JP2000044382A - Production of single crystal - Google Patents

Production of single crystal

Info

Publication number
JP2000044382A
JP2000044382A JP10229381A JP22938198A JP2000044382A JP 2000044382 A JP2000044382 A JP 2000044382A JP 10229381 A JP10229381 A JP 10229381A JP 22938198 A JP22938198 A JP 22938198A JP 2000044382 A JP2000044382 A JP 2000044382A
Authority
JP
Japan
Prior art keywords
single crystal
holder
crystal
diameter
claw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10229381A
Other languages
Japanese (ja)
Inventor
Shoei Kurosaka
昇栄 黒坂
Hiroshi Inagaki
宏 稲垣
Junsuke Tomioka
純輔 冨岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Techxiv Corp
Original Assignee
Komatsu Electronic Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Electronic Metals Co Ltd filed Critical Komatsu Electronic Metals Co Ltd
Priority to JP10229381A priority Critical patent/JP2000044382A/en
Publication of JP2000044382A publication Critical patent/JP2000044382A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a single crystal, so designed as to hold a single crystal when a to-be-held portion of the single crystal stands at such a temperature as to exhibit ductility to secure effective contact area between the single crystal and the holding claw of a single crystal holder and enable the single crystal to be safely held through preventing its chipping. SOLUTION: This method for producing a single crystal comprises the following procedure: a seed crystal 4 attached to a seed holder 3 is immersed in a melt 5 to form a neck part, and the larger-diameter part 6a, narrow part 6b, shoulder part 6c, and cylindrical part 6d of a single crystal 6 are formed; after the larger-diameter part 6a is brought to a specified diameter, the pull-up rate is raised to prevent the crystal diameter from increasing, and then regulated so as to narrowly draw the crystal diameter to form the narrow part 6b; subsequently, both the pull-up rate and melt temperature are regulated to grow the shoulder part 6c and the cylindrical part 6d; when the temperature of the narrow part 6b falls to 750-850 deg.C, a wire winding mechanism is driven to rewind a holder-suspending wire 11 and a claw-opening/closing wire 15 and the holding claw 16 of a single crystal holder 10 and the narrow part 6b are brought into contact with each other to hold the single crystal 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、CZ法による半導
体単結晶の製造方法に係り、特に大重量の単結晶の引き
上げに好適な単結晶製造方法に関する。
The present invention relates to a method for producing a semiconductor single crystal by the CZ method, and more particularly to a method for producing a single crystal suitable for pulling a heavy single crystal.

【0002】[0002]

【従来の技術】単結晶シリコンは一般にCZ法を用いて
製造されている。CZ法では、単結晶製造装置内に設置
した石英るつぼに多結晶シリコンを充填し、石英るつぼ
の周囲に設けたヒータによって前記多結晶シリコンを加
熱溶解して融液とする。そして、シードホルダに取り付
けた種結晶を融液に浸漬し、シードホルダおよび石英る
つぼを互いに同方向または逆方向に回転させながらシー
ドホルダを引き上げて単結晶シリコンを所定の直径およ
び長さに成長させる。
2. Description of the Related Art Single crystal silicon is generally manufactured by the CZ method. In the CZ method, polycrystalline silicon is filled in a quartz crucible installed in a single crystal manufacturing apparatus, and the polycrystalline silicon is heated and melted by a heater provided around the quartz crucible to form a melt. Then, the seed crystal attached to the seed holder is immersed in the melt, and the seed holder is pulled up while rotating the seed holder and the quartz crucible in the same or opposite directions to grow single crystal silicon to a predetermined diameter and length. .

【0003】種結晶には、融液に浸漬したときの熱衝撃
で転位が発生する。この転位を除去するため、ダッシュ
ネック法を用いて直径3〜4mm程度のネック部を種結
晶の下方に形成し、転位をネック部の表面に逃がす。そ
して無転位化された後、肩部を形成して単結晶を所定の
直径まで拡大させ、次いで直胴部形成に移行する。
In a seed crystal, dislocations are generated by thermal shock when immersed in a melt. In order to remove the dislocation, a neck portion having a diameter of about 3 to 4 mm is formed below the seed crystal by using a dash neck method, and the dislocation is released to the surface of the neck portion. After dislocation-free, the shoulder is formed to expand the single crystal to a predetermined diameter, and then the process shifts to the formation of a straight body.

【0004】近年、半導体デバイス生産の効率化、歩留
り向上等を目的とした単結晶の大径化あるいは軸方向長
さの増大に伴ってその重量が増大し、ネック部の強度が
限界に近づいている。そのため、従来の結晶引上げ方法
ではネック部が破断するおそれがあり、安全な単結晶育
成ができない。この対策として、単結晶育成中にその荷
重をネック部から保持具へ移し換える引上げ装置や引上
げ方法が提案されている。このような装置、方法によれ
ば単結晶重量の大部分を保持具で支えるため、ネック部
の破断が防止され、ネック部が破断した場合でも保持具
により単結晶の落下を防止することができる。
In recent years, the weight of single crystals has increased with the increase in the diameter or the axial length of single crystals for the purpose of improving the efficiency of semiconductor device production, improving the yield, etc., and the strength of the neck portion has reached the limit. I have. Therefore, the neck portion may be broken by the conventional crystal pulling method, and a safe single crystal growth cannot be performed. As a countermeasure, a pulling device and a pulling method for transferring the load from the neck to the holder during the growth of the single crystal have been proposed. According to such an apparatus and method, since most of the weight of the single crystal is supported by the holder, breakage of the neck portion is prevented, and even when the neck portion is broken, the single crystal can be prevented from falling by the holder. .

【0005】たとえば、特公平7−103000で開示
された結晶引上装置は、単結晶のくびれ部を保持する爪
を有し、ワイヤの巻き取りまたは巻き戻しにより開閉す
る複数のくの字状の把持レバーと、把持レバーの開きを
防止するリングとを用いて前記単結晶を保持する構成と
している。回転爪型に代表される特公平7−515で開
示された結晶引上装置は、シードホルダに連結された引
上げ軸に沿って上下動可能な把持ホルダの下端に、下方
への回転が一定角度で停止する複数の爪を設け、これら
の爪を単結晶のくびれ部に掛止させて前記単結晶を保持
する構成である。把持ホルダを引上げ軸に沿って下降さ
せることにより、前記爪の先端が単結晶の拡径部に接触
しながら上方に開き、拡径部を通過すると爪の自重で閉
じ姿勢に戻るようにしている。この結晶引上装置では、
爪がくびれ部の上側に形成した拡径部に倣って開閉する
ため、特別な爪開閉駆動装置を必要としない。また、特
開平9−2893で開示された単結晶の成長方法及び装
置は、ネック部または直胴部の表面に形成された凹凸の
凸部に吊持具を係着させ、あるいは直胴部の上端に形成
した倒立直円錐部の外周面に吊持具を係着させて単結晶
を保持している。更に、保持を安定させるために特開平
9−183694ではアームの開き防止をしたり、単結
晶との接触点を増す工夫を行っている。
[0005] For example, a crystal pulling apparatus disclosed in Japanese Patent Publication No. 7-103000 has a plurality of doglegs each having a claw for holding a constricted portion of a single crystal and opening and closing by winding or unwinding a wire. The single crystal is held using a gripping lever and a ring for preventing the gripping lever from opening. The crystal pulling apparatus disclosed in Japanese Patent Publication No. 7-515, represented by a rotating claw type, has a downward rotation at a lower end of a grip holder that can move up and down along a pulling axis connected to a seed holder. In this configuration, a plurality of claws are provided to stop at a predetermined time, and these claws are engaged with a constricted portion of the single crystal to hold the single crystal. By lowering the gripping holder along the pulling axis, the tip of the claw opens upward while contacting the enlarged diameter portion of the single crystal, and returns to the closed position by its own weight when passing through the enlarged diameter portion. . In this crystal pulling device,
Since the pawl opens and closes following the enlarged diameter portion formed above the constriction, no special pawl opening / closing drive device is required. Further, the method and apparatus for growing a single crystal disclosed in Japanese Patent Application Laid-Open No. 9-2893 relate to a method in which a hanging tool is engaged with a convex or concave portion formed on the surface of a neck portion or a straight body, or The single crystal is held by attaching a hanging fixture to the outer peripheral surface of the inverted straight conical portion formed at the upper end. Furthermore, in order to stabilize the holding, Japanese Unexamined Patent Publication No. 9-183694 discloses a technique for preventing the opening of the arm and increasing the number of contact points with the single crystal.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記結
晶引上げ装置には、それぞれ次のような問題点がある。 (1)保持爪と単結晶との接触は基本的に点接触である
ため、単結晶の成長に伴ってその重量が増加すると爪と
の接触界面における面圧が高くなり、単結晶が欠けを起
こす可能性が大きい。単結晶が欠け、融液に落下した破
片が成長界面に至ると、結晶が有転位化してしまう。ま
た、欠けを起こした部位が破壊起点となって単結晶が破
断する危険もある。 (2)くびれ部を試験片とした引張試験で、シリコンが
破壊した起点はくびれ部と爪との接触部であったとの報
告が1997年度秋季応用物理学会(秋田大学、講演番
号4a−T−3)でなされている。 (3)近年、直径300mmのシリコン単結晶が製造さ
れるようになり、今後更に大径化、大重量化が進展すれ
ば、結晶保持技術が必要不可欠なものになると考えられ
るので、保持部における欠けは深刻な問題となる。
However, each of the above crystal pulling apparatuses has the following problems. (1) Since the contact between the holding claw and the single crystal is basically a point contact, if the weight increases as the single crystal grows, the surface pressure at the contact interface with the claw increases, and the single crystal is chipped. It is very likely to happen. When the single crystal is chipped and the fragments that have fallen into the melt reach the growth interface, the crystal is dislocated. There is also a danger that the single crystal breaks with the part where the chipping occurred as a fracture starting point. (2) In a tensile test using a constricted portion as a test piece, it was reported that the starting point of silicon breakage was a contact portion between the constricted portion and a nail. This is done in 3). (3) In recent years, silicon single crystals having a diameter of 300 mm have been manufactured, and if the diameter and the weight are further increased in the future, it is considered that crystal holding technology will be indispensable. Chipping is a serious problem.

【0007】本発明は上記従来の問題点に着目してなさ
れたもので、単結晶保持具の保持爪と単結晶との間に有
効な接触面積を確保し、単結晶の欠けを防止して安全に
保持することができる単結晶製造方法を提供することを
目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and has an effective contact area between a holding claw of a single crystal holder and a single crystal to prevent chipping of the single crystal. It is an object of the present invention to provide a method for producing a single crystal that can be held safely.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明に係る単結晶製造方法の第1は、原料融液に
浸漬した種結晶の下端に単結晶を育成するCZ法を用
い、育成中の単結晶を保持具によって保持しつつ引き上
げる単結晶製造方法において、単結晶の被保持部が延性
を示す温度のときに単結晶の保持を行うことを特徴とす
る。上記構成によれば、単結晶が延性を示す温度にある
とき保持具によって保持することにしたので、保持具の
当接によって単結晶が変形を起こし、保持具は単結晶と
の面接触することになる。このため、被保持部の面圧は
低い状態に維持され、従来技術のように保持具の点接触
による面圧の上昇やこれに伴う単結晶の欠けを起こすこ
となく、単結晶を安定した状態で保持しながら引き上げ
ることができる。また、単結晶の被保持部の形状にいく
らかの不備な点がある場合でも、単結晶が延性を示す温
度のときに保持しているので、保持具との間に良好な面
接触が得られる。
Means for Solving the Problems To achieve the above object, the first of the single crystal production methods according to the present invention is to use a CZ method for growing a single crystal at the lower end of a seed crystal immersed in a raw material melt, A single crystal manufacturing method for pulling a single crystal being grown while holding the single crystal by a holder is characterized in that the single crystal is held when the temperature of the portion to be held of the single crystal shows ductility. According to the above configuration, since the single crystal is held by the holder when the single crystal is at a temperature showing ductility, the single crystal is deformed by the contact of the holder, and the holder comes into surface contact with the single crystal. become. Therefore, the surface pressure of the portion to be held is maintained at a low state, and the single crystal is kept in a stable state without the increase in the surface pressure due to the point contact of the holder and the resulting chipping of the single crystal as in the prior art. It can be pulled up while holding it. In addition, even when there is some defect in the shape of the portion to be held of the single crystal, since the single crystal is held at a temperature showing ductility, good surface contact with the holder is obtained. .

【0009】本発明に係る単結晶製造方法の第2は、上
記第1の発明において、単結晶の被保持部が750〜8
50℃の温度範囲にあるときに単結晶保持具で保持する
ことを特徴とする。シリコンは、750℃以上の温度範
囲において延性を示すことが一般的に知られている。7
50℃未満の温度ではシリコンが延性を示しにくく、従
来と同様に保持具が点接触するため面圧が上昇する。ま
た、850℃を超えるとシリコンの強度が不足して保持
に適さない。上記構成によれば、シリコンが外力に対し
て延性を示す温度範囲にあるときに保持具を当接させる
ことにしたので、単結晶を面接触で保持することができ
る。
A second aspect of the method for producing a single crystal according to the present invention is the method according to the first aspect, wherein the single crystal holding portion is 750 to 8
It is characterized in that it is held by a single crystal holder when it is in a temperature range of 50 ° C. It is generally known that silicon exhibits ductility in a temperature range of 750 ° C. or higher. 7
If the temperature is lower than 50 ° C., the silicon is unlikely to exhibit ductility, and the surface pressure increases because the holder makes point contact as in the conventional case. On the other hand, when the temperature exceeds 850 ° C., the strength of the silicon is insufficient and the silicon is not suitable for holding. According to the above configuration, the holder is brought into contact when the silicon is in a temperature range showing ductility to an external force, so that the single crystal can be held in surface contact.

【0010】[0010]

【発明の実施の形態および実施例】次に、本発明に係る
単結晶製造方法の実施例について図面を参照して説明す
る。図1に単結晶保持具の1例を示す。単結晶製造装置
の上部にはワイヤ巻取り機構1が設けられ、ワイヤ巻取
り機構1から垂下する結晶引上げワイヤ2の下端にシー
ドホルダ3が取着されている。単結晶保持具10は、ワ
イヤ巻取り機構1から結晶引上げワイヤ2を囲むように
垂下する複数本の保持具吊りワイヤ11に吊り下げられ
た保持具本体12と、上側リンク13、下側リンク14
と、複数本の爪開閉ワイヤ15にそれぞれ1個ずつ吊り
下げられた保持爪16と、開き止め17とによって構成
されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the method for producing a single crystal according to the present invention will be described with reference to the drawings. FIG. 1 shows an example of a single crystal holder. A wire winding mechanism 1 is provided above the single crystal manufacturing apparatus, and a seed holder 3 is attached to a lower end of a crystal pulling wire 2 hanging from the wire winding mechanism 1. The single crystal holder 10 includes a holder main body 12 suspended from a plurality of holder hanging wires 11 hanging down from the wire winding mechanism 1 so as to surround the crystal pulling wire 2, an upper link 13, and a lower link 14.
, A plurality of claw opening / closing wires 15, one holding claw suspended from each of the plurality of claw opening / closing wires 15, and an opening stopper 17.

【0011】保持具本体12は、円筒の下端に複数個の
L字状の脚12aを固着した形状で、各脚12aの下端
は外側に向かってほぼ水平に突出するストッパを形成し
ている。前記ストッパは、単結晶保持具10を保持姿勢
としたとき保持爪16下端の爪部位置を規制する。各脚
12aには上側リンク13、下側リンク14を介して保
持爪16が連結され、保持具本体12と上下のリンク1
3、14と保持爪16とによって四節リンク機構を構成
している。また、保持具本体12の円筒部外周面には開
き止め17が回動自在に取着され、上側リンク13の上
面には前記開き止め17の自由端を掛止するくぼみが設
けられている。開き止め17の自由端は、保持具本体1
2に対して保持爪16が所定の位置まで下降したときく
ぼみに掛止され、保持爪16の動きを抑止する。なお、
図を見やすくするため、図1では保持爪を2個として表
示したが、保持爪は3〜4個とすることが好ましい。
The holder body 12 has a shape in which a plurality of L-shaped legs 12a are fixed to the lower end of a cylinder, and the lower end of each leg 12a forms a stopper that projects substantially horizontally outward. The stopper regulates the position of the claw portion at the lower end of the holding claw 16 when the single crystal holder 10 is in the holding posture. A holding claw 16 is connected to each leg 12a via an upper link 13 and a lower link 14.
The four-bar link mechanism is constituted by 3, 14 and the holding claw 16. An opening stop 17 is rotatably attached to the outer peripheral surface of the cylindrical portion of the holder main body 12, and a recess is provided on the upper surface of the upper link 13 for engaging the free end of the opening stop 17. The free end of the stopper 17 is the holder body 1
When the holding claw 16 is lowered to a predetermined position with respect to 2, the claw is caught in the depression and the movement of the holding claw 16 is suppressed. In addition,
Although FIG. 1 shows two holding claws for easy viewing, the number of holding claws is preferably three to four.

【0012】また、ワイヤ巻取り機構1には爪開閉ワイ
ヤ15に加えられる荷重を検出するロードセルが設置さ
れている。シードホルダ3は単結晶保持具10の保持具
本体12内を自由に通過することができる。
The wire winding mechanism 1 is provided with a load cell for detecting a load applied to the claw opening / closing wire 15. The seed holder 3 can freely pass through the holder main body 12 of the single crystal holder 10.

【0013】本実施例の単結晶製造方法は次の通りであ
る。シードホルダ3に取り付けられた種結晶4を石英る
つぼ内の融液5に浸漬した後、ネック部が形成され、こ
れに続いて単結晶6の拡径部6a、くびれ部6b、肩部
6c、直胴部6dが形成される。前記拡径部6aが所定
の直径に達した後、引き上げ速度を早めて結晶径の拡大
を止め、結晶径を細く絞り込むように引き上げ速度を調
整してくびれ部6bを形成する。次に、肩部6cを形成
するため引き上げ速度と融液温度とを調整して結晶径が
所定の値になるように拡大し、更に一定径を維持しつつ
結晶を成長させて直胴部6dを育成する。単結晶保持具
10による単結晶6の保持以前における結晶育成は結晶
引上げワイヤ2によって行われ、くびれ部6bが750
〜850℃の温度範囲に低下するまでの間、単結晶保持
具10は育成中の単結晶6の上方で待機する。このと
き、上側リンク13及び下側リンク14はほぼ水平に維
持され、開き止め17の自由端は保持爪16の上部内側
に当接している。この状態で単結晶保持具10は“開”
となり、保持爪16の下端の間隔は最大である。前記間
隔は単結晶6の拡径部6aの直径より十分に大きく、開
き止め17により保持爪16の内側方向への動きが抑止
されているため、単結晶保持具10が下降したとき保持
爪16が拡径部6aに接触することはない。
The method for producing a single crystal according to the present embodiment is as follows. After the seed crystal 4 attached to the seed holder 3 is immersed in the melt 5 in the quartz crucible, a neck portion is formed, followed by the enlarged diameter portion 6a, the constricted portion 6b, the shoulder portion 6c of the single crystal 6, A straight body 6d is formed. After the enlarged diameter portion 6a reaches a predetermined diameter, the pulling speed is increased to stop the crystal diameter from being increased, and the narrowing portion 6b is formed by adjusting the pulling speed so as to narrow down the crystal diameter. Next, in order to form the shoulder 6c, the pulling speed and the melt temperature are adjusted to enlarge the crystal diameter so as to have a predetermined value, and the crystal is grown while maintaining a constant diameter to form the straight body 6d. Nurture. Crystal growth before holding the single crystal 6 by the single crystal holder 10 is performed by the crystal pulling wire 2, and the constricted portion 6 b is 750.
Until the temperature falls to the temperature range of 8850 ° C., the single crystal holder 10 stands by above the growing single crystal 6. At this time, the upper link 13 and the lower link 14 are maintained substantially horizontal, and the free end of the stopper 17 is in contact with the upper inside of the holding claw 16. In this state, the single crystal holder 10 is opened.
The distance between the lower ends of the holding claws 16 is the maximum. The interval is sufficiently larger than the diameter of the enlarged diameter portion 6a of the single crystal 6, and the inward movement of the holding claw 16 is suppressed by the opening stopper 17, so that the holding claw 16 is Does not come into contact with the enlarged diameter portion 6a.

【0014】くびれ部6bが750〜850℃の温度範
囲に低下すると、ワイヤ巻取り機構1を駆動して保持具
吊りワイヤ11及び爪開閉ワイヤ15を同時に等速度で
巻き戻す。このとき、単結晶保持具10は“開”の状態
になっているため、保持爪16は拡径部6aに接触する
ことなく、拡径部6aのやや下方まで下降して停止す
る。その後、保持具吊りワイヤ11及び爪開閉ワイヤ1
5は結晶引上げワイヤ2と等速で巻き上げられ、単結晶
6と単結晶保持具10との相対位置は一定に維持され
る。
When the constricted portion 6b falls to a temperature range of 750 to 850 ° C., the wire winding mechanism 1 is driven to rewind the holder hanging wire 11 and the claw opening / closing wire 15 simultaneously at a constant speed. At this time, since the single crystal holder 10 is in the "open" state, the holding claw 16 does not contact the enlarged diameter portion 6a but descends slightly below the enlarged diameter portion 6a and stops. Thereafter, the holder hanging wire 11 and the claw opening / closing wire 1
5 is wound up with the crystal pulling wire 2 at a constant speed, and the relative position between the single crystal 6 and the single crystal holder 10 is kept constant.

【0015】次いで、爪開閉ワイヤ15のみが巻き戻さ
れ、保持爪16が下降する。保持爪16はストッパに相
当する脚12aの先端に当接すると下降が停止する。こ
のとき、保持爪16の先端の高さはくびれ部6bの高さ
とほぼ一致している。また、保持爪16の下降に伴って
開き止め17の自由端は上側リンク13の上面をすべっ
てくぼみに落ち込むため、保持爪16の開きが抑止され
る。この状態で単結晶保持具10は“閉”となり、保持
爪16の下端の間隔は最小となる。前記間隔は単結晶6
のくびれ部6bの直径より大きく、脚12aの先端が保
持爪16に当接しているため、保持爪16の先端がくび
れ部6bに衝突することはない。
Next, only the claw opening / closing wire 15 is rewound, and the holding claw 16 is lowered. When the holding claws 16 come into contact with the tips of the legs 12a corresponding to the stoppers, the lowering stops. At this time, the height of the tip of the holding claw 16 is substantially equal to the height of the constricted portion 6b. Further, as the holding claw 16 descends, the free end of the opening stopper 17 slides on the upper surface of the upper link 13 and falls into the recess, so that the opening of the holding claw 16 is suppressed. In this state, the single crystal holder 10 is “closed”, and the interval between the lower ends of the holding claws 16 is minimized. The spacing is a single crystal 6
Since the tip of the leg 12a is larger than the diameter of the constriction 6b and the tip of the leg 12a is in contact with the holding claw 16, the tip of the holding claw 16 does not collide with the constriction 6b.

【0016】その後、保持具吊りワイヤ11と爪開閉ワ
イヤ15とを同時に等速度で、かつ、結晶引上げワイヤ
2の巻き取り速度を上回る速度で巻き上げると、単結晶
6に対して単結晶保持具10が上昇し、保持爪16の先
端が拡径部6aの下側円錐面に当接する。そして、単結
晶6が変形し、保持爪16の先端部全面で単結晶6を保
持する。保持完了後、単結晶保持具10の上昇速度を単
結晶6の引き上げ速度と同一に制御する。
Thereafter, when the holder hanging wire 11 and the claw opening / closing wire 15 are simultaneously wound at the same speed and at a speed exceeding the winding speed of the crystal pulling wire 2, the single crystal holder 10 Rises, and the tip of the holding claw 16 contacts the lower conical surface of the enlarged diameter portion 6a. Then, the single crystal 6 is deformed, and the single crystal 6 is held on the entire front end portion of the holding claw 16. After completion of the holding, the rising speed of the single crystal holder 10 is controlled to be the same as the pulling speed of the single crystal 6.

【0017】本発明による単結晶製造方法の実験では直
胴部6dの直径を310mmとし、くびれ部6bの温度
が約800℃に低下したとき保持爪16を閉じて単結晶
保持具10を上昇させ、保持爪16の先端を拡径部6a
の下側円錐面に当接させた。複数の保持爪16のそれぞ
れにかかる荷重をロードセルで検出してモニタしながら
単結晶保持具10のバランスをとり、各保持爪16に均
等に荷重をかけながら単結晶6を保持した。その後は爪
開閉ワイヤ15によって単結晶6を引き上げ、テール形
成工程を経て単結晶製造が完了した。
In the experiment of the single crystal manufacturing method according to the present invention, the diameter of the straight body 6d was 310 mm, and when the temperature of the constricted portion 6b dropped to about 800 ° C., the holding claws 16 were closed and the single crystal holder 10 was raised. The tip of the holding claw 16 is connected to the enlarged diameter portion 6a.
In contact with the lower conical surface. The load applied to each of the plurality of holding claws 16 was detected and monitored by a load cell to balance the single crystal holder 10, and the single crystal 6 was held while uniformly applying a load to each holding claw 16. Thereafter, the single crystal 6 was pulled up by the claw opening / closing wire 15, and the single crystal production was completed through a tail forming step.

【0018】上記実験で得られた単結晶を調査したとこ
ろ、保持爪16が当接していた拡径部6aの下側円錐面
は変形しており、保持爪16の先端がほぼ面接触してい
た痕跡が確認された。また、引き上げた単結晶を単結晶
製造装置から取り出す際、各保持爪は単結晶から円滑に
離脱した。
When the single crystal obtained in the above experiment was examined, the lower conical surface of the enlarged diameter portion 6a with which the holding claw 16 was in contact was deformed, and the tip of the holding claw 16 was almost in surface contact. Traces were confirmed. In addition, when the pulled single crystal was taken out of the single crystal manufacturing apparatus, each holding claw was smoothly separated from the single crystal.

【0019】[0019]

【発明の効果】以上説明したように本発明によれば、C
Z法を用いて引き上げ中の単結晶の被保持部が延性を示
す温度のときに単結晶保持具で単結晶を保持することに
したので、保持具の当接により単結晶の被保持部が変形
し、保持具との間に良好な面接触が得られる。従って、
被保持部の面圧が低下し、単結晶の欠けを防止して安全
に保持することができる。また、シリコンの延性を利用
することにより被保持部の形状精度を従来より下げるこ
とができるので、単結晶の生産性が向上する。
As described above, according to the present invention, C
The single crystal holder is used to hold the single crystal when the temperature of the portion to be pulled of the single crystal during pulling is ductile by using the Z method. Deformation and good surface contact with the holder are obtained. Therefore,
The surface pressure of the portion to be held is reduced, and the single crystal can be prevented from being chipped and can be held safely. In addition, by utilizing the ductility of silicon, the accuracy of the shape of the portion to be held can be reduced as compared with the related art, so that the productivity of the single crystal is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】育成中の単結晶を単結晶保持具によって保持し
た状態を示す説明図である。
FIG. 1 is an explanatory view showing a state in which a single crystal being grown is held by a single crystal holder.

【符号の説明】[Explanation of symbols]

1…ワイヤ巻取り機構、2…結晶引上げワイヤ、5…融
液、6…単結晶、6a…拡径部、6b…くびれ部、10
…単結晶保持具、11…保持具吊りワイヤ、12…保持
具本体、12a…脚、13…上側リンク、14…下側リ
ンク、15…爪開閉ワイヤ、16…保持爪、17…開き
止め。
DESCRIPTION OF SYMBOLS 1 ... Wire winding mechanism, 2 ... Crystal pulling wire, 5 ... Melt, 6 ... Single crystal, 6a ... Large diameter part, 6b ... Constriction part, 10
... single crystal holder, 11 ... holder hanging wire, 12 ... holder body, 12a ... leg, 13 ... upper link, 14 ... lower link, 15 ... claw opening / closing wire, 16 ... holding claw, 17 ... opening prevention.

フロントページの続き (72)発明者 冨岡 純輔 神奈川県平塚市四之宮2612 コマツ電子金 属株式会社内 Fターム(参考) 4G077 AA02 BA04 CF10 EG12 PG01Continued on the front page (72) Inventor Junsuke Tomioka 2612 Shinomiya, Hiratsuka-shi, Kanagawa F-term (reference) in Komatsu Electronics & Metals Co., Ltd. 4G077 AA02 BA04 CF10 EG12 PG01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 原料融液に浸漬した種結晶の下端に単結
晶を育成するCZ法を用い、育成中の単結晶を保持具に
よって保持しつつ引き上げる単結晶製造方法において、
単結晶(6) の被保持部が延性を示す温度のときに単結晶
(6) の保持を行うことを特徴とする単結晶製造方法。
1. A method for producing a single crystal, wherein a single crystal is grown at the lower end of a seed crystal immersed in a raw material melt, and the single crystal being grown is pulled up while being held by a holder.
Single crystal at the temperature where the held part of single crystal (6) shows ductility
(6) A method for producing a single crystal, comprising:
【請求項2】 単結晶(6) の被保持部が750〜850
℃の温度範囲にあるときに単結晶保持具(10)で保持する
ことを特徴とする請求項1記載の単結晶製造方法。
2. The holding portion of the single crystal (6) has a thickness of 750 to 850.
2. The method for producing a single crystal according to claim 1, wherein the single crystal is held by a single crystal holder when the temperature is in a temperature range of ° C.
JP10229381A 1998-07-29 1998-07-29 Production of single crystal Pending JP2000044382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10229381A JP2000044382A (en) 1998-07-29 1998-07-29 Production of single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10229381A JP2000044382A (en) 1998-07-29 1998-07-29 Production of single crystal

Publications (1)

Publication Number Publication Date
JP2000044382A true JP2000044382A (en) 2000-02-15

Family

ID=16891299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10229381A Pending JP2000044382A (en) 1998-07-29 1998-07-29 Production of single crystal

Country Status (1)

Country Link
JP (1) JP2000044382A (en)

Similar Documents

Publication Publication Date Title
JPH03285893A (en) Crystal pulling-up apparatus
WO2001063026A1 (en) Method for producing silicon single crystal
US6056818A (en) Method of manufacturing a silicon monocrystal, and method of holding the same
JP3016126B2 (en) Single crystal pulling method
JP2000044382A (en) Production of single crystal
JP2990658B2 (en) Single crystal pulling device
JPH0543379A (en) Production of silicon single crystal
JP3949240B2 (en) Single crystal holding device
JPH10120487A (en) Single-crystal pulling apparatus and method
JP2990662B2 (en) Single crystal pulling device
JPH1095697A (en) Holding of single crystal and growth of single crystal
JP2956568B2 (en) Single crystal pulling device
JP4026694B2 (en) Single crystal holding device
JPH10310492A (en) Apparatus for pulling up single crystal and method for pulling up the same
JP4026695B2 (en) Single crystal holding device
JP2990659B2 (en) Single crystal pulling device
JPH10265291A (en) Single crystal pulling up device and pulling up method
KR100388884B1 (en) Single crystal growth apparatus and single crystal growth method
JP2937112B2 (en) Single crystal pulling seed crystal and single crystal pulling method using the seed crystal
JP4068711B2 (en) Single crystal manufacturing equipment
JPH11217292A (en) Single crystal producing apparatus
JP4070162B2 (en) Single crystal holding device
JP2990660B2 (en) Single crystal pulling device
JPH10279388A (en) Device for clamping single crystal and method for growing the clamping part of single crystal
JPH10324596A (en) Production of silicon single crystal