JP2000053491A - Method and equipment for growing single crystal - Google Patents

Method and equipment for growing single crystal

Info

Publication number
JP2000053491A
JP2000053491A JP10220427A JP22042798A JP2000053491A JP 2000053491 A JP2000053491 A JP 2000053491A JP 10220427 A JP10220427 A JP 10220427A JP 22042798 A JP22042798 A JP 22042798A JP 2000053491 A JP2000053491 A JP 2000053491A
Authority
JP
Japan
Prior art keywords
crucible
crystal
single crystal
work coil
refractory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10220427A
Other languages
Japanese (ja)
Inventor
Tomohiro Notaki
友博 野瀧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP10220427A priority Critical patent/JP2000053491A/en
Publication of JP2000053491A publication Critical patent/JP2000053491A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably grow an oxide single crystal having excellent crystallimity. SOLUTION: This equipment 20 for growing single crystal is provided with a crucible 13 placed inside a refractory body 11, a work coil 18 for high frequency induction placed on the side of the outer periphery of the crucible 13 and a pulling-up shaft 16 which is provided with a seed crystal 15 at its lower end and used for pulling up a single crystal 21 from a melt in the crucible 13, to grow the single crystal 21, wherein the equipment 20 is further provided with a megaphone-shaped after-heater 14 which is tapered from the lower side to the upper side and placed above the crucible 13, a refractory cover surrounding the outer periphery of the crucible 13, and cylindrical bodies 17a and 17b, together surrounding at least the refractory body 11, after-heater 14 and work coil 18.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は単結晶育成方法及び
装置に関し、詳しくは磁気冷凍素子、磁気バブルメモリ
基板など磁性材料としての酸化物単結晶、例えばエルビ
ウム・アルミネート(ErALO3 ),ホロミウム・ア
ルミネート(HoAlO3 )などを特定の方法で育成し
た大型酸化物単結晶の育成方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for growing a single crystal, and more particularly, to an oxide single crystal as a magnetic material such as a magnetic refrigerating element or a magnetic bubble memory substrate, for example, erbium aluminate (ErALO 3 ), holmium. The present invention relates to a method and an apparatus for growing a large oxide single crystal obtained by growing aluminate (HoAlO 3 ) by a specific method.

【0002】[0002]

【従来の技術】従来、回転引き上げ法は、大型で高品質
な単結晶を製造することができるので、シリコン及び酸
化物単結晶の育成方法に用いられている。図2は、従来
の単結晶育成装置の概略図を示す。
2. Description of the Related Art Conventionally, the rotation pulling method has been used as a method for growing silicon and oxide single crystals because a large-sized and high-quality single crystal can be produced. FIG. 2 shows a schematic view of a conventional single crystal growing apparatus.

【0003】図中の付番1は、有底の筒状耐火物であ
る。この耐火物1のほぼ中央部には、耐火製の環状の係
止部2が配置されている。この係止部2より下側の前記
耐火物1内には、融液3を収容したルツボ4が配置され
ている。前記係止部2上には、下側から上側に向かって
縮径するメガホン型のアフターヒータ5が配置されてい
る。前記耐火物1内でルツボ4の上方には、下端に種結
晶6を有する引上げ軸7が配置されている。前記耐火物
1の下端側の外周部には、高周波誘導加熱用のワークコ
イル8が配置されている。
[0003] Reference numeral 1 in the figure denotes a bottomed tubular refractory. At a substantially central portion of the refractory 1, an annular locking portion 2 made of refractory is arranged. A crucible 4 containing a melt 3 is disposed in the refractory 1 below the locking portion 2. A megaphone-type after-heater 5 whose diameter decreases from the lower side to the upper side is arranged on the locking portion 2. A pulling shaft 7 having a seed crystal 6 at a lower end is disposed above the crucible 4 in the refractory 1. A work coil 8 for high-frequency induction heating is arranged on the outer peripheral portion on the lower end side of the refractory 1.

【0004】こうした構成の単結晶育成装置9の動作
は、次の通りである。まず、前記ワークコイル8に高周
波電力を印加してルツボ4を加熱し、該ルツボ4に充填
した原料(融液3)を溶融する。この融液3に種結晶6
を浸し、十分なじませた後、所定の速度で回転させなが
ら上方に引き上げて単結晶育成を行なう。このとき、酸
化物単結晶における種結晶6の引き上げ速度は、毎時
0.5〜5.0mm程度である。なお、酸化物単結晶を
高周波誘導加熱で育成する場合、ルツボ4には、白金、
イリジウムあるいはモリブデンなどの高融点金属が主に
用いられる。また、ルツボ4の周囲及び上方は、断熱・
保温のために、前記耐火物1及びアフターヒータ5で覆
う場合が多く、育成雰囲気は不活性及び酸化雰囲気で結
晶育成が行われる。
The operation of the single crystal growing apparatus 9 having such a configuration is as follows. First, high-frequency power is applied to the work coil 8 to heat the crucible 4, and the raw material (the melt 3) filled in the crucible 4 is melted. Seed crystal 6
After immersion, a single crystal is grown by pulling up while rotating at a predetermined speed. At this time, the pulling speed of the seed crystal 6 in the oxide single crystal is about 0.5 to 5.0 mm per hour. When growing an oxide single crystal by high-frequency induction heating, the crucible 4 contains platinum,
Refractory metals such as iridium or molybdenum are mainly used. In addition, the periphery and the upper part of the crucible 4 are heat-insulated.
In many cases, the refractory 1 and the after-heater 5 are used to keep the temperature, and the crystal is grown in an inert and oxidizing atmosphere.

【0005】この回転引き上げ法で単結晶を育成すると
きに、引き上げ軸方向の温度勾配が育成結晶に大きな影
響を与える。この温度勾配は、ホットゾーン構成、つま
り耐火物1の材質や形状、アフターヒータ5の形状、ル
ツボ4とアフターヒータ5との距離、ルツボ4とワーク
コイル8との相対的位置などにより決まる。
When a single crystal is grown by this rotation pulling method, the temperature gradient in the pulling axis direction has a great influence on the grown crystal. This temperature gradient is determined by the configuration of the hot zone, that is, the material and shape of the refractory 1, the shape of the after-heater 5, the distance between the crucible 4 and the after-heater 5, the relative position between the crucible 4 and the work coil 8, and the like.

【0006】また、回転引き上げ法で単結晶を育成する
方法において、育成する結晶の結晶構造及び育成する結
晶サイズが結晶成長過程に重要な影響を及ぼすことがあ
る。結晶構造に異方性がある場合、例えばRAlO
3 (希土類アルミネート、R:希土類元素)単結晶の場
合、熱的な影響により結晶成長中に割れが発生し易い。
In the method of growing a single crystal by the rotation pulling method, the crystal structure of the crystal to be grown and the crystal size to be grown may have an important influence on the crystal growth process. When the crystal structure has anisotropy, for example, RAlO
3 In the case of a single crystal (rare earth aluminate, R: rare earth element), cracks are likely to occur during crystal growth due to thermal effects.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、従来技
術によれば、以下に述べる問題点があった。即ち、上記
温度勾配が急激であると、育成した単結晶の一部に熱応
力が集中し、特に育成する結晶に異方性がある場合、結
晶割れが発生する。また、上記温度勾配が緩やかである
と、温度制御が困難となり、引き上げた結晶が急激に太
ったり、逆に急激に細くなり融液から離れたりして、安
定して結晶成長ができなくなるという問題があった。
However, the prior art has the following problems. That is, when the temperature gradient is steep, thermal stress concentrates on a part of the grown single crystal, and crystal cracks occur particularly when the grown crystal has anisotropy. In addition, if the temperature gradient is gentle, it is difficult to control the temperature, and the pulled crystal is suddenly thickened, or conversely, rapidly thinned and separated from the melt, which makes it impossible to stably grow the crystal. was there.

【0008】本発明はこうした事情を考慮してなされた
もので、結晶育成初期段階では前記ワークコイル上端を
ルツボ上端高さと一致させ、引上げ軸方向の温度勾配を
急激にし、かつ結晶の引き上げとともに成長速度と同じ
速度でワークコイルを上昇させて温度勾配を緩やかにす
ることにより、結晶内熱応力に起因する割れを抑制し
て、結晶性の優れた酸化物単結晶を安定して育成しえる
単結晶育成方法を提供することを目的とする。
The present invention has been made in view of such circumstances. In the initial stage of crystal growth, the upper end of the work coil is made to coincide with the upper end of the crucible, the temperature gradient in the direction of the pulling axis is sharply increased, and the crystal is grown together with the pulling of the crystal. By raising the work coil at the same speed as the speed to moderate the temperature gradient, cracks caused by thermal stress in the crystal can be suppressed, and a single crystal that can stably grow an oxide single crystal with excellent crystallinity can be obtained. An object is to provide a crystal growing method.

【0009】また、本発明は、ルツボの外周側に高周波
誘導用のワークコイルを上下に移動できるように設け、
ルツボの上方に設けられた下側から上側に向かうにつれ
て縮径するメガホン型のアフターヒータと、前記ルツボ
の周辺を包囲する耐火製の覆いと、耐火物、アフターヒ
ータ及びワークコイルを少なくとも包囲する外囲器とを
有した構成とすることにより、上記方法発明と同様、結
晶内熱応力に起因する割れを抑制して、結晶性の優れた
酸化物単結晶を安定して育成しえる単結晶育成装置を提
供することをも目的とする。
Further, according to the present invention, a work coil for high frequency induction is provided on the outer peripheral side of the crucible so as to be vertically movable,
A megaphone-type after-heater provided above the crucible and having a diameter decreasing from the lower side to the upper side, a refractory cover surrounding the periphery of the crucible, and an outer periphery surrounding at least the refractory, the after heater and the work coil. By adopting a structure having an enclosure, the single crystal growth capable of stably growing an oxide single crystal having excellent crystallinity by suppressing cracks caused by thermal stress in the crystal similarly to the above method invention. It is also an object to provide a device.

【0010】[0010]

【課題を解決するための手段】本願第1の発明は、耐火
物内にルツボを載置するとともに、前記ルツボの外周側
に高周波誘導用のワークコイルを上下に移動できるよう
に設け、前記ルツボ内の融液を下端に種結晶を有する引
上げ軸を用いて引き上げて単結晶の育成を行う単結晶育
成方法であり、結晶育成初期段階では前記ワークコイル
上端をルツボ上端高さと一致させ、引上げ軸方向の温度
勾配を急激にし、かつ結晶の引き上げとともに成長速度
と同じ速度でワークコイルを上昇させて温度勾配を緩や
かにすることを特徴とする単結晶育成方法である。
According to a first aspect of the present invention, a crucible is placed in a refractory, and a work coil for high-frequency induction is provided on an outer peripheral side of the crucible so as to be movable up and down. A single crystal growing method for growing a single crystal by pulling up the melt in the lower part using a pulling axis having a seed crystal at the lower end, and aligning the upper end of the work coil with the height of the upper end of the crucible in the initial stage of crystal growth. This is a method for growing a single crystal, characterized in that the temperature gradient in the direction is sharpened, and the work coil is raised at the same speed as the growth rate together with the pulling of the crystal to make the temperature gradient gentle.

【0011】第1の発明において、「ワークコイル上端
をルツボ上端高さと一致させ、引上げ軸方向の温度勾配
を急激にし」とは、ルツボの下端が一番温度が高く、ル
ツボの上端に向かって温度を低くしていく、つまり引上
げ軸方向に沿って温度変化を急激にすることを意味す
る。
In the first invention, "the upper end of the work coil coincides with the height of the upper end of the crucible and the temperature gradient in the direction of the pulling shaft is made sharper" means that the lower end of the crucible has the highest temperature, and This means that the temperature is lowered, that is, the temperature changes rapidly along the direction of the pulling axis.

【0012】本願第2の発明は、耐火物内にルツボを載
置するとともに、前記ルツボの外周側に高周波誘導用の
ワークコイルを上下に移動できるように設け、前記ルツ
ボ内の融液を下端に種結晶を有する引上げ軸を用いて引
き上げて単結晶の育成を行う単結晶育成装置であり、前
記ルツボの上方に設けられた、下側から上側に向かうに
つれて縮径するメガホン型のアフターヒータと、前記ル
ツボの周辺を包囲する耐火製の覆いと、前記耐火物、ア
フターヒータ及びワークコイルを少なくとも包囲する外
囲器とを具備することを特徴とする単結晶育成装置であ
る。
According to a second aspect of the present invention, a crucible is placed in a refractory, and a work coil for high-frequency induction is provided on an outer peripheral side of the crucible so as to be able to move up and down. A single crystal growing apparatus for growing a single crystal by pulling up using a pulling shaft having a seed crystal, provided above the crucible, a megaphone-type after-heater whose diameter decreases from the lower side to the upper side; A single crystal growing apparatus, comprising: a refractory cover surrounding the crucible; and an envelope surrounding at least the refractory, the after heater and the work coil.

【0013】[0013]

【発明の実施の形態】以下、本発明の一実施例について
図1を参照して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIG.

【0014】図中の付番11は、筒状耐火物である。この
耐火物11は、上部が大きく開口しかつ下部に貫通孔を有
したる筒状部材(覆い)11aと、この筒状部材11a上に
設けられた環状の係止部材11bと、この係止部材11b上
に設けられた筒状部材11cと、この筒状部材11cの内側
で前記係止部材11b上に配置された筒状部材11dから構
成されている。前記耐火物11の各構成部材は断熱、保温
のために設けられるもので、例えば酸化ジルコニウム製
からなる。前記耐火物11の覆い11a内には、原料融液12
が収容されるイリジウム製の円筒型のルツボ13が配置さ
れている。
Reference numeral 11 in the drawing denotes a tubular refractory. The refractory 11 includes a cylindrical member (cover) 11a having a large opening at an upper portion and a through hole at a lower portion, an annular locking member 11b provided on the cylindrical member 11a, It is composed of a tubular member 11c provided on the member 11b, and a tubular member 11d disposed on the locking member 11b inside the tubular member 11c. Each component of the refractory 11 is provided for heat insulation and heat retention, and is made of, for example, zirconium oxide. In the cover 11a of the refractory 11, the raw material melt 12
A cylindrical crucible 13 made of iridium in which is stored is disposed.

【0015】前記係止部材11dの内側で前記係止部材11
b上には、下側から上側に向かって縮径するイリジウム
製のメガホン型アフターヒータ14が配置されている。こ
のアフターヒータ14の傾斜角度は、結晶育成雰囲気に応
じて任意に設定することができる。前記耐火物11内でル
ツボ13の上方には、下端に種結晶15を有する引上げ軸16
が配置されている。前記耐火物11の外側には、上下に二
つに分割される酸化アルミニウム製の筒状体(外囲器)
17a,17bが、断熱・保温のために配置されている。
The locking member 11 is provided inside the locking member 11d.
Above b, an iridium megaphone-type after-heater 14 whose diameter decreases from the lower side to the upper side is arranged. The inclination angle of the after heater 14 can be set arbitrarily according to the crystal growth atmosphere. Above the crucible 13 in the refractory 11, a pulling shaft 16 having a seed crystal 15 at the lower end
Is arranged. On the outside of the refractory 11, a tubular body (envelope) made of aluminum oxide, which is divided into two parts up and down
17a and 17b are arranged for heat insulation and heat retention.

【0016】これらの筒状体のうち下方の筒状体17aの
外周部には、高周波誘導加熱用のワークコイル18が配置
されている。このワークコイル18のサイズは、例えばφ
175(外径)×φ155(内径)×155mm(高
さ)(12巻)であるが、これに限定されない。前記ワ
ークコイル18は、図示しない引上げ装置により上下に移
動できるようになっている。前記ルツボ13の底面中心に
は、イリジウム・ロジウム(Ir−40%Ir/Rh)熱
電対19が温度モニタ用として配設されている。前記耐火
物11,ルツボ13,アフターヒータ14,筒状体17a,17b
等の各構成部材は、真空排気や雰囲気の制御を行うため
に、図示しないステンレス製のチャンバーで取り囲まれ
ている。
A work coil 18 for high-frequency induction heating is arranged on the outer peripheral portion of the lower cylindrical body 17a among these cylindrical bodies. The size of the work coil 18 is, for example, φ
It is 175 (outer diameter) × φ155 (inner diameter) × 155 mm (height) (12 rolls), but is not limited to this. The work coil 18 can be moved up and down by a pulling device (not shown). An iridium-rhodium (Ir-40% Ir / Rh) thermocouple 19 is disposed at the center of the bottom of the crucible 13 for temperature monitoring. The refractory 11, crucible 13, afterheater 14, cylindrical bodies 17a, 17b
These components are surrounded by a stainless steel chamber (not shown) in order to perform evacuation and control of the atmosphere.

【0017】こうした構成の単結晶育成装置20を用い
て、次のようにして単結晶21の育成を行う。但し、本実
施例では、エルビウム・アルミネート(ErAlO3
の単結晶成長に適用した。また、出発原料としては、純
度3N(99.9%)の酸化エルビウム(Er
2 3 )、純度5N(99.999%)の酸化アルミニ
ウム(Al2 3 )を用いた。これらの出発原料を前記
エルビウム・アルミネートとなるようEr2 3 :Al
2 3 =1:1に秤量、混合した後、成型,焼成して原
料とした。
Using the single crystal growing apparatus 20 having such a configuration, a single crystal 21 is grown as follows. However, in this embodiment, erbium aluminate (ErAlO 3 )
For single crystal growth. As a starting material, erbium oxide (Er) having a purity of 3N (99.9%) was used.
2 O 3 ) and aluminum oxide (Al 2 O 3 ) having a purity of 5N (99.999%) were used. Er 2 O 3 : Al is used as a starting material for the erbium aluminate.
After weighing and mixing 2 O 3 = 1: 1, the mixture was molded and fired to obtain a raw material.

【0018】(1) まず、前記チャンバー内を真空排気し
た後、窒素ガスを前記チャンバー内に導入した。つづい
て、前記ワークコイル18に高周波電力を徐々に印加する
ことにより、ルツボ13を加熱し、ルツボ13内の原料を完
全に融解した。なお、融液の組成の均一化を図るため、
原料を融解した後、高周波出力を約12時間保持した。
(1) First, after evacuating the inside of the chamber, nitrogen gas was introduced into the chamber. Subsequently, the crucible 13 was heated by gradually applying high-frequency power to the work coil 18, and the raw material in the crucible 13 was completely melted. In order to make the composition of the melt uniform,
After melting the raw materials, the high frequency output was maintained for about 12 hours.

【0019】(2) 次に、種結晶(<001>方位のEO
A単結晶)を所定の速度で回転させながら徐々に下降さ
せて、その先端をルツボ13内の融液に接触させて充分に
馴染ませた後、融液温度を調整しながら引上げ軸16を上
昇させることで結晶を成長させる。このとき、安定して
結晶育成が可能となるよう、自然対流優勢とするため
に、ワークコイル18の上端高さをルツボ13の上端高さと
一致させて温度勾配を急激にした。
(2) Next, a seed crystal (EO of <001> direction)
A single crystal) is gradually lowered while rotating it at a predetermined speed, and its tip is brought into contact with the melt in the crucible 13 to be fully blended. Then, the pulling shaft 16 is raised while adjusting the melt temperature. By doing so, the crystal grows. At this time, the temperature gradient was made sharp by matching the upper end height of the work coil 18 with the upper end height of the crucible 13 so that natural convection prevailed so that crystal growth could be performed stably.

【0020】(3) 結晶成長開始後、いわゆるネッキング
を行って結晶径を細めた後、融液温度を下げて結晶を徐
々に太らせることにより、肩部にに引続いて直胴部を成
長させる。このとき、育成した結晶に割れが入らないよ
う、引上げ速度に相関する成長速度と同じ速度でワーク
コイル18の温度を上昇させた。つまり、成長速度Vsに
対応させてワークコイル18もVs で上昇させ、育成結晶
の周囲温度を均一化した。
(3) After the crystal growth is started, so-called necking is performed to reduce the crystal diameter, and then the melt temperature is lowered and the crystal is gradually thickened, so that the straight body is grown following the shoulder. Let it. At this time, the temperature of the work coil 18 was increased at the same speed as the growth speed correlated with the pulling speed so that the grown crystal did not crack. That is, the work coil 18 was also raised at Vs corresponding to the growth rate Vs, and the ambient temperature of the grown crystal was made uniform.

【0021】(4) 直胴部を100mm成長させた後、引
き上げ速度を上昇させるとともに融液温度を上げること
により結晶径を徐々に細めて融液から結晶を切り離し、
該結晶を室温まで徐々に冷却する。
(4) After growing the straight body by 100 mm, the crystal diameter is gradually reduced by increasing the pulling speed and the melt temperature, and the crystal is separated from the melt.
The crystals are gradually cooled to room temperature.

【0022】得られた結晶は、直径40mm,長さ約1
00mm,結晶の直径は±0.2mmの範囲で良好に制
御され、オレンジ色透明の結晶であり、割れや気泡など
は全く認められなかった。切り離した結晶の端部は約5
mm融液側に突出しており、育成中自然対流が優勢だっ
たことが分かる。粉末X線回折の結果、得られた結晶は
斜方晶であり、格子定数はa=5.16オングストロー
ム,b=5.33オングストローム,c=7.36オン
グストロームであった。
The obtained crystal has a diameter of 40 mm and a length of about 1 mm.
00 mm, the crystal diameter was well controlled within the range of ± 0.2 mm, it was an orange transparent crystal, and no cracks or bubbles were observed. The end of the separated crystal is about 5
mm, it can be seen that natural convection was dominant during the growth. As a result of powder X-ray diffraction, the obtained crystal was orthorhombic, and the lattice constants were a = 5.16 angstroms, b = 5.33 angstroms, and c = 7.36 angstroms.

【0023】また、結晶育成初期(ワークコイルとルツ
ボ上端が一致しているとき)は、温度勾配が20〜30
℃/mmと大きかった。また、結晶育成後半は、温度勾
配が約10℃/mmと小さかった。
In the initial stage of crystal growth (when the work coil and the upper end of the crucible coincide), the temperature gradient is 20 to 30.
° C / mm. In the latter half of the crystal growth, the temperature gradient was as small as about 10 ° C./mm.

【0024】なお、上記実施例では、ワークコイルを筒
状体の外側に配置した場合について述べたが、この他、
輻射熱源(キセノンランプ,ハロゲンランプ等)を使用
することにより、温度勾配を制御することができる。図
3は結晶育成中の熱応力を解析した結果であり、σ=
3.12MPaの辺りで割れが発生しており、この部分
での温度勾配が急激になっていると考えられる。従っ
て、育成中にこの部分を輻射熱源で加熱することより割
れを抑制することが可能になると考えられる。
In the above embodiment, the case where the work coil is arranged outside the cylindrical body has been described.
The temperature gradient can be controlled by using a radiant heat source (xenon lamp, halogen lamp, etc.). FIG. 3 shows the result of analyzing the thermal stress during the crystal growth.
Cracks occurred around 3.12 MPa, and it is considered that the temperature gradient in this part was sharp. Therefore, it is considered that cracking can be suppressed by heating this portion with a radiant heat source during growth.

【0025】[0025]

【発明の効果】以上詳述したように、本発明の単結晶育
成方法によれば、結晶育成初期段階では前記ワークコイ
ル上端をルツボ上端高さと一致させ、引上げ軸方向の温
度勾配を急激にして安定した結晶育成を行い、かつ結晶
の引き上げとともに成長速度と同じ速度でワークコイル
を上昇させて温度勾配を緩やかにすることにより、結晶
性の優れた酸化物単結晶を安定して育成することができ
る。
As described above in detail, according to the method for growing a single crystal of the present invention, in the initial stage of crystal growth, the upper end of the work coil coincides with the height of the upper end of the crucible, and the temperature gradient in the direction of the pulling axis is sharply increased. By performing stable crystal growth and raising the work coil at the same rate as the growth rate while pulling up the crystal to moderate the temperature gradient, it is possible to stably grow an oxide single crystal with excellent crystallinity. it can.

【0026】また、本発明の単結晶育成装置によれば、
ルツボの外周側に高周波誘導用のワークコイルを上下に
移動できるように設け、ルツボの上方に設けられた下側
から上側に向かうにつれて縮径するメガホン型のアフタ
ーヒータと、前記ルツボの周辺を包囲する耐火製の覆い
と、前記耐火物、アフターヒータ及びワークコイルを少
なくとも包囲する外囲器とを有した構成とすることによ
り、結晶性の優れた酸化物単結晶を安定して育成するこ
とができる。
According to the single crystal growing apparatus of the present invention,
A high-frequency induction work coil is provided on the outer peripheral side of the crucible so as to be able to move up and down, and a megaphone-type after heater provided above the crucible and having a diameter decreasing from the lower side to the upper side, and surrounding the periphery of the crucible. By having a refractory cover and an envelope surrounding at least the refractory, the after heater and the work coil, an oxide single crystal having excellent crystallinity can be stably grown. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る単結晶育成装置の全体
を示す概略図。
FIG. 1 is a schematic diagram showing an entire single crystal growing apparatus according to one embodiment of the present invention.

【図2】従来の単結晶育成装置の全体を示す概略図。FIG. 2 is a schematic view showing an entire conventional single crystal growing apparatus.

【図3】結晶育成中の熱応力を解析した結果を示す説明
図。
FIG. 3 is an explanatory diagram showing a result of analyzing thermal stress during crystal growth.

【符号の説明】[Explanation of symbols]

11…耐火物、 12…原料融液、 13…ルツボ、 14…アフターヒータ、 15…種結晶、 16…引上げ軸、 17a,17b…筒状体、 18…ワークコイル、 19…熱電対、 20…単結晶育成装置、 21…単結晶。 11 ... refractory, 12 ... raw material melt, 13 ... crucible, 14 ... after heater, 15 ... seed crystal, 16 ... pulling shaft, 17a, 17b ... cylindrical body, 18 ... work coil, 19 ... thermocouple, 20 ... Single crystal growing equipment, 21 ... Single crystal.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 耐火物内にルツボを載置するとともに、
前記ルツボの外周側に高周波誘導用のワークコイルを上
下に移動できるように設け、前記ルツボ内の融液を下端
に種結晶を有する引上げ軸を用いて引き上げて単結晶の
育成を行う単結晶育成方法であり、 結晶育成初期段階では前記ワークコイル上端をルツボ上
端高さと一致させ、引上げ軸方向の温度勾配を急激に
し、かつ結晶の引き上げとともに成長速度と同じ速度で
ワークコイルを上昇させて温度勾配を緩やかにすること
を特徴とする単結晶育成方法。
1. A crucible is placed in a refractory,
A single-crystal growing method in which a work coil for high-frequency induction is provided on the outer peripheral side of the crucible so as to be able to move up and down, and the melt in the crucible is pulled up using a pulling shaft having a seed crystal at a lower end to grow a single crystal. In the initial stage of crystal growth, the upper end of the work coil is made to coincide with the height of the upper end of the crucible, the temperature gradient in the direction of the pulling axis is sharply increased, and the work coil is raised at the same speed as the growth speed as the crystal is pulled up. A method for growing a single crystal, wherein the temperature is reduced.
【請求項2】 耐火物内にルツボを載置するとともに、
前記ルツボの外周側に高周波誘導用のワークコイルを上
下に移動できるように設け、前記ルツボ内の融液を下端
に種結晶を有する引上げ軸を用いて引き上げて単結晶の
育成を行う単結晶育成装置であり、 前記ルツボの上方に設けられた、下側から上側に向かう
につれて縮径するメガホン型のアフターヒータと、前記
ルツボの周辺を包囲する耐火製の覆いと、前記耐火物、
アフターヒータ及びワークコイルを少なくとも包囲する
外囲器とを具備することを特徴とする単結晶育成装置。
2. A crucible is placed in a refractory,
A single-crystal growing method in which a work coil for high-frequency induction is provided on the outer peripheral side of the crucible so as to be able to move up and down, and the melt in the crucible is pulled up using a pulling shaft having a seed crystal at a lower end to grow a single crystal. A device, provided above the crucible, a megaphone-type after-heater whose diameter decreases from the lower side to the upper side, a refractory cover surrounding the periphery of the crucible, and the refractory,
An apparatus for growing a single crystal, comprising: an afterheater and an envelope surrounding at least the work coil.
JP10220427A 1998-08-04 1998-08-04 Method and equipment for growing single crystal Withdrawn JP2000053491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10220427A JP2000053491A (en) 1998-08-04 1998-08-04 Method and equipment for growing single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10220427A JP2000053491A (en) 1998-08-04 1998-08-04 Method and equipment for growing single crystal

Publications (1)

Publication Number Publication Date
JP2000053491A true JP2000053491A (en) 2000-02-22

Family

ID=16750954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10220427A Withdrawn JP2000053491A (en) 1998-08-04 1998-08-04 Method and equipment for growing single crystal

Country Status (1)

Country Link
JP (1) JP2000053491A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004083407A (en) * 2002-08-24 2004-03-18 Carl Zeiss Stiftung Method and device for growing corundum single crystal
JP2012082118A (en) * 2010-10-14 2012-04-26 Sumitomo Metal Mining Co Ltd Method of growing oxide single crystal
WO2021008159A1 (en) * 2019-07-12 2021-01-21 中国电子科技集团公司第二十六研究所 Coil-movable temperature field structure suitable for czochralski method, and single crystal growth method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004083407A (en) * 2002-08-24 2004-03-18 Carl Zeiss Stiftung Method and device for growing corundum single crystal
JP2012082118A (en) * 2010-10-14 2012-04-26 Sumitomo Metal Mining Co Ltd Method of growing oxide single crystal
WO2021008159A1 (en) * 2019-07-12 2021-01-21 中国电子科技集团公司第二十六研究所 Coil-movable temperature field structure suitable for czochralski method, and single crystal growth method

Similar Documents

Publication Publication Date Title
KR101708131B1 (en) SiC SINGLE CRYSTAL INGOT AND PRODUCTION METHOD THEREFOR
JPH09286692A (en) Apparatus for producing semiconductor single crystal and production of semiconductor single crystal
CN108531990A (en) Single-crystal manufacturing apparatus
WO2011062092A1 (en) Single crystal pulling apparatus
WO2003089697A1 (en) Single crystal silicon producing method, single crystal silicon wafer producing method, seed crystal for producing single crystal silicon, single crystal silicon ingot, and single crystal silicon wafer
JP3086850B2 (en) Method and apparatus for growing single crystal
JP2010024120A (en) Silicon single crystal and its growing method
JP2973917B2 (en) Single crystal pulling method
JPS61247683A (en) Pulling device for single crystal sapphire
JP2000053491A (en) Method and equipment for growing single crystal
TWI301858B (en)
JP3132412B2 (en) Single crystal pulling method
US5063986A (en) Method for manufacturing alloy rod having giant magnetostriction
JP7310339B2 (en) Method for growing lithium niobate single crystal
CN103266346B (en) The growth apparatus of a kind of crystal Pulling YVO4 crystal and growing method based on this growth apparatus
JPH10251090A (en) Oxide single crystal and its growth method
JP3900827B2 (en) Quartz crucible for single crystal pulling, single crystal pulling apparatus and single crystal pulling method
JP4154745B2 (en) Single crystal silicon manufacturing method and manufacturing apparatus
JP3152322B2 (en) Twinless (Nd, La) GaO3 single crystal and method for producing the same
JPH09278592A (en) Production of aluminum oxide single crystal containing titanium
JPH01160892A (en) Method for controlling oxygen concentration in silicon single crystal
JPH0692781A (en) Production of single crystal and apparatus therefor
CN108441937A (en) The crystal growing apparatus of included melt agitating function
JPH08133883A (en) Single crystal growth apparatus
JP6992488B2 (en) Crucible for growing single crystals

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051004