JP2000036724A - Crystal vibrator and its housing structure - Google Patents

Crystal vibrator and its housing structure

Info

Publication number
JP2000036724A
JP2000036724A JP10204115A JP20411598A JP2000036724A JP 2000036724 A JP2000036724 A JP 2000036724A JP 10204115 A JP10204115 A JP 10204115A JP 20411598 A JP20411598 A JP 20411598A JP 2000036724 A JP2000036724 A JP 2000036724A
Authority
JP
Japan
Prior art keywords
axis
crystal
excitation
quartz
quartz substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10204115A
Other languages
Japanese (ja)
Inventor
Yasushige Ueoka
康茂 植岡
Eiji Kamiyama
栄治 神山
Teruzo Ito
輝三 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP10204115A priority Critical patent/JP2000036724A/en
Publication of JP2000036724A publication Critical patent/JP2000036724A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a crystal vibrator and its housing structure which can generate a stable resonance frequency with its small fluctuations, can reduce temporal variation in the generated resonance frequency and improve its frequency precision, and furthermore has advantages such as size reduction, low working cost, and easy designing. SOLUTION: Electrode parts 2 and 3 for excitation are formed on both the surfaces of a crystal substrate 1, and the region sandwiched between the electrode parts 2 and 3 is regarded as an excitation part 4, and axis inversion parts 21, 22 having electric axis (-X) in the opposite directions from the electric axis (X) of the excitation part 4 are formed on both the sides of the excitation part 4 in the crystal substrate 1, and connection terminal parts 25 and 26 which are connected electrically to the electrode parts 2 and 3 are formed outside the axis inversion parts 21 and 22 of the crystal substrate 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、コンピュータ等の
情報機器のクロック発生器、無線通信機器の局部発振器
やフィルタ等に好適に用いられ、周囲温度が変動する場
合においても安定した共振周波数やフィルタ周波数が得
られ、さらに、発生する共振周波数の経年変化が著しく
小さくなり、周波数精度を向上させることの可能な水晶
振動子及びそのハウジング構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is suitably used for a clock generator of an information device such as a computer, a local oscillator and a filter of a wireless communication device, and has a stable resonance frequency and a filter even when the ambient temperature fluctuates. The present invention relates to a crystal resonator and a housing structure thereof capable of obtaining a frequency and further reducing the generated aging of a resonance frequency significantly, thereby improving the frequency accuracy.

【0002】[0002]

【従来の技術】従来、一定周波数の電気信号を発生させ
る発振器の共振回路に用いられる振動子としては、温度
変化に対して安定した共振周波数が得られる水晶振動子
が知られている。図6は、従来の水晶振動子を示す斜視
図であり、図において、符号1は電気軸(X)を有し2
5℃における周波数の温度係数が0であるATカットの
水晶基板、2,3は水晶基板1の両面に形成されたアル
ミニウム、金等からなる励振用の電極、4は電極2,3
により挟まれた箱状の領域である励振部である。この水
晶振動子では、電極2,3間に共振周波数近傍の高周波
電圧を印加することにより、1kHz〜100MHz程
度の範囲内の固有の周波数の電気振動を発生させること
ができる。
2. Description of the Related Art Conventionally, as a vibrator used in a resonance circuit of an oscillator for generating an electric signal of a constant frequency, a crystal vibrator capable of obtaining a stable resonance frequency with respect to a temperature change is known. FIG. 6 is a perspective view showing a conventional crystal unit. In the figure, reference numeral 1 denotes an electric axis (X) and 2
AT-cut quartz substrate having a temperature coefficient of frequency of 0 at 5 ° C. is 0, 2, and 3 are excitation electrodes made of aluminum, gold, etc. formed on both surfaces of quartz substrate 1, and 4 are electrodes 2, 3
The excitation section is a box-shaped area sandwiched between the sections. In this crystal resonator, by applying a high-frequency voltage near the resonance frequency between the electrodes 2 and 3, electric vibration having a specific frequency in the range of about 1 kHz to 100 MHz can be generated.

【0003】ところで、上述した水晶振動子の共振周波
数は、周囲温度をパラメータとした場合に3次曲線で表
される特性を有するので、温度変動の小さい場合には共
振周波数の変動は問題にならないくらい小さいが、温度
が大きく変動する環境下で用いる場合には、共振周波数
の変動が大きくなり無視することができなくなる。そこ
で、この特性を打ち消すような温度補償電圧を得ること
のできる感温素子、例えば、温度特性が指数関数で表さ
れるサーミスタを用いた温度補償回路と組み合せること
により、その共振周波数を周囲温度に対して略直線状に
変化させた温度補償水晶発振器(TCXO)が提供され
ている。
The above-described resonance frequency of the crystal unit has a characteristic represented by a cubic curve when the ambient temperature is used as a parameter. Therefore, when the temperature fluctuation is small, the fluctuation of the resonance frequency does not matter. However, when used in an environment where the temperature fluctuates greatly, the fluctuation of the resonance frequency becomes large and cannot be ignored. Therefore, by combining with a temperature-sensing element that can obtain a temperature compensation voltage that cancels out this characteristic, for example, a temperature compensation circuit using a thermistor whose temperature characteristic is represented by an exponential function, the resonance frequency can be reduced to the ambient temperature. Is provided with a temperature-compensated crystal oscillator (TCXO) that is changed substantially linearly.

【0004】なお、一般に、電子デバイス用の結晶中に
双晶が存在すると、デバイスの特性に悪影響を及ぼすた
め、該結晶中には双晶が形成されないことが肝要である
とされており、前記水晶振動子や水晶発振器において
も、振動子として用いられる水晶基板中には双晶のない
ことが当然のこととされている。
In general, if twins are present in a crystal for an electronic device, the characteristics of the device are adversely affected. Therefore, it is important that twins are not formed in the crystal. In a crystal oscillator and a crystal oscillator, it is natural that there is no twin in the crystal substrate used as the oscillator.

【0005】しかしながら、上述した水晶発振器(TC
XO)においては、温度補償回路を構成するために前記
サーミスタの他にいくつかの電子部品が必要になり、用
いる電子部品の点数が増加する分高価格になる、また、
この水晶発振器の回路の調整が複雑になる等、様々な欠
点があった。一方、3次曲線で表される水晶基板の共振
周波数−温度特性は、水晶基板固有の特性であるとされ
ており、水晶基板自体には改善の余地がないものと考え
られていた。
However, the above-described crystal oscillator (TC
XO) requires several electronic components in addition to the thermistor in order to form a temperature compensation circuit, and the number of electronic components used increases, resulting in a higher price.
There are various disadvantages, such as complicated adjustment of the circuit of the crystal oscillator. On the other hand, the resonance frequency-temperature characteristic of the quartz substrate represented by the cubic curve is considered to be a characteristic unique to the quartz substrate, and it has been considered that there is no room for improvement in the quartz substrate itself.

【0006】一般に、水晶は、573℃(Tc)でα・
β相転移を起こすが、応力等により転移温度が低下し、
Tcより低い温度で電気軸(X軸)が反転することが知
られている。そこで、本発明者等は、鋭意研究した結
果、水晶基板の表面に金属電極を付着させて熱処理を施
すことにより、この基板の切断方位および金属の種類に
よっては、Tcよりはるかに低い温度で水晶基板の電気
軸が反転すること、及び、水晶基板内に励振部の電気軸
と反対方向の電気軸を有する軸反転部を形成することに
より、周囲温度が変動する場合であっても安定した共振
周波数を得ることができることを見い出し、水晶振動子
およびその製造方法を提案した(特願平9−10989
4号)。
[0006] In general, quartz has an α · at 573 ° C (Tc).
β transition occurs, but the transition temperature decreases due to stress, etc.
It is known that the electric axis (X axis) is inverted at a temperature lower than Tc. Accordingly, the present inventors have conducted intensive studies and found that by applying a heat treatment by attaching a metal electrode to the surface of a quartz substrate, a quartz crystal may be formed at a temperature much lower than Tc depending on the cutting direction of the substrate and the type of metal. By inverting the electric axis of the substrate and forming an axis inversion portion having an electric axis in the opposite direction to the electric axis of the excitation portion in the quartz substrate, stable resonance even when the ambient temperature fluctuates. They found that a frequency could be obtained, and proposed a crystal resonator and a method for manufacturing the same (Japanese Patent Application No. 9-10899).
No. 4).

【0007】図7は、本発明者等が提案した水晶振動子
を示す斜視図であり、図8は図7のI−I線に沿う断面
図である。図において、11,12は水晶基板1内かつ
励振部4の両側の近傍に形成された、該励振部4の電気
軸(X)と反対方向の電気軸(−X)を有する軸反転部
である。なお、図7及び図8において、Wは電極2,3
の幅、Lは電極2,3の長さ、dは励振部4と軸反転部
11,12との間隔、sは軸反転部11,12の長さ、
tは水晶基板1の厚みであり、fは長さ方向の振動変位
の振幅分布である。
FIG. 7 is a perspective view showing a crystal unit proposed by the present inventors, and FIG. 8 is a sectional view taken along the line II of FIG. In the figure, reference numerals 11 and 12 denote axis reversing parts formed in the quartz substrate 1 and near both sides of the excitation unit 4 and having an electric axis (−X) in the opposite direction to the electric axis (X) of the excitation unit 4. is there. 7 and 8, W represents the electrodes 2 and 3.
, L is the length of the electrodes 2 and 3, d is the distance between the excitation section 4 and the axis reversing sections 11 and 12, s is the length of the axis reversing sections 11 and 12,
t is the thickness of the quartz substrate 1, and f is the amplitude distribution of the vibration displacement in the length direction.

【0008】この水晶振動子では、電極2,3間に共振
周波数近傍の高周波電圧を印加すると、図8に示すよう
な振動変位の振幅分布fが得られる。すなわち、電極
2,3の質量付加効果に基づくエネルギー閉じ込め効果
により、励振部4に振動エネルギーの大部分が集中する
が、一部は漏洩し軸反転部11,12に達し、この結
果、温度特性が改善される。
In this crystal resonator, when a high-frequency voltage near the resonance frequency is applied between the electrodes 2 and 3, an amplitude distribution f of vibration displacement as shown in FIG. 8 is obtained. That is, due to the energy trapping effect based on the mass addition effect of the electrodes 2 and 3, most of the vibration energy concentrates on the excitation unit 4, but a part leaks to reach the axis reversing units 11 and 12, and as a result, the temperature characteristics Is improved.

【0009】ここで、この水晶振動子の温度特性につい
て、図9に基づき説明する。図9中、Aは軸反転部を有
する水晶振動子の最適な特性、Bは軸反転部のないAT
カット水晶振動子の特性、CはATカット水晶基板のX
軸を反転処理した水晶振動子の特性、Dは軸反転部を有
する水晶振動子の温度補償の原理を確認するために行っ
た実験の結果である。なお、上記実験(D)に用いた試
料は、tが205μm、Wが5.0mm、Lが2.5m
m、sが2.5mm及びdが2.0mmのもので、熱処
理条件は、550℃で1時間30分とした。また、測定
に用いた周波数frは8.0MHzとした。
Here, the temperature characteristics of the crystal unit will be described with reference to FIG. In FIG. 9, A is the optimal characteristic of the crystal unit having the axis reversal part, and B is the AT without the axis reversal part.
The characteristics of the cut quartz resonator, C is the X of the AT cut quartz substrate
Characteristic D of the crystal resonator whose axis is inverted is a result of an experiment performed to confirm the principle of temperature compensation of the crystal resonator having the axis inversion portion. The sample used in the above experiment (D) had t of 205 μm, W of 5.0 mm, and L of 2.5 m.
m and s were 2.5 mm and d was 2.0 mm, and the heat treatment condition was 550 ° C. for 1 hour and 30 minutes. The frequency fr used for the measurement was 8.0 MHz.

【0010】これより明かなように、ATカット水晶振
動子(B)の共振周波数は3次曲線で表され、室温付近
では負の温度係数を有する。一方、反転処理した水晶振
動子(C)では、極めて大きな正の温度係数を有する。
したがって、図7に示すように、振動エネルギーの一部
(振幅分布fの裾の部分)を軸反転部11,12に漏洩
させることにより、正の温度係数と負の温度係数とが相
殺され、最適な特性(A)が得られる。すなわち、その
温度係数は、約0〜70℃の温度範囲でほぼ0となり、
70℃を越えると温度上昇と共に僅かに増加する。
As is clear from the above, the resonance frequency of the AT-cut crystal resonator (B) is represented by a cubic curve, and has a negative temperature coefficient near room temperature. On the other hand, the inverted crystal unit (C) has an extremely large positive temperature coefficient.
Therefore, as shown in FIG. 7, by leaking a part of the vibration energy (the bottom part of the amplitude distribution f) to the axis inverting parts 11 and 12, the positive temperature coefficient and the negative temperature coefficient are canceled out, The optimum characteristic (A) is obtained. That is, its temperature coefficient becomes almost 0 in a temperature range of about 0 to 70 ° C.,
When the temperature exceeds 70 ° C., the temperature slightly increases as the temperature rises.

【0011】このように、振動エネルギーの一部を軸反
転部11,12に漏洩させて正の温度係数と負の温度係
数とを相殺することにより、温度特性を補償することが
できる。これにより、周囲温度が変動する場合において
も、温度補償回路等を用いることなく安定した共振周波
数を得ることができる。
As described above, a part of the vibration energy is leaked to the axis reversing parts 11 and 12 to cancel the positive temperature coefficient and the negative temperature coefficient, thereby compensating the temperature characteristics. Thus, even when the ambient temperature fluctuates, a stable resonance frequency can be obtained without using a temperature compensation circuit or the like.

【0012】[0012]

【発明が解決しようとする課題】ところで、上述した水
晶振動子は、そのままの状態で基板上に実装されること
もあり、また、それ自体の保護、取扱いの容易性等の様
々な理由によりハウジング構造を採ることもある。ハウ
ジング構造としては、水晶振動子を金属枠に設けられた
支持部材に嵌め込み、ワイヤや導電性接着剤等を用いて
水晶振動子の励振用の電極と外部接続用のリード線とを
電気的に接続した後、これらを金属カバー等で覆う構造
が一般的である。
Incidentally, the above-described quartz resonator may be mounted on a substrate as it is, and may be mounted on a housing for various reasons such as protection of itself and easiness of handling. It may take a structure. As the housing structure, the crystal unit is fitted into the support member provided on the metal frame, and the electrodes for excitation of the crystal unit and the lead wires for external connection are electrically connected using a wire or conductive adhesive. After connection, these are generally covered with a metal cover or the like.

【0013】しかしながら、この水晶振動子では、特に
ハウジング構造の場合に顕著であるが、該水晶振動子を
支持する部材や導電性接着剤の材質や応力による影響が
大きく、これらの影響により発生する共振周波数にゆら
ぎが生じることとなり、安定した共振周波数を発生させ
ることができないという問題点があった。また、支持部
材や導電性接着剤には経年変化が生じ易いために、経年
とともに応力の大きさも変化することとなる。これによ
り、水晶振動子より発生する共振周波数の経年変化が無
視出来なくなり、その周波数精度が低下するという問題
点があった。また、この水晶振動子を用いて回路設計を
行う場合、支持部材や導電性接着剤より受ける応力を考
慮する必要があるために、設計が複雑になるという問題
点があった。
However, in the case of this crystal unit, which is particularly remarkable in the case of a housing structure, the material and the stress of the member for supporting the crystal unit and the conductive adhesive greatly affect the crystal unit. The resonance frequency fluctuates, and there is a problem that a stable resonance frequency cannot be generated. Further, since the support member and the conductive adhesive easily change over time, the magnitude of the stress also changes over time. As a result, there is a problem that the secular change of the resonance frequency generated from the crystal unit cannot be ignored, and the frequency accuracy is reduced. Further, when a circuit is designed using this crystal resonator, there is a problem that the design becomes complicated because it is necessary to consider the stress received from the support member and the conductive adhesive.

【0014】本発明は、上記の事情に鑑みてなされたも
のであって、発生する共振周波数のゆらぎが小さく、安
定した共振周波数を発生させることができ、また、発生
する共振周波数の経年変化が著しく小さく、その周波数
精度を向上させることができ、さらに、小型化が可能、
加工コストが低下、設計が容易等の利点を有する水晶振
動子及びそのハウジング構造を提供することを目的とす
る。
The present invention has been made in view of the above circumstances, and has a small fluctuation of a generated resonance frequency, can generate a stable resonance frequency, and can prevent a change of the generated resonance frequency with time. Extremely small, its frequency accuracy can be improved, and further downsizing is possible,
It is an object of the present invention to provide a crystal unit having advantages such as low processing cost and easy design, and a housing structure thereof.

【0015】[0015]

【課題を解決するための手段】上記課題を解決するため
に、本発明は次の様な水晶振動子及びそのハウジング構
造を提供する。すなわち、請求項1記載の水晶振動子
は、水晶基板の両面に励振用の電極部をそれぞれ形成し
て該電極部に挟まれた領域を励振部とし、前記水晶基板
内の該励振部の両側方に、該励振部の電気軸と反対方向
の電気軸を有する軸反転部を形成し、前記水晶基板の前
記軸反転部より外側の位置それぞれに、前記電極部に導
通する接続端子部を形成したことを特徴としている。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides the following quartz resonator and its housing structure. That is, in the crystal unit according to the first aspect, excitation electrode portions are respectively formed on both surfaces of the crystal substrate, and a region sandwiched between the electrode portions is used as an excitation portion, and both sides of the excitation portion in the crystal substrate are provided. On the other hand, an axis reversal part having an electric axis in a direction opposite to the electric axis of the excitation part is formed, and a connection terminal part conducting to the electrode part is formed at each position outside the axis reversal part of the quartz substrate. It is characterized by doing.

【0016】請求項2記載の水晶振動子は、請求項1記
載の水晶振動子において、前記接続端子部を、前記水晶
基板の両端面または該両端面近傍の主面上のいずれかに
形成したことを特徴としている。
According to a second aspect of the present invention, there is provided a crystal resonator according to the first aspect, wherein the connection terminal portions are formed on both end faces of the quartz substrate or on main surfaces near the both end faces. It is characterized by:

【0017】請求項3記載の水晶振動子は、請求項1ま
たは2記載の水晶振動子において、前記軸反転部を、前
記水晶基板のz’軸方向に沿って形成したことを特徴と
している。
According to a third aspect of the present invention, in the quartz resonator according to the first or second aspect, the axis inversion portion is formed along the z′-axis direction of the quartz substrate.

【0018】請求項4記載の水晶振動子は、請求項1ま
たは2記載の水晶振動子において、前記水晶基板内の前
記励振部の外側に、前記軸反転部と離間しかつ該軸反転
部の延在する方向と直交する方向に延在する第2の軸反
転部を形成したことを特徴としている。
According to a fourth aspect of the present invention, there is provided the crystal resonator according to the first or second aspect, wherein the crystal reversing unit is provided outside the excitation unit in the crystal substrate and separated from the axis reversing unit. A second axis reversing part extending in a direction perpendicular to the extending direction is formed.

【0019】請求項5記載の水晶振動子は、請求項4記
載の水晶振動子において、前記軸反転部を、前記水晶基
板のx軸方向に沿って形成し、前記第2の軸反転部を、
前記水晶基板のz’軸方向に沿って形成したことを特徴
としている。
According to a fifth aspect of the present invention, in the crystal unit according to the fourth aspect, the axis inversion portion is formed along an x-axis direction of the crystal substrate, and the second axis inversion portion is formed in the crystal substrate. ,
The quartz substrate is formed along the z'-axis direction.

【0020】請求項6記載の水晶振動子のハウジング構
造は、請求項1ないし5のいずれか1項記載の水晶振動
子と、該水晶振動子を支持するとともに外部と電気的に
接続する1対の支持部と、前記水晶振動子及び1対の支
持部を覆う様に設けられ前記支持部を固定するハウジン
グとを備え、前記水晶振動子の各接続端子部を、前記支
持部それぞれに電気的に接続したことを特徴としてい
る。
According to a sixth aspect of the present invention, there is provided a housing for a crystal unit according to any one of the first to fifth aspects, and a pair of the crystal unit according to any one of the first to fifth aspects, which supports the crystal unit and is electrically connected to the outside. And a housing provided so as to cover the crystal unit and the pair of support units and fixing the support unit. Each connection terminal of the crystal unit is electrically connected to the support unit. It is characterized by being connected to.

【0021】本発明の請求項1、2または3記載の水晶
振動子では、水晶基板内の励振部の両側方に、該励振部
の電気軸と反対方向の電気軸を有する軸反転部を形成
し、前記水晶基板の前記軸反転部より外側の位置それぞ
れに、前記電極部に導通する接続端子部を形成したこと
により、軸反転部の閉じ込め効果により、接続時やその
後に接続端子部に生じる質量の変化や応力が励振用の電
極部に及ぼす影響を著しく小さくすることが可能にな
る。これにより、発生する共振周波数のゆらぎが小さく
なり、安定した共振周波数を発生させることが可能にな
る。
In the quartz resonator according to the first, second, or third aspect of the present invention, an axis reversing portion having an electric axis in a direction opposite to an electric axis of the exciting portion is formed on both sides of the exciting portion in the quartz substrate. In addition, since the connection terminal portion that is electrically connected to the electrode portion is formed at each position outside the axis inversion portion of the crystal substrate, the connection terminal portion is generated at the time of connection or thereafter due to the confinement effect of the axis inversion portion. It is possible to remarkably reduce the influence of a change in mass or stress on the electrode part for excitation. Thus, the fluctuation of the generated resonance frequency is reduced, and a stable resonance frequency can be generated.

【0022】また、励振用の電極部への影響が著しく小
さくなることから、共振周波数の経年変化が著しく小さ
くなり、周波数精度が向上するとともに、接続端子部を
励振用の電極部に近接して設けることができることか
ら、水晶振動子の小型化を図ることが可能になり、加工
コストが削減される。さらに、水晶振動子の基板設計の
際に、上述した励振用の電極部への影響を無視して設計
することが可能になるため、設計が非常に容易になり設
計作業の効率も向上する。
Further, since the influence on the excitation electrode portion is significantly reduced, the secular change of the resonance frequency is significantly reduced, the frequency accuracy is improved, and the connection terminal portion is located close to the excitation electrode portion. Since it can be provided, the size of the crystal unit can be reduced, and the processing cost can be reduced. Further, when designing the substrate of the crystal resonator, it is possible to perform the design ignoring the above-mentioned influence on the electrode portion for excitation, which greatly facilitates the design and improves the efficiency of the design work.

【0023】請求項4または5記載の水晶振動子では、
前記水晶基板内の前記励振部の外側に、前記軸反転部と
離間しかつ該軸反転部の延在する方向と直交する方向に
延在する第2の軸反転部を形成したことにより、この第
2の軸反転部を温度補償用として用いれば、該水晶振動
子の温度特性が向上する。これにより、例えば、サーミ
スタ等を用いた温度補償用回路が不要になり、回路構成
を小型化することが可能になる。
According to a fourth aspect of the present invention,
By forming a second axis-reversing part that is separated from the axis-reversing part and extends in a direction perpendicular to the direction in which the axis-reversing part extends outside the excitation part in the quartz substrate, When the second axis reversing part is used for temperature compensation, the temperature characteristics of the crystal resonator are improved. Thus, for example, a temperature compensating circuit using a thermistor or the like becomes unnecessary, and the circuit configuration can be reduced in size.

【0024】請求項6記載の水晶振動子のハウジング構
造では、請求項1ないし5のいずれか1項記載の水晶振
動子と、該水晶振動子を支持するとともに外部と電気的
に接続する1対の支持部と、前記水晶振動子及び1対の
支持部を覆う様に設けられ前記支持部を固定するハウジ
ングとを備え、前記水晶振動子の各接続端子部を、前記
支持部それぞれに電気的に接続したことにより、軸反転
部の閉じ込め効果により、前記支持部及び該支持部と前
記接続端子部を接続する部材の、質量及び応力が励振用
の電極部に及ぼす影響を著しく小さくすることが可能に
なる。これにより、水晶振動子の基板設計の際に、上述
した影響を無視して設計することが可能になり、その結
果、設計が非常に容易になり、設計作業の効率も向上す
る。
According to a sixth aspect of the present invention, there is provided a housing for a crystal unit according to any one of the first to fifth aspects, and a pair of the crystal unit which supports the crystal unit and is electrically connected to the outside. And a housing provided so as to cover the crystal unit and the pair of support units and fixing the support unit. Each connection terminal of the crystal unit is electrically connected to the support unit. Due to the confinement effect of the axis reversing part, the influence of the mass and stress of the support part and the member connecting the support part and the connection terminal part on the electrode part for excitation can be significantly reduced. Will be possible. As a result, when designing the substrate of the crystal resonator, it is possible to perform the design ignoring the above-described effects, and as a result, the design becomes very easy and the efficiency of the design work is improved.

【0025】また、実装後の経年変化による前記支持部
及び該支持部と前記接続端子部を接続する部材の、質量
及び応力が励振用の電極部に及ぼす影響が著しく小さい
ため、共振周波数の経年変化が著しく小さく、周波数精
度が向上する。また、前記支持部及び該支持部と前記接
続端子部を接続する部材を、前記励振用の電極部に接近
させることができるため、小型化が可能になる。
Further, the influence of mass and stress on the excitation electrode portion of the support portion and the member connecting the support portion and the connection terminal portion due to aging after mounting is extremely small. The change is extremely small, and the frequency accuracy is improved. In addition, since the support portion and the member connecting the support portion and the connection terminal portion can be brought close to the excitation electrode portion, the size can be reduced.

【0026】[0026]

【発明の実施の形態】本発明の各実施形態について、図
面に基づき説明する。 (第1の実施形態)図1は本発明の第1の実施形態の水
晶振動子を示す平面図であり、図において、21,22
はATカットの水晶基板1内かつ励振部4の短辺側近傍
であるz’軸方向の両側の近傍に該水晶基板1のx軸方
向に沿って形成された、該励振部4の電気軸(X)と反
対方向の電気軸(−X)を有する軸反転部、23,24
は水晶基板1内の励振部4の長辺側近傍であるx軸方向
の両側の近傍に、軸反転部21,22それぞれと離間し
かつ軸反転部21,22の延在する方向(x軸方向)と
直交する方向(z’軸方向)に延在する温度補償用の軸
反転部(第2の軸反転部)である。
Embodiments of the present invention will be described with reference to the drawings. (First Embodiment) FIG. 1 is a plan view showing a crystal unit according to a first embodiment of the present invention.
Is an electric axis of the excitation unit 4 formed along the x-axis direction of the crystal substrate 1 in the AT-cut crystal substrate 1 and near both sides in the z′-axis direction which is near the short side of the excitation unit 4. Axis reversing parts having an electric axis (−X) in the opposite direction to (X), 23, 24
In the quartz substrate 1, in the vicinity of both sides in the x-axis direction near the long side of the excitation unit 4, the direction in which the axis inversion units 21 and 22 extend (the x-axis direction) A second axis reversing part for temperature compensation extending in a direction (z ′ axis direction) orthogonal to the direction (z ′ axis direction).

【0027】また、25は水晶基板1の軸反転部21よ
り外側の位置に該水晶基板1のx軸方向に沿って形成さ
れ電極部2に導通する接続端子部、26は水晶基板1の
軸反転部22より外側の位置に該水晶基板1のx軸方向
に沿って形成され電極部3に導通する接続端子部であ
る。
Reference numeral 25 denotes a connection terminal portion formed along the x-axis direction of the crystal substrate 1 at a position outside the axis reversing portion 21 of the crystal substrate 1 and is electrically connected to the electrode portion 2. Reference numeral 26 denotes an axis of the crystal substrate 1. A connection terminal portion formed at a position outside the inversion portion 22 along the x-axis direction of the quartz substrate 1 and electrically connected to the electrode portion 3.

【0028】この水晶振動子では、接続端子部25,2
6を図示しない外部の高周波電源の端子に接続し、これ
らの接続端子部25,26により電極2,3間に共振周
波数近傍の高周波電圧を印加すると、電極2,3の質量
付加効果に基づくエネルギー閉じ込め効果により、励振
部4に振動エネルギーの大部分が集中し、共振周波数を
発振する。この振動エネルギーの一部は漏洩し軸反転部
23,24に達し、この結果、温度特性が改善される。
In this crystal resonator, the connection terminals 25, 2
6 is connected to the terminal of an external high-frequency power supply (not shown), and a high-frequency voltage near the resonance frequency is applied between the electrodes 2 and 3 through these connection terminals 25 and 26, the energy based on the mass addition effect of the electrodes 2 and 3 Due to the confinement effect, most of the vibration energy concentrates on the excitation unit 4 and oscillates at a resonance frequency. Part of the vibration energy leaks and reaches the axis reversing parts 23 and 24, and as a result, the temperature characteristics are improved.

【0029】このように、振動エネルギーの一部を軸反
転部23,24に漏洩させて正の温度係数と負の温度係
数とを相殺することにより、温度特性を補償することが
できる。これにより、周囲温度が変動する場合において
も、温度補償回路等を用いることなく安定した共振周波
数を得ることが可能になる。
As described above, a part of the vibration energy is leaked to the axis reversing parts 23 and 24 to cancel the positive temperature coefficient and the negative temperature coefficient, thereby compensating the temperature characteristics. As a result, even when the ambient temperature fluctuates, a stable resonance frequency can be obtained without using a temperature compensation circuit or the like.

【0030】図2は、本実施形態の水晶振動子の共振特
性を測定する際に用いた電気回路を示す図であり、ここ
で用いた水晶振動子は、水晶基板1内に1本のX軸反転
領域(軸反転部)27を形成し、このX軸反転領域27
の一方の側に1つの励振部4aを、他方の側に2つの励
振部4b,4cを互いに平行にそれぞれ形成したもので
ある。
FIG. 2 is a diagram showing an electric circuit used for measuring the resonance characteristics of the crystal unit according to the present embodiment. The crystal unit used here has one X An axis reversal area (axis reversal part) 27 is formed, and the X axis reversal area 27 is formed.
One excitation part 4a is formed on one side, and two excitation parts 4b and 4c are formed on the other side in parallel with each other.

【0031】ここでは、X軸反転領域27の幅を1.5
mm、長さを4.5mmとした。また、励振部4a〜4
cの電極をCr薄膜により構成し、これらの電極の幅を
2.5mm、長さを3mm、間隔を4.5mm、膜厚を
2000Åとした。この水晶振動子の各励振部4a〜4
cをネットワークアナライザ28に接続することで共振
特性を測定することができる。
Here, the width of the X-axis inversion area 27 is set to 1.5.
mm and the length were 4.5 mm. Further, the excitation units 4a to 4a
The electrode c was formed of a Cr thin film, and the width of these electrodes was 2.5 mm, the length was 3 mm, the interval was 4.5 mm, and the film thickness was 2000 mm. Exciting parts 4a to 4 of this crystal unit
By connecting c to the network analyzer 28, resonance characteristics can be measured.

【0032】図3(a)〜(c)は、本実施形態の水晶
振動子の共振特性の測定結果を示す図であり、図3
(a)は励振部4a,4cをオープン状態、励振部4b
をショート状態とした場合の共振特性を、図3(b)は
励振部4a,4bをショート状態、励振部4cをオープ
ン状態とした場合の共振特性を、図3(c)は励振部4
aをオープン状態、励振部4b,4cをショート状態と
した場合の共振特性をそれぞれ示している。
FIGS. 3A to 3C are diagrams showing the measurement results of the resonance characteristics of the crystal unit according to the present embodiment.
(A), the excitation units 4a and 4c are in an open state, and the excitation unit 4b
FIG. 3 (b) shows the resonance characteristics when the exciters 4a and 4b are in the short state and the exciters 4c are in the open state, and FIG. 3 (c) shows the resonance characteristics when the exciters 4c and 4b are in the open state.
The resonance characteristics when a is in the open state and the excitation units 4b and 4c are in the short state are shown.

【0033】図3(a)及び(b)では、波形及び最大
ピークの周波数(f0=5.5100MHz)がいずれ
も同一であり、双晶の影響が全く無いことがわかる。ま
た、図3(c)では、最大ピークの周波数が明瞭に2つ
に分離(f1=5.5084MHz、f2=5.5122
MHzの2つ)されており、双晶の分離能力に優れてい
ることがわかる。
3 (a) and 3 (b), the waveform and the frequency of the maximum peak (f 0 = 5.5100 MHz) are the same, and it can be seen that there is no influence of twinning. Further, in FIG. 3C, the frequency of the maximum peak is clearly separated into two (f 1 = 5.5084 MHz, f 2 = 5.5122).
MHz two), which indicates that the twins have excellent separation ability.

【0034】以上説明した様に、本実施形態の水晶振動
子によれば、水晶基板1内かつ励振部4のz’軸方向の
両側の近傍に該水晶基板1のx軸方向に沿って該励振部
4の電気軸と反対方向の電気軸を有する軸反転部21,
22を形成し、水晶基板1内の励振部4のx軸方向の両
側の近傍に、軸反転部21,22それぞれと離間しかつ
軸反転部21,22の延在する方向(x軸方向)と直交
する方向(z’軸方向)に延在する温度補償用の軸反転
部23,24を形成し、水晶基板1の軸反転部21より
外側の位置に該水晶基板1のx軸方向に沿って電極部2
に導通する接続端子部25を形成し、水晶基板1の軸反
転部22より外側の位置に該水晶基板1のx軸方向に沿
って電極部3に導通する接続端子部26を形成したの
で、軸反転部21,22の閉じ込め効果により、接続時
やその後に接続端子部25,26に生じる質量の変化や
応力が励振用の電極部2,3に及ぼす影響を著しく小さ
くすることができる。したがって、発生する共振周波数
のゆらぎを小さくすることができ、安定した共振周波数
を発生させることができる。
As described above, according to the crystal resonator of the present embodiment, the quartz oscillator 1 is provided along the x-axis direction of the crystal substrate 1 in the vicinity of both sides of the excitation unit 4 in the z′-axis direction. An axis reversing unit 21 having an electric axis in a direction opposite to the electric axis of the excitation unit 4,
22 are formed in the quartz substrate 1 in the vicinity of both sides of the excitation section 4 in the x-axis direction, separated from the axis reversing sections 21 and 22 and directions in which the axis reversing sections 21 and 22 extend (x-axis direction). Axis inverting portions 23 and 24 for temperature compensation extending in a direction (z ′ axis direction) orthogonal to the axis of the crystal substrate 1 in the x-axis direction at a position outside the axis inverting portion 21 of the crystal substrate 1. Along the electrode part 2
Is formed, and a connection terminal portion 26 is formed at a position outside the axis reversing portion 22 of the crystal substrate 1 so as to conduct to the electrode portion 3 along the x-axis direction of the crystal substrate 1. Due to the confinement effect of the axis reversing portions 21 and 22, the influence of the change in the mass or the stress generated in the connection terminal portions 25 and 26 during and after connection on the excitation electrode portions 2 and 3 can be significantly reduced. Therefore, the fluctuation of the generated resonance frequency can be reduced, and a stable resonance frequency can be generated.

【0035】また、水晶基板1の形状の影響を受けるこ
となくスプリアスを考慮した最良の縦/横比を設定する
ことができ、その結果、水晶基板1の加工精度を向上さ
せ、水晶基板1の加工コストを大きく削減することがで
きる。また、軸反転部21,22の形成が1/2になる
ので、水晶基板1の小型化を図ることができる。
Further, it is possible to set the best aspect ratio in consideration of spurious without being affected by the shape of the quartz substrate 1. As a result, the processing accuracy of the quartz substrate 1 is improved, and Processing costs can be greatly reduced. Further, since the formation of the axis reversing portions 21 and 22 is reduced to 1 /, the size of the crystal substrate 1 can be reduced.

【0036】また、この水晶振動子をハウジングの支持
部材等に固定した場合、軸反転部21,22の閉じ込め
効果により、励振用の電極部2,3への接続端子部2
5,26の質量及び応力の影響を著しく小さくすること
ができるので、水晶振動子の基板設計においては、これ
らの影響を無視して設計することができ、設計が極めて
容易になる。
When this crystal unit is fixed to a support member of a housing or the like, the confinement effect of the axis reversing units 21 and 22 causes the connection terminal unit 2 to the excitation electrode units 2 and 3.
Since the influence of the mass and the stress of the elements 5 and 26 can be remarkably reduced, these effects can be neglected in the substrate design of the crystal unit, and the design becomes extremely easy.

【0037】また、この水晶振動子を基板上に実装した
場合、励振用の電極部2,3への実装後の経年変化によ
る接続端子部25,26の質量及び応力の影響を著しく
小さくすることができるので、周波数の経年変化を著し
く小さくすることができ、水晶振動子の共振周波数の精
度を向上させることができる。また、接続端子部25,
26を励振用の電極部2,3に近接して設けることがで
きるので、水晶振動子の小型化を図ることができる。
When this crystal resonator is mounted on a substrate, the influence of the mass and stress of the connection terminals 25 and 26 due to aging after mounting on the excitation electrodes 2 and 3 is significantly reduced. Therefore, the secular change of the frequency can be remarkably reduced, and the accuracy of the resonance frequency of the crystal resonator can be improved. Also, the connection terminal 25,
26 can be provided close to the excitation electrode portions 2 and 3, so that the size of the crystal resonator can be reduced.

【0038】(第2の実施形態)図4は本発明の第2の
実施形態の水晶振動子を示す平面図であり、図におい
て、31,32はATカットの水晶基板1内かつ励振部
4の長辺側近傍であるx軸方向の両側の近傍に該水晶基
板1のz’軸方向に沿って形成された、該励振部4の電
気軸と反対方向の電気軸を有する軸反転部、33は水晶
基板1の軸反転部31より外側の位置に該水晶基板1の
z’軸方向に沿って形成され電極部2に導通する接続端
子部、34は水晶基板1の軸反転部32より外側の位置
に該水晶基板1のz’軸方向に沿って形成され電極部3
に導通する接続端子部である。
(Second Embodiment) FIG. 4 is a plan view showing a quartz oscillator according to a second embodiment of the present invention. In the drawing, reference numerals 31 and 32 denote an AT-cut quartz substrate 1 and an excitation unit 4. An axis inverting portion formed along the z′-axis direction of the quartz substrate 1 near both sides in the x-axis direction, which is near the long side, and having an electric axis opposite to the electric axis of the excitation section 4; Reference numeral 33 denotes a connection terminal portion formed at a position outside the axis inversion portion 31 of the crystal substrate 1 along the z′-axis direction of the crystal substrate 1 and is electrically connected to the electrode portion 2. Reference numeral 34 denotes a connection terminal portion from the axis inversion portion 32 of the crystal substrate 1. An electrode portion 3 formed at an outer position along the z′-axis direction of the quartz substrate 1
This is a connection terminal portion that conducts to the terminal.

【0039】この水晶振動子では、接続端子部33,3
4を図示しない外部の高周波電源の端子に接続し、これ
らの接続端子部33,34により電極2,3間に共振周
波数近傍の高周波電圧を印加すると、電極2,3の質量
付加効果に基づくエネルギー閉じ込め効果により、励振
部4に振動エネルギーの大部分が集中し、共振周波数を
発振する。この振動エネルギーの一部は漏洩し軸反転部
31,32に達し、この結果、温度特性が改善される。
In this crystal resonator, the connection terminals 33, 3
4 is connected to the terminal of an external high-frequency power supply (not shown), and a high-frequency voltage near the resonance frequency is applied between the electrodes 2 and 3 by the connection terminal portions 33 and 34, the energy based on the mass addition effect of the electrodes 2 and 3 Due to the confinement effect, most of the vibration energy concentrates on the excitation unit 4 and oscillates at a resonance frequency. Part of the vibration energy leaks and reaches the axis reversing parts 31 and 32, and as a result, the temperature characteristics are improved.

【0040】このように、振動エネルギーの一部を軸反
転部31、32に漏洩させて正の温度係数と負の温度係
数とを相殺することにより、温度特性を補償することが
できる。これにより、周囲温度が変動する場合において
も、温度補償回路等を用いることなく安定した共振周波
数を得ることが可能になる。
As described above, a part of the vibration energy is leaked to the axis reversing parts 31 and 32 to cancel the positive temperature coefficient and the negative temperature coefficient, thereby compensating the temperature characteristics. As a result, even when the ambient temperature fluctuates, a stable resonance frequency can be obtained without using a temperature compensation circuit or the like.

【0041】以上説明した様に、本実施形態の水晶振動
子においても、上述した第1の実施形態の水晶振動子と
同様の効果を奏することができる。しかも、励振部4の
長辺側近傍であるx軸方向の両側の近傍に長尺の軸反転
部31,32を形成したので、接続時やその後に接続端
子部33,34に生じる質量の変化や応力が励振用の電
極部2,3に及ぼす影響を著しく小さくすることができ
る。したがって、発生する共振周波数のゆらぎをより小
さくすることができ、より安定した共振周波数を発生さ
せることができる。
As described above, the same effects as those of the quartz resonator according to the first embodiment described above can be obtained in the quartz resonator according to the present embodiment. In addition, since the long axis reversing parts 31 and 32 are formed near both sides in the x-axis direction near the long side of the excitation part 4, the mass change generated in the connection terminal parts 33 and 34 at the time of connection and thereafter. And the influence of the stress on the excitation electrode portions 2 and 3 can be significantly reduced. Therefore, the fluctuation of the generated resonance frequency can be made smaller, and a more stable resonance frequency can be generated.

【0042】なお、第1及び第2の実施形態の水晶振動
子においては、励振部4及び軸反転部21〜24(3
1,32)の形状は、上述した互いに平行なものの他、
例えば、励振部4と軸反転部21〜24(31,32)
の互いに対向する各面の水平断面が櫛型となる形状、励
振部4と軸反転部21〜24(31,32)の互いに対
向する各上端部の水平断面が櫛型かつ各下端部の水平断
面が平行となる形状等、様々な形状のものが可能であ
る。
In the quartz oscillators of the first and second embodiments, the excitation unit 4 and the axis reversing units 21 to 24 (3
The shapes of (1, 32) are parallel to each other as described above,
For example, the excitation unit 4 and the axis reversing units 21 to 24 (31, 32)
The horizontal cross section of each opposing surface is comb-shaped, and the horizontal cross section of each opposing upper end of the excitation section 4 and the axis reversing sections 21 to 24 (31, 32) is comb-shaped and the horizontal section of each lower end is horizontal. Various shapes such as a shape having parallel cross sections are possible.

【0043】(第3の実施形態)図5は本発明の第3の
実施形態の水晶振動子のハウジング構造を示す斜視図で
あり、図において、水晶振動子41は、ATカットの水
晶基板1内かつ励振部4のx軸方向の両側の近傍に該水
晶基板1のz’軸方向に沿って、該励振部4の電気軸と
反対方向の電気軸を有する軸反転部42,43が形成さ
れ、水晶基板1の軸反転部42より外側の位置に該水晶
基板1のz’軸方向に沿って電極部2に導通する接続端
子部44が形成され、水晶基板1の軸反転部43より外
側の位置に該水晶基板1のz’軸方向に沿って励振部4
の図示しない他方の電極部に導通する接続端子部が形成
されている。
(Third Embodiment) FIG. 5 is a perspective view showing a housing structure of a quartz oscillator according to a third embodiment of the present invention. In the drawing, a quartz oscillator 41 is an AT-cut quartz substrate 1. Within the vicinity of both sides of the excitation unit 4 in the x-axis direction, and along the z′-axis direction of the quartz substrate 1, axis inversion units 42 and 43 having an electric axis opposite to the electric axis of the excitation unit 4 are formed. Then, a connection terminal portion 44 that is electrically connected to the electrode portion 2 along the z′-axis direction of the crystal substrate 1 is formed at a position outside the axis inversion portion 42 of the crystal substrate 1. An excitation unit 4 is provided at an outer position along the z′-axis direction of the quartz substrate 1.
Is formed with a connection terminal portion that is electrically connected to the other electrode portion (not shown).

【0044】この水晶振動子41は、金属枠(ハウジン
グ)51に絶縁用ガラス52を介して設けられた一対の
水晶片支持部53,53に嵌め込まれ、水晶振動子41
の接続端子部44は導電性接着剤等により水晶片支持部
53に接着・固定されている。これら水晶片支持部5
3,53は、下方に延びる一対のリード端子54,54
と電気的に接続され、水晶振動子41及び水晶片支持部
53,53全体は金属カバー55により覆われている。
The quartz oscillator 41 is fitted into a pair of quartz piece support portions 53 provided on a metal frame (housing) 51 with an insulating glass 52 interposed therebetween.
The connection terminal section 44 is adhered and fixed to the crystal blank supporting section 53 with a conductive adhesive or the like. These crystal blank support parts 5
3, 53 are a pair of lead terminals 54, 54 extending downward.
The crystal resonator 41 and the whole quartz crystal piece supporting portions 53 are covered with a metal cover 55.

【0045】本実施形態のハウジング構造によれば、軸
反転部42,43の閉じ込め効果により、水晶片支持部
53,53の支持材及び接着部の接着剤等の質量及び応
力の影響が著しく小さいため、水晶振動子の基板設計に
おいては、これらの影響を無視して設計することがで
き、設計が極めて容易になる。
According to the housing structure of this embodiment, due to the confinement effect of the axis reversing portions 42, 43, the influence of the mass and stress of the support material of the crystal blank supporting portions 53, the adhesive of the bonding portion and the like is extremely small. Therefore, in the substrate design of the crystal unit, these effects can be ignored and the design can be made extremely easy.

【0046】また、この水晶振動子を基板上に実装した
場合、実装後の経年変化による水晶片支持部53,53
の支持材及び接着部の接着剤等の質量及び応力の変化を
受け難くするので、周波数の経年変化を著しく小さくす
ることができ、水晶振動子の共振周波数の精度を向上さ
せることができる。また、水晶片支持部53,53及び
接着部を励振用の電極部2に近接して設けることができ
るので、水晶振動子の小型化を図ることができる。
When this crystal resonator is mounted on a substrate, the crystal piece supporting portions 53, 53 due to aging after mounting are provided.
This makes it difficult for the mass and stress of the adhesive and the like of the support member and the bonding portion to be changed, so that the secular change of the frequency can be remarkably reduced, and the accuracy of the resonance frequency of the crystal resonator can be improved. In addition, since the crystal blank supporting portions 53, 53 and the adhesive portion can be provided close to the excitation electrode portion 2, the size of the crystal resonator can be reduced.

【0047】[0047]

【発明の効果】以上説明した様に、本発明の請求項1、
2または3記載の水晶振動子によれば、水晶基板内の励
振部の両側方に、該励振部の電気軸と反対方向の電気軸
を有する軸反転部を形成し、前記水晶基板の前記軸反転
部より外側の位置それぞれに、前記電極部に導通する接
続端子部を形成したので、軸反転部の閉じ込め効果によ
り、接続時やその後に接続端子部に生じる質量の変化や
応力が励振用の電極部に及ぼす影響を著しく小さくする
ことができる。したがって、発生する共振周波数のゆら
ぎを小さくすることができ、安定した共振周波数を発生
させることができる。
As described above, according to the first aspect of the present invention,
According to the crystal resonator described in 2 or 3, an axis reversing portion having an electric axis in a direction opposite to an electric axis of the excitation portion is formed on both sides of the excitation portion in the crystal substrate, and the axis of the crystal substrate is formed. Since the connection terminal portion that is electrically connected to the electrode portion is formed at each position outside the inversion portion, a change in mass or stress generated in the connection terminal portion at the time of connection or thereafter due to the confinement effect of the axis inversion portion causes an excitation. The effect on the electrode portion can be significantly reduced. Therefore, the fluctuation of the generated resonance frequency can be reduced, and a stable resonance frequency can be generated.

【0048】また、励振用の電極部への影響を著しく小
さくすることことから、共振周波数の経年変化を著しく
小さくすることができ、周波数精度を向上させることが
できる。また、接続端子部を励振用の電極部に近接して
設けることができるので、水晶振動子の小型化を図るこ
とができ、加工コストを削減することができる。さら
に、水晶振動子の基板設計の際に、上述した励振用の電
極部への影響を無視して設計することができるため、設
計が非常に容易になり、設計作業の効率も向上させるこ
とができる。
Further, since the influence on the excitation electrode portion is significantly reduced, the aging of the resonance frequency can be significantly reduced, and the frequency accuracy can be improved. Further, since the connection terminal portion can be provided close to the excitation electrode portion, the size of the crystal resonator can be reduced, and the processing cost can be reduced. Furthermore, when designing the substrate of the crystal unit, it is possible to ignore the above-mentioned effects on the electrodes for excitation, so that the design becomes very easy and the efficiency of the design work can be improved. it can.

【0049】請求項4または5記載の水晶振動子によれ
ば、前記水晶基板内の前記励振部の外側に、前記軸反転
部と離間しかつ該軸反転部の延在する方向と直交する方
向に延在する第2の軸反転部を形成したので、この第2
の軸反転部を温度補償用として用いることにより、該水
晶振動子の温度特性を向上させることができる。したが
って、従来の様な温度補償用回路が不要になり、回路構
成を小型化することができる。
According to a fourth aspect of the present invention, a direction away from the axis reversing part and perpendicular to a direction in which the axis reversing part extends is provided outside the excitation part in the crystal substrate. Formed in the second axis reversal part extending to
The temperature characteristics of the crystal resonator can be improved by using the axis reversal part for temperature compensation. Therefore, a conventional temperature compensation circuit is not required, and the circuit configuration can be reduced in size.

【0050】請求項6記載の水晶振動子のハウジング構
造によれば、請求項1ないし5のいずれか1項記載の水
晶振動子と、該水晶振動子を支持するとともに外部と電
気的に接続する1対の支持部と、前記水晶振動子及び1
対の支持部を覆う様に設けられ前記支持部を固定するハ
ウジングとを備え、前記水晶振動子の各接続端子部を、
前記支持部それぞれに電気的に接続したので、軸反転部
の閉じ込め効果により、前記支持部及び該支持部と前記
接続端子部を接続する部材の、質量及び応力が励振用の
電極部に及ぼす影響を著しく小さくすることができる。
したがって、水晶振動子の基板設計の際に上述した影響
を無視して設計することができ、その結果、設計が非常
に容易になり、設計作業の効率が向上する。
According to a sixth aspect of the present invention, there is provided a crystal resonator housing structure according to any one of the first to fifth aspects, wherein the crystal resonator is supported and electrically connected to the outside. A pair of support portions, the quartz oscillator and
A housing provided to cover the pair of support portions and fixing the support portions, wherein each connection terminal portion of the crystal unit is
Since each of the support portions is electrically connected to each other, the effect of the mass and stress of the support portion and the member connecting the support portion and the connection terminal portion on the excitation electrode portion due to the confinement effect of the axis reversing portion. Can be significantly reduced.
Therefore, the above-described influence can be ignored when designing the substrate of the crystal unit, and as a result, the design becomes very easy, and the efficiency of the design work is improved.

【0051】また、実装後の経年変化による前記支持部
及び該支持部と前記接続端子部を接続する部材の、質量
及び応力が励振用の電極部に及ぼす影響が著しく小さく
なるため、共振周波数の経年変化を著しく小さくするこ
とができ、周波数精度を向上させることができる。ま
た、前記支持部及び該支持部と前記接続端子部を接続す
る部材を、前記励振用の電極部に接近させることができ
るため、小型化を図ることができる。
Further, the influence of the mass and stress on the excitation electrode portion of the support portion and the member connecting the support portion and the connection terminal portion due to aging after mounting is significantly reduced. Aging can be significantly reduced, and frequency accuracy can be improved. In addition, since the support portion and the member connecting the support portion and the connection terminal portion can be brought close to the excitation electrode portion, the size can be reduced.

【0052】以上により、発生する共振周波数のゆらぎ
が小さく、安定した共振周波数を発生させることがで
き、また、発生する共振周波数の経年変化が著しく小さ
く、その周波数精度を向上させることができ、さらに、
小型化が可能、加工コストが低下、設計が容易等の利点
を有する水晶振動子及びそのハウジング構造を提供する
ことができる。
As described above, the fluctuation of the generated resonance frequency is small, and a stable resonance frequency can be generated. Further, the generation of the resonance frequency is remarkably small over time, and the frequency accuracy can be improved. ,
It is possible to provide a crystal resonator having advantages such as downsizing, low processing cost, and easy design, and a housing structure thereof.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1の実施形態の水晶振動子を示す
平面図である。
FIG. 1 is a plan view showing a crystal resonator according to a first embodiment of the present invention.

【図2】 本発明の第1の実施形態の水晶振動子の共振
特性測定回路を示す図である。
FIG. 2 is a diagram illustrating a resonance characteristic measuring circuit of the crystal unit according to the first embodiment of the present invention.

【図3】 本発明の第1の実施形態の水晶振動子の共振
特性の測定結果を示す図であり、(a)は励振部4a,
4cをオープン状態、励振部4bをショート状態とした
場合、(b)は励振部4a,4bをショート状態、励振
部4cをオープン状態とした場合、図3(c)は励振部
4aをオープン状態、励振部4b,4cをショート状態
とした場合、のそれぞれの共振特性を示す図である。
FIGS. 3A and 3B are diagrams showing measurement results of resonance characteristics of the crystal unit according to the first embodiment of the present invention, wherein FIG.
FIG. 3C shows a case where the excitation unit 4c is in an open state and the excitation unit 4b is in a short state, FIG. 3C shows a case where the excitation units 4a and 4b are in a short state, and FIG. FIG. 7 is a diagram showing respective resonance characteristics when the excitation units 4b and 4c are in a short state.

【図4】 本発明の第2の実施形態の水晶振動子を示す
平面図である。
FIG. 4 is a plan view showing a crystal resonator according to a second embodiment of the present invention.

【図5】 本発明の第3の実施形態の水晶振動子のハウ
ジング構造を示す斜視図である。
FIG. 5 is a perspective view illustrating a housing structure of a crystal unit according to a third embodiment of the present invention.

【図6】 従来の水晶振動子を示す斜視図である。FIG. 6 is a perspective view showing a conventional crystal unit.

【図7】 従来の他の水晶振動子を示す斜視図である。FIG. 7 is a perspective view showing another conventional crystal unit.

【図8】 図7のI−I線に沿う断面図である。FIG. 8 is a sectional view taken along the line II of FIG. 7;

【図9】 従来の他の水晶振動子の共振周波数と温度特
性との関係を示す図である。
FIG. 9 is a diagram illustrating a relationship between a resonance frequency and a temperature characteristic of another conventional crystal unit.

【符号の説明】[Explanation of symbols]

1 ATカットの水晶基板 2,3 励振用の電極 4,4a〜4c 励振部 11,12 軸反転部 21,22 軸反転部 23,24 温度補償用の軸反転部(第2の軸反転部) 25,26 接続端子部 31,32 軸反転部 33,34 接続端子部 41 水晶振動子 42,43 軸反転部 44 接続端子部 51 金属枠(ハウジング) 52 絶縁用ガラス 53 水晶片支持部 54 リード端子 55 金属カバー W 電極の幅 L 電極の長さ d 励振部と軸反転部との間隔 s 軸反転部の長さ f 長さ方向の振動変位の振幅分布 A 水晶振動子の最適な特性 B ATカット水晶振動子の特性 C 反転処理した水晶振動子の特性 D 温度補償の原理確認実験結果 X 電気軸 −X 反対方向の電気軸 DESCRIPTION OF REFERENCE NUMERALS 1 AT-cut quartz substrate 2, 3 Exciting electrode 4, 4a-4c Exciting section 11, 12 Axis reversing section 21, 22 Axis reversing section 23, 24 Axis reversing section for temperature compensation (second axis reversing section) 25, 26 Connection terminal part 31, 32 Axis reversal part 33, 34 Connection terminal part 41 Crystal oscillator 42, 43 Axis reversal part 44 Connection terminal part 51 Metal frame (housing) 52 Insulating glass 53 Quartz piece support part 54 Lead terminal 55 Metal cover W Electrode width L Electrode length d Distance between excitation part and axis reversal part s Length of axis reversal part f Amplitude distribution of vibration displacement in length direction A Optimal characteristics of crystal unit B AT cut Characteristics of the crystal unit C Characteristics of the crystal unit after the inversion processing D Results of the experiment for confirming the principle of temperature compensation X Electric axis -X Electric axis in the opposite direction

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 輝三 埼玉県大宮市北袋町1丁目297番地 三菱 マテリアル株式会社総合研究所内 Fターム(参考) 5J033 AA04 BB03 CC02 CC04 CC13 DD02 EE02 EE03 EE11 FF11 FF14 GG06 GG15  ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Terumo Ito 1-297 Kitabukuro-cho, Omiya-shi, Saitama F-term in Mitsubishi Materials Corporation General Research Laboratory 5J033 AA04 BB03 CC02 CC04 CC13 DD02 EE02 EE03 EE11 FF11 FF14 GG06 GG15

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 水晶基板の両面に励振用の電極部をそれ
ぞれ形成して該電極部に挟まれた領域を励振部とし、前
記水晶基板内の該励振部の両側方に、該励振部の電気軸
と反対方向の電気軸を有する軸反転部を形成し、前記水
晶基板の前記軸反転部より外側の位置それぞれに、前記
電極部に導通する接続端子部を形成してなることを特徴
とする水晶振動子。
An electrode portion for excitation is formed on both surfaces of a quartz substrate, and a region sandwiched between the electrode portions is used as an excitation portion, and the excitation portion of the excitation portion is provided on both sides of the excitation portion in the quartz substrate. Forming an axis inversion portion having an electric axis in a direction opposite to the electric axis, and forming a connection terminal portion that is electrically connected to the electrode portion at each position outside the axis inversion portion of the quartz substrate. Crystal oscillator.
【請求項2】 前記接続端子部は、前記水晶基板の両端
面または該両端面近傍の主面上のいずれかに形成してな
ることを特徴とする請求項1記載の水晶振動子。
2. The crystal unit according to claim 1, wherein said connection terminal portion is formed on one of both end surfaces of said quartz substrate or on a main surface near said both end surfaces.
【請求項3】 前記軸反転部は、前記水晶基板のz’軸
方向に沿って形成されていることを特徴とする請求項1
または2記載の水晶振動子。
3. The apparatus according to claim 1, wherein the axis reversing portion is formed along a z′-axis direction of the quartz substrate.
Or the crystal resonator according to 2.
【請求項4】 前記水晶基板内の前記励振部の外側に、
前記軸反転部と離間しかつ該軸反転部の延在する方向と
直交する方向に延在する第2の軸反転部を形成してなる
ことを特徴とする請求項1または2記載の水晶振動子。
4. Outside the excitation section in the quartz substrate,
3. The crystal resonator according to claim 1, further comprising a second axis-reversing part that is separated from the axis-reversing part and extends in a direction orthogonal to a direction in which the axis-reversing part extends. Child.
【請求項5】 前記軸反転部は、前記水晶基板のx軸方
向に沿って形成され、前記第2の軸反転部は、前記水晶
基板のz’軸方向に沿って形成されていることを特徴と
する請求項4記載の水晶振動子。
5. The method according to claim 1, wherein the axis inversion portion is formed along an x-axis direction of the quartz substrate, and the second axis inversion portion is formed along a z ′ axis direction of the quartz substrate. The quartz oscillator according to claim 4, wherein
【請求項6】 請求項1ないし5のいずれか1項記載の
水晶振動子と、該水晶振動子を支持するとともに外部と
電気的に接続する1対の支持部と、前記水晶振動子及び
1対の支持部を覆う様に設けられ前記支持部を固定する
ハウジングとを備え、 前記水晶振動子の各接続端子部は、前記支持部それぞれ
に電気的に接続されていることを特徴とする水晶振動子
のハウジング構造。
6. A quartz oscillator according to claim 1, a pair of supporting portions for supporting said quartz oscillator and electrically connecting to the outside, and said quartz oscillator and said one. A housing provided to cover the pair of support portions and fixing the support portions, wherein each connection terminal of the crystal unit is electrically connected to each of the support portions. Vibrator housing structure.
JP10204115A 1998-07-17 1998-07-17 Crystal vibrator and its housing structure Pending JP2000036724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10204115A JP2000036724A (en) 1998-07-17 1998-07-17 Crystal vibrator and its housing structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10204115A JP2000036724A (en) 1998-07-17 1998-07-17 Crystal vibrator and its housing structure

Publications (1)

Publication Number Publication Date
JP2000036724A true JP2000036724A (en) 2000-02-02

Family

ID=16485072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10204115A Pending JP2000036724A (en) 1998-07-17 1998-07-17 Crystal vibrator and its housing structure

Country Status (1)

Country Link
JP (1) JP2000036724A (en)

Similar Documents

Publication Publication Date Title
EP0220320B1 (en) Piezo-electric resonator for generating overtones
JP4281348B2 (en) Piezoelectric vibrating piece, piezoelectric device using the piezoelectric vibrating piece, mobile phone device using the piezoelectric device, and electronic equipment using the piezoelectric device
US7441316B2 (en) Method for manufacturing electronic apparatus
US9203135B2 (en) Method for manufacturing quartz crystal resonator
TW201242246A (en) Piezoelectric vibration element, piezoelectric vibrator, piezoelectric oscillator, vibration gyro element, vibration gyro sensor, and electronic apparatus
KR20080069565A (en) Structures for supporting vibrators and devices for measuring physical quantities
US20110221538A1 (en) Piezoelectric oscillator
JP2007081570A (en) Piezoelectric device
JP2748740B2 (en) Temperature compensated oscillator and temperature detector
US4349763A (en) Tuning fork type quartz resonator
JP2000031781A (en) Piezoelectric vibrator
JPS6316169Y2 (en)
JP2000036724A (en) Crystal vibrator and its housing structure
JP2005123828A (en) Tuning-fork piezo-electric oscillation piece and piezo-electric device
US11563406B2 (en) Quartz crystal resonator, quartz crystal unit, and quartz crystal oscillator
JP2012186586A (en) Piezoelectric vibration element, piezoelectric vibrator, piezoelectric oscillator, vibration gyro element, vibration gyro sensor, and electronic device
JP2001085970A (en) Resonator for high stable piezo-oscillator
JP2003273703A (en) Quartz vibrator and its manufacturing method
JPH0259647B2 (en)
JPH07254839A (en) Crystal vibrator
JP2004349856A (en) Piezoelectric oscillating piece, piezoelectric device using the same, cellular telephone and electronic equipment using piezoelectric device
JP2007202210A (en) Crystal unit having flexural mode quartz crystal resonator
JPH06268442A (en) Temperature compensation type crystal oscillation circuit
JP4411492B6 (en) Quartz crystal unit, crystal unit, crystal oscillator and information communication equipment
JP4411496B6 (en) Portable device equipped with crystal oscillator and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080507