JP2000045067A - High purity titanium sheet for titanium target material and its production - Google Patents

High purity titanium sheet for titanium target material and its production

Info

Publication number
JP2000045067A
JP2000045067A JP21082498A JP21082498A JP2000045067A JP 2000045067 A JP2000045067 A JP 2000045067A JP 21082498 A JP21082498 A JP 21082498A JP 21082498 A JP21082498 A JP 21082498A JP 2000045067 A JP2000045067 A JP 2000045067A
Authority
JP
Japan
Prior art keywords
cold
titanium
rolled
target material
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21082498A
Other languages
Japanese (ja)
Other versions
JP3802683B2 (en
Inventor
Mitsuo Ishii
満男 石井
Hideki Fujii
秀樹 藤井
Yoshinao Kawahara
由尚 河原
Isao Nagai
勲 永井
Masao Chiba
正夫 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP21082498A priority Critical patent/JP3802683B2/en
Publication of JP2000045067A publication Critical patent/JP2000045067A/en
Application granted granted Critical
Publication of JP3802683B2 publication Critical patent/JP3802683B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a target material dense in a sheet face metallic structure, also uniform in a macro-structure, and capable of forming a titanium-adhered film uniform in film thickness and orientation properties by sputtering by allowing it to have a cold-worked structure and moreover specifying the area ratio of mechanical twin crystals in the optional L cross-section. SOLUTION: A high purity titanium material is hot-rolled, is annealed in the air at need and is thereafter cold-rolled while scale is kept adhered on the surface. At this time, while the revolution speed Rc of a rolling roll is controlled to the range shown by the inequality of Rc<=1.59172-2.2541×106/ D4+4.21766×105/D3-2.54285×104/D2+7.89452×102/D, it is cold-rolled at a draft of >=6%. In this way, a cold rolled sheet having a cold-worked structure, and in which the area ratio of mechanical twin crystals in the total sheet thickness cross-section in the optional L cross-section is >=25% is obtd., and it is moreover subjected to annealing at need to obtain a cold rolled and annealed sheet having a recrystalized structure, and in which the area ratio of the colony structure in the optional face parallel to the sheet face is <10%, and a high purity titanium sheet for a titanium target material is obtd therefrom.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体デバイス製
造あるいは液晶等の表示素子製造等に使用されるチタン
ターゲット材用の、緻密な板面金属組織を有し、マクロ
模様が均一な高純度チタン板およびその製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-purity titanium having a dense metal structure on a plate surface and a uniform macro pattern for a titanium target material used for manufacturing a semiconductor device or a display element such as a liquid crystal. The present invention relates to a plate and a method for manufacturing the plate.

【0002】[0002]

【従来の技術】超LSI(VLSI:Very Large Scale
Integrated circuit)や液晶等の表示素子の急激な高集
積化に伴い、ゲート電極材、拡散バリア材料、配線材等
として、高融点かつ低抵抗の金属である高純度チタンの
実用化が進められている。これら電子材料としてのチタ
ン材は、主としてスパッタリングによって形成される。
このために、スパッタリングのターゲット材用として高
純度チタン材の需要が急増している。これらの電子材料
用に使用するチタン材は、その純度が非常に重要であ
り、高純度のものが要求されている。例えば、Fe、N
i、Cu等の不純物金属元素は半導体素子のリーク電流
増大を惹起し、U、Th等の放射性元素はソフトエラー
の原因となることから、これらの元素の混入が厳しく制
限されている。
2. Description of the Related Art Very Large Scale (VLSI)
With the rapid increase in integration of display elements such as integrated circuits and liquid crystals, the commercialization of high-purity titanium, which is a metal with a high melting point and low resistance, as a gate electrode material, diffusion barrier material, wiring material, etc. is being promoted. I have. These titanium materials as electronic materials are mainly formed by sputtering.
For this reason, the demand for a high-purity titanium material for a sputtering target material is rapidly increasing. The purity of titanium materials used for these electronic materials is very important, and high purity is required. For example, Fe, N
Impurity metal elements such as i and Cu cause an increase in leakage current of the semiconductor element, and radioactive elements such as U and Th cause soft errors. Therefore, the incorporation of these elements is severely restricted.

【0003】このような高純度チタン材は、普通、次の
ような工程で製造される。まず、Mg還元法(クロール
法)による高純度スポンジチタンを、または沃化物法あ
るいは溶融塩電解精製法で得られた高純度チタン析出物
を原料として、真空アーク溶解炉(VAR)あるいは電
子ビーム溶解炉(EBR)で溶解し、蒸気圧の高いアル
カリ金属類を蒸散除去した後、インゴットとする。
[0003] Such a high-purity titanium material is usually produced by the following steps. First, using a high-purity sponge titanium by a Mg reduction method (Kroll method) or a high-purity titanium precipitate obtained by an iodide method or a molten salt electrolytic purification method as a raw material, a vacuum arc melting furnace (VAR) or an electron beam melting method is used. After melting in an oven (EBR) and evaporating and removing alkali metals having a high vapor pressure, an ingot is obtained.

【0004】このインゴットには、最終製品の形状に応
じた種々の加工が施される。すなわち、インゴットを熱
間圧延してビレット、棒材、板材、線材等に加工する方
法(特開昭63−212061号公報参照)、インゴッ
トを鍛造加工および圧延加工して形状を整える方法(特
開平8−232061号公報、特開平5−255843
号公報参照)が知られている。また、加工中のコンタミ
ネーション(酸化や不純物ガス成分の吸収など)を防止
するため、室温近傍の温度での冷間加工によって所定の
形状に加工する方法もある(特開平3−130339号
公報参照)。
[0004] The ingot is subjected to various processes according to the shape of the final product. That is, a method of hot rolling an ingot to form a billet, a bar, a plate, a wire, or the like (see JP-A-63-212061), and a method of forging and rolling the ingot to form a shape (Japanese Patent Laid-Open No. JP-A-8-23206, JP-A-5-255842
Is known. Further, in order to prevent contamination (eg, oxidation and absorption of impurity gas components) during processing, there is a method of processing into a predetermined shape by cold working at a temperature near room temperature (see Japanese Patent Application Laid-Open No. 3-130339). ).

【0005】ところで、チタンの冷間圧延の際には、チ
タンとロール表面が焼き付き現象を起こし易いことか
ら、冷延素材の結晶粒径Dに関連づけて圧延ロール径Y
を一つの実験式から得られる値以下になるように選ぶ方
法が知られている(特公昭63−48602号公報参
照)。この技術では、デスケールしたチタン素材の表面
と圧延ロールとの間に存在する潤滑油の流体特性に起因
するオイルピットの発生を防止することができる。な
お、この実験式によると圧延ロール径Yは結晶粒径Dに
ほぼ反比例するように、すなわち、冷延素材の結晶粒径
Dが大きくなるほどロール径Yを小さく選ばなければな
らない。一方、高純度チタン材の他の製造方法として、
上述の高純度チタン析出物を圧縮容器に封入した後、H
IP(熱間静水圧加工装置)で加熱・加工して直接所望
の形状を得る方法もある(特開平8−277427号公
報参照)。
[0005] In the cold rolling of titanium, since the titanium and the roll surface are liable to cause seizure, the rolling roll diameter Y is related to the crystal grain size D of the cold rolled material.
Is known so as to be equal to or less than a value obtained from one empirical formula (see Japanese Patent Publication No. 63-48602). According to this technique, it is possible to prevent the occurrence of oil pits due to the fluid characteristics of the lubricating oil existing between the surface of the descaled titanium material and the rolling roll. According to this empirical formula, the roll diameter Y must be selected so as to be substantially inversely proportional to the crystal grain diameter D, that is, as the crystal grain diameter D of the cold-rolled material increases. On the other hand, as another manufacturing method of high-purity titanium material,
After enclosing the above high purity titanium precipitate in a compression container,
There is also a method in which a desired shape is directly obtained by heating and processing with an IP (hot isostatic processing apparatus) (see Japanese Patent Application Laid-Open No. 8-277427).

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記従
来技術は、主として、高純度の原料をその純度を損ねず
にターゲット材として望ましい形状に近い形まで加工す
ることにその技術的主眼を置いたものであるため、技術
革新が激しく、ターゲット材に対する要求品質水準が高
くなる一方であるVLSI分野では、その要求品質に十
分に応えられない事態も発生している。このようなター
ゲット材の要求品質を達成できない原因として、例え
ば、圧延加工組織の残存、粗大結晶粒の混在、不均一な
結晶粒径分布、好ましくない集合組織の存在、集合組織
のバラツキ等の影響が考えられるが、十分な検討は行わ
れていないのが実状である。
However, the above prior art mainly focuses on the technical focus of processing a high-purity raw material into a shape close to a desired shape as a target material without deteriorating its purity. Therefore, technical innovation is intense, and the required quality level for the target material is increasing. In the VLSI field, there is a case in which the required quality cannot be sufficiently satisfied. The reasons why the required quality of the target material cannot be achieved include, for example, the effects of remaining rolled structure, mixture of coarse crystal grains, non-uniform crystal grain size distribution, presence of unfavorable texture, variation of texture, and the like. However, the actual situation has not been fully examined.

【0007】ところで、高純度チタン材を製造するため
の原素材、すなわち溶解して製造したインゴットや粗加
工を施したスラブやビレット等を、さらに鍛造、圧延、
熱処理等を行って展伸材にする場合、原素材の持つマク
ロ組織が加工工程を経ても引き継がれ、展伸材に加工し
ても肉眼で認識できる金属組織の模様(以下、マクロ模
様と呼ぶ)が存在するのが普通である。このマクロ模様
も、上記のようなターゲット材の要求品質を達成できな
い原因の一つであると考えられる。なお、このマクロ模
様の存在は、光学顕微鏡などの観察では看過されること
も多く、従来、定量的には十分に把握されて来なかっ
た。
By the way, raw materials for producing high-purity titanium materials, that is, ingots produced by melting, slabs and billets subjected to rough working, and the like are further forged, rolled, and so on.
When a heat-treated or the like is formed into an expanded material, the macrostructure of the original material is inherited even after the processing step, and the metal structure pattern that can be visually recognized even when processed into the expanded material (hereinafter, referred to as a macro pattern) ) Is usually present. This macro pattern is also considered to be one of the causes that the required quality of the target material as described above cannot be achieved. In addition, the existence of the macro pattern is often overlooked by observation with an optical microscope or the like, and it has not been quantitatively sufficiently grasped conventionally.

【0008】ここで、マクロ組織とマクロ模様の差異に
ついて述べる。通常、金属組織学でいうマクロ組織は、
鋳造組織や加工組織の現出に使用される適当な金属組織
現出用酸液(例えば、硝弗酸)を用いてエッチングする
ことで得られる。鋳造組織や加工組織の場合、酸液の腐
食作用を受けて、加工歪が集中するメタルフロー部、格
子欠陥密度の高い結晶粒界、コロニーと呼ばれる結晶方
位がほぼ揃った領域の間の境界などが優先的に侵食され
て模様として肉眼で認識される。
Here, the difference between the macro structure and the macro pattern will be described. Usually, the macrostructure in metallography is
It can be obtained by etching using an acid solution (for example, nitric hydrofluoric acid) suitable for revealing a metallographic structure used for developing a cast structure or a processed structure. In the case of a cast or processed structure, the corrosive action of the acid solution causes the metal flow to concentrate processing strains, a grain boundary with a high lattice defect density, a boundary between colonies and a region with almost uniform crystal orientation called a colony, etc. Is preferentially eroded and is visually recognized as a pattern.

【0009】一方、マクロ模様とは、原素材、すなわち
インゴット若しくはそれを途中まで加工した材料中に存
在する比較的粗大な結晶粒、およびそれに含まれていた
コロニーなどが、展伸加工途中の塑性変形と熱履歴を受
けて、形状、大きさ、それらの分布を変化させた名残と
して、展伸材の板面を研磨しマクロエッチングすると痕
跡程度の模様として認識されるものを指す。このマクロ
模様は、境界が不明瞭で上述のマクロ組織におけるよう
な明瞭な金属組織的特徴との対応が困難な場合が多い。
マクロ模様の内部には通常の光学顕微鏡で観察されるミ
クロ組織を含んでおり、限られた狭い領域で観察した場
合、一見ミクロ組織が均一に見える場合もあるが、この
ミクロ組織の大部分はその祖先であるマクロ組織の結晶
学的な配向性を継承しているので、肉眼レベルでは明瞭
なマクロ模様が観察されることになる。
On the other hand, the macro pattern means that relatively coarse crystal grains present in the raw material, that is, the ingot or a material obtained by partially processing the ingot, and the colonies contained in the raw material are plastically deformed during the expansion processing. A remnant of changes in shape, size, and their distribution in response to deformation and heat history, refers to those that are recognized as trace patterns when the plate surface of wrought material is polished and macro-etched. In many cases, this macro pattern has an indistinct boundary and is difficult to correspond to a clear metallographic feature as in the macro structure described above.
The inside of the macro pattern contains a microstructure observed with a normal optical microscope, and when observed in a limited narrow area, the microstructure may seem uniform at first glance, but most of this microstructure is Since it inherits the crystallographic orientation of its ancestor macrostructure, a clear macro pattern will be observed at the macroscopic level.

【0010】本発明者らは、このマクロ模様がターゲッ
ト材の品質に及ぼす影響について考察した。すなわち、
このようなマクロ模様が不均一な圧延製品から製造した
ターゲット材を用いてスパッタリングすると、スパッタ
粒子の放出方向分布、放出速度分布、放出エネルギー分
布が、マクロ模様の持つ結晶学的配向性に左右されるた
め、スパッタ粒子が基盤に付着するスピードに差が出て
きて付着膜厚の不均一性や配向性の不均一性の問題が生
じるものと考察した。
The present inventors have studied the effect of the macro pattern on the quality of the target material. That is,
When sputtering is performed using a target material manufactured from a rolled product having such a non-uniform macro pattern, the distribution of the sputtered particles in the direction of discharge, the distribution of the release rate, and the distribution of the released energy are affected by the crystallographic orientation of the macro pattern. Therefore, it was considered that there was a difference in the speed at which sputtered particles adhere to the substrate, causing problems of nonuniformity of the deposited film thickness and nonuniformity of orientation.

【0011】したがってターゲット材の表面は、マクロ
模様が均一であることが要求される。またターゲット材
の表面は使用中に荒れてくるので、研磨・整面して継続
使用されるため、ターゲット材用のチタン材には、板面
での均一性だけでなく板厚方向での均一性も要求され
る。また、本発明者らが別途研究したところ、上記特公
昭63−48602号公報に記載の従来技術では、結晶
粒径に対して圧延ロール径が小さすぎると、圧延時に剪
断変形が表面近傍に集中するため、結晶の粒界で割れる
という新たな問題が引き起こされることが判明した。
Therefore, the surface of the target material is required to have a uniform macro pattern. In addition, since the surface of the target material becomes rough during use, it is polished and leveled and used continuously, so the titanium material for the target material has not only uniformity in the plate surface but also in the thickness direction. Is also required. Further, the present inventors have separately studied that, in the prior art described in JP-B-63-48602, if the rolling roll diameter is too small with respect to the crystal grain size, the shearing deformation during rolling is concentrated near the surface. Therefore, it has been found that a new problem of breaking at the crystal grain boundary is caused.

【0012】そこで本発明の課題は、半導体デバイスあ
るいは液晶等の表示素子等において、スパッタリングに
より形成したチタン付着膜の膜厚や配向性が均一となる
よう、緻密な板面金属組織を有し、マクロ模様が均一な
チタンターゲット材用高純度チタン板およびその製造方
法を提供することである。
Accordingly, an object of the present invention is to provide a semiconductor device or a display element such as a liquid crystal or the like, which has a dense metal structure on a plate surface so that the thickness and orientation of a titanium adhesion film formed by sputtering are uniform. An object of the present invention is to provide a high-purity titanium plate for a titanium target material having a uniform macro pattern and a method for producing the same.

【0013】[0013]

【課題を解決するための手段】本発明者らは、チタンタ
ーゲット材において、上記マクロ模様が不均一であると
スパッタリング法により形成された膜厚の不均一性や配
向性の不均一性を惹起させるとの認識から、鋭意研究を
進めた結果、VLSI用として十分に使用可能な、工業
的に製造し得るターゲット材用チタン板およびその製造
法を発明するに至った。
SUMMARY OF THE INVENTION The present inventors have found that in the titanium target material, if the macro pattern is non-uniform, the non-uniformity of the film thickness formed by the sputtering method and the non-uniformity of the orientation are caused. As a result of intensive research, the inventor of the present invention has invented a titanium plate for a target material which can be sufficiently used for VLSI and can be industrially manufactured, and a method for manufacturing the same.

【0014】すなわち上記課題を解決するための本発明
の第1発明チタン板は、冷間加工組織をなし、任意のL
断面における全板厚断面の機械的双晶面積率が25%以上
であることを特徴とするチタンターゲット材用高純度チ
タン板である。また第2発明チタン板は、再結晶組織を
なし、板面に平行な任意の面におけるコロニー組織の面
積率が10%未満であることを特徴とするチタンターゲ
ット材用高純度チタン板である。
That is, the first invention titanium plate of the present invention for solving the above-mentioned problems has a cold worked structure,
A high-purity titanium plate for a titanium target material, wherein a mechanical twin area ratio of a cross section of the entire plate thickness is 25% or more. The second invention titanium plate is a high-purity titanium plate for a titanium target material, wherein the titanium plate has a recrystallized structure and an area ratio of a colony structure on an arbitrary surface parallel to the plate surface is less than 10%.

【0015】つぎに上記課題を解決するための本発明の
第1発明法は、冷間圧延時の圧延ロール回転数Rc(r
ps)を、圧延ロール直径D(mm)に応じて(1)式で
示される範囲に制御しながら、圧下率6%以上の冷間圧
延を行うことにより、冷間加工組織をなし、任意のL断
面における全板厚断面の機械的双晶面積率が25%以上で
ある冷延板とすることを特徴とするチタンターゲット材
用高純度チタン板の製造方法である。
Next, a first invention method of the present invention for solving the above-mentioned problems is to provide a rolling roll rotation speed Rc (r) during cold rolling.
ps) is controlled in accordance with the roll diameter D (mm) to a range represented by the formula (1), and a cold-rolled structure with a draft of 6% or more is formed to form a cold-worked structure. A method for producing a high-purity titanium plate for a titanium target material, wherein the cold-rolled plate has a mechanical twin area ratio of 25% or more in the entire cross-section in the L cross section.

【0016】 Rc≦1.59172 −2.2541×106 /D4 +4.21766 ×105 /D3 −2.54285 ×104 /D2 +7.89452 ×102 /D (1)Rc ≦ 1.59172 −2.2541 × 10 6 / D 4 + 4.21766 × 10 5 / D 3 −2.54285 × 10 4 / D 2 + 7.89452 × 10 2 / D (1)

【0017】そして、熱間加工時に生成したスケールを
表面に付けたままで冷間圧延することが好ましい。ま
た、熱間加工時に生成したスケールを表面に付けたま
ま、大気中で焼鈍を行った後、スケールを残したままで
冷間圧延することもでき、また、熱間加工時に生成した
スケールを表面に付けたまま、真空クリープ矯正機内で
焼鈍を行った後、スケールを残したままで冷間圧延する
こともできる。さらに、表面スケールを除去した冷間圧
延素材を、該素材の結晶粒径d (μm)に応じて、直径D
(mm) が(2)式の関係を満たす圧延ロールで冷間圧延
することもできる。
[0017] It is preferable to perform cold rolling with the scale formed during hot working attached to the surface. In addition, after the scale generated during hot working is attached to the surface and then annealed in the air, cold rolling can be performed with the scale remaining, and the scale generated during hot working can be applied to the surface. After being annealed in a vacuum creep straightening machine while being attached, cold rolling can be performed with the scale remaining. Further, the cold-rolled material from which the surface scale has been removed is subjected to a diameter D according to the crystal grain size d (μm) of the material.
Cold rolling can also be performed with a rolling roll whose (mm) satisfies the relationship of the expression (2).

【0018】 D≧1.033 d0.504 (2)D ≧ 1.033 d 0.504 (2)

【0019】また第2発明法は、上記第1発明法で得ら
れたチタン板を、大気中または真空クリープ矯正機内で
焼鈍することにより、再結晶組織をなし、板面に平行な
任意の面におけるコロニー組織の面積率が10%未満で
ある冷延焼鈍板とすることを特徴とするチタンターゲッ
ト材用高純度チタン板の製造方法である。
In the second invention method, the titanium plate obtained by the first invention method is annealed in the air or in a vacuum creep straightening machine to form a recrystallized structure and to have an arbitrary surface parallel to the plate surface. A cold-rolled annealed sheet having an area ratio of a colony structure of less than 10% in the above-mentioned method, which is a method for producing a high-purity titanium sheet for a titanium target material.

【0020】[0020]

【発明の実施の形態】本発明は、基本的には以下の製造
工程を前提として構築されたものである。通常、高純度
チタン展伸材の製造は、真空アーク溶解炉(VAR)や
電子ビーム再溶解炉(EBR)において高純度原料を溶
解後、金属状態の円柱状インゴットまたは矩形断面イン
ゴットに鋳造される。VARインゴットは、その形状の
ため、直接、板圧延などの素材とされることは稀で、鍛
造機、大型プレス機あるいは分塊圧延機と呼ばれる専用
設備により、円柱の形状を扁平な矩形断面状のスラブに
成形することが多い。またEBRインゴットは円柱状や
矩形断面のインゴットであり、やはり鍛造機や分塊圧延
機などで後工程の板圧延機で操業し易い矩形断面スラブ
に成形される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is basically constructed on the premise of the following manufacturing steps. Normally, high-purity titanium wrought products are manufactured by melting a high-purity raw material in a vacuum arc melting furnace (VAR) or an electron beam remelting furnace (EBR), and then casting it into a cylindrical ingot in a metal state or a rectangular cross-section ingot. . Due to its shape, VAR ingots are rarely used directly as a material for sheet rolling, etc., and the special shape of a forging machine, a large press machine or a slab rolling mill reduces the shape of the cylinder into a flat rectangular cross section. Slabs are often formed. The EBR ingot is an ingot having a columnar or rectangular cross section, and is also formed into a rectangular cross section slab which can be easily operated by a plate rolling mill in a later process by using a forging machine or a slab rolling mill.

【0021】これらの分塊鍛造スラブや分塊圧延スラブ
などは、所定の厚さまでさらに熱間加工し、必要に応じ
て歪取りとミクロ組織の調整を目的とした焼鈍を行い、
冷間加工用の素材とする。そしてこの素材を冷間加工し
て第1発明のチタン板とし、さらに焼鈍を行って第2発
明のチタン板とする。ターゲット材とするには、本発明
チタン板をさらに仕上がり寸法まで切断と研削して製品
とする。
These wrought forged slabs and wrought rolled slabs are further hot-worked to a predetermined thickness and, if necessary, are annealed for the purpose of removing strain and adjusting the microstructure.
Material for cold working. This material is cold-worked to obtain the titanium plate of the first invention, and further annealed to obtain the titanium plate of the second invention. In order to obtain a target material, the titanium plate of the present invention is further cut and ground to a finished size to obtain a product.

【0022】本発明のチタンターゲット材用高純度チタ
ン板において、高純度チタンとは純度が4N(99.9
9%)以上のものを指す。なおこのとき、ガス成分の
O、N、Hについては純度表示にカウントしないものと
する。この純度のものであれば、スパッタリングのター
ゲットにした場合、製造したVLSIにおいてもリーク
電流など不純物起因の問題は生じない。
In the high purity titanium plate for a titanium target material of the present invention, high purity titanium has a purity of 4N (99.9).
9%) or more. At this time, O, N, and H of the gas components are not counted in the purity display. With this purity, when a sputtering target is used, there is no problem caused by impurities such as leak current in the manufactured VLSI.

【0023】第1発明チタン板は冷間加工板であり、冷
間加工組織をなし、任意のL断面における全板厚断面の
機械的双晶面積率が25%以上である。冷間加工として
は、圧延のほか、鍛造、引抜き、繰返し曲げ、引張りな
ど、いずれの塑性加工法が採用されていてもかまわな
い。ここで、L断面とは板面に垂直で、かつ組織の延伸
方向と平行な平面、すなわち圧延板の場合は圧延方向と
平行な平面である。
The titanium plate according to the first invention is a cold-worked plate, has a cold-worked structure, and has a mechanical twin area ratio of 25% or more in an entire L-thick section in any L section. As the cold working, any plastic working method such as forging, drawing, repeated bending, and tension may be employed in addition to rolling. Here, the L section is a plane perpendicular to the plate surface and parallel to the stretching direction of the structure, that is, in the case of a rolled plate, a plane parallel to the rolling direction.

【0024】冷間加工用の素材は、圧延等の熱間加工を
行ったもの、あるいはさらに焼鈍を行ったものである
が、前述のようにマクロ模様が不均一に存在しているの
で、冷間加工により機械的双晶を発生させてマクロ模様
を分断する。そして、機械的双晶面積率が任意のL断面
における全板厚断面で25%以上であれば、このチタン板
から製造したターゲットを使用してスパッタリングを行
った場合、形成されるゲート電極材、拡散バリア材料、
配線材等のチタン膜は、膜厚や配向性が均一となり、半
導体デバイス製造あるいは液晶等の表示素子製造等に使
用され、VLSI用としても十分に使用可能である。そ
してターゲット表面が荒れてきて研磨・整面し繰返し使
用しても問題ない。しかもこのような第1発明チタン板
は工業的に安定して製造し得る。
The material for cold working is a material that has been subjected to hot working such as rolling, or has been further annealed. Mechanical twinning is generated by cold working to divide the macro pattern. If the mechanical twin area ratio is 25% or more in the entire thickness section in an arbitrary L section, when sputtering is performed using a target manufactured from the titanium plate, a gate electrode material to be formed, Diffusion barrier material,
A titanium film such as a wiring material has a uniform thickness and orientation, and is used for manufacturing a semiconductor device or a display element such as a liquid crystal, and can be sufficiently used for a VLSI. Then, there is no problem even if the target surface is roughened and polished and leveled and used repeatedly. Moreover, such a first invention titanium plate can be manufactured industrially stably.

【0025】第2発明チタン板は冷間加工後に焼鈍され
た板であり、再結晶組織をなし、板面に平行な任意の面
におけるコロニー組織の面積率が10%未満である。こ
こで、コロニー組織の面積率を次のような技術思想から
定義した。マクロ模様の内部には通常の光学顕微鏡で観
察されるミクロ組織を含んでいるものの、マクロ模様は
境界が不明瞭で、上述のマクロ組織におけるような明瞭
な金属組織的特徴との対応が困難な場合が多い。本発明
では下記に述べるようなカラーエッチング法を利用した
判定方法で板面の結晶方位の分布不均一性を定量評価し
た。
The second invention titanium plate is a plate annealed after cold working, has a recrystallized structure, and has an area ratio of colony structure on an arbitrary surface parallel to the plate surface of less than 10%. Here, the area ratio of the colony tissue was defined based on the following technical concept. Although the inside of the macro pattern contains the microstructure observed with a normal optical microscope, the macro pattern has an indistinct boundary, and it is difficult to correspond to a clear metallographic feature as in the macro structure described above. Often. In the present invention, the nonuniform distribution of the crystal orientation on the plate surface was quantitatively evaluated by a judgment method utilizing the color etching method described below.

【0026】ASM発行 Metal Progress 1985年 3月号
31頁所収の George F. Vander Voort 著、「Tint Etchi
ng」の解説論文の表−1に、チタン並びにチタン合金用
のカラーエッチング法が紹介されている。この論文で
は、Weck氏エッチング液(5g・NH4 FHF+100
mL・water 、あるいは3g・NH4 FHF+4mL・HC
L+100mL・water)を用いると、偏光顕微鏡観察した
場合、結晶方位に依存して結晶粒が着色できることが述
べられている。
ASM published Metal Progress March 1985 issue
George F. Vander Voort, p. 31, `` Tint Etchi
Table 1 of the commentary on “ng” introduces color etching methods for titanium and titanium alloys. In this paper, the etching solution of Weck (5 g NH 4 FHF + 100
mL ・ water or 3g ・ NH 4 FHF + 4mL ・ HC
(L + 100 mL water), it is described that crystal grains can be colored depending on the crystal orientation when observed with a polarizing microscope.

【0027】まず、判定の対象となる板材から顕微鏡観
察用サンプル(幅25mm×長さ50mm×厚さ)を5枚採取
し、板厚中心部の板面に平行な面について、通常のミク
ロ組織を顕微鏡観察するのと同じ程度の鏡面研磨を施
し、上記Weck氏エッチング液(5g・NH4 FHF+1
00mL・water)を用いてカラーエッチングした。ノマル
スキー型偏光顕微鏡を用いて着色した結晶粒の分布を倍
率25倍(対眼レンズ10倍、フィルターなしで対物レンズ
2.5倍)でカラーフィルム(ISO100)で撮影し、最終倍
率34倍でA4紙サイズのカラー写真に仕上げた。撮影は
各サンプル3視野で行った。
First, five samples for microscope observation (25 mm in width × 50 mm in length × thickness) were sampled from a plate material to be determined, and a normal microstructure was obtained for a plane parallel to the plate surface at the center of the plate thickness. Is mirror-polished to the same degree as observed with a microscope, and the above-mentioned etching solution of Weck (5 g · NH 4 FHF + 1) is used.
(00 mL water). Use a Nomarski-type polarizing microscope to increase the distribution of the colored crystal grains by a factor of 25 (10x for the ocular lens, no objective lens without filter)
(2.5x) with a color film (ISO100) and finished in A4 paper size color photo at final magnification of 34x. Imaging was performed in three fields of view for each sample.

【0028】肉眼で識別できるマクロ模様を顕微鏡観察
するときは、上記の様に25倍程度とするのが、(1) マク
ロ模様との対応、(2) 各結晶粒の区別、(3) 結晶粒毎の
色差の判別に関して最適であった。マクロ模様部分の全
部又は一部分を撮影したカラー写真をカラースキャナー
を用いて計算機に取り込み、金属組織用画像解析ソフト
を用いて結晶粒毎にその色を決定した。物体色データの
決定は使用するカラースキャナーにより異なる。
When observing a macro pattern that can be identified by the naked eye with a microscope, the magnification should be about 25 times as described above. (1) Correspondence with the macro pattern, (2) Differentiation of each crystal grain, (3) Crystal It was optimal for discriminating the color difference for each grain. A color photograph obtained by photographing all or a part of the macro pattern portion was taken into a computer using a color scanner, and the color of each crystal grain was determined using image analysis software for metallographic structure. The determination of the object color data depends on the color scanner used.

【0029】RGB表色系の三刺激値R、G、BからX
YZ表色系の三刺激値X、Y、Zに変換し、さらに、JI
S Z 8729に規定される方法でL* * * 表色系の物体
色データL* 、a* 、b* とするか、あるいは直接物体
色データL* 、a* 、b* データを得る。本発明では両
方の方法で得たデータを区別せず使用した。これによっ
て、結晶粒の代表的結晶方位をカラーエッチで着色され
た結晶粒の物体色(写真に仕上げたもの)として測定で
きた。
X from tristimulus values R, G, B in the RGB color system
The tristimulus values of the YZ color system are converted into X, Y, and Z, and
The object color data L * , a * , b * of the L * a * b * color system is obtained by the method specified in SZ 8729, or the object color data L * , a * , b * data is obtained directly. In the present invention, the data obtained by both methods were used without distinction. As a result, the typical crystal orientation of the crystal grains could be measured as the object color (finished in a photograph) of the crystal grains colored by color etching.

【0030】マクロ模様が肉眼で全く判別できない材料
では個々の結晶粒に対応する色の分布がランダムであっ
たが、マクロ模様が明瞭に判別できる材料では同系色の
色の結晶粒が集団でコロニー状に分布していることが分
かった。各結晶粒の色の分布のランダム性の指標とし
て、本発明では、個々の結晶粒の物体色の色差をJIS Z8
730の色差表示法 ΔE* ab=[(ΔL* 2 +(Δa* 2 +(Δ
* 2 1/2 で表示した。
In a material in which the macro pattern cannot be discriminated at all with the naked eye, the distribution of colors corresponding to individual crystal grains was random, but in a material in which the macro pattern could be clearly discriminated, crystal grains of similar colors were colonized as a group. It turned out that it was distributed in the shape. As an index of the randomness of the color distribution of each crystal grain, in the present invention, the color difference between the object colors of the individual crystal grains is calculated according to JIS Z8.
730 color difference display method ΔE * ab = [(ΔL * ) 2 + (Δa * ) 2 + (Δ
b * ) 2 ] 1/2 .

【0031】二つの結晶粒がある場合、それぞれの物体
色の色差ΔE* abが 5.0未満の場合に同系色と判断
し、 5.0以上の場合は別系色とした。同系色の物体色を
持つ隣り合う結晶粒が作る集団の面積が 40000μm2
上の場合、これらの集団をコロニー組織と定義し、マク
ロ模様の不均一性を、板面の金属組織全体に占めるこれ
らのコロニー組織の面積率で定義した。
When there are two crystal grains, when the color difference ΔE * ab of each object color is less than 5.0, it is judged to be similar color, and when it is more than 5.0, it is judged to be different color. If the area of the population formed by adjacent crystal grains having similar object colors is 40,000 μm 2 or more, these populations are defined as colony structure, and the macro pattern heterogeneity occupies the entire metal structure on the plate surface. Was defined as the area ratio of the colony tissue.

【0032】冷間加工後に焼鈍したチタン板において
は、板面に平行な任意の面におけるコロニー組織の面積
率が10%未満であれば、このチタン板から製造したタ
ーゲットを使用してスパッタリングを行った場合、形成
されるゲート電極材、拡散バリア材料、配線材等のチタ
ン膜は、膜厚や配向性が均一となり、液晶素子用ならび
にVLSI用としても十分に使用可能である。
In a titanium plate annealed after cold working, if the area ratio of the colony structure on an arbitrary surface parallel to the plate surface is less than 10%, sputtering is performed using a target manufactured from this titanium plate. In this case, the formed titanium film such as a gate electrode material, a diffusion barrier material, and a wiring material has a uniform thickness and orientation, and can be sufficiently used for a liquid crystal element and a VLSI.

【0033】つぎに本発明の第1発明法は、熱間加工さ
れた素材を冷間圧延することにより、全板厚範囲にわた
って所定量の機械的双晶を発生させ、上記第1発明チタ
ン板を製造する方法である。本発明では、高純度チタン
板の不均一性の原因をマクロ模様に起因するものとして
捉えている。チタンターゲット材用高純度チタン板を冷
間圧延により製造する際、その素材の熱間加工材に存在
するマクロ模様を、機械的双晶を発生させることによっ
て全板厚範囲で破壊する。その条件として、冷間圧延時
の圧延ロール回転数Rc(rps,回/秒)を、圧延ロール
直径D(mm)に応じて上記(1)式で示される範囲に制
御しながら、圧下率6%以上の冷間圧延を行う。
Next, in the first invention method of the present invention, a hot-worked material is cold-rolled to generate a predetermined amount of mechanical twins over the entire thickness range. It is a method of manufacturing. In the present invention, the cause of the non-uniformity of the high-purity titanium plate is considered to be caused by the macro pattern. When manufacturing a high-purity titanium plate for a titanium target material by cold rolling, a macro pattern existing in a hot-worked material of the material is destroyed in the entire thickness range by generating mechanical twins. As the conditions, the rolling reduction Rc (rps, rotations / second) during the cold rolling is controlled within the range represented by the above equation (1) according to the rolling roll diameter D (mm), and the rolling reduction 6 % Cold rolling is performed.

【0034】高純度チタンや工業用高純度チタンあるい
はチタン合金など、主たる構成相の結晶構造が六方晶で
ある材料を塑性加工するとき、辷り変形の他に機械的双
晶が発生し、塑性加工歪をかなりの割合で担うことが知
られている(例えば、「金属チタンとその応用」、日刊
工業新聞社、昭和58年刊)。このとき、機械的双晶の
形状は直線あるいは笹の葉型のバンド状で、結晶粒を直
線的に貫通して生成する。
When plastic working is performed on a material whose main constituent phases are hexagonal, such as high-purity titanium, industrial-use high-purity titanium or a titanium alloy, mechanical twinning occurs in addition to slip deformation. It is known that distortion is caused by a considerable ratio (for example, "Metal titanium and its application", Nikkan Kogyo Shimbun, 1983). At this time, the shape of the mechanical twin is a straight line or a bamboo leaf-shaped band, and is generated by penetrating the crystal grains linearly.

【0035】そのため、加えられた平均歪量に比べては
るかに大きな塑性歪を局部的に与えることができるばか
りでなく、コロニー組織を構成する比較的大きな結晶粒
でも効率良く分断し、その内部の結晶方位の分散度を高
くすることができる。したがって機械的双晶の発生によ
りマクロ模様を効果的に破壊できる。機械的双晶の生成
後は辷り変形が主に塑性変形歪を担うことになるが、辷
り変形は既に機械的双晶により分断されてできたサブ結
晶粒の内部で活動するので、コロニー組織を破壊する能
力は機械的双晶に比べて小さい。
Therefore, not only can a local plastic strain be given much more than the applied average strain, but also relatively large crystal grains constituting the colony structure can be efficiently divided, and the inside of the crystal grains can be efficiently separated. The degree of dispersion of crystal orientation can be increased. Therefore, the macro pattern can be effectively destroyed by the generation of mechanical twins. After mechanical twins are formed, slip deformation mainly causes plastic deformation strain.However, since slip deformation is already active inside sub-crystal grains that have been separated by mechanical twins, the colony structure is reduced. The ability to break is small compared to mechanical twins.

【0036】チタンは熱伝導性が悪いため、塑性加工時
に歪速度を大きくすると発生する熱が外部に発散せず材
料の温度が上昇し易い。また機械的双晶は材料温度が上
がるにつれてその生成が減少することが知られている。
そこで、高純度チタン材において機械的双晶の発生量と
冷間加工条件との関係を詳しく調べた。また、ターゲッ
ト材には板面マクロ模様の均一性と緻密性が板厚方向に
も求められていることから、機械的双晶の発生量はL断
面すなわち圧延方向と板厚方向とを含む断面で全板厚範
囲にわたって観察し、面積率を求めた。
Since titanium has poor thermal conductivity, when the strain rate is increased during plastic working, the heat generated does not diffuse to the outside and the temperature of the material tends to rise. It is also known that the formation of mechanical twins decreases as the material temperature increases.
Therefore, the relationship between the amount of mechanical twins generated and the cold working conditions in a high-purity titanium material was examined in detail. In addition, since the target material is required to have uniformity and denseness of the macro-pattern on the sheet surface also in the sheet thickness direction, the amount of mechanical twins generated is L section, that is, the section including the rolling direction and the sheet thickness direction. Was observed over the entire thickness range to determine the area ratio.

【0037】純度4N5レベル(99.995%以上)
の高純度チタン熱延板(板厚33mm)を、真空クリープ
矯正機(VCF,Vacuum Creep Flattening equipment)内で
400℃×2時間保持後炉冷の VCF焼鈍を施し、黒皮ま
まの状態で種々のロール径を持つ冷間圧延機および厚板
熱延機を用いて冷間圧延を行い、機械的双晶の面積率が
25%以上となる冷間圧延条件を調査した。なお VCF焼鈍
は、 VCF装置内にて熱間形状矯正と焼鈍を同時に行うこ
とを指す。厚板・中板などレベラー矯正が困難な材料を
単独あるいは積層した後、炉内を雲母粉などで充填した
後、加熱しながら真空引きすると大気圧が板材に作用し
て微小なクリープ変形が生じて形状が矯正されて平坦な
板材を製造できる。
4N5 purity (above 99.995%)
High-purity titanium hot-rolled sheet (thickness: 33 mm) is held in a vacuum creep straightening machine (VCF, Vacuum Creep Flattening equipment) at 400 ° C for 2 hours, and then furnace-cooled by VCF annealing. Cold rolling is performed using a cold rolling mill and a thick plate hot rolling mill with a roll diameter of
The cold rolling condition of 25% or more was investigated. VCF annealing refers to simultaneous hot shape correction and annealing in a VCF device. After singly or laminating materials that are difficult to leveler correction such as thick plate and middle plate, fill the furnace with mica powder, etc., and then apply vacuum while heating, and the atmospheric pressure will act on the plate material to cause slight creep deformation The shape can be corrected to produce a flat plate material.

【0038】冷間圧延の圧延ロール直径Dは60〜16
90mm、圧延ロール回転数Rcは0.1〜10rps 、潤
滑は無潤滑、鉱物油、牛脂系油を適宜圧延機と組み合わ
せて使用した。パス毎の圧下量は、圧延ロールの損壊を
防ぐため、ロール径を考慮して定めた。圧延機のロール
径を大きく変えるため、実験室規模の小型圧延機や実生
産用の大型熱延機を用いて室温約25℃で実験を行っ
た。実験では冷延時の総圧下率を25%に統一して行っ
た。
The roll diameter D of the cold rolling is 60 to 16
90 mm, the roll rotation speed Rc was 0.1 to 10 rps, lubrication was unlubricated, and mineral oil and tallow oil were used in combination with a rolling mill as appropriate. The rolling reduction for each pass was determined in consideration of the roll diameter in order to prevent the roll from being damaged. In order to greatly change the roll diameter of the rolling mill, experiments were performed at room temperature of about 25 ° C. using a small-scale rolling mill on a laboratory scale or a large hot rolling mill for actual production. In the experiment, the total rolling reduction during cold rolling was unified to 25%.

【0039】図1は、冷間圧延の圧延ロール直径Dと圧
延ロール回転数Rcを座標とし、機械的双晶の面積率が
25%以上となる限界条件の曲線を示す。この曲線を含
む曲線より下の領域で機械的双晶の面積率が25%以上
となり、この条件を式で示したのが上記(1)式であ
る。曲線より上の領域では、加工時の歪速度が高すぎる
ため双晶の発生前に辷り変形が優先しておこり機械的双
晶の面積率が25%未満となる。このように、機械的双
晶の発生量は塑性加工法の種類には依存しないが、加工
時の歪速度には敏感であることからターゲット材の製造
に当たっては従来の展伸材の場合以上に製造条件に配慮
することが重要である。
FIG. 1 shows a curve of a critical condition in which the area ratio of mechanical twins is 25% or more, with the roll diameter D and the roll rotation speed Rc of the cold rolling as coordinates. In the region below the curve including this curve, the area ratio of mechanical twins is 25% or more, and this condition is represented by the above formula (1). In the region above the curve, since the strain rate during processing is too high, slip deformation occurs preferentially before twinning occurs, and the area ratio of mechanical twins becomes less than 25%. As described above, the amount of mechanical twins does not depend on the type of plastic working method, but is sensitive to the strain rate during working. It is important to consider manufacturing conditions.

【0040】図2は、図1の関係を求める上記実験にお
いて、ロール直径D、ロール回転数Rc、潤滑条件な
ど、種々の条件で冷間圧延したときに観察される機械的
双晶面積率の最大値と圧下率との関係を示す。すなわち
図2は、機械的双晶面積率を25%以上とするには、圧
下率を6%以上にする必要があることを示している。以
上の実験は熱延板に VCF焼鈍を施したものについて行っ
たが、大気中で焼鈍を施したものについても、また焼鈍
を施さないものについても、同様の結果が得られた 一方ターゲットの製造工程においては、ターゲット材を
円板状に加工したりその平坦度を高めるための相当量の
研削加工が必要であり、必ずしも通常の工業純度の展伸
材に求められるような表面性状を冷延ままの状態で持た
せる必要はない。そこで、本発明法の冷間圧延では、む
しろ、黒皮スケールの潤滑効果を利用するのが好まし
い。すなわち、熱間加工工程で生成したスケールを表面
に付けたままで、あるいはスケールを付けたまま大気中
または VCF(真空クリープ矯正機)で焼鈍を行った後、
スケールを残したままで冷間圧延するのが好ましい。こ
の場合、冷間圧延は、一種の機械的デスケール効果を与
えるので、引き続いてショットブラストと酸洗処理を行
うことで表面のデスケールを効率的に行って、そのまま
ターゲット材素材とすることができる。
FIG. 2 shows the mechanical twin area ratio observed when cold rolling was performed under various conditions such as roll diameter D, roll rotation speed Rc, and lubrication conditions in the above-described experiment for obtaining the relationship of FIG. The relationship between the maximum value and the rolling reduction is shown. That is, FIG. 2 shows that in order to make the mechanical twin area ratio 25% or more, the rolling reduction needs to be 6% or more. The above experiments were conducted on VCF-annealed hot-rolled sheets.Similar results were obtained for the specimens annealed in air and those not subjected to annealing. In the process, a considerable amount of grinding is required to process the target material into a disk shape and increase its flatness, and it is not always necessary to cold-roll the surface properties required for wrought materials of normal industrial purity. It is not necessary to have it as it is. Therefore, in the cold rolling according to the present invention, it is preferable to use the lubrication effect of the black scale. In other words, after the scale formed in the hot working process is attached to the surface, or with the scale attached, it is annealed in the air or with a VCF (vacuum creep straightening machine),
It is preferable to perform cold rolling while leaving the scale. In this case, since cold rolling gives a kind of mechanical descale effect, the surface can be efficiently descaled by subsequently performing shot blasting and pickling, and the target material can be used as it is.

【0041】なお従来の工業用純度の冷間圧延チタン板
の製造においては、冷間圧延前に熱延板をそのままある
いは軟化のための再結晶焼鈍を行った後、ショットブラ
ストなどの機械的デスケール処理とその後に引き続く酸
洗処理を行って、熱延板の表面のスケール(酸化皮膜、
黒皮とも言う)を完全に除去した後冷間圧延を行うこと
が常識となっている。これは、不必要な酸化やガス吸収
を回避するため、冷間圧延後の板を脱脂後、そのまま真
空焼鈍し、冷延板の表面性状がそのまま製品表面となる
薄板製品を製造する場合が主であることによっている。
In the conventional production of a cold rolled titanium sheet of industrial purity, the hot rolled sheet is subjected to mechanical descale such as shot blasting after the hot rolled sheet is subjected to recrystallization annealing for softening before cold rolling. After the treatment and the subsequent pickling treatment, the scale (oxide film,
It is common sense to perform cold rolling after completely removing black scale). This method is mainly used to manufacture a sheet product in which the cold-rolled sheet is directly degreased and then vacuum-annealed to avoid unnecessary oxidation and gas absorption, and the surface properties of the cold-rolled sheet become the product surface as it is. It is by being.

【0042】本発明法では、上記のようにスケール付き
素材を冷間圧延するのが好ましい。熱間加工まま、ある
いはそれを大気中または VCFで焼鈍しただけのスケール
付き状態の材料は、スケールの下に、熱間加工時の剪断
変形の集中によって細粒化した部分があるため、これら
が、冷延時の粒界での割れの防止に寄与する効果もあ
る。
In the method of the present invention, it is preferable to cold-roll the raw material with scale as described above. Materials with scales that have been hot worked or have just been annealed in the air or with VCF have fine-grained parts under the scale due to the concentration of shear deformation during hot working. In addition, it also has an effect of contributing to prevention of cracks at grain boundaries during cold rolling.

【0043】しかし、やむを得ない理由、例えば一旦別
の用途向けに製造した高純度チタン製品をターゲット材
用とするときには、圧延素材は既にデスケールされてお
り、表面の黒皮を除去した状態で冷延することになる。
また、通常の展伸材の製造プロセスでは、製品にするた
めの精整工程でこれらを黒皮と一緒に除去してしまうた
め、一旦製品に仕上げたものを再度冷間加工する際には
上述のような問題が起きうる。
However, for unavoidable reasons, for example, when a high-purity titanium product once manufactured for another purpose is used as a target material, the rolled material has already been descaled and cold rolled with the surface black scale removed. Will do.
Also, in the normal wrought material manufacturing process, these are removed together with the black scale in the refining process for making the product, so when cold-working the product once finished, The following problems may occur.

【0044】そこで本発明者らは、緻密な板面金属組織
を有するターゲット材を提供する観点から、5Nレベル
の高純度チタン冷延素材として、大きな結晶粒径を有す
るEBR(電子ビーム再溶解)スラブから切り出した板
厚80mmの切片(板面での平均結晶粒径55mm)、分塊
スラブから切り出した板厚100mmの切片(板面での平
均結晶粒径3.3mm)、熱延板(板厚50mm)を、それ
ぞれ大気中で200℃〜790℃で30分〜2時間保持
後空冷の焼鈍を施し表面を機械切削したもの(板面での
平均結晶粒径1.1〜112.0μm)を用いた実験を
行った。
From the viewpoint of providing a target material having a dense metal structure on a plate surface, the inventors of the present invention used a high purity titanium cold rolled material of the 5N level as an EBR (Electron Beam Remelting) having a large crystal grain size. A piece with a thickness of 80 mm cut out from the slab (average crystal grain size on the plate surface: 55 mm), a piece with a thickness of 100 mm cut from the bulk slab (average crystal grain size on the plate surface: 3.3 mm), a hot-rolled sheet ( (Plate thickness: 50 mm) was held at 200 ° C. to 790 ° C. in the air for 30 minutes to 2 hours, then air-cooled, and the surface was mechanically cut (average crystal grain size at the plate surface: 1.1 to 112.0 μm) ) Was performed.

【0045】これらの冷延素材を、無潤滑で実験室規模
の小型圧延機や実生産用の大型熱延機を用いて圧延ロー
ル径を60〜1690mmと大きく変えて室温約25℃で
冷延した。なお冷延時の総圧下率は40%に統一して行
った。また、割れの発生を検知しやすくするため圧延素
材の表面は機械切削後酸洗しバフ研磨して鏡面に仕上げ
た。圧延後の冷延板の表面を実体顕微鏡を用いて粒界で
の割れの有無を調べて割れが発生しない圧延条件を調べ
た結果、冷延素材の結晶粒径d(μm)に対し圧延ロー
ル径D(mm)を上記(2)式を満たすように選ぶこと
で、粒界割れを防止できることが判明した。
These cold-rolled materials were cold-rolled at room temperature of about 25 ° C. by using a non-lubricated laboratory-scale small rolling mill or a large-scale hot rolling mill for actual production, with the rolling roll diameter being greatly changed to 60 to 1690 mm. did. The total rolling reduction during cold rolling was unified to 40%. Further, the surface of the rolled material was mirror-finished by pickling and buffing after mechanical cutting to make it easier to detect the occurrence of cracks. As a result of examining the surface of the cold-rolled sheet after rolling by using a stereoscopic microscope for cracks at grain boundaries and examining rolling conditions under which cracks do not occur, a rolling roll was applied to the crystal grain size d (μm) of the cold-rolled material. It has been found that by selecting the diameter D (mm) so as to satisfy the above equation (2), grain boundary cracking can be prevented.

【0046】なお本発明法では、冷間加工時の機械的双
晶の発生を最大限にするため圧延ロールの回転数を制限
することによって加工発熱による機械的双晶の発生率低
下を防止している。一方、従来のチタン及びチタン低合
金の展伸材の冷間圧延において、圧延速度が定常状態に
達するまでの加速段階と圧延終了に至るまでの減速段階
では、圧延ロール回転数が一時的には本発明法の範囲と
なることが有りうる。しかし、本発明法では圧延速度が
定常状態になった段階でのロール回転数を規定してい
る。
In the method of the present invention, the rate of occurrence of mechanical twins due to processing heat is prevented from being reduced by limiting the number of rotations of a rolling roll in order to maximize the generation of mechanical twins during cold working. ing. On the other hand, in conventional cold rolling of wrought titanium and titanium low alloy, in the acceleration stage until the rolling speed reaches a steady state and the deceleration stage until the end of the rolling, the rolling roll rotation speed is temporarily It may be within the scope of the present method. However, in the method of the present invention, the number of rotations of the roll at the stage when the rolling speed reaches a steady state is defined.

【0047】つぎに第2発明法について述べる。本発明
の第2発明法は、上記第1発明法で得られたチタン板を
大気中または真空クリープ矯正機内で焼鈍することによ
り、上記第2発明チタン板を製造する方法である。第1
発明法により冷間加工して、L断面における全板厚断面
の機械的双晶面積率を25%以上とすることにより、冷
延素材に存在したコロニー組織が機械的に破壊され緻密
な組織となる。これを再結晶焼鈍すると、マクロ組織内
部の結晶方位分散が進み、マクロ模様の不均一が解消さ
れると考えられる。このような観点から本発明者らは冷
間圧延時に発生する機械的双晶の面積率と、再結晶後の
マクロ模様均一性との関係を調べた。
Next, the second invention method will be described. The second invention method of the present invention is a method for producing the second invention titanium sheet by annealing the titanium plate obtained by the first invention method in the air or in a vacuum creep straightening machine. First
By performing cold working according to the invention method to make the mechanical twin area ratio of the entire sheet thickness section in the L section 25% or more, the colony structure existing in the cold-rolled material is mechanically broken, and Become. It is considered that when this is recrystallized and annealed, the dispersion of the crystal orientation in the macrostructure proceeds, and the unevenness of the macro pattern is eliminated. From such a viewpoint, the present inventors examined the relationship between the area ratio of mechanical twins generated during cold rolling and the uniformity of the macro pattern after recrystallization.

【0048】すなわち、純度4N5(99.995%以
上)レベルの高純度チタンの熱延板(板厚20mm)で黒
皮がついたままの熱延板、及びそれを大気中で500℃
×30分保持する焼鈍を施したやはり黒皮ままの熱延・
焼鈍板を、ワークロール径270mmの4段式圧延機にて
そのまま冷間圧延に供した。圧延ロールの回転数は、
0.5rps とし、無潤滑で、平均各パス0.5mmの圧下
を掛けて、総圧下率が5〜80%の範囲で冷延するとと
もに5%毎にサンプリングした。なお、各パス毎に室温
(25℃)の水中に浸漬して板の温度が一定になるよう
に注意した。
That is, a hot-rolled sheet (plate thickness: 20 mm) of high-purity titanium having a purity of 4N5 (99.995% or more) with a black scale and 500 ° C. in air.
Hot rolled as it is after being annealed for 30 minutes
The annealed plate was directly subjected to cold rolling by a four-high rolling mill having a work roll diameter of 270 mm. The rotation speed of the rolling roll is
The rolling was performed at 0.5 rps, unlubricated, and subjected to a reduction of 0.5 mm on each pass on average, cold-rolled in a total reduction ratio of 5 to 80%, and sampled every 5%. It was noted that each pass was immersed in water at room temperature (25 ° C.) so that the temperature of the plate became constant.

【0049】これら圧下率の異なる冷延板のL断面にお
ける全板厚断面の機械的双晶面積率を3カ所測定し平均
値を求めた。さらに、冷延板に大気中で350℃×30
分保持後、空冷する焼鈍を施し、また板面に平行に深さ
5mmだけ研削した後、前述のように定義したコロニー組
織面積率を指標に、マクロ模様の均一性判定を行った。
マクロ模様均一性は、コロニー組織面積率に応じて次の
ように決めた。
[0049] The mechanical twin area ratios of all cross sections of the cold rolled sheet having different rolling reductions in the L section were measured at three places, and the average value was obtained. Furthermore, the cold rolled sheet is 350 ° C. × 30 in the air.
After holding for a minute, the sample was annealed by air cooling and ground in parallel with the plate surface to a depth of 5 mm, and then the uniformity of the macro pattern was determined using the area ratio of the colony tissue defined as described above as an index.
The macro pattern uniformity was determined as follows according to the colony tissue area ratio.

【0050】 評点×:コロニー組織面積率30%以上〜100% 評点△:コロニー組織面積率10%以上〜30%未満 評点○:コロニー組織面積率5%以上〜10%未満 評点◎:コロニー組織面積率0%以上〜5%未満 の4段階評価で評価し○以上が合格である。Rating ×: Colony tissue area ratio 30% or more to 100% Rating Δ: Colony tissue area ratio 10% to less than 30% Rating ○: Colony tissue area ratio 5% to less than 10% Rating ◎: Colony tissue area A rating of 0 or more to less than 5% was evaluated on a four-point scale, and 以上 or more passed.

【0051】図3は冷延板中での機械的双晶面積率とマ
クロ模様均一性評点の関係を示したもので、双晶面積率
が増加するにつれてマクロ模様の均一性が改善されるこ
とを示している。図3から、冷延板中の双晶面積率が2
5%以上のものはマクロ模様均一性が合格レベルになる
ことがわかる。なおこの試験では平面研削ができるよう
に冷延ままの材料を冷間ロールレベラーを通して形状矯
正を行ったが、板厚を変化させないかぎり冷間ロールレ
ベラー矯正による付加的な双晶の発生は非常に少ないこ
とを別の実験で確認した。
FIG. 3 shows the relationship between the mechanical twin area ratio in the cold rolled sheet and the macro pattern uniformity score. As the twin area ratio increases, the uniformity of the macro pattern is improved. Is shown. From FIG. 3, the twin area ratio in the cold rolled sheet is 2
It can be seen that those with 5% or more have a macro pattern uniformity at an acceptable level. In this test, the shape of the cold rolled material was corrected through a cold roll leveler so that surface grinding could be performed.However, as long as the sheet thickness was not changed, the generation of additional twins due to the cold roll leveler correction was extremely large. It was confirmed in another experiment that it was small.

【0052】機械的双晶導入によるコロニー組織の分断
効果は、熱延板の焼鈍有無や冷延圧下量には関係なく機
械的双晶の占める割合でのみ決定されることが図3から
わかる。なお、上記の結果は圧延という塑性加工法の一
つを用いて検討を行い得られたものであるが、マクロ模
様の解消に有効なのは圧延という塑性加工法ではなく、
発生する機械的双晶の発生量が大きな影響を及ぼすので
あり、基本的には加工方法には依存しない。
It can be seen from FIG. 3 that the effect of dividing the colony structure by the introduction of mechanical twins is determined only by the proportion of the mechanical twins irrespective of the presence or absence of annealing of the hot-rolled sheet and the amount of reduction in cold rolling. In addition, the above results were obtained by conducting studies using one of the plastic working methods called rolling, but it is not the plastic working method called rolling that is effective in eliminating the macro pattern,
The amount of generated mechanical twins has a great influence, and basically does not depend on the processing method.

【0053】第1発明法においてスケールを付けたまま
で冷延を行った材料は、往々にして加工硬化しており、
ターゲット材製造時の矯正段階で曲がりにくく作業性が
悪い場合がある。また、残留応力があると矯正後の切削
段階でゆがみを生じ易い。そのような場合、第2発明法
により冷延圧延後に焼鈍を入れて軟化させることで問題
は解消される。
The material subjected to cold rolling with the scale attached in the first invention method is often work-hardened,
There is a case where it is difficult to bend at the correction stage at the time of manufacturing the target material and the workability is poor. Also, if there is residual stress, distortion is likely to occur in the cutting stage after straightening. In such a case, the problem is solved by softening by annealing after cold rolling by the second invention method.

【0054】[0054]

【実施例】以下に、本発明を実施例に基づいてさらに説
明する。
EXAMPLES The present invention will be further described below with reference to examples.

【0055】(実施例1)4N5の高純度チタンのスケ
ールがついたままの熱延板(板厚32mm)及びそれを真
空クリープ矯正機内で360℃×4時間保持後炉冷の焼
鈍を施したやはりスケール付き熱延焼鈍板をワークロー
ル径200mmの実験用4段式圧延機にて無潤滑で室温2
8℃で冷延した、圧下率は5%〜80%の範囲で変化さ
せた。圧延ロールの回転数は1.3rps とした。これら
のサンプルのL断面での双晶発生面積率の全板厚平均値
を測定した。冷延板を真空クリープ矯正機内で300℃
×4時間保持後炉冷の焼鈍を行い、スケール表面下2mm
まで研削しさらに#320研磨を行って通常の硝沸酸系
のマクロ腐食液でエッチングしてマクロ模様の目視判定
を行った。その結果、表1に示すように、機械的双晶面
積率が25%以上ではマクロ模様判定は合格であるもの
の25%未満では熱延板焼鈍の有無に関係なくマクロ模
様判定は不合格であった。
Example 1 A hot rolled sheet (thickness: 32 mm) with 4N5 high-purity titanium scale attached thereto, and it was kept in a vacuum creep straightening machine at 360 ° C. for 4 hours, and then subjected to furnace cooling annealing. Again, the hot rolled annealed plate with scale was lubricated at room temperature 2 with a 200 mm work roll diameter experimental 4-high rolling mill.
The cold rolling was performed at 8 ° C., and the rolling reduction was changed in a range of 5% to 80%. The number of rotations of the rolling roll was 1.3 rps. The average value of the total twin thickness of the twin generation area ratio in the L section of these samples was measured. 300 ° C in cold creep straightening machine
After holding for 4 hours, the furnace is annealed by cooling, and 2mm below the scale surface
And then subjected to # 320 polishing and etched with a normal nitric acid-based macro-corrosion solution to visually determine the macro pattern. As a result, as shown in Table 1, when the mechanical twin area ratio was 25% or more, the macro pattern judgment passed, but when the mechanical twin area ratio was less than 25%, the macro pattern judgment failed regardless of the presence or absence of hot-rolled sheet annealing. Was.

【0056】[0056]

【表1】 [Table 1]

【0057】(実施例2)5N5レベルの高純度チタン
の熱延板(板厚27mm)を大気中で300℃×30分、
450℃×30分の焼鈍および真空クリープ矯正機内で
600℃×4時間保持後炉冷の焼鈍を施し黒皮ままの状
態で60〜1690mmのロール径を持つ実験用冷間圧延
機および実生産用の大型厚板熱延機を用いてロール回転
数を変えて室温約27℃で冷間圧延を行い機械的双晶の
発生面積率を調査求めた。潤滑は無潤滑、鉱物油、牛脂
系油を適宜圧延機と組み合わせて使用した。パス毎の圧
下量は圧延ロールの損壊を防ぐため、ロール径を考慮し
て5〜11%で実施した。なお、冷延時での総圧下率を
33%に統一して行った。その結果、表2に示すように
(1)式の範囲のものは双晶面積率が25%以上であっ
た。
Example 2 A hot rolled plate (plate thickness 27 mm) of 5N5 level high-purity titanium was placed in the air at 300 ° C. for 30 minutes.
Annealing at 450 ° C. × 30 minutes and holding at 600 ° C. × 4 hours in a vacuum creep straightening machine, then furnace-cooled annealing, and a cold rolling mill for experimental use having a roll diameter of 60 to 1690 mm in the state of black scale and for actual production Cold rolling was performed at room temperature of about 27 ° C. while changing the number of rolls using a large-sized hot plate mill of No. 1 to investigate the area ratio of occurrence of mechanical twins. Lubrication was used without lubrication, using mineral oil and tallow oil in combination with a rolling mill as appropriate. The rolling reduction for each pass was set at 5 to 11% in consideration of the roll diameter in order to prevent the roll from being damaged. In addition, the total reduction rate at the time of cold rolling was unified to 33%. As a result, as shown in Table 2, those in the range of the formula (1) had a twin area ratio of 25% or more.

【0058】[0058]

【表2】 [Table 2]

【0059】(実施例3)冷延素材として4N5レベル
の高純度チタンのEBR(電子ビーム再溶解)薄スラブ
から切り出した板厚50mmの切片(板面での平均結晶粒
径52mm)、熱間鍛造スラブから切出した板厚50mmの
切片を大気中で500℃×30分保持後空冷(板面での
平均結晶粒径4.1mm)、熱延板(板厚50mm)を大気
中で500℃×30分保持空冷(板面での平均結晶粒径
333μm)、真空クリープ矯正機内で840℃×5時
間保持後炉冷(板面での平均結晶粒径333μm)、同
じく880℃×11時間保持炉冷(板面での平均結晶粒
径520μm)の焼鈍を施し表面を機械切削・酸洗・鏡
面研磨したものを無潤滑で圧延ロール径と圧延ロールの
回転数を変化させ室温約25℃で冷延した。なお冷延時
の総圧下率は60%に統一して行った。表3から、結晶
粒径d(μm)に対し圧延ロール径D(mm)を(2)
式を満たすように選ぶことが粒界割れの防止に有効であ
ることが判明した。
(Example 3) A 50 mm-thick slice (average crystal grain size on the plate surface: 52 mm) cut from an EBR (electron beam remelting) thin slab of 4N5 level high-purity titanium as a cold-rolled material, hot A piece with a thickness of 50 mm cut out from the forged slab is kept at 500 ° C. for 30 minutes in the air, then air-cooled (average crystal grain size on the plate surface is 4.1 mm), and a hot-rolled sheet (50 mm in thickness) is heated to 500 ° C. in the air. Air cooling (average crystal grain size at plate surface: 333 μm), holding at 840 ° C. × 5 hours in vacuum creep straightener, furnace cooling (average crystal grain size at plate surface: 333 μm), holding at 880 ° C. × 11 hours Furnace-cooled (average crystal grain size on the plate surface is 520 μm), the surface of which is mechanically cut, pickled, and mirror-polished is lubricated and the rolling roll diameter and the number of rotations of the rolling roll are changed without lubrication. Cold rolled. The total rolling reduction during cold rolling was unified to 60%. From Table 3, the roll diameter D (mm) is expressed as (2) with respect to the crystal grain diameter d (μm).
It has been found that selection to satisfy the equation is effective in preventing grain boundary cracking.

【0060】[0060]

【表3】 [Table 3]

【0061】(実施例4)5N、4N5、4Nレベルの
高純度チタンの黒皮まま熱延板(板厚25mm〜52mm、
幅2800×長さ10000mm)とそれらをさらに真空
クリープ矯正炉内で真空脱気しながら270℃〜475
℃で30分〜4時間の加熱保持を行い形状矯正と焼鈍を
同時に行った黒皮付き焼鈍板を用いた。圧延ロール径と
圧延ロールの回転数を変化させ総圧下率40%の無潤滑
の冷間圧延を室温約42℃で行った。なお、真空クリー
プ処理を行っても熱延板の黒皮は一部が変色するだけス
ケールの厚みに大きな変化はなかった。冷間圧延後一部
分からサンプルを採取し機械的双晶の発生面積率を測定
した。冷延後、いずれの冷延板も各々通常の大気焼鈍
(555℃×30分加熱保持後空冷)と真空クリープ矯
正機内での焼鈍(450℃×4時間保持後炉冷)を行っ
た後、上述の方法で板面のマクロ模様の評点を付けた。
結果は表4に示すようにいずれの焼鈍でも疵の評点には
差がなかった。双晶発生面積率を上記知見に従って制御
したものではマクロ模様の改善が確認できた。
(Example 4) Hot-rolled sheets of 5N, 4N5, and 4N levels of high-purity titanium as-black (plate thickness 25 mm to 52 mm,
270 ° C to 475 while vacuum degassing them further in a vacuum creep straightening furnace.
An annealed plate with black scale was used which was heated and held at 30 ° C. for 30 minutes to 4 hours to simultaneously perform shape correction and annealing. The non-lubricated cold rolling at a total reduction of 40% was performed at room temperature of about 42 ° C. by changing the rolling roll diameter and the number of rotations of the rolling roll. Even when the vacuum creep treatment was performed, only a part of the black scale of the hot-rolled sheet was discolored, and there was no significant change in the thickness of the scale. After cold rolling, a sample was taken from a portion and the area ratio of occurrence of mechanical twins was measured. After cold rolling, each of the cold rolled sheets was subjected to normal air annealing (555 ° C. × 30 minutes heating and air cooling after holding) and annealing in a vacuum creep straightening machine (450 ° C. × 4 hours holding and furnace cooling), The macro pattern of the plate surface was scored by the method described above.
As shown in Table 4, there was no difference in the evaluation of flaws in any of the annealings. When the twinned area ratio was controlled in accordance with the above findings, improvement of the macro pattern could be confirmed.

【0062】[0062]

【表4】 [Table 4]

【0063】本発明に於ては実施例として焼鈍は大気焼
鈍および真空クリープ矯正機内での焼鈍について取り扱
ったが、焼鈍時における酸化やガス吸収は極力避けるべ
きものであり、焼鈍を不活性ガス中や減圧大気中で行う
ことは本発明の技術思想を損なうものではない。焼鈍雰
囲気の選択は飽くまでも経済的指標に基づいて行うべき
ものである。なお、実施例3におけると同様に、スラブ
から素材を切出した素材を用いる場合、必ずしも切出し
た後に焼鈍を行う必要は無く、スラブを予め焼鈍してお
きそれから冷間圧延素材を切出してもよい。
In the present invention, as an embodiment, the annealing was performed with respect to atmospheric annealing and annealing in a vacuum creep straightening machine. However, oxidation and gas absorption during annealing should be avoided as much as possible. Performing in a reduced pressure atmosphere does not impair the technical idea of the present invention. The choice of the annealing atmosphere should be made based on economic indicators, even if it gets tired. As in the third embodiment, when using a material obtained by cutting a material from a slab, it is not always necessary to perform annealing after cutting, and the slab may be annealed in advance and then a cold-rolled material may be cut.

【0064】又、本発明は機械的双晶の発生によりコロ
ニー組織の破壊を行うものであり、機械的双晶が所定量
生成すれば効果が発生するのであって、必ずしも冷間圧
延は厳密に室温付近で行うことを必要としない。例えば
約200℃より低い温間域における加工によっても所定
の双晶量が生成すれば同等の効果が得られることは言う
までもないのであって本発明に含まれるべきものであ
る。
Further, in the present invention, the colony structure is destroyed by the generation of mechanical twins, and the effect is produced if a predetermined amount of mechanical twins is generated. It does not need to be performed near room temperature. For example, it is needless to say that the same effect can be obtained if a predetermined twin content is produced even by working in a warm region lower than about 200 ° C., and should be included in the present invention.

【0065】[0065]

【発明の効果】本発明は高純度チタンターゲット材素材
に含まれているマクロ模様の解消方法を詳細に検討し
て、チタンターゲット材用高純度チタン板の製造工程の
中で、素材の冷延工程に着目して、冷延時における全板
厚にわたる機械的双晶の発生量を圧延ロール、圧延ロー
ル回転数、圧延素材結晶粒径を制御することによって、
原素材からの加工工程で引き継いできたマクロ模様を一
挙に破壊・解消することを可能とする製造方法並びにそ
のターゲット材用高純度チタン板を提供するものであ
る。本発明は当該ターゲット材素材、ターゲット材の品
質向上、生産効率及び歩留りを向上させる経済的な効果
が大きく、従来からのチタン及び低チタン合金展伸材の
ミクロ組織及びマクロ組織の均一化・緻密化にもその技
術的思想を適用できることなどからその工業的価値は大
きい。
The present invention examines in detail a method for eliminating macro patterns contained in a high-purity titanium target material, and cold-rolls the material in the manufacturing process of a high-purity titanium plate for a titanium target material. Focusing on the process, the amount of mechanical twinning over the entire sheet thickness during cold rolling is controlled by controlling the rolling roll, rolling roll rotation speed, and rolling material grain size.
An object of the present invention is to provide a manufacturing method capable of destroying and eliminating a macro pattern inherited in a processing step from an original material at once, and a high-purity titanium plate for the target material. The present invention has a great economic effect of improving the quality of the target material, the quality of the target material, the production efficiency and the yield, and the uniform and dense microstructure and macrostructure of conventional titanium and low titanium alloy wrought materials. Its industrial value is great because its technical ideas can be applied to the development of products.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明法における冷間圧延におけるロール直径
とロール回転数との関係を示すグラフである。
FIG. 1 is a graph showing a relationship between a roll diameter and a roll rotation speed in cold rolling in the method of the present invention.

【図2】冷間圧延における総圧下率と冷延板に発生する
機械的双晶面積率との関係を示すグラフである。
FIG. 2 is a graph showing a relationship between a total draft in cold rolling and a mechanical twin area ratio generated in a cold-rolled sheet.

【図3】熱延板及びそれを大気中で焼鈍した材料を種々
の総圧延率で冷延した時の双晶面積率と冷延板を焼鈍し
た材料のマクロ模様評点の関係を示すグラフである。
FIG. 3 is a graph showing a relationship between a twin area ratio when a hot-rolled sheet and a material annealed in the air are cold-rolled at various total rolling reductions and a macro pattern score of the material annealed the cold-rolled sheet. is there.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 613 C22F 1/00 613 623 623 683 683 684 684C 685 685Z 686 686Z 694 694A 694Z (72)発明者 河原 由尚 福岡県北九州市戸畑区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内 (72)発明者 永井 勲 福岡県北九州市戸畑区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内 (72)発明者 千葉 正夫 東京都千代田区大手町2−6−3 新日本 製鐵株式会社内 Fターム(参考) 4K029 BA17 BD01 DC03 DC07 4M104 BB14 DD40 HH20 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) C22F 1/00 613 C22F 1/00 613 623 623 683 683 684 684C 685 685Z 686 686Z 694 694 694A 694Z (72) Inventor Yu Kawahara In addition, 1-1 Nichihata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka New Nippon Steel Corporation Yawata Works (72) Inventor Isao Nagai 1-1-1, Tobita-cho, Tobata-ku, Kitakyushu, Fukuoka New Nippon Steel Corporation Yawata Inside the steelworks (72) Inventor Masao Chiba 2-6-3 Otemachi, Chiyoda-ku, Tokyo F-term in Nippon Steel Corporation (reference) 4K029 BA17 BD01 DC03 DC07 4M104 BB14 DD40 HH20

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 冷間加工組織をなし、任意のL断面にお
ける全板厚断面の機械的双晶面積率が25%以上であるこ
とを特徴とするチタンターゲット材用高純度チタン板。
1. A high-purity titanium plate for a titanium target material having a cold-worked structure and having a mechanical twin area ratio of 25% or more in an entire L-thickness cross-section in an arbitrary L cross-section.
【請求項2】 再結晶組織をなし、板面に平行な任意の
面におけるコロニー組織の面積率が10%未満であるこ
とを特徴とするチタンターゲット材用高純度チタン板。
2. A high-purity titanium plate for a titanium target material, which has a recrystallized structure and an area ratio of a colony structure on an arbitrary surface parallel to the plate surface is less than 10%.
【請求項3】 冷間圧延時の圧延ロール回転数Rc(r
ps)を、圧延ロール直径D(mm)に応じて(1)式で
示される範囲に制御しながら、圧下率6%以上の冷間圧
延を行うことにより、冷間加工組織をなし、任意のL断
面における全板厚断面の機械的双晶面積率が25%以上で
ある冷延板とすることを特徴とするチタンターゲット材
用高純度チタン板の製造方法。 Rc≦1.59172 −2.2541×106 /D4 +4.21766 ×105 /D3 −2.54285 ×104 /D2 +7.89452 ×102 /D (1)
3. The roll rotation speed Rc (r) during cold rolling.
ps) is controlled in accordance with the roll diameter D (mm) to a range represented by the formula (1), and a cold-rolled structure with a draft of 6% or more is formed to form a cold-worked structure. A method for producing a high-purity titanium sheet for a titanium target material, wherein the cold-rolled sheet has a mechanical twin area ratio of 25% or more in the entire sheet thickness section in the L section. Rc ≦ 1.59172 −2.2541 × 10 6 / D 4 + 4.21766 × 10 5 / D 3 −2.54285 × 10 4 / D 2 + 7.89452 × 10 2 / D (1)
【請求項4】 熱間加工時に生成したスケールを表面に
付けたままで冷間圧延することを特徴とする請求項3記
載のチタンターゲット材用高純度チタン板の製造方法。
4. The method for producing a high-purity titanium plate for a titanium target material according to claim 3, wherein the scale produced during hot working is cold-rolled while being attached to the surface.
【請求項5】 熱間加工時に生成したスケールを表面に
付けたまま、大気中で焼鈍を行った後、スケールを残し
たままで冷間圧延することを特徴とする請求項3記載の
チタンターゲット材用高純度チタン板の製造方法。
5. The titanium target material according to claim 3, wherein after the scale formed during hot working is attached to the surface, annealing is performed in the air, and then cold rolling is performed with the scale remaining. Production method of high purity titanium plate for use.
【請求項6】 熱間加工時に生成したスケールを表面に
付けたまま、真空クリープ矯正機内で焼鈍を行った後、
スケールを残したままで冷間圧延することを特徴とする
請求項3記載のチタンターゲット材用高純度チタン板の
製造方法。
6. After performing annealing in a vacuum creep straightening machine with the scale formed during hot working attached to the surface,
4. The method for producing a high-purity titanium plate for a titanium target material according to claim 3, wherein cold rolling is performed while the scale remains.
【請求項7】 表面スケールを除去した冷間圧延素材
を、該素材の結晶粒径d (μm)に応じて、直径D(mm)
が(2)式の関係を満たす圧延ロールで冷間圧延するこ
とを特徴とする、請求項3、4、5、または6記載のチ
タンターゲット材用高純度チタン板の製造方法。 D≧1.033 d0.504 (2)
7. A cold-rolled material from which surface scale has been removed is subjected to a diameter D (mm) according to a crystal grain size d (μm) of the material.
7. The method for producing a high-purity titanium plate for a titanium target material according to claim 3, wherein cold rolling is performed with a rolling roll that satisfies the relationship of the expression (2). D ≧ 1.033 d 0.504 (2)
【請求項8】 請求項3、4、5、6または7記載のチ
タン板を、大気中または真空クリープ矯正機内で焼鈍す
ることにより、再結晶組織をなし、板面に平行な任意の
面におけるコロニー組織の面積率が10%未満である冷
延焼鈍板とすることを特徴とするチタンターゲット材用
高純度チタン板の製造方法。
8. The titanium plate according to claim 3, 4, 5, 6, or 7 is annealed in the air or in a vacuum creep straightening machine to form a recrystallized structure, and any surface parallel to the plate surface. A method for producing a high-purity titanium plate for a titanium target material, comprising a cold-rolled annealed plate having an area ratio of colony structure of less than 10%.
JP21082498A 1998-07-27 1998-07-27 High purity titanium plate for titanium target material and method for producing the same Expired - Fee Related JP3802683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21082498A JP3802683B2 (en) 1998-07-27 1998-07-27 High purity titanium plate for titanium target material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21082498A JP3802683B2 (en) 1998-07-27 1998-07-27 High purity titanium plate for titanium target material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000045067A true JP2000045067A (en) 2000-02-15
JP3802683B2 JP3802683B2 (en) 2006-07-26

Family

ID=16595735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21082498A Expired - Fee Related JP3802683B2 (en) 1998-07-27 1998-07-27 High purity titanium plate for titanium target material and method for producing the same

Country Status (1)

Country Link
JP (1) JP3802683B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002069627A (en) * 2000-08-30 2002-03-08 Toshiba Corp Sputtering target and sputtering apparatus using the same
WO2003046250A1 (en) * 2001-11-26 2003-06-05 Nikko Materials Company, Limited Sputtering target and production method therefor
JP2013095964A (en) * 2011-10-31 2013-05-20 Kobe Steel Ltd Titanium plate, method for producing titanium plate and method for manufacturing heat-exchanging plate for plate-type heat-exchanger
WO2014136702A1 (en) * 2013-03-06 2014-09-12 Jx日鉱日石金属株式会社 Titanium target for sputtering and manufacturing method thereof
JPWO2017018523A1 (en) * 2015-07-29 2017-12-21 新日鐵住金株式会社 Titanium material for hot rolling
JPWO2017018515A1 (en) * 2015-07-29 2017-12-28 新日鐵住金株式会社 Titanium material for hot rolling
JPWO2017018511A1 (en) * 2015-07-29 2018-01-25 新日鐵住金株式会社 Titanium material for hot rolling
CN113652526A (en) * 2021-07-21 2021-11-16 先导薄膜材料有限公司 Heat treatment quenching method for target material
CN114717528A (en) * 2022-04-06 2022-07-08 宁波江丰电子材料股份有限公司 Titanium-containing target material and preparation method thereof
CN118469460A (en) * 2024-07-11 2024-08-09 南京达链信息技术有限公司 Material allocation optimization system

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4709358B2 (en) * 2000-08-30 2011-06-22 株式会社東芝 Sputtering target and sputtering apparatus, thin film, and electronic component using the same
JP2002069627A (en) * 2000-08-30 2002-03-08 Toshiba Corp Sputtering target and sputtering apparatus using the same
WO2003046250A1 (en) * 2001-11-26 2003-06-05 Nikko Materials Company, Limited Sputtering target and production method therefor
CN1329552C (en) * 2001-11-26 2007-08-01 日矿金属株式会社 Sputtering target and production method therefor
US8029629B2 (en) 2001-11-26 2011-10-04 Jx Nippon Mining & Metals Corporation Sputtering target and manufacturing method thereof
JP2013095964A (en) * 2011-10-31 2013-05-20 Kobe Steel Ltd Titanium plate, method for producing titanium plate and method for manufacturing heat-exchanging plate for plate-type heat-exchanger
US10431438B2 (en) 2013-03-06 2019-10-01 Jx Nippon Mining & Metals Corporation Titanium target for sputtering and manufacturing method thereof
WO2014136702A1 (en) * 2013-03-06 2014-09-12 Jx日鉱日石金属株式会社 Titanium target for sputtering and manufacturing method thereof
JP6077102B2 (en) * 2013-03-06 2017-02-08 Jx金属株式会社 Titanium target for sputtering and manufacturing method thereof
JPWO2017018523A1 (en) * 2015-07-29 2017-12-21 新日鐵住金株式会社 Titanium material for hot rolling
JPWO2017018511A1 (en) * 2015-07-29 2018-01-25 新日鐵住金株式会社 Titanium material for hot rolling
JPWO2017018515A1 (en) * 2015-07-29 2017-12-28 新日鐵住金株式会社 Titanium material for hot rolling
CN113652526A (en) * 2021-07-21 2021-11-16 先导薄膜材料有限公司 Heat treatment quenching method for target material
CN113652526B (en) * 2021-07-21 2023-02-17 先导薄膜材料有限公司 Heat treatment quenching method for target material
CN114717528A (en) * 2022-04-06 2022-07-08 宁波江丰电子材料股份有限公司 Titanium-containing target material and preparation method thereof
CN114717528B (en) * 2022-04-06 2023-09-08 宁波江丰电子材料股份有限公司 Titanium-containing target material and preparation method thereof
CN118469460A (en) * 2024-07-11 2024-08-09 南京达链信息技术有限公司 Material allocation optimization system

Also Published As

Publication number Publication date
JP3802683B2 (en) 2006-07-26

Similar Documents

Publication Publication Date Title
TWI445834B (en) Methods of producing deformed metal articles and metal articles formed thereby
WO2004011691A1 (en) Copper sputtering targets and methods of forming copper sputtering targets
WO2009020587A1 (en) Refractory metal plates with improved uniformity of texture
JP2011162835A (en) Manufacturing method of pure copper plate, and pure copper plate
WO2015162986A1 (en) Material for cylindrical sputtering target
TWI485272B (en) Pure copper plate manufacturing methods and pure copper plate
TW201144456A (en) High purity wrought copper having uniform and fine microstructure
WO2011099426A1 (en) Pure copper plate production method, and pure copper plate
KR20160133415A (en) Method for manufacturing material for cylindrical sputtering target
KR20190018561A (en) Method for producing sputtering target, and sputtering target
JP3802683B2 (en) High purity titanium plate for titanium target material and method for producing the same
JP3500072B2 (en) Titanium material for drum for producing electrolytic metal foil and method for producing the same
JP2008163402A (en) Method for producing magnesium alloy thin sheet
JP4094395B2 (en) Titanium plate for electrolytic Cu foil production drum and production method thereof
JP4869398B2 (en) Pure copper plate manufacturing method and pure copper plate
JP4094244B2 (en) Titanium for copper foil production drum excellent in surface layer structure and production method thereof
JP3488076B2 (en) Method for producing titanium for Cu foil production drum and titanium slab used for the production
JP3967897B2 (en) Titanium for copper foil production drum having uniform metal structure and production method thereof
JP4094292B2 (en) Method for producing titanium for copper foil production drum having fine and uniform metal structure
JP3711196B2 (en) Method for producing titanium for sputtering target and titanium slab used for the production
JP3896431B2 (en) Method for producing copper or copper alloy
WO2008047869A1 (en) Nickel material for chemical plant
JP2002226933A (en) Aluminum alloy sheet for deep drawing and production method therefor
JP6794585B1 (en) Manufacturing method of titanium material for hot rolling
JP2011162828A (en) Al-BASED ALLOY SPUTTERING TARGET, AND METHOD FOR MANUFACTURING THE SAME

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050311

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20050329

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060425

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060428

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100512

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100512

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20120512

LAPS Cancellation because of no payment of annual fees