JP2000053476A - Production of chemical prestress member - Google Patents

Production of chemical prestress member

Info

Publication number
JP2000053476A
JP2000053476A JP14504099A JP14504099A JP2000053476A JP 2000053476 A JP2000053476 A JP 2000053476A JP 14504099 A JP14504099 A JP 14504099A JP 14504099 A JP14504099 A JP 14504099A JP 2000053476 A JP2000053476 A JP 2000053476A
Authority
JP
Japan
Prior art keywords
cement
concrete
curing
chemical prestress
expanding material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14504099A
Other languages
Japanese (ja)
Inventor
Teruhiro Hori
彰宏 保利
Eiichi Tazawa
栄一 田澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP14504099A priority Critical patent/JP2000053476A/en
Publication of JP2000053476A publication Critical patent/JP2000053476A/en
Pending legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a member into which large chemical prestress is introduced with little loss in the chemical prestress by kneading a cement compsn. containing a cement and an expanding material to prepare a concrete, forming the obtd. concrete and ageing it in hot water at a specified temp. SOLUTION: A cement compsn. containing a cement preferably of 100 pts.wt. and an expanding material (e.g. hauyne-base, calcium oxide-base material) preferably of 2 to 16 pts.wt. is kneaded to prepare a concrete, which is formed and aged in a hot water at >100 deg.C, preferably at 120 to 200 deg.C, preferably in a vertical pressure chamber. As a result, large expansion strain and compression strength can be obtd. at a lower temp. and in a shorter retention time compared to the process of autoclave ageing. Since hardening of the cement is significantly accelerated, specified compression strength can be obtd. in a short time. Further, specified chemical prestress can be introduced so that the use amt. of the expanding material can be suppressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、土木・建築分野に
おいて使用されるケミカルプレストレス部材の製造方
法、詳しくは、導入ケミカルプレストレス量が大きく、
ケミカルプレストレスの損失が小さい高強度なケミカル
プレストレス部材の製造方法に関する。
The present invention relates to a method for producing a chemical prestressing member used in the field of civil engineering and construction, and more particularly, to a method of introducing a large amount of chemical prestress,
The present invention relates to a method for manufacturing a high-strength chemical prestress member having a small loss of chemical prestress.

【0002】[0002]

【従来の技術とその課題】現在、ヒューム管やボックス
カルバートなどに利用されている部材には、その曲げ耐
力が向上するため、膨張材を混入してケミカルプレスト
レスが導入されている(第7回コンクリート工学年次講
演会論文集、33〜36頁、1985)。しかしながら、このよ
うなケミカルプレストレスは、材齢の経過と共に部材に
生じるクリープ、乾燥収縮、及び鉄筋のリラクセーショ
ン等によって損失するといった課題があった(長瀧重義
監修、コンクリートの高性能化、技報堂発行、43〜46
頁、1997)。
2. Description of the Related Art At present, chemical prestress is introduced into members used for fume pipes, box culverts, and the like by incorporating an expandable material in order to improve the bending strength (No. 7). Proceedings of the Annual Conference of Concrete Engineering, 33-36, 1985). However, there was a problem that such chemical prestress was lost due to creep, drying shrinkage, relaxation of reinforcing steel, etc., which occurred in the members with the passage of age (supervised by Shigeyoshi Nagataki, high-performance concrete, published by Gihodo) , 43-46
P. 1997).

【0003】一方、コンクリートの初期強度を高める方
法として、現在工業的に利用されているオートクレーブ
養生(高温高圧蒸気養生)は、養生終了以降の乾燥収縮
が低減され、また、養生終了以降のクリープも軽減され
ることから、養生後のケミカルプレストレスの損失に対
しては効果的であった。しかしながら、養生中に部材に
著しい収縮ひずみが生じたり、高温下において、鉄筋の
リラクセーションが大きくなることによって、ケミカル
プレストレスの大半が損失するといった課題があった
(中村 厚、最近のセメント、コンクリート製品、工業
と製品、No.53 、42〜53頁)。
[0003] On the other hand, as a method for increasing the initial strength of concrete, autoclave curing (high-temperature, high-pressure steam curing) which is currently used industrially, reduces drying shrinkage after curing is completed, and also reduces creep after curing is completed. Because of the reduction, it was effective for the loss of chemical prestress after curing. However, there has been a problem that most of the chemical pre-stress is lost due to remarkable shrinkage strain of the member during curing and the relaxation of the reinforcing bar at high temperatures (atsushi Nakamura, recent cement and concrete products). , Industry and Products, No. 53, pp. 42-53).

【0004】本発明者は、前記課題を解決すべく鋭意検
討した結果、特定の方法で部材を養生することにより、
前記課題が解決でき、ケミカルプレストレスが導入でき
る知見を得て本発明を完成するに至った。
The inventor of the present invention has conducted intensive studies to solve the above-mentioned problems, and as a result, by curing the members by a specific method,
The present invention has been completed by obtaining the knowledge that the above-mentioned problem can be solved and chemical prestress can be introduced.

【0005】[0005]

【課題を解決するための手段】即ち、本発明は、セメン
トと膨張材とを含有するセメント組成物を混練したコン
クリートを成型し、100℃を越える高温水中で養生する
ことを特徴とするケミカルプレストレス部材の製造方法
である。
That is, the present invention provides a chemical preform which comprises molding a concrete kneaded with a cement composition containing cement and an expanding material, and curing the mixture in high-temperature water exceeding 100 ° C. This is a method for manufacturing a stress member.

【0006】以下、本発明をさらに詳しく説明する。Hereinafter, the present invention will be described in more detail.

【0007】本発明に係るケミカルプレストレス部材
は、養生中、常に部材全体が100℃を越える高温水に接
し、雰囲気は高温高圧を保つものである。
In the chemical prestressing member according to the present invention, during curing, the entire member is always in contact with high-temperature water exceeding 100 ° C., and the atmosphere is kept at high temperature and high pressure.

【0008】ここで高温水とは、温度が100℃を越える
水であり、120〜200℃が好ましく、140〜180℃がより好
ましい。100℃以下ではケミカルプレストレスの損失の
少ないケミカルプレストレス部材を得ることができない
可能性があり、200℃を越えると、本発明の効果は得ら
れるが、経済的に好ましくない。
[0008] Here, the high-temperature water is water having a temperature exceeding 100 ° C, preferably from 120 to 200 ° C, more preferably from 140 to 180 ° C. If the temperature is lower than 100 ° C., it may not be possible to obtain a chemical prestressed member with a small loss of chemical prestress.

【0009】本発明で使用する高温水は、水を高温高圧
下に置くことにより調製でき、高温水によってケミカル
プレストレス部材を製造する際には、気密な圧力容器が
必要となる。その材質は気密性を有する耐圧容器であれ
ば特に制限されるものではなく、従来のオートクレーブ
装置として用いられてきた圧力釜等も使用可能である。
しかしながら、通常このオートクレーブ装置として用い
られてきた圧力釜等の圧力容器は横置き型であるため、
養生終了後ハッチを開けた際に高温水が流出することが
考えられるので、例えば、縦型の圧力容器に高温水を満
たし、その中に部材を沈めた状態で養生することが好ま
しい。
The high-temperature water used in the present invention can be prepared by placing the water under a high temperature and a high pressure. When a chemical prestress member is manufactured by using the high temperature water, an airtight pressure vessel is required. The material is not particularly limited as long as it is a pressure-resistant container having airtightness, and a pressure cooker or the like used as a conventional autoclave device can also be used.
However, since the pressure vessel such as a pressure cooker that has been usually used as the autoclave device is of a horizontal type,
It is conceivable that high-temperature water flows out when the hatch is opened after curing is completed. For example, it is preferable to fill a vertical pressure vessel with high-temperature water and cure the member in a state where the member is submerged therein.

【0010】本発明において使用するセメント組成物
は、セメントと膨張材を含有するものである。ここで、
セメントとしては、普通、低熱、早強、及び超早強等の
各種ポルトランドセメント、これらポルトランドセメン
トに、シリカ、高炉スラグ、又はフライアッシュを混和
した各種混合セメントなどが使用可能である。また、ポ
ルトランドセメントに、シリカ、高炉スラグ、又はフラ
イアッシュを、JIS 等によって定められた混和率を越え
て配合したものも使用可能であり、シリカフューム等の
活性シリカや、メタカオリン等といった粘土鉱物の焼成
物や未焼成物を混合したセメントも使用可能である。
[0010] The cement composition used in the present invention contains cement and an expanding material. here,
As the cement, various portland cements such as ordinary, low heat, high strength, and super high strength, and various mixed cements obtained by mixing silica, blast furnace slag, or fly ash with these portland cements can be used. It is also possible to use a mixture of Portland cement with silica, blast furnace slag, or fly ash exceeding a mixing ratio determined by JIS or the like.Activated silica such as silica fume or clay mineral such as metakaolin can be used. It is also possible to use a cement mixed with a material or an unfired material.

【0011】本発明で使用する膨張材は、アウイン系や
酸化カルシウム系などの膨張材が使用可能である。膨張
材の使用量は、セメント100重量部に対して、2〜16重
量部が好ましく、4〜12重量部がより好ましい。2重量
部未満では、本発明の効果が得られないおそれがあり、
16重量部を越えると過度に膨張が生じ、膨張破壊につな
がるおそれがある。
As the expanding material used in the present invention, an expanding material such as an autoin type or a calcium oxide type can be used. The use amount of the expanding material is preferably 2 to 16 parts by weight, more preferably 4 to 12 parts by weight, based on 100 parts by weight of cement. If the amount is less than 2 parts by weight, the effects of the present invention may not be obtained,
Exceeding 16 parts by weight may cause excessive expansion, leading to expansion failure.

【0012】本発明で使用する骨材の種類や量は特に制
限されるものではなく、通常コンクリート分野で使用さ
れる程度のものの使用が可能である。また、水も特に制
限されるものではなく、通常コンクリート分野で使用さ
れる程度のものの使用が可能である。
The type and amount of the aggregate used in the present invention are not particularly limited, and those which are generally used in the concrete field can be used. In addition, water is not particularly limited, and water that is generally used in the concrete field can be used.

【0013】これらの材料を通常の方法で混練し、型枠
に投入して成型する。部材を成型した後、本発明の養生
を行うまで前置きする時間(前置き時間)は、ケミカル
プレストレス部材が型枠から脱型できる材齢以降であれ
ば特に制限されるものではない。高温水まで加熱する昇
温時間は特に限定されるものではないが1〜5時間程度
が好ましく、3時間程度がより好ましい。最高温度に達
してからその温度を保持する時間(保持時間)は特に限
定されるものではないが1〜8時間が好ましく、2〜5
時間程度がより好ましい。また、その後常温まで冷却す
る時間(冷却時間)は、ケミカルプレストレス部材が常
温まで冷却されるに充分な時間であれば特に限定される
ものではない。
[0013] These materials are kneaded by a usual method, put into a mold and molded. There is no particular limitation on the pre-setting time (pre-setting time) after the molding of the member until the curing according to the present invention is performed, as long as the chemical pre-stress member can be removed from the mold after the material age. The heating time for heating to high-temperature water is not particularly limited, but is preferably about 1 to 5 hours, more preferably about 3 hours. The time for holding the temperature after reaching the maximum temperature (holding time) is not particularly limited, but is preferably 1 to 8 hours, and 2 to 5 hours.
Time is more preferable. Further, the time for cooling to the room temperature thereafter (cooling time) is not particularly limited as long as the time is sufficient for the chemical prestress member to be cooled to the room temperature.

【0014】[0014]

【実施例】以下、実験例により本発明を詳細に説明す
る。
Hereinafter, the present invention will be described in detail with reference to experimental examples.

【0015】実験例1 水/(セメント+膨張材)比(W/B)35%、細骨材率
(S/a)42%で、表1に示すセメント量と膨張材量、
細骨材684kg/m3、粗骨材946kg/m3、水173kg/m3、及び減
水剤6.38kg/m3のコンクリート配合を用いて、コンクリ
ートを調製し、材齢1日で脱型後、180℃、10気圧の高
温水中で5時間養生し、その硬化体の拘束状態での長さ
変化の測定を行い、ケミカルプレストレスを算出し、曲
げ強度と圧縮強度を測定した。結果を表1に併記する。
なお、比較のため、材齢1日で脱型後、180℃、10気圧
のオートクレーブ養生5時間と、材齢1日で脱型後、20
℃、1気圧の常温水中養生48時間を同様に行った。
Experimental Example 1 Water / (cement + expanding material) ratio (W / B) 35%, fine aggregate ratio (S / a) 42%,
Fine aggregate 684kg / m 3, coarse aggregate 946kg / m 3, water 173 kg / m 3, and with a concrete mix of water reducing agent 6.38kg / m 3, a concrete was prepared, after demolding at 1 day age of The cured product was cured in high-temperature water at 180 ° C. and 10 atm for 5 hours, the length change of the cured product in a restrained state was measured, the chemical prestress was calculated, and the flexural strength and compressive strength were measured. The results are also shown in Table 1.
For comparison, after demolding at a material age of 1 day, autoclave curing at 180 ° C. and 10 atm for 5 hours and after demolding at a material age of 1 day,
Curing was carried out for 48 hours at room temperature in water at 1 ° C. and 1 atm.

【0016】<使用材料> セメント :普通ポルトランドセメント、比重3.16、ブ
レーン値3,220cm2/g 膨張材a :酸化カルシウム系、市販品、ブレーン値3,
100cm2/g 膨張材b :アウイン系膨張材、市販品、ブレーン値2,
950cm2/g 膨張材c :アウイン系膨張材、試薬一級のCaCO3、Al2
O3、及びCaSO4をCaO/Al2O3モル比 6.5〜18で、CaSO4/Al
2O3モル比1.5〜4となるよう配合し、1,350℃の電気炉
で1時間焼成し、生成したクリンカーをブレーン値3,00
0±200cm2/gに調整 細骨材 :風化花崗岩系山砂、比重2.56、吸水率1.8
7、粗粒率2.45 粗骨材 :流紋岩質砕石、比重2.67、吸水率1.20、粗
粒率7.19、最大骨材寸法20mm 減水剤 :ポリカルボン酸系高分子界面活性剤、市販
<Materials used> Cement: ordinary Portland cement, specific gravity 3.16, Blaine value 3,220 cm 2 / g Expanding material a: Calcium oxide type, commercial product, Blaine value 3,
100cm 2 / g Expanding material b: Awyn type expanding material, commercial product, Blaine value 2,
950cm 2 / g Expanding material c: Awyn-based expanding material, first-class reagent CaCO 3 , Al 2
O 3 , and CaSO 4 at a CaO / Al 2 O 3 molar ratio of 6.5 to 18, CaSO 4 / Al
The 2O 3 molar ratio was blended to be 1.5 to 4 and calcined in an electric furnace at 1,350 ° C. for 1 hour.
Adjusted to 0 ± 200cm 2 / g Fine aggregate: weathered granite mountain sand, specific gravity 2.56, water absorption 1.8
7. Coarse grain ratio 2.45 Coarse aggregate: Rhyolite crushed stone, specific gravity 2.67, water absorption 1.20, coarse particle ratio 7.19, maximum aggregate size 20mm Water reducing agent: Polycarboxylic acid polymer surfactant, commercially available

【0017】<測定方法> 長さ変化率:JIS A 6202-1980 「コンクリート膨張材」
参考1「膨張コンクリートの拘束膨張及び収縮試験方法
B法」に準拠して、拘束状態、20℃一定の条件下で、
養生を行う直前(材齢1日)と、冷却時間が終了した直
後(材齢3日)に長さを測定し、その差を長さ変化と
し、長さ変化を測定間距離である 385mmで除した値を長
さ変化率とした。 ケミカルプレストレス:σ=εEs(As/Ac)(た
だし、σはケミカルプレストレス、εは長さ変化率測定
方法により測定したコンクリート部材のひずみ(=長さ
変化率)、Esは鋼材の弾性係数で2.06×105N/mm2、A
sは鋼材の断面積で 1.1×102mm2、Acはコンクリート
部材の断面積で99×102mm2)の式より算出 曲げ強度 :JIS A 6202-1980「コンクリート膨張材」
参考1「膨張コンクリートの拘束膨張及び収縮試験方法
B法」に準拠して供試体を作成し、材齢1日で脱型
し、その後、各々養生を行い、JIS A 1106「コンクリー
トの曲げ強度試験方法」に準拠して材齢3日の曲げ強度
を測定、また、各々の養生後、温度20℃、湿度50%RHの
条件で養生を行い、材齢28日で曲げ強度を測定 圧縮強度 :JIS A 1108「コンクリートの圧縮強度試験
方法」に準拠、成型後材齢1日で脱型し、材齢3日で測
<Measurement method> Length change rate: JIS A 6202-1980 "Concrete expansion material"
In accordance with Reference 1 “Test method for restraining expansion and shrinkage of expansive concrete, Method B”
The length is measured immediately before curing (one day of age) and immediately after the cooling time ends (three days of age), and the difference is defined as the length change, and the length change is measured at the measurement distance of 385 mm. The value obtained by the division was defined as the length change rate. Chemical prestress: σ = εEs (As / Ac) (where σ is the chemical prestress, ε is the strain of the concrete member measured by the length change rate measuring method (= length change rate), and Es is the elastic modulus of the steel material 2.06 × 10 5 N / mm 2 , A
s is the cross-sectional area of steel material 1.1 × 10 2 mm 2 , and Ac is the cross-sectional area of concrete member 99 × 10 2 mm 2 ) Bending strength: JIS A 6202-1980 “Concrete expansion material”
Reference 1 Specimens were prepared in accordance with “Method B for restraint expansion and shrinkage test of expanded concrete”, demolded at the age of 1 day, and then cured, and JIS A 1106 “Bending strength test of concrete” Method, and measure the bending strength at the age of 3 days, and after each curing, cure at a temperature of 20 ° C and a humidity of 50% RH, and measure the bending strength at the age of 28 days. Compressive strength: In accordance with JIS A 1108 "Test Method for Compressive Strength of Concrete"

【0018】[0018]

【表1】 [Table 1]

【0019】表より、本発明法を用いることでケミカル
プレストレスが多く導入され、曲げ強度が向上している
こと、また、初期に圧縮強度が発現していることが明ら
かである。
From the table, it is clear that the use of the method of the present invention introduces a large amount of chemical prestress, improves the bending strength, and expresses the compressive strength in the initial stage.

【0020】実験例2 表2に示す養生終了後、温度20℃、湿度50%RHの条件で
養生し、長さ変化率を材齢3日を基点として表2に示す
ように測定したこと以外は実験例1と同様に行った。結
果を表2に併記する。
Experimental Example 2 After completion of the curing shown in Table 2, curing was carried out under the conditions of a temperature of 20 ° C. and a humidity of 50% RH, and the rate of change in length was measured as shown in Table 2 based on a material age of 3 days. Was performed in the same manner as in Experimental Example 1. The results are also shown in Table 2.

【0021】[0021]

【表2】 [Table 2]

【0022】表から明らかなように、ケミカルプレスト
レス部材に導入された膨張ひずみは乾燥収縮下において
も長期にわたりほとんど減少しておらず、これは導入さ
れたケミカルプレストレスの損失が極めて小さいことを
示している。
As is clear from the table, the expansion strain introduced into the chemical prestress member hardly decreased over a long period of time even under dry shrinkage, which indicates that the loss of the introduced chemical prestress was extremely small. Is shown.

【0023】実験例3 セメント100重量部に対して、表3に示す膨張材bを配
合し、高温水中養生を行ったこと以外は実験例1と同様
に行った。結果を表3に併記する。
Experimental Example 3 An experiment was performed in the same manner as in Experimental Example 1 except that the expanding material b shown in Table 3 was mixed with 100 parts by weight of cement, and curing was performed in high-temperature water. The results are also shown in Table 3.

【0024】[0024]

【表3】 [Table 3]

【0025】表から明らかなように、膨張材の混入量が
多くなるにつれ膨張ひずみも大きくなる。しかしなが
ら、膨張材の混入量が多くなりすぎると曲げ強度が低下
する。
As is clear from the table, the expansion strain increases as the amount of the expanding material mixed increases. However, when the mixing amount of the expanding material is too large, the bending strength is reduced.

【0026】実験例4 表4に示すセメントと膨張材を使用し、表4に示す養生
温度と養生時間で養生し、長さ変化率と圧縮強度を測定
したこと以外は実験例1と同様に行った。結果を表4に
併記する。
Experimental Example 4 The same procedure as in Experimental Example 1 was carried out except that the cement and the expanding material shown in Table 4 were used, and cured at the curing temperature and the curing time shown in Table 4, and the length change rate and the compressive strength were measured. went. The results are also shown in Table 4.

【0027】[0027]

【表4】 [Table 4]

【0028】表から、100℃を越える養生温度で高温水
中養生を行うことにより、従来の180℃、10atmのオート
クレーブ養生に比較して、大きな膨張ひずみと高い圧縮
強度を得ることができることが明らかである。また、保
持時間が一定の場合、養生温度は、120〜200℃が好まし
く、160℃では、最も大きな膨張ひずみと圧縮強度が得
られることが明らかである。さらに、養生温度が一定の
場合、保持時間は、2〜5時間で大きな膨張ひずみと圧
縮強度が得られることが明らかである。
From the table, it is clear that by performing high-temperature water curing at a curing temperature exceeding 100 ° C., a larger expansion strain and higher compressive strength can be obtained as compared with the conventional autoclave curing at 180 ° C. and 10 atm. is there. In addition, when the holding time is constant, the curing temperature is preferably from 120 to 200 ° C, and it is clear that the largest expansion strain and compressive strength are obtained at 160 ° C. Further, when the curing temperature is constant, it is apparent that a large expansion strain and a high compressive strength can be obtained when the holding time is 2 to 5 hours.

【0029】[0029]

【発明の効果】本発明法を用いてコンクリート部材を製
造することにより、同一配合を用いた他の養生方法に比
較して、導入されるケミカルプレストレス量が大きくな
り、さらにケミカルプレストレスの損失が少ない部材を
得ることができる。また、従来のオートクレーブ養生に
比較して、低い養生温度と短い保持時間で、大きな膨張
ひずみと圧縮強度を得ることができる。そして、セメン
トの硬化を著しく促進するため、短期間で所定の圧縮強
度を得ることができる。さらに、所定のケミカルプレス
トレスを導入することができるため膨張材の使用量を抑
えることが可能であるなどの効果を奏する。
By producing a concrete member using the method of the present invention, the amount of introduced chemical prestress is increased and the loss of chemical prestress is increased as compared with other curing methods using the same composition. Can be obtained. Further, compared with the conventional autoclave curing, a large curing strain and a large compressive strength can be obtained with a lower curing temperature and a shorter holding time. And, since the hardening of the cement is remarkably promoted, a predetermined compressive strength can be obtained in a short period of time. Further, since a predetermined chemical pre-stress can be introduced, it is possible to suppress the amount of use of the expanding material.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C04B 111:34 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C04B 111: 34

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 セメントと膨張材とを含有するセメント
組成物を混練したコンクリートを成型し、100℃を越え
る高温水中で養生することを特徴とするケミカルプレス
トレス部材の製造方法。
1. A method for producing a chemical prestressing member, comprising molding concrete kneaded with a cement composition containing cement and an expansive material and curing it in high-temperature water exceeding 100 ° C.
JP14504099A 1998-06-04 1999-05-25 Production of chemical prestress member Pending JP2000053476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14504099A JP2000053476A (en) 1998-06-04 1999-05-25 Production of chemical prestress member

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP15568798 1998-06-04
JP10-155687 1998-06-04
JP14504099A JP2000053476A (en) 1998-06-04 1999-05-25 Production of chemical prestress member

Publications (1)

Publication Number Publication Date
JP2000053476A true JP2000053476A (en) 2000-02-22

Family

ID=26476294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14504099A Pending JP2000053476A (en) 1998-06-04 1999-05-25 Production of chemical prestress member

Country Status (1)

Country Link
JP (1) JP2000053476A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007099544A (en) * 2005-10-03 2007-04-19 Univ Chuo Curing method in highly durable cement based formed article production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007099544A (en) * 2005-10-03 2007-04-19 Univ Chuo Curing method in highly durable cement based formed article production
JP4694937B2 (en) * 2005-10-03 2011-06-08 学校法人 中央大学 Curing method in the manufacture of highly durable cement-based molded products

Similar Documents

Publication Publication Date Title
Erdem et al. Setting time: an important criterion to determine the length of the delay period before steam curing of concrete
US8617452B2 (en) Methods of making a construction material with a voltage
JP2021509100A (en) Methods to improve mechanical strength and CO2 storage in cement-based products
EP0184346B1 (en) Process for producing cement shapings from hydraulic cement composition
CN108658485B (en) Hydraulic cement clinker, preparation method thereof, hydraulic cement and application thereof
JP5872165B2 (en) Explosion-preventing ultra-high-strength precast concrete and method for producing the same
Komljenović Mechanical strength and Young's modulus of alkali-activated cement-based binders
JP2018168003A (en) Method for producing high-strength precast concrete
US4187118A (en) Concrete composition for making concrete moldings and method for making such concrete moldings
AU739884B2 (en) Cement composition, concrete using the same and method of manufacturing concrete product
Scheinherrová et al. Thermal properties of high-performance concrete containing fine-ground ceramics as a partial cement replacement
JP2000053476A (en) Production of chemical prestress member
JP2000301531A (en) Manufacture of concrete product
JP2004217514A (en) Concrete material, concrete structure, and its manufacturing method
JP2001294460A (en) Ultra high-early-strength expansive admixture for concrete and production process of concrete product using the same
JP6591729B2 (en) Concrete production method
JP5863296B2 (en) Method for producing ultra-high-strength cement-based hardened body
JP3844391B2 (en) Method for producing mortar or concrete member
JP2002249386A (en) Method for high temperature steam curing of concrete product
JPH05116996A (en) Cement admixture and production of cement hardened body
JP2007153686A (en) Wallastonite based calcium silicate lightweight panel and its production method
JPH11228251A (en) Production of light-weight foamed concrete
JP2019084706A (en) Curing method of cement molded body
JPH07242472A (en) Production of large-sized lightweight foamed concrete panel
JPH05310454A (en) Production of light-weight concrete having low shrinkage

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070220