JP3407326B2 - Manufacturing method of low nitrogen steel - Google Patents

Manufacturing method of low nitrogen steel

Info

Publication number
JP3407326B2
JP3407326B2 JP07036993A JP7036993A JP3407326B2 JP 3407326 B2 JP3407326 B2 JP 3407326B2 JP 07036993 A JP07036993 A JP 07036993A JP 7036993 A JP7036993 A JP 7036993A JP 3407326 B2 JP3407326 B2 JP 3407326B2
Authority
JP
Japan
Prior art keywords
molten steel
powder
lance
ladle
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07036993A
Other languages
Japanese (ja)
Other versions
JPH06279830A (en
Inventor
浩二 西尾
薫 真目
敬一 真屋
洋行 池宮
明彦 海老原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP07036993A priority Critical patent/JP3407326B2/en
Publication of JPH06279830A publication Critical patent/JPH06279830A/en
Application granted granted Critical
Publication of JP3407326B2 publication Critical patent/JP3407326B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化剤粉体の上吹によ
り低窒素鋼を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing low nitrogen steel by spraying oxidant powder.

【0002】[0002]

【従来の技術】一般に炭素鋼中での窒素は、Al、Tiなど
と窒化物を形成して結晶粒の微細化あるいはその他の特
性に与える影響が大きい元素の一つである。例えば、Al
N を一定量生成させて焼鈍を行うAlキルド鋼の冷延鋼材
もあれば、溶鋼中の[N] を極力低下せしめて連続焼鈍を
行う冷延鋼材もある。
2. Description of the Related Art Generally, nitrogen in carbon steel is one of the elements that form a nitride with Al, Ti, etc. and have a great influence on the refinement of crystal grains or other characteristics. For example, Al
There are cold rolled steels of Al-killed steel that are annealed by generating a certain amount of N 2, and cold rolled steels that are continuously annealed by reducing [N] in molten steel as much as possible.

【0003】これらの炭素鋼の窒素添加方法としては含
窒素合金鉄、CaCN2 等の添加あるいはN2バブリング法な
どがある。一方、しかし溶鋼の脱窒を目的としての脱ガ
ス処理は積極的には実施されておらず、製鋼炉により溶
製された粗溶鋼の脱炭を目的としたRH装置、VOD 装置等
を用いて減圧脱ガス処理を実施し、その副作用的効果と
して脱窒が確認されているにすぎなかった。
Examples of methods for adding nitrogen to these carbon steels include addition of nitrogen-containing alloy iron, CaCN 2, etc., or N 2 bubbling method. On the other hand, however, degassing treatment for the purpose of denitrifying molten steel is not actively carried out, and RH equipment, VOD equipment, etc. for decarburization of crude molten steel produced in a steelmaking furnace are used. The degassing under reduced pressure was carried out, and denitrification was only confirmed as a side effect.

【0004】すなわち、従来の低炭素Alキルド鋼につい
ては、転炉等の製鋼炉により溶製された溶鋼中の[C] を
低下させるべくRH装置等の真空処理設備を用いて減圧脱
ガス処理をしており、窒素は後工程の冷延鋼板の箱焼鈍
時のAlN 微細析出を促進させるのに必要であり、ある一
定の濃度範囲に制御していた。
That is, in the case of conventional low carbon Al killed steel, in order to reduce [C] in molten steel melted in a steelmaking furnace such as a converter, vacuum degassing treatment is performed using a vacuum treatment equipment such as an RH device. Nitrogen is necessary to promote AlN fine precipitation during box annealing of the cold-rolled steel sheet in the post-process, and was controlled within a certain concentration range.

【0005】しかしながら圧延技術の進歩により最近で
は連続焼鈍法が採用されるに至っており、これが急熱、
急冷プロセスであるためAlN が析出し難く、加工性の指
標としてのランクフォード値 (r値) の向上が望めず、
またこのため残存固溶窒素が多くなり歪時効が起こり易
くなっていた。
However, due to the progress of rolling technology, the continuous annealing method has recently been adopted, which is a rapid heating,
Since it is a quenching process, AlN is unlikely to precipitate, and the Rankford value (r value) as an index of workability cannot be expected to improve.
For this reason, the amount of residual solid solution nitrogen is increased and strain aging is likely to occur.

【0006】これを改善するためには圧延機の成品での
窒素濃度を20ppm 以下に減少させることが有効であり、
そのために圧延の上工程である連続鋳造時あるいは造塊
時での溶鋼中への窒素のピックアップを見込んで、RH処
理終了時で[N] を毎チャージ安定して10ppm 以下にする
ことが切望されていた。これは、例えば連続鋳造時に、
取鍋〜タンディッシュ間の工程のシールの程度によりバ
ラツキがあるが、精度よくシールをしていても窒素のピ
ックアップが最低でも2〜3ppm 程度あるからである。
In order to improve this, it is effective to reduce the nitrogen concentration in the product of the rolling mill to 20 ppm or less,
For this reason, it is highly desirable to anticipate the pickup of nitrogen in the molten steel during continuous casting or ingot making, which is the upper process of rolling, and stabilize [N] at each charge stable at 10 ppm or less at the end of RH treatment. Was there. This is, for example, during continuous casting,
Although there are variations depending on the degree of sealing in the process between the ladle and the tundish, the nitrogen pickup is at least about 2 to 3 ppm even if the sealing is performed accurately.

【0007】これに対し、特開昭60−184618号公報にお
いて、減圧下において酸化剤粉末を上吹きすることによ
り、脱窒を促進させる方法が開示されている。しかしな
がら、粉体上吹き条件について明確な規定はなく、脱窒
促進効果は顕著でない場合もあった。
On the other hand, Japanese Patent Application Laid-Open No. 60-184618 discloses a method of accelerating denitrification by upwardly blowing an oxidizer powder under reduced pressure. However, there was no clear regulation on the powder top blowing condition, and the denitrification promoting effect was not remarkable in some cases.

【0008】これは、特開昭60−184618号公報の開示す
る方法が、粉体の溶鋼への侵入条件を明確にしていない
ためであって、その実施例にも開示されているように、
いずれも粉体の供給速度、粒径、ランス高さが狭い範囲
に限られており、安定した脱窒促進効果を得る供給条件
の点で充分であるとは言えない。
This is because the method disclosed in Japanese Patent Application Laid-Open No. 60-184618 does not clarify the conditions under which the powder penetrates the molten steel, and as disclosed in the examples,
In all cases, the powder supply rate, particle size, and lance height are limited to a narrow range, and it cannot be said that they are sufficient in terms of supply conditions for obtaining a stable denitrification promoting effect.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、減圧
下における粉体上吹きによる溶鋼の脱窒において、脱窒
反応を効果的に促進して鋼の窒素レベルを低位安定さ
せ、かつ粉体供給量を従来の 2/3〜1/2 に低減すること
である。
DISCLOSURE OF THE INVENTION An object of the present invention is to effectively accelerate the denitrification reaction in the denitrification of molten steel by spraying the powder under reduced pressure to stabilize the nitrogen level of the steel at a low level, and It is to reduce the body supply to 2/3 to 1/2 of the conventional level.

【0010】[0010]

【課題を解決するための手段】本発明者らは、粉体が真
空下で溶鋼内に十分侵入し得るための精錬条件として、
粉体の粒径、粉体の供給速度および粉体を吹込むランス
と溶鋼表面までの距離について、各種精錬装置において
定量的に決定することが必要であることを知り、本発明
を完成した。
DISCLOSURE OF THE INVENTION The present inventors have defined as refining conditions for powder to sufficiently penetrate into molten steel under vacuum.
The inventors have completed the present invention by knowing that it is necessary to quantitatively determine the particle diameter of powder, the feed rate of powder, and the distance between the lance for blowing powder and the surface of molten steel in various refining apparatuses.

【0011】ここに、本発明は、減圧下において溶鋼に
酸化剤粉体を上吹きして脱炭および脱窒を行う精錬方法
において、該酸化剤粉体の粒径を10〜200 μmとし、粉
体供給速度を0.1 〜1.0 kg/min・ton とすることを特徴
とする低窒素鋼の製造方法である。
In the refining method of decarburizing and denitrifying by spraying an oxidizer powder onto molten steel under reduced pressure, the present invention has a particle size of 10 to 200 μm. This is a method for producing low-nitrogen steel, characterized in that the powder supply rate is 0.1 to 1.0 kg / min · ton.

【0012】本発明の好適態様によれば、いわゆる真空
精錬炉として真空脱炭炉(VOD炉) を使用して脱窒処理を
行う際に、あるいは取鍋内の溶鋼中に筒状浸漬管を浸漬
させ、該浸漬管の内部を排気減圧して溶鋼を浸漬管の内
部に吸上げて脱窒処理を行う際に、取鍋底部に位置する
羽口または浸漬管の下方に位置するランスから浸漬管内
部に向かって不活性ガスを吹込むとともに、浸漬管内部
の溶鋼表面との距離を0.5 〜2.0 mとした粉体吹込ラン
スより粒径10〜200 μm の酸化剤粉体を粉体供給速度0.
1 〜1.0kg/min ・ton で上吹きする。
According to a preferred embodiment of the present invention, when a denitrification process is performed using a vacuum decarburization furnace (VOD furnace) as a so-called vacuum refining furnace, or a cylindrical dipping tube is placed in molten steel in a ladle. When immersing, decompressing the inside of the dipping pipe to suck molten steel into the dipping pipe and performing denitrification treatment, dipping from the tuyere located at the bottom of the ladle or the lance located below the dipping pipe The inert gas is blown toward the inside of the tube, and the oxidizer powder with a particle size of 10 to 200 μm is supplied from the powder injection lance with a distance of 0.5 to 2.0 m from the molten steel surface inside the immersion tube. 0.
Top-spray at 1 to 1.0 kg / min ton.

【0013】さらに別の態様によれば、取鍋内の溶鋼中
に環流式脱ガス装置を浸漬させ、該環流式脱ガス装置内
に前記溶鋼を環流させ、該環流式脱ガス装置内の溶鋼表
面との距離を1.0 〜3.0 mとした粉体吹込ランスより粒
径10〜200 μm の酸化剤粉体を粉体供給速度0.1 〜1.0k
g/min ・ton で上吹きする。
According to still another aspect, the reflux type degassing device is immersed in the molten steel in the ladle, the molten steel is refluxed in the refluxing type degassing device, and the molten steel in the refluxing type degassing device is refluxed. Oxidizer powder with a particle size of 10 to 200 μm is supplied from a powder injection lance with a distance from the surface of 1.0 to 3.0 m at a powder supply rate of 0.1 to 1.0 k
Top blow with g / min ton.

【0014】[0014]

【作用】次に、本発明の作用についてさらに具体的に説
明する。本発明において溶鋼を処理の対象とする場合、
その炭素量を特に制限されない。例えば、[C] =0.04%
以下とすることができる。本発明における粉体の上吹き
において、酸化剤粉体が真空下で溶鋼中に十分に侵入し
得るための吹込み条件を示す。ここで、真空下とは20To
rr以下の状態を示すものとする。
Next, the operation of the present invention will be described more specifically. In the present invention, when the molten steel to be treated,
The amount of carbon is not particularly limited. For example, [C] = 0.04%
It can be: In the upper blowing of the powder in the present invention, a blowing condition for allowing the oxidant powder to sufficiently penetrate into molten steel under vacuum is shown. Here, under vacuum is 20To
It shall indicate the state below rr.

【0015】第一に粉体の粒径は10〜200 μmが適切で
ある。10μm未満の粉体では、粉体が真空構内に舞い上
がって溶鋼中へ侵入せず、安定して溶鋼中への粉体の供
給を行うことが困難であった。一方、200 μm超の粉体
では粉体全体の反応界面積が著しく小さくなるため、反
応促進効果が大幅に低下した。好ましくは、50〜100 μ
m である。
First, the particle size of the powder is suitably 10 to 200 μm. If the powder is less than 10 μm, the powder does not soar into the vacuum chamber and penetrate into the molten steel, making it difficult to stably supply the powder into the molten steel. On the other hand, in the case of the powder having a particle size of more than 200 μm, the reaction interfacial area of the entire powder is remarkably reduced, so that the reaction promoting effect is significantly reduced. Preferably 50-100 μ
m.

【0016】次に、粉体供給速度については0.1 〜1.0k
g/min ・t が適切である。0.1 kg/min・t 未満では溶鋼
の脱窒反応速度が遅く、処理時間が増大するため非効率
的であった。一方、1.0kg/min ・t 超では反応が粉体供
給速度に対処できず、未反応の粉体が溶鋼表面に残留な
いし堆積するのが観察された。また、粉体を吹き込むラ
ンスと溶鋼表面の距離については、種々実験を重ねた結
果、以下のような知見を得た。
Next, the powder feeding rate is 0.1 to 1.0 k
g / min-t is appropriate. If it is less than 0.1 kg / min · t, the denitrification reaction rate of molten steel is slow and the treatment time increases, which is inefficient. On the other hand, above 1.0 kg / min · t, it was observed that the reaction could not cope with the powder supply rate, and unreacted powder remained or accumulated on the molten steel surface. As for the distance between the lance for blowing the powder and the surface of the molten steel, the following findings were obtained as a result of various experiments.

【0017】20Torr以下の真空下で上述のような酸化剤
粉体を十分溶鋼内に侵入させるためには、 溶鋼を入れた取鍋全体を真空雰囲気にする装置、例え
ば VOD炉では、粉体を吹き込むランスと溶鋼表面の距離
を 0.5〜2mとする、 例えば、特開平1−92314 号公報で提案されているよ
うに浸漬管内を排気して真空にした状態でランスまたは
底部羽口より不活性ガスを吹き込むことを特徴とする取
鍋精錬装置では、粉体を吹き込むランスと溶鋼表面の距
離を 0.5〜2mとする、 環流式脱ガス装置では、粉体を吹き込むランスと溶鋼
表面の距離を1〜3mとする、ことが必要である。
In order to sufficiently infiltrate the above-mentioned oxidizer powder into the molten steel under a vacuum of 20 Torr or less, in a device for making the entire ladle containing the molten steel into a vacuum atmosphere, for example, in a VOD furnace, the powder is The distance between the blowing lance and the surface of the molten steel is 0.5 to 2 m. For example, as proposed in JP-A-1-92314, an inert gas is introduced from the lance or the bottom tuyere while the immersion pipe is evacuated to a vacuum. In the ladle refining device characterized by blowing air, the distance between the lance that blows the powder and the molten steel surface is 0.5 to 2 m. In the reflux type degassing device, the distance between the lance that blows the powder and the molten steel surface is 1 to 1. It is necessary to make it 3 m.

【0018】ここで、ランス湯面間の下限は、ランスが
溶鋼スプラッシュにより溶損されない最小値、上限は、
粉体が溶鋼中へ侵入できる最大値である。これらは全て
種々操業した結果、得られた経験値である。
Here, the lower limit between the molten metal surfaces of the lance is the minimum value at which the lance is not melted by the molten steel splash, and the upper limit is
It is the maximum value that powder can penetrate into molten steel. All of these are empirical values obtained as a result of various operations.

【0019】図1は、真空精錬炉、例えば真空脱炭炉(V
OD炉) における本発明の実施状況の概略説明図であり、
図中、真空脱炭炉10内に置かれた取鍋12内の溶鋼には取
鍋12の底部から底吹Arガスが吹込まれており、一方、溶
鋼の上方からは粉体吹込みランスから酸化剤粉体が吹き
込まれる。装置内は常に排気されており、減圧下に保持
されている。
FIG. 1 shows a vacuum refining furnace, for example, a vacuum decarburizing furnace (V
(OD furnace) is a schematic explanatory diagram of the implementation situation of the present invention,
In the figure, bottom-blown Ar gas is blown into the molten steel in the ladle 12 placed in the vacuum decarburizing furnace 10 from the bottom of the ladle 12, while the molten steel in the ladle 12 is blown from the powder injection lance from above. Oxidizer powder is blown in. The inside of the device is constantly evacuated and kept under reduced pressure.

【0020】図2は、浸漬管を用いた取鍋精錬における
本発明の実施状況の概略説明図であり、図中、円筒状の
浸漬管20は取鍋22内に収容された溶鋼24に下部が浸漬さ
れており、浸漬管内部は減圧されるとともに、浸漬管の
下方からは吹込みランス26からの攪拌気体が吹き込まれ
ている。攪拌気体は底吹き羽口から吹込んでもよい。浸
漬管内部の溶鋼表面の上方には粉体吹込みランス28が設
けられ、酸化剤粉体の吹き込みが行われる。
FIG. 2 is a schematic explanatory view of an embodiment of the present invention in ladle refining using a dip tube. In the figure, a cylindrical dip tube 20 is placed at the bottom of molten steel 24 housed in a ladle 22. Is immersed, the inside of the immersion pipe is decompressed, and the stirring gas from the injection lance 26 is blown from below the immersion pipe. The stirring gas may be blown from the bottom blowing tuyere. A powder injection lance 28 is provided above the surface of the molten steel inside the dip tube, and the oxidant powder is injected.

【0021】図3は、環流式脱ガス装置を用いた本発明
の実施状況の概略説明図であり、図中、環流脱ガス装置
30は二本の浸漬管32、34を備えており、両者の間で溶鋼
は循環される。装置内は減圧されており、内部の溶鋼表
面の上方には酸化剤粉体吹き込み用の上吹ランス36が設
けられている。浸漬管の一方は上昇管として機能し、図
示例では浸漬管32が上昇管であって、不活性ガス( 例:A
r ガス) の吹き込みが行われる。
FIG. 3 is a schematic explanatory view of an embodiment of the present invention using a reflux type degassing apparatus, in which the reflux type degassing apparatus is used.
30 is equipped with two dip pipes 32 and 34, and molten steel is circulated between them. The inside of the apparatus is decompressed, and an upper blowing lance 36 for blowing the oxidant powder is provided above the surface of the molten steel inside. One of the immersion pipes functions as an ascending pipe, and in the illustrated example, the immersion pipe 32 is an ascending pipe, and an inert gas (e.g., A
(gas) is blown in.

【0022】また、本発明での処理の対象となる鋼種
は、ステンレス鋼を始めとして、高品質が望まれ、上述
のような減圧下精錬処理が施される炭素鋼および合金鋼
のすべてである。なお、本明細書においては、便宜上
「鋼」および「溶鋼」なる用語を用いたが、これにはFe
の含有量が50重量%以下の合金、たとえばNi基合金も包
含される。次に、実施例によって本発明の作用、効果を
さらに具体的に説明する。
Further, the steel types to be treated in the present invention are all stainless steel and other carbon steels and alloy steels which are desired to have high quality and which are subjected to the refining treatment under reduced pressure as described above. . In the present specification, the terms "steel" and "molten steel" are used for convenience, but Fe
An alloy having a content of 50 wt% or less, for example, a Ni-based alloy is also included. Next, the operation and effect of the present invention will be described more specifically by way of examples.

【0023】[0023]

【実施例】図1に示すような50t VOD炉において、酸化
鉄粉体を 溶鋼温度 : 1600 ℃ 真空度 : 20Torr 粉体粒径 : 10 〜200 μm 粉体供給速度 : 0.6kg/min・t ランス・溶鋼表面間距離 : 0.5mおよび2m において合計2kg/tを上吹きした。溶鋼の[C] は0.33%
であった。
[Example] In a 50t VOD furnace as shown in FIG. 1, molten iron oxide powder was melted steel temperature: 1600 ° C Vacuum degree: 20Torr Powder particle size: 10 to 200 μm Powder supply rate: 0.6kg / min · t Lance -Distance between molten steel surfaces: A total of 2 kg / t was blown up at 0.5 m and 2 m. [C] of molten steel is 0.33%
Met.

【0024】ここで、底吹きガス流量は2ポーラスにて
3〜5Nl/min-tとした。このときの結果は表1の実施例
1〜6に示す。いずれの場合も脱窒が十分に行われてい
ることが判る。一方、同様の条件にて、粉体粒径を<10
μmおよび200 〜400 μmとした場合を表1の比較例
1、2に示す。これからも分かるように、本発明の範囲
を外れると十分な脱窒は行われず、脱窒が不十分となっ
た。
Here, the bottom blown gas flow rate was set to 3 to 5 Nl / min-t with 2 pores. The results at this time are shown in Examples 1 to 6 in Table 1. In each case, it can be seen that denitrification is sufficiently performed. On the other hand, under the same conditions, the powder particle size should be <10.
Comparative examples 1 and 2 in Table 1 show the case where the thickness is 200 μm and 200 to 400 μm. As can be seen from the above, when the amount is out of the range of the present invention, sufficient denitrification was not performed and denitrification became insufficient.

【0025】同様に図1に示すような50t VOD炉におい
て、酸化鉄粉体を 溶鋼温度 : 1600 ℃ 真空度 : 20 Torr 粉体粒径 : 10 〜200 μm 粉体供給速度 : 0.08kg/min ・t ランス・溶鋼表面間距離 : 1m にて合計8kg/tを上吹きした。
Similarly, in a 50t VOD furnace as shown in FIG. 1, molten iron oxide powder was melted at a steel temperature: 1600 ° C. Vacuum degree: 20 Torr Powder particle size: 10 to 200 μm Powder supply rate: 0.08 kg / min t Lance-molten steel surface distance: A total of 8 kg / t was blown up at 1 m.

【0026】しかし、この場合にも脱窒が不十分であ
り、また処理時間が長くなった (比較例3の結果参照)
。同様の条件で粉体供給速度のみ2kg/min・t とした
場合は脱窒が不十分であった (比較例4の結果参照) 。
However, also in this case, denitrification was insufficient and the treatment time was long (see the results of Comparative Example 3).
. Under the same conditions, when only the powder supply rate was 2 kg / min · t, denitrification was insufficient (see the result of Comparative Example 4).

【0027】次に、50t VOD炉において 溶鋼温度 : 1600 ℃ 真空度 : 20 Torr 粉体粒径 : 10 〜200 μm 粉体供給速度 : 1.0 kg/min ・t ランス・溶鋼表面間距離 : 0.3m とした場合はランスが溶損した (比較例5) 。 同様の条件でランス溶鋼表面間距離を2.5 mとした場
合、脱窒が不十分であり、粉体が真空槽内に多量舞い上
がるのが観察された (比較例6) 。
Next, in a 50 t VOD furnace, molten steel temperature: 1600 ° C. Vacuum degree: 20 Torr Powder particle size: 10 to 200 μm Powder supply rate: 1.0 kg / min t lance / molten steel surface distance: 0.3 m In this case, the lance was melted (Comparative Example 5). Under the same conditions, when the distance between the molten lance molten steel surfaces was set to 2.5 m, denitrification was insufficient, and it was observed that a large amount of powder flew up in the vacuum chamber (Comparative Example 6).

【0028】[0028]

【表1】 [Table 1]

【0029】図2に例示されるような取鍋内溶鋼中に筒
状浸漬管を浸漬し、該浸漬管内を排気して真空にした状
態でランスより不活性ガスを吹き込むことを特徴とする
250トン取鍋精錬装置にて、 溶鋼温度 : 1650 ℃ 真空度 : 3 Torr 底吹き攪拌ガス流量 10Nl/min・t にて、 粉体粒径 : 10 〜200 μm 粉体供給速度 : 0.5 kg/min ・t ランス・溶鋼表面間距離 : 0.5mおよび2m にて酸化鉄粉末を合計8kg/ton上吹きした。このとき、
脱窒が良好に行われた (実施例7〜12) 。 一方、ランス・溶鋼表面間距離0.3 mおよび2.2 mとし
たとき、脱窒が不十分であった (比較例7、8)
A cylindrical dip tube is immersed in molten steel in a ladle as illustrated in FIG. 2, and an inert gas is blown from a lance in a state where the dip tube is evacuated to a vacuum state.
At 250 ton ladle refining equipment, molten steel temperature: 1650 ℃ Vacuum degree: 3 Torr Bottom blowing stirring gas flow rate 10 Nl / min ・ t, powder particle size: 10-200 μm Powder supply rate: 0.5 kg / min・ The distance between t lance and molten steel surface: 0.5 m and 2 m, iron oxide powder was sprayed on 8 kg / ton in total. At this time,
The denitrification was performed well (Examples 7 to 12). On the other hand, when the distance between the lance and the molten steel surface was 0.3 m and 2.2 m, denitrification was insufficient (Comparative Examples 7 and 8).

【0030】[0030]

【表2】 [Table 2]

【0031】図3に示すような250 t 環流式脱ガス装置
において、 溶鋼温度 : 1650 ℃ 真空度 : 7 Torr 環流ガス流量 : 5〜8 Nl/min・t にて、 粉体粒径 : 10 〜200 μm 粉体吹き込み速度 : 1 kg/min・t ランス・溶鋼表面間距離 :1mおよび3m にて、酸化鉄粉末を合計8kg/ton上吹きした。このと
き、脱窒が良好に行われた(実施例13〜18) 。しかしな
がら、ランス溶鋼表面間距離を0.8 mおよび3.1 mとし
た場合、脱窒が不十分であった (比較例11〜14) 。
In a 250 t reflux type degassing apparatus as shown in FIG. 3, molten steel temperature: 1650 ° C. Vacuum degree: 7 Torr reflux gas flow rate: 5-8 Nl / min · t, powder particle size: 10- 200 μm Powder injection speed: 1 kg / min · t lance / distance between molten steel surfaces: 1 m and 3 m, iron oxide powder was sprayed on a total of 8 kg / ton. At this time, denitrification was favorably performed (Examples 13 to 18). However, denitrification was insufficient when the distance between the lance molten steel surfaces was 0.8 m and 3.1 m (Comparative Examples 11 to 14).

【0032】[0032]

【表3】 [Table 3]

【0033】[0033]

【発明の効果】本発明により、[N] ≦10ppm というよう
に少量の酸化剤粉体の吹き込みによって溶鋼の脱窒が効
果的に行われる。その他、本発明によれば、同時に脱
硫、脱炭反応促進の効果が得られるなど、実用的な見地
からの意義は大きい。
INDUSTRIAL APPLICABILITY According to the present invention, denitrification of molten steel is effectively performed by blowing a small amount of oxidizer powder such as [N] ≦ 10 ppm. In addition, according to the present invention, the effect of promoting desulfurization and decarburization reaction can be obtained at the same time, which is significant from a practical point of view.

【図面の簡単な説明】[Brief description of drawings]

【図1】真空脱炭炉(VOD炉) における本発明の実施状況
の概略説明図である。
FIG. 1 is a schematic explanatory diagram of an implementation status of the present invention in a vacuum decarburization furnace (VOD furnace).

【図2】浸漬管を用いた取鍋精錬における本発明の実施
状況の概略説明図である。
FIG. 2 is a schematic explanatory view of an implementation state of the present invention in ladle refining using an immersion tube.

【図3】環流式脱ガス装置を用いた本発明の実施状況の
概略説明図である。
FIG. 3 is a schematic explanatory diagram of an implementation state of the present invention using a reflux type degassing apparatus.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 池宮 洋行 茨城県鹿島郡鹿島町大字光3番地 住友 金属工業株式会社鹿島製鉄所内 (72)発明者 海老原 明彦 大阪市中央区北浜4丁目5番33号 住友 金属工業株式会社内 (56)参考文献 特開 昭61−281807(JP,A) 特開 昭62−164816(JP,A) 特開 平6−73429(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21C 7/10 C21C 7/00 C21C 7/072 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroyuki Ikemiya 3 Hikari No. 3, Kashima-cho, Kashima-gun, Kashima-gun, Ibaraki Sumitomo Metal Industries, Ltd. Kashima Steel Works (72) Akihiko Ebihara 4-53, Kitahama, Chuo-ku, Osaka Sumitomo Metal Industries Co., Ltd. (56) Reference JP 61-281807 (JP, A) JP 62-164816 (JP, A) JP 6-73429 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C21C 7/10 C21C 7/00 C21C 7/072

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 減圧下において溶鋼に酸化剤粉体を上吹
きして脱炭および脱窒を行う精錬方法において、該酸化
剤粉体の粒径を10〜200 μmとし、粉体供給速度を0.1
〜1.0kg/min ・ton とすることを特徴とする低窒素鋼の
製造方法。
1. In a refining method of decarburizing and denitrifying by spraying an oxidizer powder onto molten steel under reduced pressure, the oxidizer powder has a particle size of 10 to 200 μm and a powder supply rate. 0.1
~ 1.0kg / min · ton, Low nitrogen steel manufacturing method characterized by the following.
【請求項2】 溶鋼を収容する取鍋を真空容器内に収容
し、該容器の内部を排気減圧し、取鍋底部に位置する羽
口から溶鋼に不活性ガスを吹込むとともに、取鍋内部の
溶鋼表面との距離を0.5 〜2.0 mとした粉体吹込ランス
より粒径10〜200 μm の酸化剤粉体を粉体供給速度0.1
〜1.0 kg/min・ton で上吹きして脱炭および脱窒を行う
ことを特徴とする低窒素鋼の製造方法。
2. A ladle for containing molten steel is housed in a vacuum vessel, the inside of the vessel is evacuated and decompressed, and an inert gas is blown into the molten steel from the tuyere located at the bottom of the ladle. Of the oxidizer powder with a particle size of 10 to 200 μm from the powder injection lance with the distance from the molten steel surface of 0.5 to 2.0 m
A method for producing a low-nitrogen steel, characterized by carrying out decarburization and denitrification by top-spraying at ~ 1.0 kg / min · ton.
【請求項3】 取鍋内の溶鋼中に筒状浸漬管を浸漬さ
せ、該浸漬管の内部を排気減圧して溶鋼を浸漬管の内部
に吸上げ、浸漬管の下方に位置するランスから浸漬管内
部に向かって不活性ガスを吹込むとともに、浸漬管内部
の溶鋼表面との距離を0.5 〜2.0 mとした粉体吹込ラン
スより粒径10〜200 μm の酸化剤粉体を粉体供給速度0.
1 〜1.0 kg/min・ton で上吹きして脱炭および脱窒を行
ことを特徴とする低窒素鋼の製造方法。
3. A cylindrical immersion pipe is immersed in molten steel in a ladle, the interior of the immersion pipe is exhausted and decompressed to suck the molten steel into the immersion pipe, and the immersion is performed from a lance located below the immersion pipe. The inert gas is blown toward the inside of the tube, and the oxidizer powder with a particle size of 10 to 200 μm is supplied from the powder injection lance with a distance of 0.5 to 2.0 m from the molten steel surface inside the immersion tube. 0.
Performs decarburization and denitrification by top-spraying at 1 to 1.0 kg / min ・ ton.
Method for producing a low nitrogen steel, characterized in that the Hare.
【請求項4】 取鍋内の溶鋼中に環流式脱ガス装置を浸
漬させ、該環流式脱ガス装置内に前記溶鋼を環流させ、
該環流式脱ガス装置内の溶鋼表面との距離を1.0 〜3.0
mとした粉体吹込ランスより粒径10〜200 μm の酸化剤
粉体を粉体供給速度0.1 〜1.0 kg/min・ton で上吹き
て脱炭および脱窒を行うことを特徴とする低窒素鋼の製
造方法。
4. A reflux type degassing apparatus is immersed in molten steel in a ladle, and the molten steel is refluxed in the reflux type degassing apparatus,
The distance from the molten steel surface in the reflux type degasser is 1.0 to 3.0.
than a powder blowing lance is m the oxidant powder having a particle size of 10 to 200 [mu] m Shi blown up in the powder feed rate 0.1 ~1.0 kg / min · ton
A method for producing low-nitrogen steel, which comprises decarburizing and denitrifying by means of:
JP07036993A 1993-03-29 1993-03-29 Manufacturing method of low nitrogen steel Expired - Lifetime JP3407326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07036993A JP3407326B2 (en) 1993-03-29 1993-03-29 Manufacturing method of low nitrogen steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07036993A JP3407326B2 (en) 1993-03-29 1993-03-29 Manufacturing method of low nitrogen steel

Publications (2)

Publication Number Publication Date
JPH06279830A JPH06279830A (en) 1994-10-04
JP3407326B2 true JP3407326B2 (en) 2003-05-19

Family

ID=13429461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07036993A Expired - Lifetime JP3407326B2 (en) 1993-03-29 1993-03-29 Manufacturing method of low nitrogen steel

Country Status (1)

Country Link
JP (1) JP3407326B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107237931B (en) * 2017-06-22 2019-04-23 扬中市第一蝶阀厂有限公司 A kind of easy-to-dismount Argon connector
CN107143724B (en) * 2017-06-22 2019-04-26 扬中市第一蝶阀厂有限公司 A kind of Argon connector convenient for assembling

Also Published As

Publication number Publication date
JPH06279830A (en) 1994-10-04

Similar Documents

Publication Publication Date Title
US20090019968A1 (en) Removal Method of Nitrogen in Molten Steel
JP3407326B2 (en) Manufacturing method of low nitrogen steel
JP6551626B2 (en) Method of melting high manganese steel
JP2991796B2 (en) Melting method of thin steel sheet by magnesium deoxidation
JP4085898B2 (en) Melting method of low carbon high manganese steel
JP3365129B2 (en) Manufacturing method of low sulfur steel
JP3548273B2 (en) Melting method of ultra low carbon steel
US4154603A (en) Method of producing alloy steels having an extremely low carbon content
JP3752080B2 (en) Vacuum refining method for molten steel with less dust
JPH0192312A (en) Manufacture of high manganese steel
JP3577357B2 (en) Method for producing ultra-low carbon steel with excellent surface properties
JP3411220B2 (en) Refining method of high nitrogen low oxygen chromium-containing molten steel
JP7468567B2 (en) Method for denitrification of molten steel
WO2022259805A1 (en) Molten steel denitrification method and steel production method
JP3807297B2 (en) Method for producing ultra-low carbon steel with high nitrogen concentration
JP2002294327A (en) High cleanliness steel and production method therefor
JP3067636B2 (en) Copper removal from molten iron
JP3566770B2 (en) Manufacturing method of ultra-low carbon steel
JPH0543930A (en) Method for melting dead soft steel under atmospheric pressure
JPH06306445A (en) Method for decarburizing and desulfurizing molten steel
SU1440049A1 (en) Method of alloying steel with nitrogen
CN117529566A (en) Method for denitriding molten steel, method for simultaneously denitriding and desulfurizing molten steel, and method for producing steel
JPS60184618A (en) Production of low-nitrogen steel
JP3071445B2 (en) Methods for reducing nitrogen in vacuum refining of molten steel.
CN113265511A (en) Smelting method of low-nitrogen steel

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20021105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090314

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100314

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100314

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 11