as a virtual portion parallel side surface, and other than the third virtual side surface and the fourth virtual side surface among the plurality of virtual portion parallel side surfaces. Each of the side surfaces is a virtual partial junction side surface, and the virtual reflection optical waveguide is formed by adjoining or joining one virtual partial junction side surface of each of the plurality of virtual partial reflection optical waveguides in parallel so that four sides thereof match. Assuming that each of the virtual partially reflected optical waveguides, the upper surface and the lower surface of the light receiving surface out of the upper bottom surface and the lower bottom surface of the partial light receiving surface and the one constituting the detection surface is a partial detection surface, The reflected light waveguide has a plurality of partially reflected light waveguides each corresponding to one of the plurality of virtual partially reflected light waveguides and internally including the plurality of partially reflected light waveguides, and all of them are adjacent or joined. Each of the plurality of partially reflected optical waveguides is configured such that a part or the entirety of the reflected light is incident on the partial light receiving surface as partially reflected light, propagates through the internal virtual partially reflected optical waveguide, and is propagated. Partial or all of the detection light corresponding to the partially reflected light is emitted from the partial detection surface as partial detection light, and the partial reflection measurement surface that enters the partially reflected light into the partial light receiving surface; A partial reflection control surface that emits the partial detection light from a surface to the light receiving unit; and an outer periphery of a closed surface that includes the virtual partial parallel side surface of the internal virtual partial reflection optical waveguide and that includes the partial reflection measurement surface. And a partial reflection side surface that concatenates the propagating light inside by connecting all of the outer circumference of the closed surface including the entirety and the partial reflection control surface; The reflection measurement surface includes all of the partial reflection side surfaces of the split reflection optical waveguide, and is configured to adjoin or join all of the virtual partial junction side surfaces included therein so as to correspond to the virtual reflection optical waveguide, 2 includes all of the partial reflection measurement surfaces of the plurality of partially reflected light waveguides, and the reflection control surface includes all of the partially reflected control surfaces of the plurality of partially reflected light waveguides. 24. The position measuring device according to any one of claims 23 to 23.
【請求項26】 前記複数のうちの少なくとも2つの部
分反射光導波路は、それぞれの部分検出面から部分反射
制御面までの光路長が相互に異なることを特徴とする、
請求項25に記載の位置測定装置。
26. The at least two partially reflected optical waveguides of the plurality have different optical path lengths from the respective partial detection surfaces to the partially reflected control surfaces.
The position measuring device according to claim 25.
【請求項27】 前記複数のうちの少なくとも2つの部
分反射光導波路の各部分反射制御面の光軸は、それぞれ
の仮想部分反射光導波路の光軸を含む仮想の平面内に含
まれることを特徴とする、請求項25または26に記載
の位置測定装置。
27. The optical axis of each partial reflection control surface of at least two of the plurality of partially reflected optical waveguides is included in a virtual plane including the optical axis of each virtual partially reflected optical waveguide. The position measuring device according to claim 25 or 26, wherein
【請求項28】 前記複数のうちの少なくとも2つの部
分反射光導波路の各部分反射制御面は、それぞれの部分
検出光が相互に異なる方向に発射するように設けられて
いることを特徴とする、請求項25または26に記載の
位置測定装置。
28. The partial reflection control surface of at least two of the plurality of partially reflected optical waveguides, wherein the respective partial reflection control surfaces are provided such that respective partial detection lights are emitted in mutually different directions. The position measuring device according to claim 25 or 26.
【請求項29】 前記複数のうちの少なくとも2つの部
分反射光導波路の各部分反射制御面は、対応する少なく
とも2つの仮想部分反射光導波路の光軸を含む仮想の平
面に対して、各部分反射制御面の光軸が交差する関係と
なるように設けられていることを特徴とする、請求項2
8に記載の位置測定装置。
29. Each partial reflection control surface of at least two of the plurality of partially reflected optical waveguides has a respective partial reflection with respect to a virtual plane including the optical axis of the corresponding at least two virtual partially reflected optical waveguides. The optical axis of the control surface is provided so as to intersect with each other.
9. The position measuring device according to 8.
【請求項30】 前記各部分反射制御面の光軸の交差す
る角度が直角であることを特徴とする、請求項29に記
載の位置測定装置。
30. The position measuring apparatus according to claim 29, wherein the angle at which the optical axes of the respective partial reflection control surfaces intersect is a right angle.
【請求項31】 前記部分検出光の相互に異なる方向
は、その部分検出光を発射する少なくとも2つの仮想部
分反射光導波路の双方の光軸を含む仮想の平面の互いに
反対面側の方向であることを特徴とする、請求項28な
いし30のいずれかに記載の位置測定装置。
31. The mutually different directions of the partial detection light are directions on opposite sides of a virtual plane including both optical axes of at least two virtual partial reflection optical waveguides that emit the partial detection light. 31. The position measuring device according to claim 28, wherein:
【請求項32】 請求項1ないし31のいずれかに記載
の位置測定装置を有して、その位置測定装置の照射面が
測定対象物の表裏2面のうちの一方に対向するように設
けられ、自己の前記照射面から前記表裏2面のうちの一
方までの第1距離を求める第1変位計と、 請求項1ないし31のいずれかに記載の位置測定装置を
有して、その位置測定装置の照射面が前記測定対象物の
表裏2面のうちの他方に対向し、かつ、その照射面と前
記第1変位計の照射面との相互間が前記測定対象物を非
接触で挿入可能な所定距離となるように設けられ、自己
の前記照射面から前記表裏2面のうちの他方までの第2
距離を求める第2変位計と、 前記第1距離、第2距離および前記所定距離に基づい
て、前記測定対象物の厚みを求める制御手段と、を備え
たことを特徴とする厚み測定装置。
32. A position measuring device according to claim 1, wherein an irradiation surface of the position measuring device is provided so as to face one of the front and back surfaces of the object to be measured. 32. A position measuring device according to claim 1, further comprising: a first displacement meter for calculating a first distance from the irradiation surface of the self to one of the two front and back surfaces; The irradiation surface of the device faces the other of the two front and back surfaces of the measurement object, and the measurement object can be inserted in a non-contact manner between the irradiation surface and the irradiation surface of the first displacement meter. And a second predetermined distance from the irradiation surface of the self to the other of the front and back surfaces.
A thickness measuring device comprising: a second displacement meter for obtaining a distance; and control means for obtaining a thickness of the object to be measured based on the first distance, the second distance, and the predetermined distance.
【請求項33】 前記第1変位計および第2変位計のそ
れぞれの位置測定装置の各照射光の発射角は、前記測定
対象物が透過性を有する場合に、各照射面からの各照射
光の照射により前記測定対象物を透過する各透過光が、
対向する他方の位置測定装置の受光面内に入らない所定
の発射角に定められていることを特徴とする、請求項3
2に記載の厚み測定装置。
33. An emission angle of each irradiation light of each of the position measuring devices of the first displacement meter and the second displacement meter, the irradiation light from each irradiation surface when the object to be measured has transparency. Each transmitted light transmitted through the measurement object by irradiation of,
4. A predetermined launch angle that does not enter the light receiving surface of the other opposing position measuring device.
3. The thickness measuring device according to 2.
JP22209498A 1998-08-05 1998-08-05 Position measuring device and thickness measuring device Expired - Fee Related JP3934799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22209498A JP3934799B2 (en) 1998-08-05 1998-08-05 Position measuring device and thickness measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22209498A JP3934799B2 (en) 1998-08-05 1998-08-05 Position measuring device and thickness measuring device

Publications (2)

Publication Number Publication Date
JP2000055625A true JP2000055625A (en) 2000-02-25
JP3934799B2 JP3934799B2 (en) 2007-06-20

Family

ID=16777048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22209498A Expired - Fee Related JP3934799B2 (en) 1998-08-05 1998-08-05 Position measuring device and thickness measuring device

Country Status (1)

Country Link
JP (1) JP3934799B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012002807A (en) * 2010-05-31 2012-01-05 General Electric Co <Ge> Gap analyzer device and method
CN104482863A (en) * 2014-12-31 2015-04-01 浙江海洋学院 Intelligent fish counting device
KR20210014947A (en) * 2019-07-31 2021-02-10 에스케이하이닉스 주식회사 Device and method for measuring thichkness
CN116255919A (en) * 2023-05-15 2023-06-13 山东新港企业集团有限公司 Thickness measuring device used in building board processing process

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012002807A (en) * 2010-05-31 2012-01-05 General Electric Co <Ge> Gap analyzer device and method
CN104482863A (en) * 2014-12-31 2015-04-01 浙江海洋学院 Intelligent fish counting device
KR20210014947A (en) * 2019-07-31 2021-02-10 에스케이하이닉스 주식회사 Device and method for measuring thichkness
KR102659670B1 (en) 2019-07-31 2024-04-19 에스케이하이닉스 주식회사 Device and method for measuring thichkness
CN116255919A (en) * 2023-05-15 2023-06-13 山东新港企业集团有限公司 Thickness measuring device used in building board processing process

Also Published As

Publication number Publication date
JP3934799B2 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
JP6825237B2 (en) Magnetic field measuring device, manufacturing method of magnetic field measuring device
CN101156044B (en) Three-dimensional coordinate measuring device
JPS6379004A (en) Light probe for measuring shape
JPS6085302A (en) Length measuring device based on principle of two beam laserinterferometer
CN108089323A (en) Fast steering mirror device and measuring system with novel rotary transition light path
US11148245B2 (en) Multi-degree-of-freedom error measurement system for rotary axes and method thereof
JPH022082B2 (en)
JP3934799B2 (en) Position measuring device and thickness measuring device
JPH10123356A (en) Method for measuring position of optical transmission member and method for manufacturing optical device
JP2020012785A (en) Position measuring device and position measuring method
JP2000055626A (en) Plate thickness measuring method and device therefor
JPH11190616A (en) Surface shape measuring device
JP3872206B2 (en) Thickness measuring device
JP2008268000A (en) Displacement measuring method and device
JPS6011103A (en) Remote measuring device
JPS581120A (en) Telecentric beam generator and measurement of dimensions and position of object
JPS62142206A (en) Measuring instrument for surface position of object
JPH0843305A (en) Smoke density measuring device
JPH11327769A (en) Coordinate input device
JPH109812A (en) Device and equipment for detecting position
JP2003097924A (en) Shape measuring system and method using the same
JP3210450B2 (en) Tilt detector
JP3210451B2 (en) Tilt detector
JPS6214006A (en) Optical fiber base material configuration measuring instrument
US6668114B2 (en) Automatic device for assembling fiber collimators

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070316

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees