JP2000038613A - Method for refining molten steel having small quantity of dust under reduced pressure - Google Patents

Method for refining molten steel having small quantity of dust under reduced pressure

Info

Publication number
JP2000038613A
JP2000038613A JP10222337A JP22233798A JP2000038613A JP 2000038613 A JP2000038613 A JP 2000038613A JP 10222337 A JP10222337 A JP 10222337A JP 22233798 A JP22233798 A JP 22233798A JP 2000038613 A JP2000038613 A JP 2000038613A
Authority
JP
Japan
Prior art keywords
molten steel
refining
vacuum
decarburization
ladle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10222337A
Other languages
Japanese (ja)
Other versions
JP3752080B2 (en
Inventor
Hiroyuki Aoki
裕幸 青木
Kohei Kimura
晃平 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP22233798A priority Critical patent/JP3752080B2/en
Publication of JP2000038613A publication Critical patent/JP2000038613A/en
Application granted granted Critical
Publication of JP3752080B2 publication Critical patent/JP3752080B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refining method of molten steel having small quantity of dust under reduced pressure, in which the development of the dust is little at the time of decarburize-refining under reduced pressure and the sticking and the deposit to a duct etc., in an immersion tube, a vacuum vessel and an exhaust system are prevented and the wearing of refractory is restrained and the stable decarburizing can be executed. SOLUTION: In the refining method of the molten steel under reduced pressure, in which the decarburize-refining is executed under reduced pressure by dipping one piece of immersion tube 13 into the molten steel 12 in a ladle 11, while blowing inert gas from the bottom part 18 in the ladle 11, the pressure in the immersion tube 13 is reduced so that the vacuum degree becomes low vacuum, such as 100-750 Torr, at the initial stage of the decarburize-refining to execute the decarburizing, and then, the decarburizing is executed by reducing the pressure in the immersion tube 13 so that the vacuum degree becomes the high vacuum, such as <100 Torr, after reaching <150 ppm carbon concn.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、減圧精錬により極
低炭素の溶鋼を溶製する際に、ダストの発生を少なく
し、脱炭速度等の低下を防止できる溶鋼の減圧精錬方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for vacuum refining molten steel capable of reducing the generation of dust and preventing a reduction in decarburization speed, etc., when producing extremely low carbon molten steel by vacuum refining.

【0002】[0002]

【従来の技術】溶鋼の炭素あるいは窒素濃度を低下させ
る方法として、真空(減圧)を利用したRH、DHやV
OD等が広く用いられている。しかし、これ等の方法で
は、溶鋼の炭素、窒素濃度をある程度にまで低減できる
が、特に、炭素(C)等を極低濃度域まで低減した溶鋼
の溶製が困難である。従って、減圧下における精錬効率
を高めて極低炭素の溶鋼の溶製を行う方法として、例え
ば、特開昭51−55717号公報に記載された円筒形
の浸漬管を浸漬し、この浸漬管内を減圧すると共に、取
鍋の底部に設けた不活性ガスの吹き込み孔から溶鋼中に
不活性ガスを供給して精錬を行う方法が提案されてい
る。また、特開平6−212242号公報に記載された
全溶鋼表面積の10%以上の気泡活性面積を有する円筒
形の浸漬管を浸漬して、内部を減圧し、取鍋の底部から
溶鋼中に不活性ガスを供給しながら、減圧した表面の気
泡活性面積の30〜80%の範囲に相対的に強攪拌の気
泡活性面を形成させる溶鋼の脱炭精錬の方法が提案され
ている。
2. Description of the Related Art As a method of reducing the carbon or nitrogen concentration of molten steel, RH, DH and V using vacuum (reduced pressure) are used.
OD and the like are widely used. However, these methods can reduce the carbon and nitrogen concentrations of molten steel to a certain extent, but it is particularly difficult to produce molten steel in which carbon (C) and the like are reduced to an extremely low concentration range. Therefore, as a method for increasing the refining efficiency under reduced pressure to produce extremely low carbon molten steel, for example, a cylindrical dip tube described in JP-A-51-55717 is immersed, and the inside of the immersion tube is immersed. A method has been proposed in which pressure is reduced and refining is performed by supplying an inert gas into molten steel from an inert gas blowing hole provided at the bottom of a ladle. Further, a cylindrical immersion pipe having a cell active area of 10% or more of the total molten steel surface area described in JP-A-6-212242 is immersed, the inside is depressurized, and impregnated into the molten steel from the bottom of the ladle. A method of decarburizing and refining molten steel has been proposed in which a foam active surface with relatively strong agitation is formed in a range of 30 to 80% of the bubble active area of the surface under reduced pressure while supplying an active gas.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、特開昭
51−55717号公報に記載された精錬方法では、脱
炭精錬の初期の減圧と攪拌の際に、溶鋼中の炭素と過剰
のフリー酸素が急激に反応して発生するCOガスと供給
された不活性ガスによって、地金の塊や地金粒、地金の
微細粒等のダストが発生して、浸漬管、真空槽や排気系
のダクト等に付着や堆積が生じる。このダストの付着や
堆積は、溶鋼中の炭素濃度が脱炭されて低くなる頃に再
溶解して、溶鋼中の炭素濃度の上昇(炭素ピックアッ
プ)を招くことになる。この溶鋼の炭素濃度の上昇は、
相対的な脱炭速度を低下させ、処理時間が延長して取鍋
や浸漬管等の耐火物の損耗が発生したり、場合によって
は、飛散したダストにより排気系のダクト等が閉鎖して
操業の支障になる。更に、処理中の溶鋼の炭素濃度が高
くなると脱炭精錬を終了した際の到達炭素濃度も高くな
り、極低炭素の溶製が困難となる等の問題がある。ま
た、特開平6−212242号公報に記載された精錬方
法では、脱炭速度が速いので、短時間の内に7ppm以
下の溶鋼を溶製できる利点がある。しかし、気泡活性面
積の30〜80%の範囲に強攪拌域を形成しているの
で、この範囲内において、前述と同様に溶鋼中の炭素と
過剰のフリー酸素が急激に反応して発生するCOガスと
供給された不活性ガスによって、地金の塊や地金粒、地
金の微細粒等のダストが発生して、浸漬管、真空槽や排
気系のダクト等に付着や堆積を生じ、排気系のダクト等
の閉塞等を招く場合がある。また、前述した特開昭51
−55717号公報に記載の精錬の方法と同様に、溶鋼
中の炭素濃度の上昇(炭素ピックアップ)が起こり、相
対的に脱炭速度が低下し、処理時間の延長により取鍋や
浸漬管等の耐火物の損耗を招き、脱炭精錬を終了した際
の到達炭素濃度も高くなり、極低炭素の溶鋼の溶製が困
難となる等の問題がある。
However, in the refining method described in JP-A-51-55717, the carbon and excess free oxygen in the molten steel are reduced during the initial decompression refining and stirring. Dust such as metal ingots, metal ingots, and metal ingots are generated by the CO gas generated by the rapid reaction and the supplied inert gas. And the like are attached or deposited. The adhesion and accumulation of the dust are re-dissolved at a time when the carbon concentration in the molten steel is reduced by decarburization, thereby causing an increase in the carbon concentration in the molten steel (carbon pickup). This increase in carbon concentration in molten steel
Reducing the relative decarburization rate, extending the processing time, causing wear of refractories such as ladles and immersion pipes, and in some cases, scattering exhaust dust and closing exhaust ducts, etc. Hinders Further, when the carbon concentration of the molten steel during the treatment increases, the carbon concentration reached when the decarburization refining is completed also increases, and there is a problem that it becomes difficult to produce extremely low carbon. Further, the refining method described in JP-A-6-212242 has a high decarburization rate, and thus has an advantage that molten steel of 7 ppm or less can be melted in a short time. However, since the strong stirring region is formed in the range of 30 to 80% of the bubble active area, within this range, the CO generated by the rapid reaction of the carbon in the molten steel and the excess free oxygen as described above. Due to the gas and the supplied inert gas, dust such as lumps of metal, metal particles, fine metal particles, etc. is generated, causing adhesion and deposition on immersion pipes, vacuum tanks, exhaust system ducts, etc. In some cases, the duct of the exhaust system may be blocked. In addition, as described in
As in the refining method described in JP-A-55717, an increase in the carbon concentration in the molten steel (carbon pick-up) occurs, the decarburization rate relatively decreases, and the treatment time is prolonged. There is a problem that the refractory is worn away, the carbon concentration reached at the end of the decarburization refining becomes high, and it becomes difficult to produce extremely low carbon molten steel.

【0004】本発明はかかる事情に鑑みてなされたもの
で、処理中のダストの発生を少なくして、浸漬管、真空
槽や排気系のダクト等への付着や堆積の防止と、耐火物
の損耗を抑制し、安定した脱炭を行うことができるダス
トの少ない溶鋼の減圧精錬方法を提供することを目的と
する。
[0004] The present invention has been made in view of such circumstances, and reduces the generation of dust during processing to prevent adhesion and deposition to dip tubes, vacuum tanks, exhaust system ducts, and the like, and to prevent refractories. It is an object of the present invention to provide a method for refining molten steel with reduced dust, which can suppress the wear and perform stable decarburization.

【0005】[0005]

【課題を解決するための手段】前記目的に沿う請求項1
記載のダストの少ない溶鋼の減圧精錬方法は、一本の浸
漬管を取鍋内の溶鋼に浸漬して減圧状態で脱炭精錬を行
う溶鋼の減圧精錬方法において、前記取鍋の底部から不
活性ガスを吹き込みながら、前記脱炭精錬の初期におい
ては真空度が100〜750torrの低真空となるよ
うに前記浸漬管内を減圧して脱炭を行ない、次いで、炭
素濃度が150ppm未満に到達した後、真空度が10
0torr未満の高真空となるように前記浸漬管内を減
圧して脱炭する。ここで、脱炭精錬の初期の真空度が7
50torrを超える低真空度領域では、取鍋の底部か
ら吹き込んだ不活性ガスによる脱炭速度が低下して処理
に時間を要し、これによって、浸漬管や取鍋等の耐火物
の損耗が増加する。また、脱炭精錬の初期の真空度が1
00torr未満の高真空度になると取鍋の底部から吹
き込んだ不活性ガスによる脱炭速度が大きくなり過ぎ
て、溶鋼中の炭素と過剰のフリー酸素の急激な反応によ
り生成したCOガスの放出に随伴してダストの飛散や突
沸が発生する。
According to the present invention, there is provided a semiconductor device comprising:
The vacuum refining method of molten steel with a small amount of dust described is a method of depressurizing and refining molten steel in which one dipping tube is immersed in molten steel in a ladle to perform decarburization refining in a decompressed state. While blowing the gas, in the initial stage of the decarburization refining, the inside of the immersion pipe is decompressed so as to have a low vacuum of 100 to 750 torr, and then the carbon concentration reaches less than 150 ppm. Vacuum degree is 10
The inside of the dip tube is decompressed and decarbonized so as to have a high vacuum of less than 0 torr. Here, the initial vacuum degree of the decarburization refining is 7
In the low vacuum region exceeding 50 torr, the decarburization rate due to the inert gas blown from the bottom of the ladle is reduced, and it takes time to process, thereby increasing the wear of refractories such as immersion tubes and ladle. I do. In addition, the initial vacuum degree of decarburization refining is 1
When the degree of vacuum becomes lower than 00 torr, the decarburization rate by the inert gas blown from the bottom of the ladle becomes too large, and the release of the CO gas generated by the rapid reaction between the carbon in the molten steel and excess free oxygen occurs. As a result, dust scattering and bumping occur.

【0006】請求項2記載のダストの少ない溶鋼の減圧
精錬方法は、請求項1記載のダストの少ない溶鋼の減圧
精錬方法において、前記脱炭精錬を開始する際の前記溶
鋼の酸素濃度を200〜800ppmに調整する。脱炭
精錬を開始する際の酸素濃度が200ppm未満では、
溶鋼の炭素と反応する酸素の絶対量が不足して脱炭反応
が十分に起きず、脱炭精錬の到達炭素濃度が高くなる。
一方、酸素濃度が800ppmを超えると、減圧状態で
溶鋼の炭素と反応する酸素の絶対量が増大して突沸やダ
ストの発生と、溶鋼中の炭素濃度の上昇により相対的な
脱炭速度が低下する。
[0006] The reduced-pressure refining method of molten steel with low dust according to claim 2 is the method of reducing pressure of refining molten steel with low dust according to claim 1, wherein the oxygen concentration of the molten steel at the time of starting the decarburization refining is 200-200. Adjust to 800 ppm. If the oxygen concentration at the start of decarburization refining is less than 200 ppm,
Since the absolute amount of oxygen reacting with carbon in the molten steel is insufficient, the decarburization reaction does not sufficiently occur, and the ultimate carbon concentration of the decarburization refining increases.
On the other hand, when the oxygen concentration exceeds 800 ppm, the absolute amount of oxygen that reacts with the carbon in the molten steel under reduced pressure increases, and bumping and dust are generated, and the relative decarburization rate decreases due to the increase in the carbon concentration in the molten steel. I do.

【0007】請求項3記載のダストの少ない溶鋼の減圧
精錬方法は、請求項1又は2記載のダストの少ない溶鋼
の減圧精錬方法において、前記浸漬管の溶鋼浸漬部の内
表面積が前記取鍋内の溶鋼の全表面積の0.1〜0.7
を有する。
A third aspect of the present invention is directed to the method of reducing the pressure of molten steel having a small amount of dust in the ladle according to the first or second aspect. 0.1 to 0.7 of the total surface area of molten steel
Having.

【0008】[0008]

【発明の実施の形態】続いて、添付した図面を参照しつ
つ、本発明を具体化した実施の形態につき説明し、本発
明の理解に供する。図1は本発明の実施の形態に係るダ
ストの少ない溶鋼の減圧精錬方法を適用した減圧精錬装
置10の断面図である。まず、減圧精錬装置10は、鋼
製で耐火物(図示せず)を内張りした取鍋11と、取鍋
11内の溶鋼12に浸漬する浸漬管13及び浸漬管13
に連結される真空槽14と、浸漬管13及び真空槽14
の内部を排気して減圧するためのエゼクターに連接した
排気ダクト15と、浸漬管13内に合金鉄等を添加する
ための貯蔵ホッパー16と添加シュート17とを備えて
いる。更に、取鍋11の底部18には、取鍋11内に不
活性ガスを吹き込むためのポーラスプラグ19を設けて
いる。なお、12aは浸漬管13内の溶鋼12の湯面で
あり、13aは浸漬管13と真空槽14をボルト・ナッ
ト等の締結手段により接合するためのフランジである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention. FIG. 1 is a cross-sectional view of a vacuum refining apparatus 10 to which a method of vacuum refining molten steel with less dust according to an embodiment of the present invention is applied. First, a vacuum refining apparatus 10 includes a ladle 11 made of steel and lined with a refractory (not shown), a dip tube 13 dipped in molten steel 12 in the ladle 11, and a dip tube 13.
, A dip tube 13 and a vacuum tank 14
An exhaust duct 15 connected to an ejector for evacuating the interior and reducing the pressure, a storage hopper 16 and an addition chute 17 for adding alloyed iron and the like into the immersion pipe 13 are provided. Further, the bottom portion 18 of the ladle 11 is provided with a porous plug 19 for blowing an inert gas into the ladle 11. Reference numeral 12a denotes a molten metal surface of the molten steel 12 in the immersion pipe 13, and reference numeral 13a denotes a flange for joining the immersion pipe 13 and the vacuum chamber 14 with fastening means such as bolts and nuts.

【0009】次に、減圧精錬装置10を適用したダスト
の少ない溶鋼の減圧精錬方法について説明する。取鍋1
1に転炉等の精錬炉(図示せず)により、炭素濃度が2
00〜500ppmに脱炭精錬された150トンの溶鋼
12を受鋼し、ポーラスプラグ19から不活性ガスの一
例であるアルゴンガスを溶鋼12中に0.6〜15NL
/(分・溶鋼トン)吹き込みながら、この溶鋼12内に
浸漬管13を浸漬して、浸漬管13及び真空槽14内を
100〜750torrに減圧した。また、この取鍋1
1と浸漬管13の条件としては、浸漬管13の溶鋼浸漬
部の内表面積(S1 )/取鍋11内の全溶鋼表面積
(S)を0.1〜0.7となるようにした。これは、
(S1 )/(S)が0.1より小さいと浸漬管13内に
吹き込まれたアルゴンガスにより形成される気泡活性面
(アルゴンガス気泡の放出面)が狭くなり脱炭の進行が
阻害され、(S1 )/(S)が0.7より大きくなると
サンプリング等の作業性が阻害されるからである。この
理由から(S1 )/(S)を0.15〜0.65にする
とより好ましい結果が得られる。そして、ポーラスプラ
グ19から供給されるアルゴンガスによって、取鍋11
内の溶鋼12が図1中の矢印で示す流れによる攪拌と、
浸漬管13内の溶鋼12の湯面12aで膨張したアルゴ
ンガスの気泡活性面により脱炭反応が促進され、脱炭が
行われる。この脱炭は、溶鋼12中の炭素濃度が150
ppm以上の領域において、浸漬管13内の真空度が1
00torr未満の高真空にならないように調整してい
るので、溶鋼中の炭素とフリー酸素の急激な反応が抑制
され、COガスの放出に伴うダストの飛散が防止でき
る。一方、脱炭速度は、溶鋼12中の炭素濃度が高い領
域にあるので、良好な値に維持することができ、所定の
炭素濃度に短時間で到達できる。
Next, a method of vacuum refining molten steel with little dust using the vacuum refining apparatus 10 will be described. Ladle 1
First, the carbon concentration was adjusted to 2 by a refining furnace (not shown) such as a converter.
150 tons of molten steel 12 decarburized and refined to 00 to 500 ppm is received, and an argon gas, which is an example of an inert gas, is introduced into the molten steel 12 from the porous plug 19 by 0.6 to 15 NL.
The immersion pipe 13 was immersed in the molten steel 12 while blowing /(min./ton of molten steel), and the pressure in the immersion pipe 13 and the vacuum chamber 14 was reduced to 100 to 750 torr. In addition, this ladle 1
The conditions of 1 and the immersion pipe 13 were such that the ratio of the internal surface area (S 1 ) of the molten steel immersion part of the immersion pipe 13 / the total molten steel surface area (S) in the ladle 11 was 0.1 to 0.7. this is,
If (S 1 ) / (S) is less than 0.1, the bubble active surface (the discharge surface of argon gas bubbles) formed by the argon gas blown into the immersion tube 13 becomes narrow, and the progress of decarburization is hindered. , (S 1 ) / (S) is larger than 0.7, the workability such as sampling is impaired. For this reason, when (S 1 ) / (S) is 0.15 to 0.65, more preferable results can be obtained. Then, the ladle 11 is supplied by the argon gas supplied from the porous plug 19.
The molten steel 12 inside is stirred by the flow shown by the arrow in FIG.
The decarburization reaction is promoted by the bubble activated surface of the argon gas expanded on the molten metal surface 12a of the molten steel 12 in the immersion tube 13, and decarburization is performed. In this decarburization, the carbon concentration in the molten steel 12 is 150
In the range of ppm or more, the degree of vacuum in the immersion tube 13 is 1
Since the pressure is adjusted so as not to be a high vacuum of less than 00 torr, a rapid reaction between carbon in the molten steel and free oxygen can be suppressed, and scattering of dust accompanying release of CO gas can be prevented. On the other hand, the decarburization rate can be maintained at a good value since the carbon concentration in the molten steel 12 is in a high region, and can reach a predetermined carbon concentration in a short time.

【0010】特に、脱炭精錬を開始する際の溶鋼12中
のフリー酸素濃度の値を200〜800ppmに調整す
ることにより、過剰のフリー酸素が炭素と反応して急激
に発生するCOガスの放出及びアルゴンガス気泡の破泡
作用によって生ずる地金の塊や地金粒、地金の微細粒等
からなるダストの発生を抑制できるので、浸漬管13、
真空槽14や排気系のダクト15等に付着や堆積するの
を防止でき、飛散したダストに起因する排気系のダクト
等の閉塞に伴う操業の支障等が回避できる。この浸漬管
13や真空槽14に付着したり、堆積するダストを防止
することにより、このダストが再溶解して溶鋼12中の
炭素濃度が上昇(炭素ピックアップ)するのを抑制でき
るので、脱炭速度が低下するのを防止し、短時間で安定
した脱炭が可能となり、脱炭精錬を終了した際に、15
0ppm未満の炭素濃度に容易に到達できる。
[0010] In particular, by adjusting the value of the free oxygen concentration in the molten steel 12 to 200 to 800 ppm at the start of the decarburization refining, the release of CO gas, which is generated when the excess free oxygen reacts with the carbon, is suddenly generated. And the generation of dust consisting of metal ingots, metal ingots, and fine metal ingots caused by the bubble breaking action of argon gas bubbles can be suppressed.
Adhesion and accumulation on the vacuum tank 14 and the exhaust system duct 15 can be prevented, and operation obstruction due to blockage of the exhaust system duct and the like due to scattered dust can be avoided. By preventing dust from adhering to or accumulating on the immersion tube 13 and the vacuum tank 14, it is possible to suppress the re-dissolution of the dust and an increase in the carbon concentration in the molten steel 12 (carbon pickup). Prevents the speed from dropping and enables stable decarburization in a short time.
Carbon concentrations of less than 0 ppm can easily be reached.

【0011】次に、溶鋼12中の炭素濃度が150pp
m未満になった時点で、エゼクターの排気を高めて、浸
漬管13及び真空槽14内を100torr未満(10
0torr〜0.1torr)の高真空度に減圧し、ア
ルゴンガスを溶鋼12中に0.6〜15NL/(分・溶
鋼トン)吹き込みながら引き続き脱炭を行う。この脱炭
は、最初の脱炭を行う際に、溶鋼12中のフリー酸素の
値を200〜800ppmに調整しているので、炭素と
反応するフリー酸素の量が十分であり、アルゴンガスの
吹き込みによる溶鋼12の攪拌と共に、浸漬管13内の
溶鋼12の湯面12aの表面の気泡活性面により、脱炭
反応が積極的に生じて、短時間の精錬により7ppm以
下の極低炭素濃度まで到達できる。この理由から、ダス
トの発生を抑制した低真空度の脱炭精錬から100to
rr未満の高真空度の脱炭精錬に切り換える溶鋼12中
の炭素濃度は、140〜30ppmにすると脱炭精錬を
終了した際の到達炭素濃度を安定して低くできるのでよ
り好ましい。また、浸漬管13の溶鋼浸漬部の内表面積
(S1 )/取鍋11内の全溶鋼表面積(S)を0.1〜
0.7にしているので、吹き込みアルゴンガスにより形
成される浸漬管13内の気泡活性面(アルゴンガス気泡
の放出面)を適正な範囲に維持することができ、最終精
錬によって到達する炭素濃度を安定して低くできる。最
終の脱炭精錬を終了すると、エゼクターを停止して浸漬
管13及び真空槽14内を大気圧に複圧した後、浸漬管
13を溶鋼12から上昇する。その後、溶鋼12を連続
鋳造して鋳片にして圧延加工等を行う。
Next, when the carbon concentration in the molten steel 12 is 150 pp
m, the exhaust of the ejector is increased, and the inside of the immersion tube 13 and the vacuum chamber 14 is reduced to less than 100 torr (10
The pressure is reduced to a high degree of vacuum of 0 torr (0.1 torr), and decarburization is continuously performed while blowing an argon gas into the molten steel 12 at 0.6 to 15 NL / (minute / ton of molten steel). In this decarburization, when the first decarburization is performed, the value of free oxygen in the molten steel 12 is adjusted to 200 to 800 ppm, so that the amount of free oxygen that reacts with carbon is sufficient, and argon gas is blown. With the agitation of the molten steel 12, the decarburization reaction is actively generated by the bubble activated surface of the molten metal surface 12a of the molten steel 12 in the immersion pipe 13, and reaches a very low carbon concentration of 7 ppm or less by short-time refining. it can. For this reason, 100 tons from low-vacuum decarburization refining with reduced dust generation
It is more preferable that the carbon concentration in the molten steel 12 to be switched to the high-vacuum degree of decarburization refining of less than rr is 140 to 30 ppm because the ultimate carbon concentration at the end of the decarburization refining can be stably reduced. Further, the ratio of the inner surface area (S 1 ) of the molten steel immersion part of the immersion pipe 13 / the total molten steel surface area (S) in the ladle 11 to 0.1 to 0.1
Since it is set to 0.7, the bubble activation surface (the discharge surface of the argon gas bubble) in the immersion tube 13 formed by the blown argon gas can be maintained in an appropriate range, and the carbon concentration reached by the final refining can be reduced. Can be lowered stably. When the final decarburization refining is completed, the ejector is stopped, and the inside of the immersion pipe 13 and the vacuum chamber 14 are double-pressurized to atmospheric pressure. After that, the molten steel 12 is continuously cast into a slab and subjected to rolling or the like.

【0012】[0012]

【実施例】次に、本発明に係わるダストの少ない溶鋼の
減圧精錬方法の実施例について説明する。転炉を用い
て、炭素濃度を300ppmに脱炭し、酸素濃度を20
0ppmに調整した150トンの溶鋼12を入れた取鍋
11内に、ポーラスプラグ19からアルゴンガス5NL
/(分・溶鋼トン)を吹き込みながら、取鍋11内の全
溶鋼表面積に対する浸漬管の溶鋼浸漬部の内表面積(S
1 /S )が0.35となる内径を有する浸漬管13を浸
漬した。そして、浸漬管13及び真空槽14内を減圧し
て脱炭精錬を行い、ダスト発生、脱炭速度及び到達炭素
濃度(脱炭精錬の終了時の炭素濃度)を調査した。
Next, an embodiment of the method for vacuum refining molten steel with little dust according to the present invention will be described. Using a converter, decarbonize the carbon concentration to 300 ppm and reduce the oxygen concentration to 20 ppm.
Into the ladle 11 containing 150 tons of molten steel 12 adjusted to 0 ppm, 5 NL of argon gas was inserted from the porous plug 19.
/ (Minutes / ton of molten steel) while blowing the inner surface area of the molten steel immersion portion of the immersion pipe with respect to the total molten steel surface area in the ladle 11 (S
1 / S) was immersed in an immersion tube 13 having an inner diameter of 0.35. Then, the pressure in the immersion pipe 13 and the vacuum tank 14 was reduced to perform decarburization refining, and dust generation, decarburization speed, and attained carbon concentration (carbon concentration at the end of the decarburization refining) were investigated.

【0013】表1に示すように、まず、実施例1は、取
鍋11内の溶鋼12の全表面積に対する浸漬管13の溶
鋼浸漬部の内表面積が0.35となる浸漬管13を使用
して、脱炭処理前炭素濃度が300ppmから150p
pmになるまでの範囲の真空度を200torrにして
最初の脱炭精錬を行い、次に、溶鋼12の炭素濃度が1
50ppm未満となった時点で、真空度を2torrの
高真空度にして最終の脱炭精錬を行った。その結果、比
較例である炭素濃度に応じて真空度を変えない(常に5
torr)場合に比べて、ダスト発生指数が0.6と大
幅に減少しており、脱炭速度指数も1.4倍の良好な脱
炭が行われており、到達炭素濃度が5ppmまで低減で
き、総合評価として優れた(○)結果が得られた。ま
た、実施例2は、取鍋11内の溶鋼12の全表面積に対
する浸漬管13の溶鋼浸漬部の内表面積が0.50とな
る浸漬管13を使用して、脱炭処理前炭素濃度が300
ppmから150ppmになるまでの範囲の真空度を6
00torrにして最初の脱炭精錬を行い、次に、溶鋼
12の炭素濃度が150ppm未満となった時点で、真
空度を5torrにして最終の脱炭精錬を行った。その
結果、比較例に比べて、ダスト発生指数が0.5と大幅
に減少しており、脱炭速度指数も1.3倍の良好な脱炭
が行われており、到達炭素濃度が7ppmまで低減で
き、総合評価として優れた(○)結果が得られた。
As shown in Table 1, first, Example 1 uses a dip tube 13 in which the inner surface area of the molten steel dipping portion of the dip tube 13 with respect to the total surface area of the molten steel 12 in the ladle 11 is 0.35. The carbon concentration before the decarburization treatment is 300ppm to 150p
pm, the first decarburization refining is performed at a vacuum degree of 200 torr, and then the carbon concentration of the molten steel 12 becomes 1
At the time when the concentration became less than 50 ppm, the final degree of decarburization refining was carried out by setting the degree of vacuum to a high degree of vacuum of 2 torr. As a result, the degree of vacuum was not changed according to the carbon concentration of the comparative example (always 5).
Compared to the case of (torr), the dust generation index is greatly reduced to 0.6, and the decarburization rate index is also 1.4 times as good as that for decarburization, and the ultimate carbon concentration can be reduced to 5 ppm. Excellent (○) results were obtained as a comprehensive evaluation. In Example 2, the carbon concentration before the decarburization treatment was 300 using the immersion pipe 13 in which the inner surface area of the molten steel immersion portion of the immersion pipe 13 with respect to the total surface area of the molten steel 12 in the ladle 11 was 0.50.
from 6 ppm to 150 ppm.
The first decarburization refining was performed at 00 torr, and then, when the carbon concentration of the molten steel 12 became less than 150 ppm, the final decarburization refining was performed at a vacuum of 5 torr. As a result, compared to the comparative example, the dust generation index was significantly reduced to 0.5, the decarburization rate index was 1.3 times as good as that of the decarburization, and the carbon concentration reached 7 ppm. The results could be reduced, and excellent (優 れ) results were obtained as an overall evaluation.

【0014】[0014]

【表1】 [Table 1]

【0015】これに対して、比較例は、脱炭処理前炭素
濃度300ppmから脱炭精錬を終了するまでの間、炭
素濃度に応じて真空度を変えなかった場合であり、実施
例1、2に比べてかなり多くのダストが発生し、脱炭速
度指数も1.0とかなり低下しており、到達炭素濃度が
10ppmとなり、総合評価として悪い(×)結果とな
った。
On the other hand, in Comparative Examples, the degree of vacuum was not changed in accordance with the carbon concentration between 300 ppm before the decarburization treatment and the end of the decarburization refining. A large amount of dust was generated, and the decarburization rate index was considerably reduced to 1.0, and the reached carbon concentration was 10 ppm, resulting in a poor (X) result as a comprehensive evaluation.

【0016】なお、実施例1、2においては、酸素濃度
を200〜800ppmに調整したが、他の実施例とし
て、溶鋼12中の酸素濃度を特に調整しないで、脱炭処
理前炭素濃度を300ppmから150ppmの範囲の
真空度を600torrにして最初の脱炭精錬を行い、
次に溶鋼12の炭素濃度が150ppm未満となった時
点で真空度を5torrにして最終の脱炭精錬を行っ
た。その結果、比較例である炭素濃度に応じて真空度を
変えない場合に比べて、ダスト発生指数が0.6と大幅
に減少しており、脱炭速度指数も1.2倍の良好な脱炭
が行われており、到達炭素濃度が8ppmまで低減で
き、総合評価として優れた(○)結果が得られた。
In the first and second embodiments, the oxygen concentration was adjusted to 200 to 800 ppm. However, as another embodiment, the carbon concentration before the decarburization treatment was set to 300 ppm without particularly adjusting the oxygen concentration in the molten steel 12. The first decarburization smelting was performed at a vacuum of 600 ppm from a range of
Next, when the carbon concentration of the molten steel 12 became less than 150 ppm, the degree of vacuum was set to 5 torr, and final decarburization refining was performed. As a result, compared with the comparative example where the degree of vacuum was not changed according to the carbon concentration, the dust generation index was significantly reduced to 0.6, and the decarburization rate index was 1.2 times as high as that of the comparative example. Charcoal was carried out, the reached carbon concentration could be reduced to 8 ppm, and an excellent ()) result was obtained as an overall evaluation.

【0017】以上、本発明の実施の形態を説明したが、
本発明は、上記した形態に限定されるものでなく、要旨
を逸脱しない条件の変更等は全て本発明の適用範囲であ
る。例えば、溶鋼中のフリー酸素の濃度を実験結果を基
に炭素濃度との関係式を求めておき、その時の炭素濃度
からフリー酸素濃度を予測するこができる。また、溶鋼
中のフリー酸素濃度を調整する方法として、Al、Al
合金やSi合金等の脱酸剤を添加したり、溶鋼12に酸
素や酸素含有気体を吹き付けることにより溶鋼中のフリ
ー酸素濃度を高めることもできる。
The embodiment of the present invention has been described above.
The present invention is not limited to the above-described embodiment, and all changes in conditions that do not depart from the gist are within the scope of the present invention. For example, a relational expression between the concentration of free oxygen in the molten steel and the carbon concentration is obtained based on the experimental results, and the free oxygen concentration can be predicted from the carbon concentration at that time. As a method for adjusting the free oxygen concentration in molten steel, Al, Al
It is also possible to increase the free oxygen concentration in the molten steel by adding a deoxidizing agent such as an alloy or a Si alloy, or by blowing oxygen or an oxygen-containing gas onto the molten steel 12.

【0018】[0018]

【発明の効果】請求項1〜3記載のダストの少ない溶鋼
の減圧精錬方法は、取鍋の底部から不活性ガスを吹き込
みながら、脱炭精錬の初期における浸漬管内の真空度を
100〜750torrの低真空にして脱炭を行って、
炭素濃度が150ppm未満に到達してから100to
rr未満の高真空度にして脱炭するので、処理中のダス
トの発生、飛散を少なくして、ダストの浸漬管、真空槽
や排気系のダクト等への付着や堆積を防止し、耐火物の
損耗を抑制し、安定した脱炭を行うことができる。
The vacuum refining method for molten steel with little dust according to any one of claims 1 to 3 is characterized in that the degree of vacuum in the immersion pipe at the initial stage of the decarburization refining is 100 to 750 torr while blowing inert gas from the bottom of the ladle. Degas with low vacuum,
100 to after the carbon concentration reaches less than 150ppm
Since decarburization is performed at a high vacuum of less than rr, the generation and scattering of dust during processing is reduced, and dust is prevented from adhering and accumulating on dip tubes, vacuum tanks, exhaust system ducts, etc. The decarburization can be performed by suppressing the wear of the steel.

【0019】特に、請求項2記載のダストの少ない溶鋼
の減圧精錬方法は、脱炭精錬を開始する溶鋼の酸素濃度
を200〜800ppmに調整するので、脱炭精錬の際
に発生するダストを少なくして、脱炭を促進して到達炭
素濃度を低くできる。
In particular, in the vacuum refining method for molten steel with low dust according to the second aspect, the oxygen concentration of the molten steel at which decarburization refining is started is adjusted to 200 to 800 ppm, so that dust generated during decarburization refining is reduced. As a result, decarbonization can be promoted to lower the reached carbon concentration.

【0020】請求項3記載のダストの少ない溶鋼の減圧
精錬方法は、浸漬管の溶鋼浸漬部の内表面積を取鍋内の
溶鋼の全表面積の0.1〜0.7としているので、脱炭
反応を促進して短時間に極低炭素濃度にすることができ
る。
According to the third aspect of the present invention, since the inner surface area of the molten steel immersion portion of the dip tube is set to 0.1 to 0.7 of the total surface area of the molten steel in the ladle, the decarburization is performed. The reaction can be promoted to achieve a very low carbon concentration in a short time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態に係る減圧精錬装置
の断面図である。
FIG. 1 is a sectional view of a vacuum refining apparatus according to a first embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 減圧精錬装置 11 取鍋 12 溶鋼 12a 湯面 13 浸漬管 13a フラン
ジ 14 真空槽 15 排気ダク
ト 16 貯蔵ホッパー 17 添加シュ
ート 18 底部 19 ポーラス
プラグ
DESCRIPTION OF SYMBOLS 10 Decompression refining apparatus 11 Ladle 12 Molten steel 12a Metal surface 13 Dip tube 13a Flange 14 Vacuum tank 15 Exhaust duct 16 Storage hopper 17 Addition chute 18 Bottom part 19 Porous plug

フロントページの続き Fターム(参考) 4K013 BA02 CA02 CA11 CA23 CC02 CE02 CE05 CE08 CE09 DA03 DA05 DA12 DA13 DA17 FA02 FA04 Continued on the front page F-term (reference) 4K013 BA02 CA02 CA11 CA23 CC02 CE02 CE05 CE08 CE09 DA03 DA05 DA12 DA13 DA17 FA02 FA04

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一本の浸漬管を取鍋内の溶鋼に浸漬して
減圧状態で脱炭精錬を行う溶鋼の減圧精錬方法におい
て、前記取鍋の底部から不活性ガスを吹き込みながら、
前記脱炭精錬の初期においては真空度が100〜750
torrの低真空となるように前記浸漬管内を減圧して
脱炭を行ない、次いで、炭素濃度が150ppm未満に
到達した後、真空度が100torr未満の高真空とな
るように前記浸漬管内を減圧して脱炭することを特徴と
するダストの少ない溶鋼の減圧精錬方法。
1. A method of vacuum refining molten steel in which one dipping tube is dipped in molten steel in a ladle to perform decarburization refining under reduced pressure, while blowing an inert gas from the bottom of the ladle,
In the early stage of the decarburization refining, the degree of vacuum is 100 to 750.
The inside of the immersion tube is decompressed to reduce the pressure to a low vacuum of torr, and then decarbonization is performed. After the carbon concentration reaches less than 150 ppm, the pressure in the immersion tube is reduced to a high vacuum of less than 100 torr. Pressure smelting method for molten steel with little dust, characterized by decarburization.
【請求項2】 前記脱炭精錬を開始する際の前記溶鋼の
酸素濃度を200〜800ppmに調整することを特徴
とする請求項1記載のダストの少ない溶鋼の減圧精錬方
法。
2. The method according to claim 1, wherein the oxygen concentration of the molten steel at the start of the decarburization refining is adjusted to 200 to 800 ppm.
【請求項3】 前記浸漬管の溶鋼浸漬部の内表面積が前
記取鍋内の溶鋼の全表面積の0.1〜0.7を有するこ
とを特徴とする請求項1又は2記載のダストの少ない溶
鋼の減圧精錬方法。
3. The low dust content according to claim 1, wherein an inner surface area of the molten steel immersion portion of the immersion tube has 0.1 to 0.7 of a total surface area of the molten steel in the ladle. Vacuum refining method for molten steel.
JP22233798A 1998-07-21 1998-07-21 Vacuum refining method for molten steel with less dust Expired - Fee Related JP3752080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22233798A JP3752080B2 (en) 1998-07-21 1998-07-21 Vacuum refining method for molten steel with less dust

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22233798A JP3752080B2 (en) 1998-07-21 1998-07-21 Vacuum refining method for molten steel with less dust

Publications (2)

Publication Number Publication Date
JP2000038613A true JP2000038613A (en) 2000-02-08
JP3752080B2 JP3752080B2 (en) 2006-03-08

Family

ID=16780772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22233798A Expired - Fee Related JP3752080B2 (en) 1998-07-21 1998-07-21 Vacuum refining method for molten steel with less dust

Country Status (1)

Country Link
JP (1) JP3752080B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153337A (en) * 2010-01-26 2011-08-11 Nippon Steel Corp Method for continuously controlling vacuum degree
JP2020012158A (en) * 2018-07-18 2020-01-23 日本製鉄株式会社 Method of smelling steel into high cleaned steel
JP2020012143A (en) * 2018-07-17 2020-01-23 日本製鉄株式会社 Method of smelling steel into high cleaned steel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153337A (en) * 2010-01-26 2011-08-11 Nippon Steel Corp Method for continuously controlling vacuum degree
JP2020012143A (en) * 2018-07-17 2020-01-23 日本製鉄株式会社 Method of smelling steel into high cleaned steel
JP7035871B2 (en) 2018-07-17 2022-03-15 日本製鉄株式会社 Melting method of high-clean steel
JP2020012158A (en) * 2018-07-18 2020-01-23 日本製鉄株式会社 Method of smelling steel into high cleaned steel
JP7035873B2 (en) 2018-07-18 2022-03-15 日本製鉄株式会社 Melting method of high-clean steel

Also Published As

Publication number Publication date
JP3752080B2 (en) 2006-03-08

Similar Documents

Publication Publication Date Title
KR101074895B1 (en) Method of denitrifying molten steel
JP3752080B2 (en) Vacuum refining method for molten steel with less dust
JP2006104531A (en) Ti-CONTAINING STAINLESS STEEL MANUFACTURING METHOD
JP4085898B2 (en) Melting method of low carbon high manganese steel
JP2991796B2 (en) Melting method of thin steel sheet by magnesium deoxidation
JP3561414B2 (en) Vacuum refining method for molten steel
JP2000119730A (en) Method for refining molten steel under reduced pressure
RU2754337C1 (en) Method for production of nitrogen-doped steel in bucket
JP3918695B2 (en) Method for producing ultra-low sulfur steel
JP3225747B2 (en) Vacuum degassing of molten steel
JP4207817B2 (en) Dehydrogenation treatment method for molten steel
JP2985720B2 (en) Vacuum refining method for ultra low carbon steel
JP2962163B2 (en) Melting method of high clean ultra low carbon steel
JP3127733B2 (en) Manufacturing method of ultra clean ultra low carbon steel
JP3407326B2 (en) Manufacturing method of low nitrogen steel
JPH07224317A (en) Production of high cleanliness steel
RU2016088C1 (en) Method of out-of-furnace treatment of steel
JP2007177296A (en) Method for deoxidizing molten steel
JP2001172715A (en) Method of manufacturing molten ultra-low carbon stainless steel
JP2000119736A (en) Method for refining molten steel having little abnormal reaction
JP2000017324A (en) Method for refining molten steel
JPS60184618A (en) Production of low-nitrogen steel
JPH105951A (en) Nozzle clogging preventive agent in continuous casting of molten steel
JPS5922766B2 (en) Steel manufacturing method
JPH05311228A (en) Method for melting ultralow carbon steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees