JP2000047076A - Spacer for optical fiber cable and its production - Google Patents

Spacer for optical fiber cable and its production

Info

Publication number
JP2000047076A
JP2000047076A JP10213153A JP21315398A JP2000047076A JP 2000047076 A JP2000047076 A JP 2000047076A JP 10213153 A JP10213153 A JP 10213153A JP 21315398 A JP21315398 A JP 21315398A JP 2000047076 A JP2000047076 A JP 2000047076A
Authority
JP
Japan
Prior art keywords
spacer
coating layer
optical fiber
outer periphery
tensile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10213153A
Other languages
Japanese (ja)
Other versions
JP3502273B2 (en
Inventor
Akira Hidaka
章 日高
Toku Ishii
徳 石井
Masaru Harada
賢 原田
Tomoshi Shimomura
知史 下村
Hideyuki Iwata
秀行 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Ube Exsymo Co Ltd
Original Assignee
Nippon Telegraph and Telephone Corp
Ube Nitto Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Ube Nitto Kasei Co Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP21315398A priority Critical patent/JP3502273B2/en
Publication of JP2000047076A publication Critical patent/JP2000047076A/en
Application granted granted Critical
Publication of JP3502273B2 publication Critical patent/JP3502273B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the tensile performance of a PFRP tensile strength body of a spacer for a optical fiber cable. SOLUTION: This spacer 10 is provided with: a tensile strength body 15 consisting of a PFRP line 12 formed with PBO fiber as reinforcing fiber, and a primary coating layer 14 formed on the outer periphery of the PFRP line 12 from a thermoplastic resin; first, second and third preparatory coating layers 16, 17 and 18, separately and successively formed in three stages on the outer periphery of the primary coating layer 14, in that order; and a spacer main body coating layer 20 formed on the periphery of the third preparatory coating layer 18; wherein grooves 22 each of which has a specific shape and is used for receiving optical fiber, are formed in the spacer main body coating layer 20 and also, in order to secure the strength of the PFRP line, the thickness of the first preparatory coating layer 16 is adjusted to <=2 mm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光ファイバケーブ
ル用スペーサおよびその製造方法に関し、とりわけ、ス
ペーサの引張性能を向上させる技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spacer for an optical fiber cable and a method for manufacturing the same, and more particularly to a technique for improving the tensile performance of the spacer.

【従来の技術】光ファイバケーブルには、作業上の安全
を確保するため、あるいは、高圧電力線付近での電界,
磁界の影響を受けないようにするため、ケーブル部材の
非金属(ノンメタリック)化が求められている。
2. Description of the Related Art An optical fiber cable is provided with an electric field in the vicinity of a high-voltage power line in order to secure work safety.
In order to prevent the cable member from being affected by the magnetic field, it is required to make the cable member non-metallic (non-metallic).

【0002】また、鋼線等の比重の大きい金属の抗張力
体に代えて、FRP等のノンメタリックとすれば、軽量
化され、ケーブルの敷設長を伸ばすことが可能となり、
工事の省力化、工費の削減にも寄与する。
[0002] If a non-metallic material such as FRP is used instead of a metal tensile strength member such as a steel wire having a large specific gravity, the weight can be reduced and the cable laying length can be extended.
It also contributes to labor saving of construction and reduction of construction cost.

【0003】このようなノンメタリックケーブルの抗張
力体には、高度の引張特性が要求されるため、15,0
00 kg/mm以上の引張弾性率を有するポリパラフ
ェニレンベンゾビスオキサゾール(以下、PBOと称
す)繊維を補強繊維とするFRP(以下PFRPという
ことがある)が適している。
[0003] Such a non-metallic cable strength member is required to have a high tensile property, so
FRP (hereinafter, sometimes referred to as PFRP) using polyparaphenylene benzobisoxazole (hereinafter, referred to as PBO) fibers having a tensile modulus of not less than 00 kg / mm 2 as reinforcing fibers is suitable.

【0004】[0004]

【発明が解決しようとする課題】しかし、PFRPを抗
張力体とするスペーサにおいて、FRP外径を小さく出
来ることで可撓性については、大幅に改善され、ケーブ
ル敷設の作業性は向上したが、抗張力性すなわち引張性
能は、PBO繊維の有する引張弾性率から計算される引
張性能と比較して、低下する傾向にあった。
However, in a spacer using PFRP as a tensile strength member, flexibility can be greatly improved by reducing the outer diameter of the FRP, and workability of laying a cable has been improved. The property, that is, the tensile performance, tended to decrease as compared with the tensile performance calculated from the tensile modulus of the PBO fiber.

【0005】この原因として、抗張力体の外周に溝形状
を確保するため予備被覆を施す際あるいは、溝を形成す
べくスペーサ本体被覆を施す際に、溶融押出された被覆
部の冷却固化に伴う熱収縮により、抗張力体の長手方向
に亘って、圧縮力が作用し、PFRPが圧縮応力を受け
ていることが考えられる。
[0005] The reason for this is that when pre-coating is performed to secure the groove shape on the outer periphery of the tensile strength member, or when the spacer body is coated to form the groove, the heat generated by cooling and solidification of the melt-extruded coating portion. It is conceivable that the contraction causes a compressive force to act in the longitudinal direction of the tensile strength member, and that the PFRP receives a compressive stress.

【0006】つまり、従来におけるPFRP線を抗張力
体として用いても、光ファイバケーブルの重要な仕様で
ある、0.2%伸張時の応力が低下し、光ファイバを有
効に保護できないという問題があった。
That is, even if a conventional PFRP wire is used as a tensile strength member, the stress at the time of 0.2% elongation, which is an important specification of an optical fiber cable, is reduced, and there is a problem that the optical fiber cannot be effectively protected. Was.

【0007】そこで、PFRP線を抗張力体とする光フ
ァイバケーブル用スペーサにおいて、引張性能に優れた
ものを提供することを目的として鋭意研究し本発明を完
成した。
[0007] Accordingly, the present inventors have made intensive studies to provide a spacer for an optical fiber cable using a PFRP wire as a tensile strength member and having excellent tensile performance, and completed the present invention.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明では、中央に抗張力体を配置し外周に熱可塑
性樹脂で螺旋状溝を形成してなる光ファイバケーブル用
スペーサにおいて、前記抗張力体に、ポリパラフェニレ
ンベンゾビスオキサゾール(PBO)繊維に未硬化状熱
硬化性樹脂を含浸した未硬化状FRPの外周を熱可塑性
樹脂で被覆した一次被覆層を形成した状態で内部の未硬
化状熱硬化性樹脂を硬化したものであって、0.2%伸
張時応力値から計算できる見掛けの引張弾性率が800
0kg/mm以上になるようにした。また、本発明の
光ファイバケーブル用スペーサは、前記抗張力体の一次
被覆層の外周には予備被覆層が複数回に分けて施され、
その一回目の厚みが2mm以下にすることができる。さ
らに、本発明の光ファイバケーブル用スペーサは、前記
PFRPのPBO繊維体積含有率を67〜69%の範囲
内に設定することができる。また、前記抗張力体のさら
により好ましい物性範囲としては、0.2%伸張時応力
値から計算できる見掛けの引張弾性率が10000kg
/mm以上になるようにすることである。本発明の製
造方法は、所定本数のPBO繊維に熱硬化性樹脂を含浸
し、これを絞り成形して未硬化状線条物とした後、溶融
押出機のヘッド部に導いて、その外周を溶融状熱可塑性
樹脂で環状に一次被覆し、これを直ちに冷却し、次いで
加熱硬化槽中で内部の熱硬化性樹脂を加熱硬化し、この
一次被覆層の外周に2mm以下の厚みで一次被覆層の熱
可塑性樹脂と相溶性を有する樹脂で予備被覆をした後、
熱可塑性樹脂でスペーサ本体被覆を施す。
According to the present invention, there is provided an optical fiber cable spacer comprising a tensile member disposed at the center and a spiral groove formed of a thermoplastic resin on the outer periphery. Uncured FRP in which uncured thermosetting resin impregnated with polyparaphenylene benzobisoxazole (PBO) fiber is impregnated with thermoplastic resin on the body, and the inside of the uncured FRP is formed with thermoplastic resin. It is obtained by curing a thermosetting resin and has an apparent tensile modulus of 800, which can be calculated from the stress value at 0.2% elongation.
0 kg / mm 2 or more. Further, the optical fiber cable spacer of the present invention, a preliminary coating layer is applied to the outer periphery of the primary coating layer of the tensile strength member in a plurality of times,
The first thickness can be 2 mm or less. Further, in the optical fiber cable spacer of the present invention, the PBO fiber volume content of the PFRP can be set in the range of 67 to 69%. Further, as an even more preferable physical property range of the tensile strength member, an apparent tensile elastic modulus which can be calculated from a stress value at 0.2% elongation is 10,000 kg.
/ Mm 2 or more. According to the production method of the present invention, a predetermined number of PBO fibers are impregnated with a thermosetting resin, which is drawn and formed into an uncured filament, and then guided to a head portion of a melt extruder. A primary coating is formed in a ring shape with a molten thermoplastic resin, which is immediately cooled, and then the internal thermosetting resin is heat-cured in a heat-curing tank. The primary coating layer having a thickness of 2 mm or less is formed on the outer periphery of the primary coating layer. After pre-coating with a resin compatible with the thermoplastic resin of
The spacer body is coated with a thermoplastic resin.

【0009】[0009]

【発明の実施の形態】以下に、本発明の実施の形態につ
いて説明する。本発明では、FRP抗張力線の補強繊維
に、高引張弾性率を有するポリパラフェニレンベンゾビ
スオキサゾール(PBO)繊維を用いる。
Embodiments of the present invention will be described below. In the present invention, a polyparaphenylene benzobisoxazole (PBO) fiber having a high tensile modulus is used as the reinforcing fiber of the FRP tensile strength line.

【0010】PBO繊維を用いることによって、PBO
繊維が高引張弾性率を有しているので、所要の繊維断面
積が少なくて済み、その結果、FRPの細径化、軽量化
が図られるからである。
[0010] By using PBO fibers, PBO fibers can be used.
Because the fiber has a high tensile modulus, the required fiber cross-sectional area can be reduced, and as a result, the diameter and weight of the FRP can be reduced.

【0011】また、補強繊維を結着するマトリックス樹
脂には、熱硬化性樹脂を用い、熱硬化性樹脂としては、
不飽和ポリエステル樹脂、ビニルエステル樹脂が一般的
であるが、エポキシ樹脂、フェノール樹脂などであって
も良く、これらの樹脂に過酸化物等の触媒を添加して、
PBO補強繊維に含浸される。
Further, a thermosetting resin is used as a matrix resin for binding the reinforcing fibers, and the thermosetting resin is
Unsaturated polyester resin, vinyl ester resin is generally used, but epoxy resin, phenol resin, etc. may be used, and a catalyst such as peroxide is added to these resins,
Impregnated into PBO reinforcing fibers.

【0012】なお、マトリックス樹脂として、ビニルエ
ステル樹脂を使用すれば、FRPの耐熱性が図られる。
If a vinyl ester resin is used as the matrix resin, the heat resistance of the FRP can be improved.

【0013】PBO補強繊維に熱硬化性樹脂を含浸し、
所定の外径に絞り成形した後、溶融状熱可塑性樹脂で環
状に被覆して、一次被覆層を設けた未硬化状FRP単線
とする。
Impregnating the PBO reinforcing fiber with a thermosetting resin,
After drawing to a predetermined outer diameter, it is annularly coated with a molten thermoplastic resin to obtain an uncured FRP single wire provided with a primary coating layer.

【0014】一次被覆層の熱可塑性樹脂には、後のスペ
ーサ本体被覆に先立ち、螺旋状溝の形状精度を確保する
ために施される予備被覆層の熱可塑性樹脂と相溶性を有
するものを選択して使用され、被覆厚みは概ね、0.5
〜1.5mmである。
As the thermoplastic resin of the primary coating layer, a resin having compatibility with the thermoplastic resin of the preliminary coating layer applied to secure the shape accuracy of the spiral groove prior to the subsequent coating of the spacer body is selected. The coating thickness is approximately 0.5
1.51.5 mm.

【0015】被覆厚みが、0.5mm未満では、ピンホ
ール等で内部の未硬化状樹脂が漏出する危惧があり、
1.5mmを超えると、一次被覆層形成時の熱で部分的
に硬化して、FRPの物性が低下するなどの問題があ
る。
[0015] If the coating thickness is less than 0.5 mm, there is a risk that the uncured resin inside leaks through pinholes and the like,
If it exceeds 1.5 mm, there is a problem that the material is partially cured by heat at the time of forming the primary coating layer, and the physical properties of FRP are reduced.

【0016】また、予備被覆層と、スペーサ本体被覆層
とは、強度保持のため相互に融着させる必要があり、こ
の点から、相互に相溶性を有するものを選択する。
Further, the preliminary coating layer and the spacer main body coating layer need to be fused to each other in order to maintain strength, and from this viewpoint, those having mutual compatibility are selected.

【0017】なお、スペーサ本体の溝底の見なし外径が
一次被覆層の外径の1.3倍程度でスペーサ本体被覆の
溝が浅溝の場合には、必ずしも予備被覆を要しなく、直
接スペーサ本体被覆を施しても良い。
When the assumed outer diameter of the groove bottom of the spacer body is about 1.3 times the outer diameter of the primary coating layer and the groove of the spacer body coating is a shallow groove, the preliminary coating is not necessarily required, and The spacer body may be coated.

【0018】一次被覆層には、低密度ポリエチレン(L
DPE)等がPFRPの界面においてアンカー接着し易
い点で好適であり、予備被覆層、スペーサ本体被覆層に
は、低温物性にすぐれることから高密度ポリエチレン
(以下HDPEと称す)等のポリエチレン系樹脂が一般
的に奨用される。
For the primary coating layer, low density polyethylene (L
DPE) is preferred in that it easily anchor-bonds at the interface of the PFRP, and the pre-coating layer and the spacer main body coating layer are polyethylene-based resins such as high-density polyethylene (hereinafter referred to as HDPE) because of their excellent low-temperature properties. Is generally recommended.

【0019】さらに、硬化後の一次被覆層を有するPF
RPの外周に予備被覆層を施すに際して、一回目の被覆
層の厚みを2mm以下とする必要がある。
Further, a PF having a cured primary coating layer
When applying the preliminary coating layer to the outer periphery of the RP, the thickness of the first coating layer needs to be 2 mm or less.

【0020】予備被覆層の厚みが2mmを超えると、P
FRPに予備被覆層の冷却固化に伴う熱収縮力が作用し
てPFRPに圧縮力を作用せしめ引張弾性率を低下させ
るからである。
When the thickness of the pre-coating layer exceeds 2 mm, P
This is because a heat shrinkage force accompanying the cooling and solidification of the preliminary coating layer acts on the FRP, thereby applying a compression force to the PFRP, thereby lowering the tensile modulus.

【0021】抗張力体の0.2%伸張時応力値から計算
できる見掛けの引張弾性率を8000kg/mm以上
とする理由は、光ケーブルとして要求される抗張力性を
確保するためである。
The reason why the apparent tensile modulus, which can be calculated from the stress value at 0.2% elongation of the tensile strength member, is 8000 kg / mm 2 or more, is to secure the tensile strength required as an optical cable.

【0022】すなわち、光ケーブルに張力が作用した
際、光ファイバを有効に保護、担持するためには、0.
2%伸張時に所定の応力を発現する必要があり、この点
から引張弾性率8000kg/mm以上が要求され
る。
That is, in order to effectively protect and support the optical fiber when a tension acts on the optical cable, it is necessary to use a 0.1.
It is necessary to develop a predetermined stress at 2% elongation, and from this point, a tensile elastic modulus of 8000 kg / mm 2 or more is required.

【0023】なお、0.2%伸張時の見掛けの引張弾性
率は、長さ800mmサンプルの両端100mmを把持
し、荷重2000kgのロードセルが取付けられた、定
速伸張型引張試験機(新興(株)製:TOM)で、5m
m/分で引張試験を行い、その荷重−伸張曲線の0点と
10.2%伸張時応力測定点とを結ぶ直線の勾配から算
出した。
The apparent tensile elastic modulus at the time of 0.2% elongation is a constant-speed elongation type tensile tester (Shinko Co., Ltd.) equipped with a load cell having a load of 2,000 kg and holding both ends of an 800 mm sample at 100 mm. ) Made by TOM), 5m
A tensile test was performed at m / min, and the tension was calculated from the slope of a straight line connecting the zero point of the load-elongation curve and the stress measurement point at 10.2% elongation.

【0024】また、PFRPのPBO繊維体積含有率
は、67〜69%の範囲が引張性能を確保するためによ
り好適である。
The PBO fiber volume content of PFRP is more preferably in the range of 67 to 69% in order to secure the tensile performance.

【0025】PBO繊維体積含有率をこの範囲に納める
と、引張弾性率が一層向上する点で好ましい。
When the volume content of the PBO fiber is within this range, it is preferable in that the tensile modulus is further improved.

【0026】また、ポリパラフェニレンベンゾビスオキ
サゾール(PBO)繊維を補強繊維とし、0.2%伸張
時応力値から計算できる見掛けの引張弾性率が1000
0kg/mmとすることが、引張性能をより一層向上
する点で好ましい。
Further, polyparaphenylene benzobisoxazole (PBO) fiber is used as a reinforcing fiber, and an apparent tensile elastic modulus which can be calculated from a stress value at 0.2% elongation is 1000.
0 kg / mm 2 is preferable in that the tensile performance is further improved.

【0027】本発明の製造方法において、所定本数のP
BO繊維に熱硬化性樹脂を含浸し、これを絞り成形して
未硬化状線条物とした後、溶融押出機のヘッド部に導い
て、その外周を溶融状熱可塑性樹脂で環状に一次被覆
し、これを直ちに冷却し、次いで加熱硬化槽中で内部の
熱硬化性樹脂を加熱硬化する。
In the manufacturing method of the present invention, a predetermined number of P
The BO fiber is impregnated with a thermosetting resin, which is drawn and formed into an uncured filament, then led to the head of a melt extruder, and its outer periphery is primarily coated with a molten thermoplastic resin in an annular shape. This is immediately cooled, and then the thermosetting resin inside is thermoset in a thermosetting bath.

【0028】この一次被覆層の形成は、硬化を防止する
ため、冷却水を通して溶融押出機のヘッド部に取着され
た案内ジャケットに未硬化状FRPを導き、その外周に
溶融押出機ヘッド部の被覆対象の未硬化FRPの外径よ
り大なる吐出開口を有する環状ダイから、溶融状熱可塑
性樹脂を引落し状態で押出して、被覆コーンの内径が未
硬化状FRPと接触した点で冷却水槽に導いて、一次被
覆層を冷却すれば、内部の未硬化状樹脂の表面等が部分
的に硬化を開始することがない。
In order to prevent the curing, the primary coating layer is formed by guiding the uncured FRP to the guide jacket attached to the head of the melt extruder through cooling water, and to the outer periphery of the head of the melt extruder to prevent curing. From an annular die having a discharge opening larger than the outer diameter of the uncured FRP to be coated, the molten thermoplastic resin is extruded in a drawn-down state, and the coated cone is brought into contact with the uncured FRP at a point where the inner diameter of the coated cone comes into contact with the uncured FRP. By guiding and cooling the primary coating layer, the surface and the like of the uncured resin inside will not start partially curing.

【0029】引続き、この一次被覆層を有する未硬化P
FRPを、加熱硬化槽に通して内部の樹脂を硬化する
が、硬化の熱媒として高圧蒸気を使用してその温度を、
一次被覆層の熱可塑性樹脂の軟化点近傍にすると、FR
Pの硬化発熱と相まってFRPの外周と、一次被覆層内
周とが圧力下流動接触を経ることにより、硬化後におい
て、PFRPと一次被覆層とがアンカー接着した状態と
することができ、最終的に得られるスペーサにおける抗
張力体としての性能が確保される。
Subsequently, the uncured P having the primary coating layer
The FRP is passed through a heat-curing bath to cure the resin inside. The temperature is increased by using high-pressure steam as a heat medium for curing.
When the temperature is near the softening point of the thermoplastic resin of the primary coating layer, FR
The outer circumference of the FRP and the inner circumference of the primary coating layer undergo flow contact under pressure in combination with the heat generated by the curing of P, so that after curing, the PFRP and the primary coating layer can be in a state of being anchor-bonded to each other. The performance as a tensile strength member in the obtained spacer is ensured.

【0030】予備被覆層は、PFRPを硬化した後の一
次被覆層の外周に施されるが、一段目の予備被覆層の被
覆厚みは、前記の理由で2mm以下とし、一次被覆層の
熱可塑性樹脂と相溶性を有する樹脂で予備被覆する。
The pre-coating layer is applied to the outer periphery of the primary coating layer after the PFRP is cured. The coating thickness of the first-stage pre-coating layer is set to 2 mm or less for the above-mentioned reason. Pre-coat with a resin compatible with the resin.

【0031】予備被覆は、得ようとするスペーサの溝深
さに応じて、本発明の出願人が先に開示した特公平4−
81763号に記載のごとく、溝底の見なし外径との関
係で所定の外径になるよう調整するため、必要に応じて
複数回行われる。
The pre-coating is performed according to the groove depth of the spacer to be obtained.
As described in Japanese Patent No. 81763, in order to adjust the outer diameter to a predetermined outer diameter in relation to the assumed outer diameter of the groove bottom, it is performed a plurality of times as necessary.

【0032】予備被覆層の外径を然るべく調整した後、
予備被覆層と相溶性を有する熱可塑性樹脂で外周に所定
寸法形状の溝を有するスペーサ本体被覆を施す。
After appropriately adjusting the outer diameter of the preliminary coating layer,
A spacer main body having a groove having a predetermined size and shape on the outer periphery is applied with a thermoplastic resin compatible with the preliminary coating layer.

【0033】なお、本発明において、環状に被覆すると
は、継ぎ目なく閉鎖状に被覆することをいう。以下に、
本発明につき好適な実施例により説明する。
In the present invention, to cover in a ring shape means to cover in a closed shape without a seam. less than,
The present invention will be described with reference to a preferred embodiment.

【0034】実施例実施例1.図1は、本実施例の光フ
ァイバケーブル用スペーサの横断面形状を示している。
Embodiments Embodiment 1 FIG. 1 shows the cross-sectional shape of the optical fiber cable spacer of the present embodiment.

【0035】同図に示すスペーサ10は、PBO繊維を
補強繊維とするPFRP線12、その外周の熱可塑性樹
脂による一次被覆層14とで構成した抗張力体15、一
次被覆層の外周を熱可塑性樹脂で三段階に分けて施し
た、第一、第二、第三予備被覆層16、17、18及び
第三予備被覆層18の外周にスペーサ本体被覆層20を
施して、所定形状の光ファイバ収納のための溝22を形
成した。PFRPの強度を確保するため、第一予備被覆
層16の厚みを2mm以下とした。より具体的には、光
ケーブル用スペーサ10を以下の方法によって作製し
た。
The spacer 10 shown in FIG. 1 includes a tensile strength member 15 composed of a PFRP wire 12 having PBO fiber as a reinforcing fiber, a primary coating layer 14 of a thermoplastic resin on the outer periphery thereof, and a thermoplastic resin on the outer periphery of the primary coating layer. The spacer main body coating layer 20 is applied to the outer periphery of the first, second, and third preliminary coating layers 16, 17, 18 and the third preliminary coating layer 18 which are divided into three stages, and the optical fiber housing having a predetermined shape is accommodated. Groove 22 was formed. In order to secure the strength of PFRP, the thickness of the first preliminary coating layer 16 was set to 2 mm or less. More specifically, the optical cable spacer 10 was manufactured by the following method.

【0036】PBO繊維(東洋紡績(株)製 ザイロ
ン)に過酸化物系触媒を含むビニルエステル樹脂(三井
化学(株)製 エスターH8100)を含浸し、これを
絞り成形してPBO繊維の含有率が約60%の外径6.
15mmの未硬化状線状物として、溶融押出機のヘッド
部に導いて、その外周にLLDPE樹脂(日本ユニカー
(株)製 NUCG5350)をダイより押出して環状
に被覆し、これを直ちに冷却して外径が8mmで、0.
925mmの一次被覆層14を有する未硬化状線状物を
得、これを長さ10mの120℃の高圧蒸気を満たした
加熱硬化槽に導き硬化した。
A vinyl ester resin (Ester H8100, manufactured by Mitsui Chemicals, Inc.) containing a peroxide catalyst is impregnated into PBO fiber (Zylon, manufactured by Toyobo Co., Ltd.), which is drawn and molded to obtain a PBO fiber content. Is about 60% outer diameter6.
As a 15 mm uncured linear product, the product is led to the head of a melt extruder, and the outer periphery thereof is extruded from a die with an LLDPE resin (NUCG5350 manufactured by Nippon Unicar Co., Ltd.), and is coated in an annular shape. The outer diameter is 8mm,
An uncured linear material having a 925 mm primary coating layer 14 was obtained and introduced into a 10 m long heat curing tank filled with high-pressure steam at 120 ° C. for curing.

【0037】ついでこの、 PFRP12及び一次被覆
層14を有する抗張力体15を溶融押出機のヘッド部に
導いて、溶融状のLLDPE(日本ユニカー(株)製
NUCG5350)で被覆して厚み1.5mmの第一予
備被覆層16を形成し、11mmの外径とした。
Next, the tensile strength member 15 having the PFRP 12 and the primary coating layer 14 is led to the head of the melt extruder, and is melted into LLDPE (manufactured by Nippon Unicar Co., Ltd.).
NUCG5350) to form a first pre-coating layer 16 having a thickness of 1.5 mm and an outer diameter of 11 mm.

【0038】引続いて、被覆厚みを各1.25mmとし
て、外径が13.5mm、16mmとなるように2回に
分けて、第二、第三の予備被覆を施した。
Subsequently, the second and third preliminary coatings were applied in two steps so that the coating thickness was 1.25 mm and the outer diameter was 13.5 mm and 16 mm.

【0039】この最終外径が16mmの予備被覆抗張力
線を、スペーサの断面形状に対応した開口を有する回転
ダイが取着されたスペーサ本体被覆用溶融押出機に導い
て、HDPE樹脂(日本ポリオレフィン(株)製 KK
Z51C)を回転しながら押出して、リブ部の外径が2
4.3mmで外周に溝幅2.8mm、溝深さ4.1mm
の13個の溝22を有し、螺旋ピッチが500mmのス
ペーサ本体被覆層20を有する1000心タイプのイン
ダクションフリー(IF)型のスペーサ10を得た。
The pre-coated tensile strength wire having a final outer diameter of 16 mm is guided to a melt extruder for coating a spacer body to which a rotating die having an opening corresponding to the cross-sectional shape of the spacer is attached, and the HDPE resin (Nippon Polyolefin (Japan Polyolefin) KK
Z51C) and extrude it while rotating, so that the outer diameter of the rib portion is 2
4.3 mm, groove width 2.8 mm on outer circumference, groove depth 4.1 mm
Thus, a 1000-fiber induction-free (IF) type spacer 10 having 13 grooves 22 and a spacer main body coating layer 20 having a helical pitch of 500 mm was obtained.

【0040】このスペーサ10の引張り性能を測定した
ところ、0.2%伸張時の応力は450kgであった。
When the tensile performance of the spacer 10 was measured, the stress at 0.2% elongation was 450 kg.

【0041】一方、PFRP抗張力体12、15におい
て、PBO繊維の引張弾性率から計算される0.2%伸
張時の応力値は686kgであることから、応力値の比
較により得られたIFスペーサの性能保持率は65.6
%であった。
On the other hand, in the PFRP tensile strength members 12 and 15, the stress value at 0.2% elongation calculated from the tensile modulus of the PBO fiber is 686 kg. Performance retention is 65.6
%Met.

【0042】また、0.2%伸張時の応力から見掛けの
引張弾性率を算出すると8300kg/mmであっ
た。
When the apparent tensile modulus was calculated from the stress at the time of 0.2% elongation, it was 8300 kg / mm 2 .

【0043】実施例2.実施例1と同様の条件にてPB
O繊維含有率を67体積%として外径5.75mmの未
硬化状線条物とし、これに厚み1.125mmのLLD
PEによる一次被覆層14を施して外径8mmとし、内
部のビニルエステル樹脂を硬化し、以下順次実施例1と
同様に第一、二、三の予備被覆層16、17、18を形
成し、最後にスペーサ本体被覆層20を施して1000
心IFスペーサを得た。
Embodiment 2 FIG . PB under the same conditions as in Example 1
An uncured filament having an outer diameter of 5.75 mm with an O fiber content of 67% by volume, and an LLD having a thickness of 1.125 mm
The primary coating layer 14 made of PE is applied to make the outer diameter 8 mm, the vinyl ester resin inside is cured, and the first, second and third preliminary coating layers 16, 17 and 18 are sequentially formed in the same manner as in Example 1, Finally, the spacer main body coating layer 20 is applied and 1000
A heart IF spacer was obtained.

【0044】得られたIFスペーサの0.2%伸張時の
応力は510kgであり、PBO繊維の引張弾性率から
計算される0.2%伸張時の応力値664kgと比較す
ると性能保持率は76.8%であった。
The stress at 0.2% elongation of the obtained IF spacer was 510 kg, and the performance retention was 76% as compared with the stress value at 0.2% elongation of 664 kg calculated from the tensile modulus of the PBO fiber. 0.8%.

【0045】また、0.2%伸張時の応力から見掛けの
引張弾性率を算出すると10500kg/mmであっ
た。
The apparent tensile modulus of elasticity calculated from the stress at the time of 0.2% elongation was 10500 kg / mm 2 .

【0046】実施例3.実施例1と同様の条件にてPB
O繊維含有率を68体積%として外径5.75mmの未
硬化状線条物とし、これに厚み1.125mmのLLD
PE被覆を施して外径8mmとし、以下実施例1及び2
と同様に予備被覆し、次いでスペーサ本体被覆を施して
1000心IFスペーサを得た。
Embodiment 3 FIG . PB under the same conditions as in Example 1
An uncured filament having an outer diameter of 5.75 mm with an O fiber content of 68% by volume, and an LLD having a thickness of 1.125 mm
A PE coating was applied to make the outer diameter 8 mm.
Pre-coating was performed in the same manner as described above, and then a spacer body coating was performed to obtain a 1000-fiber IF spacer.

【0047】得られたIFスペーサの0.2%伸張時の
応力は530kgであり、PBO繊維の引張弾性率から
計算される0.2%伸張時の応力値675kgと比較す
ると性能保持率は78.5%であった。
The stress at the time of 0.2% elongation of the obtained IF spacer was 530 kg, and the performance retention was 78% as compared with the stress value at 0.2% elongation of 675 kg calculated from the tensile modulus of the PBO fiber. 0.5%.

【0048】また、0.2%伸張時の応力から見掛けの
引張弾性率を算出すると10700kg/mmであっ
た。
When the apparent tensile modulus was calculated from the stress at the time of 0.2% elongation, it was 10700 kg / mm 2 .

【0049】実施例4.実施例1と同様の条件にてPB
O繊維含有率を69体積%として外径5.75mmの未
硬化状線条物とし、これに厚み1.125mmのLLD
PE被覆を施して外径8mmとし、以下実施例1と同様
に予備被覆し、次いでスペーサ本体被覆を施して100
0心IFスペーサを得た。
Embodiment 4 FIG . PB under the same conditions as in Example 1
An uncured filament having an outer diameter of 5.75 mm with an O fiber content of 69% by volume, and an LLD having a thickness of 1.125 mm
The outer diameter was 8 mm by applying a PE coating, followed by pre-coating in the same manner as in Example 1 and then coating the spacer body by 100%.
A zero-core IF spacer was obtained.

【0050】得られたIFスペーサの0.2%伸張時の
応力は510kgであり、PBO繊維の引張弾性率から
計算される0.2%伸張時の応力値686kgと比較す
ると性能保持率は74.3%であった。
The stress at the time of 0.2% elongation of the obtained IF spacer was 510 kg, and the performance retention was 74 when compared with the stress value at the time of 0.2% elongation calculated from the tensile modulus of the PBO fiber of 686 kg. 0.3%.

【0051】また、0.2%伸張時の応力から見掛けの
引張弾性率を算出すると10200kg/mmであっ
た。
The apparent tensile modulus of elasticity calculated from the stress at the time of 0.2% elongation was 10200 kg / mm 2 .

【0052】実施例5.実施例1と同様の条件にてPB
O繊維含有率を60体積%として外径4.8mmの未硬
化状線条物とし、これに厚み0.7mmのLLDPE被
覆を施して外径6.2mmに一次被覆して硬化した後、
厚み1.4mm、厚み1.5mmの順に予備被覆し、す
なわち外径9mm、12mmとした後、スペーサ本体被
覆を施して、外周に16溝を有する外径17mmの30
0心IFスペーサを得た。
Embodiment 5 FIG . PB under the same conditions as in Example 1
An uncured filament having an outer diameter of 4.8 mm with an O fiber content of 60% by volume, an LLDPE coating having a thickness of 0.7 mm, and a primary coating having an outer diameter of 6.2 mm were cured and cured.
Pre-coating in the order of thickness 1.4 mm and thickness 1.5 mm, that is, 9 mm and 12 mm in outer diameter, then coating the spacer body, 30 grooves of 17 mm in outer diameter having 16 grooves on the outer circumference
A zero-core IF spacer was obtained.

【0053】得られたIFスペーサの0.2%伸張時の
応力は320kgであり、PBO繊維の引張弾性率から
計算される0.2%伸張時の応力値482kgと比較す
ると性能保持率は66.4%であった。
The stress at the time of 0.2% elongation of the obtained IF spacer was 320 kg, and the performance retention was 66 kg as compared with the stress value at the time of 0.2% elongation calculated from the tensile modulus of the PBO fiber of 482 kg. 0.4%.

【0054】また、0.2%伸張時の応力から見掛けの
引張弾性率を算出すると8900kg/mmであっ
た。
The apparent tensile modulus was calculated from the stress at 0.2% elongation and found to be 8900 kg / mm 2 .

【0055】実施例6.実施例6と同様の条件にてPB
O繊維含有率を68体積%として外径4.6mmに変更
して未硬化状線条物とし、これに厚み0.8mmのLL
DPE被覆を施して外径6.2mmに一次被覆して硬化
した後、実施例5と同様に予備被覆した後、スペーサ本
体被覆を施して、外周に16溝を有する外径17mmの
300心IFスペーサを得た。
Embodiment 6 FIG . PB under the same conditions as in Example 6.
The O-fiber content was 68 vol% and the outer diameter was changed to 4.6 mm to obtain an uncured filament, which was then LL with a thickness of 0.8 mm.
DPE coating and primary coating to an outer diameter of 6.2 mm, followed by curing, pre-coating in the same manner as in Example 5, followed by spacer body coating, and a 300-core IF with an outer diameter of 17 mm having 16 grooves on the outer periphery Spacers were obtained.

【0056】得られたIFスペーサの0.2%伸張時の
応力は370kgであり、PBO繊維の引張弾性率から
計算される0.2%伸張時の応力値482kgと比較す
ると性能保持率は76.8%であった。
The stress at the time of 0.2% elongation of the obtained IF spacer was 370 kg, and the performance retention was 76% as compared with the stress value at the time of 0.2% elongation calculated from the tensile modulus of the PBO fiber of 482 kg. 0.8%.

【0057】また、0.2%伸張時の応力から見掛けの
引張弾性率を算出すると10300kg/mmであっ
た。
The apparent tensile modulus of elasticity calculated from the stress at the time of 0.2% elongation was 10300 kg / mm 2 .

【0058】比較例1.実施例1と同様の方法で外径8
mmのLLDPE被覆PFRP抗張力体を得、次いで、
被覆厚み4mmのLLDPE予備被覆を一段で施して、
外径16mmとし、その外周に実施例1と同様にスペー
サ本体被覆を施して、1000心のIFスペーサを得
た。
Comparative Example 1 In the same manner as in Example 1, the outer diameter is 8
mm LLDPE coated PFRP tensile strength body, then
LLDPE pre-coating with a coating thickness of 4 mm is applied in one step,
The outer diameter was set to 16 mm, and the outer periphery thereof was coated with the spacer main body in the same manner as in Example 1 to obtain a 1000-fiber IF spacer.

【0059】得られた1000心IFスペーサの0.2
%伸張時の応力は210kgであり、PBO繊維の引張
弾性率から計算される0.2%伸張時の応力値686k
gと比較すると性能保持率は、僅かに30.6%であっ
た。
0.2 of the obtained 1000-fiber IF spacer
% Elongation stress is 210 kg, and the stress value at 0.2% elongation calculated from the tensile modulus of the PBO fiber is 686 k
g, the performance retention was only 30.6%.

【0060】また、0.2%伸張時の応力から見掛けの
引張弾性率を算出すると3900kg/mmであっ
た。
The apparent tensile modulus was calculated from the stress at 0.2% elongation and found to be 3900 kg / mm 2 .

【0061】比較例2.実施例1と同様の方法で外径8
mmのLLDPE被覆PFRP線状物を得、次いで、被
覆厚み2.5mm、1.5mmのHDPE予備被覆を順
次施して、外径13mm、16mmとし、その外周に実
施例1と同様にスペーサ本体被覆を施して、1000心
のIFスペーサを得た。
Comparative Example 2 In the same manner as in Example 1, the outer diameter is 8
mm LLDPE-coated PFRP linear material was obtained, and then a 2.5 mm and 1.5 mm HDPE preliminary coating was applied in order to obtain an outer diameter of 13 mm and 16 mm. Was performed to obtain 1,000 IF spacers.

【0062】得られた1000心IFスペーサの0.2
%伸張時の応力は300kgであり、PBO繊維の引張
弾性率から計算される0.2%伸張時の応力値686k
gと比較すると性能保持率は、43.7%であった。
The obtained 1000-fiber IF spacer of 0.2
% Elongation stress is 300 kg, and the stress value at 0.2% elongation calculated from the tensile modulus of the PBO fiber is 686 k
g, the performance retention was 43.7%.

【0063】また、0.2%伸張時の応力から見掛けの
引張弾性率を算出すると5500kg/mmであっ
た。
When the apparent tensile modulus was calculated from the stress at the time of 0.2% elongation, it was 5500 kg / mm 2 .

【0064】比較例3.実施例6と同様の条件にてPB
O繊維含有率を60体積%として外径4.8mmの未硬
化状線条物とし、これに厚み0.7mmのLLDPE被
覆を施して外径6.2mmに一次被覆して硬化した後、
厚み2.9mmの予備被覆を一段で施し、外径12mm
とした後、スペーサ本体被覆を施して、外周に16溝を
有する外径17mmの300心IFスペーサを得た。
Comparative Example 3 PB under the same conditions as in Example 6.
An uncured filament having an outer diameter of 4.8 mm with an O fiber content of 60% by volume, an LLDPE coating having a thickness of 0.7 mm, and a primary coating having an outer diameter of 6.2 mm were cured and cured.
Preliminary coating with a thickness of 2.9 mm is applied in one step and the outer diameter is 12 mm
After that, the spacer body was coated to obtain a 300-fiber IF spacer having an outer diameter of 17 mm and an outer diameter of 16 grooves.

【0065】得られたIFスペーサの0.2%伸張時の
応力は190kgであり、PBO繊維の引張弾性率から
計算される0.2%伸張時の応力値482kgと比較す
ると性能保持率は39.6%であった。
The stress at the time of 0.2% elongation of the obtained IF spacer was 190 kg, and the performance retention was 39 kg as compared with the stress value at the time of 0.2% elongation calculated from the tensile modulus of the PBO fiber of 482 kg. 0.6%.

【0066】また、0.2%伸張時の応力から見掛けの
引張弾性率を算出すると5300kg/mmであっ
た。
The apparent tensile modulus was calculated from the stress at the time of 0.2% elongation, and was found to be 5,300 kg / mm 2 .

【0067】以上の実施例、比較例の予備被覆条件、得
られたスペーサの0.2%伸張時応力、PBO繊維性能
保持率、引張弾性率をまとめて表1,2に示す。
Tables 1 and 2 summarize the preliminary coating conditions, the stress at 0.2% elongation, the PBO fiber performance retention, and the tensile modulus of the obtained spacers of the above Examples and Comparative Examples.

【0068】[0068]

【表1】 [Table 1]

【0069】[0069]

【表2】 [Table 2]

【0070】[0070]

【発明の効果】光ファイバケーブル用スペーサの中央に
配置する一次被覆層を有するPFRP抗張力体に予備被
覆するに際し、一回目の予備被覆層の厚みを2mm以下
とし、複数回に分けて被覆することで、一回目の予備被
覆層が溶融状態から冷却固化するに際して、PFRP抗
張力体を熱収縮させるのを抑制できるので、引張性能の
低下率が少なく、PFRP中のPBO繊維の補強性能を
有効に保持できる。
When the PFRP tensile strength member having the primary coating layer disposed in the center of the optical fiber cable spacer is preliminarily coated, the thickness of the first preliminary coating layer is set to 2 mm or less, and the coating is performed in a plurality of times. Therefore, when the first preliminary coating layer is cooled and solidified from the molten state, it is possible to suppress the thermal contraction of the PFRP tensile strength member, so that the reduction rate of the tensile performance is small, and the reinforcing performance of the PBO fiber in the PFRP is effectively maintained. it can.

【0071】また、PBO繊維の体積含有率を67〜6
9%とすることで、更に0.2%伸張時応力を高めるこ
とが出来、かつ、PBO繊維の性能保持率を75%以上
に向上することが出来る。
Further, the volume content of the PBO fiber is set to 67 to 6
By setting it to 9%, the stress at the time of elongation by 0.2% can be further increased, and the performance retention of the PBO fiber can be improved to 75% or more.

【0072】よって、PBO繊維を補強繊維とするPF
RP抗張力体を使用して、可撓性、軽量性、高い絶縁
性、無誘導性を備えたIFタイプの光ファイバケーブル
用スペーサを得ることが出来る。
Therefore, the PF using PBO fiber as the reinforcing fiber
By using the RP strength member, it is possible to obtain an IF type optical fiber cable spacer having flexibility, light weight, high insulation, and non-induction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかるPFRP線を抗張力体とする光
ファイバケーブル用スペーサの一実施例の横断面図。
FIG. 1 is a cross-sectional view of an embodiment of an optical fiber cable spacer using a PFRP wire as a tensile member according to the present invention.

【符号の説明】[Explanation of symbols]

10 光ファイバケーブル用スペーサ 12 PFRP 14 一次被覆層 15 抗張力体 16 第一予備被覆層 17、18 第二、第三予備被覆層 20 スペーサ本体被覆層 22 溝 DESCRIPTION OF SYMBOLS 10 Spacer for optical fiber cables 12 PFRP 14 Primary coating layer 15 Strength member 16 First preliminary coating layer 17, 18 Second and third preliminary coating layer 20 Spacer main body coating layer 22 Groove

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石井 徳 岐阜県岐阜市藪田西2丁目1番1号 宇部 日東化成株式会社岐阜研究所内 (72)発明者 原田 賢 岐阜県岐阜市藪田西2丁目1番1号 宇部 日東化成株式会社岐阜工場内 (72)発明者 下村 知史 岐阜県岐阜市藪田西2丁目1番1号 宇部 日東化成株式会社岐阜工場内 (72)発明者 岩田 秀行 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内 Fターム(参考) 2H001 BB09 DD11 KK08 KK12 MM01 PP01  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Nori Ishii 2-1-1 Yabuta Nishi, Gifu City, Gifu Prefecture Ube Nitto Kasei Co., Ltd. Gifu Research Institute (72) Inventor Ken Harada 2-chome Yabuta Nishi, Gifu City, Gifu Prefecture No. 1 Ube Nitto Kasei Co., Ltd. Gifu Factory (72) Inventor Satoshi Shimomura 2-1-1 Yabuta Nishi, Gifu City, Gifu Prefecture Ube Nitto Kasei Co., Ltd. Gifu Factory (72) Inventor Hideyuki Iwata Nishi Shinjuku-ku, Tokyo Shinjuku 3-chome 19-2 Nippon Telegraph and Telephone Corporation F-term (reference) 2H001 BB09 DD11 KK08 KK12 MM01 PP01

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 中央に抗張力体を配置し外周に熱可塑性
樹脂で螺旋状溝を形成してなる光ファイバケーブル用ス
ペーサにおいて、 前記抗張力体は、ポリパラフェニレンベンゾビスオキサ
ゾール(PBO)繊維に未硬化状熱硬化性樹脂を含浸し
た未硬化状FRPの外周を熱可塑性樹脂で被覆した一次
被覆層を形成した状態で内部の未硬化状熱硬化性樹脂を
硬化したものであって、 0.2%伸張時応力値から計算できる見掛けの引張弾性
率が8000kg/mm以上であることを特徴とする
光ファイバケーブル用スペーサ。
1. A spacer for an optical fiber cable in which a tensile member is arranged at the center and a spiral groove is formed on the outer periphery with a thermoplastic resin, wherein the tensile member is a polyparaphenylene benzobisoxazole (PBO) fiber. A cured non-cured thermosetting resin in a state in which a primary coating layer in which the outer periphery of an uncured FRP impregnated with a cured thermosetting resin is coated with a thermoplastic resin is formed, 0.2 An apparent fiber elastic modulus, which can be calculated from the% elongation stress value, is 8000 kg / mm 2 or more.
【請求項2】 前記抗張力体の一次被覆層の外周には、
予備被覆層が複数回に分けて施され、その一回目の被覆
厚みが2mm以下であることを特徴とする請求項1記載
の光ファイバケーブル用スペーサ。
2. An outer periphery of a primary coating layer of the tensile strength member,
2. The optical fiber cable spacer according to claim 1, wherein the preliminary coating layer is applied in a plurality of times, and the first coating thickness is 2 mm or less.
【請求項3】 前記FRPのPBO繊維体積含有率が、
67〜69%であることを特徴とする請求項1又は2記
載の光ファイバケーブル用スペーサ。
3. The PBO fiber volume content of the FRP is:
The optical fiber cable spacer according to claim 1, wherein the content is 67 to 69%.
【請求項4】前記抗張力体の0.2%伸張時応力値から
計算できる見掛けの引張弾性率が、10000kg/m
以上であることを特徴とする請求項2〜3記載の光
ファイバケーブル用スペーサ。
4. An apparent tensile modulus of elasticity which can be calculated from a stress value at 0.2% elongation of said tensile strength member is 10,000 kg / m.
optical fiber spacer cable of claim 2-3, wherein a is m 2 or more.
【請求項5】 所定本数のPBO繊維に熱硬化性樹脂を
含浸し、 これを絞り成形して未硬化状線条物とした後、溶融押出
機のヘッド部に導いて、その外周を溶融状熱可塑性樹脂
で環状に一次被覆し、 これを直ちに冷却し、 次いで加熱硬化槽中で内部の熱硬化性樹脂を加熱硬化
し、 この一次被覆層の外周に2mm以下の厚みで一次被覆層
の熱可塑性樹脂と相溶性を有する樹脂で予備被覆をした
後、 熱可塑性樹脂でスペーサ本体被覆を施すことを特徴とす
る光ファイバケーブルの製造方法。
5. A predetermined number of PBO fibers are impregnated with a thermosetting resin, drawn into an uncured filament, guided to the head of a melt extruder, and the outer periphery is melted. The primary coating is cyclically coated with a thermoplastic resin, which is immediately cooled, and then the internal thermosetting resin is heated and cured in a heating and curing bath. The outer periphery of the primary coating layer is heated to a thickness of 2 mm or less. A method for manufacturing an optical fiber cable, comprising: preliminarily coating a resin having compatibility with a thermoplastic resin, and then coating a spacer main body with a thermoplastic resin.
JP21315398A 1998-07-28 1998-07-28 Fiber optic cable spacer Expired - Fee Related JP3502273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21315398A JP3502273B2 (en) 1998-07-28 1998-07-28 Fiber optic cable spacer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21315398A JP3502273B2 (en) 1998-07-28 1998-07-28 Fiber optic cable spacer

Publications (2)

Publication Number Publication Date
JP2000047076A true JP2000047076A (en) 2000-02-18
JP3502273B2 JP3502273B2 (en) 2004-03-02

Family

ID=16634452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21315398A Expired - Fee Related JP3502273B2 (en) 1998-07-28 1998-07-28 Fiber optic cable spacer

Country Status (1)

Country Link
JP (1) JP3502273B2 (en)

Also Published As

Publication number Publication date
JP3502273B2 (en) 2004-03-02

Similar Documents

Publication Publication Date Title
US4677818A (en) Composite rope and manufacture thereof
US3425207A (en) Rope,strand or the like
US4365865A (en) Hybrid cable construction
KR910005200B1 (en) Method for continuous molding of a rod-like product
US4795234A (en) Reinforced optical fiber
EP0375896A2 (en) Twisted FRP structure and process for manufacturing the same
JPH0713056A (en) Reinforced plastic armored cable and its production
EP0117943A1 (en) Method of manufacturing a communication cable
GB2078599A (en) Fabrication of Fiber Reinforced Resin Structures
US3800066A (en) Gas blocked logging cable
JP2005148373A (en) Frp made tension member and drop optical fiber cable
JP2000517458A (en) Multi-layer reinforced and stabilized cable structure
CA1280306C (en) Telecommunications cable containing optical fibres
US4005168A (en) Method for making a gas blocked logging cable
CN111805944B (en) Continuous deformation composite material section bar and preparation method thereof
JP2000047076A (en) Spacer for optical fiber cable and its production
EP0273413A2 (en) A method of making a high tension ignition cable
KR100552084B1 (en) Process for the manufacture of an optical core for a telecommunications cable
JPS5999403A (en) Communication cable and manufacture thereof
JPH03249287A (en) Twisted structure made of fiber-reinforced thermosetting resin and its production
JP3472149B2 (en) Spacer for optical fiber cable and method of manufacturing the same
CN209747175U (en) Deformation-resistant armored insulating aluminum alloy cable
JP4156498B2 (en) Manufacturing method of FRP for drop optical cable
WO2005057263A1 (en) Frp tension member for drop optical fiber cable
JPH01139872A (en) Intermediate of wire like material made of fiber reinforced synthetic resin

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031204

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees