JP2000031535A - Semiconductor light emitting element - Google Patents

Semiconductor light emitting element

Info

Publication number
JP2000031535A
JP2000031535A JP19606998A JP19606998A JP2000031535A JP 2000031535 A JP2000031535 A JP 2000031535A JP 19606998 A JP19606998 A JP 19606998A JP 19606998 A JP19606998 A JP 19606998A JP 2000031535 A JP2000031535 A JP 2000031535A
Authority
JP
Japan
Prior art keywords
layer
buffer layer
light emitting
substrate
zno buffer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19606998A
Other languages
Japanese (ja)
Other versions
JP3534227B2 (en
Inventor
Michio Kadota
道雄 門田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP19606998A priority Critical patent/JP3534227B2/en
Priority to US09/340,306 priority patent/US6606333B2/en
Priority to DE19932201A priority patent/DE19932201B4/en
Publication of JP2000031535A publication Critical patent/JP2000031535A/en
Application granted granted Critical
Publication of JP3534227B2 publication Critical patent/JP3534227B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce resistance of a ZnO buffer layer without changing compositions of compound semiconductor layers above the ZnO buffer layer. SOLUTION: A ZnO buffer layer 3 of low resistance is grown on a conductive Si substrate 2. An N-type GaN layer 4, an N-type AlGaN layer 5, an InGaN layer (light emitting layer) 6, a P-type AlGaN layer 7 and a P-type GaN layer 8 are epitaxially grown on the ZnO buffer layer 3. An N-side electrode 9 is arranged on the lower surface of the Si substrate 2 and a P-side electrode 10 is arranged on the upper surface of the P-type GaN layer 8. Resistivity of the conductive Si substrate 2 is set at most 1 Ω.cm. The ZnO buffer layer 3 is doped with impurity elements (except Ga, Al and In) which are not contained in the respective upper compound-semiconductor layers, and the resistivity is made at most 1 Ω.cm. For the doping, B, Sc, Y, La, Ac, Ti, etc., can be used as impurity elements of group III, and V, Nb, Ta, P, As, Sb, Bi, etc., can be used as impurity elements of group V.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体発光素子に
関する。特に、III−V族化合物のGaN、InGa
N、GaAlN、InGaAlN等を用いた半導体発光
素子に関する。
[0001] The present invention relates to a semiconductor light emitting device. In particular, III-V compounds such as GaN and InGa
The present invention relates to a semiconductor light emitting device using N, GaAlN, InGaAlN, or the like.

【0002】[0002]

【従来の技術】青色光ないし紫外線を発生する発光ダイ
オード(LED)やレーザーダイオード(LD)等の半
導体発光素子の材料としては、一般式InxGayAlz
N(ただし、x+y+z=1、0≦x≦1、0≦y≦
1、0≦z≦1)で表わされるIII−V族化合物半導体
が知られている。この化合物半導体は、直接遷移型であ
ることから発光効率が高く、また、In濃度によって発
光波長を制御できることから、発光素子用材料として注
目されている。
2. Description of the Related Art As a material of a semiconductor light emitting device such as a light emitting diode (LED) or a laser diode (LD) that generates blue light or ultraviolet light, a general formula InxGayAlz is used.
N (however, x + y + z = 1, 0 ≦ x ≦ 1, 0 ≦ y ≦
III-V group compound semiconductors represented by 1, 0 ≦ z ≦ 1) are known. Since this compound semiconductor is a direct transition type, it has high luminous efficiency, and its emission wavelength can be controlled by the In concentration.

【0003】このInxGayAlzNは大型の単結晶を
作製することが困難であるため、その結晶膜の製作にあ
たっては、異なる材料の基板上に成長させる、いわゆる
ヘテロエピタキシャル成長法が用いられており、一般に
はC面サファイア基板の上で成長させられる。しかし、
C面サファイア基板は高価であり、そのうえ大きな格子
不整合があり、成長した結晶中には転移密度108/c
2〜1011/cm2という多数の結晶欠陥が生じてしま
い、結晶性に優れた良質の結晶膜を得ることができない
という問題があった。
[0003] Since it is difficult to produce a large single crystal of InxGayAlzN, a so-called heteroepitaxial growth method for growing a crystal film on a substrate of a different material is used. Grown on planar sapphire substrate. But,
C-plane sapphire substrates are expensive, have large lattice mismatches, and have a transition density of 10 8 / c
A large number of crystal defects of m 2 to 10 11 / cm 2 are generated, and there is a problem that a high-quality crystal film having excellent crystallinity cannot be obtained.

【0004】そこで、C面サファイア基板上にInxG
ayAlzNを成長させる際の格子不整合を小さくし、欠
陥の少ない結晶を得るため、C面サファイア基板の上に
多結晶又は非晶質のAlNバッファ層や低温成長GaN
バッファ層を設ける方法が提案されている。この方法に
よれば、C面サファイア基板とバッファ層の間の格子不
整合が小さくなると共にバッファ層とInxGayAlz
Nの格子不整合も小さくなるので、欠陥の少ない結晶膜
を得ることができる。しかし、この方法では、高価なC
面サファイア基板に加え、構造が複雑になることから一
層コスト高になるという問題があった。
Therefore, InxG is deposited on a C-plane sapphire substrate.
In order to reduce lattice mismatch when growing ayAlzN and obtain a crystal with few defects, a polycrystalline or amorphous AlN buffer layer or a low-temperature grown GaN is formed on a C-plane sapphire substrate.
A method of providing a buffer layer has been proposed. According to this method, the lattice mismatch between the C-plane sapphire substrate and the buffer layer is reduced, and the buffer layer and the InxGayAlz
Since the lattice mismatch of N is also small, a crystal film with few defects can be obtained. However, this method requires expensive C
In addition to the planar sapphire substrate, there is a problem that the cost is further increased due to the complicated structure.

【0005】また、基板としてSiC基板も検討されて
おり、SiC基板では格子不整合が小さい。しかし、S
iC基板は、C面サファイア基板と比較してもかなり高
価につく(C面サファイア基板の価格の10倍程度)と
いう欠点があった。
Further, a SiC substrate has been studied as a substrate, and the lattice mismatch of the SiC substrate is small. However, S
The iC substrate has a disadvantage that it is considerably more expensive than the C-plane sapphire substrate (about 10 times the price of the C-plane sapphire substrate).

【0006】そこで、安価なSi基板やガラス基板を用
いて半導体発光素子を製作することが従来より望まれて
いる。そのためには、Si基板やガラス基板の上に六方
晶系をしたc軸配向ZnO膜(バッファ層)を成長さ
せ、この上にGaNを含む半導体を形成してInxGay
AlzN系の発光素子を構成することが考えられる。
Therefore, it has been conventionally desired to manufacture a semiconductor light emitting device using an inexpensive Si substrate or glass substrate. To this end, a hexagonal c-axis oriented ZnO film (buffer layer) is grown on a Si substrate or a glass substrate, and a semiconductor containing GaN is formed thereon to form an InxGay.
It is conceivable to configure an AlzN-based light emitting element.

【0007】Si基板の上にZnOバッファ層を設けた
ものでは、C面サファイア基板に比較すると、基板コス
トは10分の1程度に抑えることができ、コストを安価
にすることができる。また、C面サファイア基板は絶縁
材料であるから、C面サファイア基板よりも上方にp側
電極とn側電極を設ける工夫が必要となり、構造が複雑
になるが、Si基板には導電性を持たせることができる
ので、p側電極を発光素子の上面に設け、n側電極をS
i基板の下面に設けることができ、素子構造を簡単にす
ることができる。
[0007] When a ZnO buffer layer is provided on a Si substrate, the substrate cost can be reduced to about 1/10 and the cost can be reduced as compared with a C-plane sapphire substrate. Further, since the C-plane sapphire substrate is an insulating material, it is necessary to devise a method of providing a p-side electrode and an n-side electrode above the C-plane sapphire substrate, which complicates the structure. However, the Si substrate has conductivity. Therefore, the p-side electrode is provided on the upper surface of the light emitting element, and the n-side electrode is
It can be provided on the lower surface of the i-substrate, and the element structure can be simplified.

【0008】図1に示すものは、導電性Si基板52を
用いた従来の半導体発光素子51の構造を示す断面図で
あって、導電性Si基板52の上にZnOバッファ層5
3を形成し、その上にInGaAlNバッファ層54、
n−InGaAlNクラッド層55、InGaAlN活
性層56、p−InGaAlNクラッド層57を順次積
層し、さらにSi基板52の下面にn側電極58を設
け、p−InGaAlNクラッド層57の上にp側電極
59を設けている(特開平9−45960号公報)。
FIG. 1 is a cross-sectional view showing the structure of a conventional semiconductor light emitting device 51 using a conductive Si substrate 52. A ZnO buffer layer 5 is formed on the conductive Si substrate 52.
3 and an InGaAlN buffer layer 54,
An n-InGaAlN cladding layer 55, an InGaAlN active layer 56, and a p-InGaAlN cladding layer 57 are sequentially stacked, an n-side electrode 58 is provided on the lower surface of the Si substrate 52, and a p-side electrode 59 is formed on the p-InGaAlN cladding layer 57. (JP-A-9-45960).

【0009】しかし、このような構造の半導体発光素子
51においては、p側電極59とn側電極58の間に電
流を流して発光素子51を発光させるためには、Si基
板52が低抵抗であるばかりでなく、ZnOバッファ層
53も低抵抗でなければならない。そのため、従来の発
光素子51にあっては、ZnOバッファ層53にAlを
ドープすることによってZnOバッファ層53の比抵抗
を小さくしていた。
However, in the semiconductor light emitting device 51 having such a structure, the Si substrate 52 must have a low resistance in order to cause the light emitting device 51 to emit light by flowing a current between the p-side electrode 59 and the n-side electrode 58. Not only that, the ZnO buffer layer 53 must also have low resistance. Therefore, in the conventional light emitting element 51, the specific resistance of the ZnO buffer layer 53 is reduced by doping the ZnO buffer layer 53 with Al.

【0010】そのため、ZnOバッファ層53にドープ
されているAlがInGaAlNバッファ層54やn−
InGaAlNクラッド層55、InGaAlN活性層
56などへ拡散し、これらの半導体層における組成を変
化させ、発光素子51の物性や光学的特性を変化させる
問題があった。
For this reason, Al doped in the ZnO buffer layer 53 is changed to the InGaAlN buffer layer 54 or the n-
There is a problem in that it diffuses into the InGaAlN cladding layer 55, the InGaAlN active layer 56, and the like, changes the composition of these semiconductor layers, and changes the physical properties and optical characteristics of the light emitting element 51.

【0011】[0011]

【発明が解決しようとする課題】本発明は上述の技術的
問題点を解決するためになされたものであり、その目的
とするところは、ZnOバッファ層の上方の半導体層の
組成を変化させることなくZnOバッファ層を低抵抗化
することができる半導体発光素子を提供することにあ
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned technical problems, and an object of the present invention is to change the composition of a semiconductor layer above a ZnO buffer layer. It is to provide a semiconductor light emitting device that can reduce the resistance of the ZnO buffer layer without the need.

【0012】[0012]

【発明の開示】本発明の半導体発光素子は、導電性Si
基板の上に低抵抗のZnOバッファ層を形成し、このZ
nOバッファ層の上にInxGayAlzN(ただし、x
+y+z=1、0≦x≦1、0≦y≦1、0≦z≦1)
で表わされる化合物半導体層を形成した半導体発光素子
において、前記ZnOバッファ層は、その上方の化合物
半導体層の組成元素を含まないことを特徴としている。
DISCLOSURE OF THE INVENTION The semiconductor light emitting device of the present invention comprises conductive Si.
A low-resistance ZnO buffer layer is formed on a substrate,
On the nO buffer layer, InxGayAlzN (where x
+ Y + z = 1, 0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1)
Wherein the ZnO buffer layer does not contain the constituent elements of the compound semiconductor layer thereabove.

【0013】ZnOバッファ層の上にはInxGayAl
zN系の化合物半導体層が形成されているから、典型的
な元素としては、ZnOバッファ層には、Al、In及
びGaを不純物元素として含まない。これらの元素以外
の不純物元素としては、III族又はV族の元素である
B、Sc、Y、La、Ac、Tl、V、Nb、Ta、
P、As、Sb、Biの群からなる少なくとも1つの元
素をZnOバッファ層にドープさせることができる。
On the ZnO buffer layer, InxGayAl
Since a zN-based compound semiconductor layer is formed, typical elements do not include Al, In, and Ga as impurity elements in the ZnO buffer layer. As impurity elements other than these elements, group III or group V elements such as B, Sc, Y, La, Ac, Tl, V, Nb, Ta,
At least one element selected from the group consisting of P, As, Sb, and Bi can be doped into the ZnO buffer layer.

【0014】本発明にあっては、導電性Si基板の上に
低抵抗のZnOバッファ層を形成しているので、発光素
子の上面と下面に電極を設けることができ、発光素子の
構造を簡単にすることができるものである。しかも、Z
nOバッファ層には、上層の化合物半導体層の組成元素
をドープしていないので、ZnOバッファ層から上層の
化合物半導体層へ不純物元素が拡散して上層の化合物半
導体層の組成を変化させることがなく、発光素子の物性
及び光学的特性を良好にすることができる。
In the present invention, since the low resistance ZnO buffer layer is formed on the conductive Si substrate, electrodes can be provided on the upper and lower surfaces of the light emitting element, and the structure of the light emitting element can be simplified. It is something that can be. And Z
Since the composition element of the upper compound semiconductor layer is not doped in the nO buffer layer, the impurity element does not diffuse from the ZnO buffer layer to the upper compound semiconductor layer, thereby changing the composition of the upper compound semiconductor layer. In addition, physical properties and optical characteristics of the light emitting element can be improved.

【0015】[0015]

【発明の実施の形態】図2は本発明の一実施形態による
ダブルへテロ接合構造の半導体発光素子1であって、I
nGaN層6を発光層とする発光ダイオードや面発光型
レーザーダイオード等を表わしている。この半導体発光
素子1は、導電性Si基板2の上に比抵抗の小さなZn
Oバッファ層3を成長させ、ZnOバッファ層3の上に
順次n型GaN層4、n型AlGaN層5、InGaN
層(発光層)6、p型AlGaN層7、p型GaN層8
をエピタキシャル成長させたものであり、n型GaN層
4、n型AlGaN層5、InGaN層(発光層)6、
p型AlGaN層7及びp型GaN層8によってダブル
へテロ接合構造が構成されている。さらに、Si基板2
の下面全面にはn側電極9が設けられ、p型GaN層8
の上面には部分的にp側電極10が形成されている。
FIG. 2 shows a semiconductor light emitting device 1 having a double heterojunction structure according to an embodiment of the present invention.
A light emitting diode or a surface emitting laser diode using the nGaN layer 6 as a light emitting layer is shown. This semiconductor light emitting device 1 has a Zn film having a small specific resistance on a conductive Si substrate 2.
O buffer layer 3 is grown, and n-type GaN layer 4, n-type AlGaN layer 5, InGaN
Layer (light emitting layer) 6, p-type AlGaN layer 7, p-type GaN layer 8
Are epitaxially grown, and an n-type GaN layer 4, an n-type AlGaN layer 5, an InGaN layer (light-emitting layer) 6,
The p-type AlGaN layer 7 and the p-type GaN layer 8 form a double hetero junction structure. Further, the Si substrate 2
An n-side electrode 9 is provided on the entire lower surface of the p-type GaN layer 8.
The p-side electrode 10 is partially formed on the upper surface of the substrate.

【0016】導電性Si基板2は、比抵抗が10Ω・c
m以下程度であれば実用に供しうるが、特に比抵抗が1
Ω・cm以下のものを用いるのが好ましい。また、Zn
Oバッファ層3も、不純物元素をドープすることによ
り、その比抵抗を1Ω・cm以下にしている。このよう
にSi基板2もZnOバッファ層3も低抵抗であるの
で、発光素子1の上下面に設けられたp側電極10とn
側電極9との間に直流電圧を印加すると、Si基板2及
びZnOバッファ層3を通ってp側電極10とn側電極
9の間に電流が流れ、p側電極10からInGaN層6
に電流が注入されて発光し、InGaN層6から出た光
はp型GaN層8の上面のp側電極10が設けられてい
ない領域から外部へ出射される。
The conductive Si substrate 2 has a specific resistance of 10 Ω · c.
m or less, it can be used practically.
It is preferable to use one of Ω · cm or less. Also, Zn
The specific resistance of the O buffer layer 3 is also set to 1 Ω · cm or less by doping the impurity element. Since both the Si substrate 2 and the ZnO buffer layer 3 have low resistance, the p-side electrodes 10 provided on the upper and lower surfaces
When a DC voltage is applied between the p-side electrode 9 and the n-side electrode 9, a current flows between the p-side electrode 10 and the n-side electrode 9 through the Si substrate 2 and the ZnO buffer layer 3.
A current is injected into the p-type GaN layer 8 to emit light, and light emitted from the InGaN layer 6 is emitted to the outside from a region on the upper surface of the p-type GaN layer 8 where the p-side electrode 10 is not provided.

【0017】このようにp側電極10とn側電極9を発
光素子1の上下面に設けることができるので、発光素子
1は各化合物半導体層と両電極を直列に積んだだけの構
造になり、構造が簡略化される。また、実装時にも、下
面のn側電極9は回路基板上にダイボンドすることがで
きるので、回路基板への実装も簡単になる。さらには、
C面サファイア基板を用いた場合のように基板の上方で
両電極を設ける構造と比較して素子を小型化することが
できる。
Since the p-side electrode 10 and the n-side electrode 9 can be provided on the upper and lower surfaces of the light emitting element 1, the light emitting element 1 has a structure in which each compound semiconductor layer and both electrodes are stacked in series. , The structure is simplified. Also, at the time of mounting, the n-side electrode 9 on the lower surface can be die-bonded on the circuit board, so that mounting on the circuit board is simplified. Moreover,
The element can be reduced in size as compared with a structure in which both electrodes are provided above the substrate as in the case of using a C-plane sapphire substrate.

【0018】ここで、ZnOバッファ層3の抵抗を下げ
るためにドープされる不純物元素(ドーパント)は、上
層の化合物半導体層に含まれない元素であって、この実
施形態の場合でいえば、Ga、Al、In以外のIII族
元素又はV族元素である。すなわち、III族元素として
は、B、Sc、Y、La、Ac、Tlなどをドープする
ことができ、V族元素では、V、Nb、Ta、P、A
s、Sb、Biなどをドープすることができる。このよ
うな上層の化合物半導体層に含まれない不純物元素をZ
nOバッファ層3にドープすることによってZnOバッ
ファ層3を低抵抗すれば、ZnOバッファ層3中の不純
物が上方の化合物半導体層へ拡散したとしても、各化合
物半導体層の組成が変化しにくく、発光素子の物性や光
学的特性を安定させることができる。
Here, the impurity element (dopant) that is doped to lower the resistance of the ZnO buffer layer 3 is an element that is not included in the upper compound semiconductor layer, and in this embodiment, Ga , Al and In are Group III elements or Group V elements. That is, B, Sc, Y, La, Ac, Tl, and the like can be doped as a group III element, and V, Nb, Ta, P, A
s, Sb, Bi or the like can be doped. Impurity elements not contained in such an upper compound semiconductor layer are represented by Z
If the ZnO buffer layer 3 is made to have a low resistance by doping the nO buffer layer 3, even if impurities in the ZnO buffer layer 3 diffuse into the upper compound semiconductor layer, the composition of each compound semiconductor layer is hardly changed, and light emission occurs. Physical properties and optical characteristics of the element can be stabilized.

【0019】(その他の実施形態)本発明は図2に示し
たようなInGaN層6によるダブルへテロ接合構造の
半導体発光素子以外にも適用することができる。例え
ば、図3に示す半導体発光素子31のように、導電性S
i基板32の上に低抵抗のZnOバッファ層33、n型
GaN層34及びp型GaN層35を積層し、Si基板
32の下面にn側電極36を形成するとともにp側Ga
N層35の上にp側電極37を設けたものでもよい。ま
た、図示しないが、ガラス基板の上にZnOバッファ
層、低温成長GaNバッファ層、n型GaN層及びp型
GaN層を積んだ構造の発光素子でもよい。
(Other Embodiments) The present invention can be applied to other than a semiconductor light emitting device having a double hetero junction structure using the InGaN layer 6 as shown in FIG. For example, as shown in the semiconductor light emitting device 31 shown in FIG.
A low-resistance ZnO buffer layer 33, an n-type GaN layer 34 and a p-type GaN layer 35 are stacked on an i-substrate 32, an n-side electrode 36 is formed on the lower surface of the Si substrate 32, and a p-side Ga
The p-side electrode 37 may be provided on the N layer 35. Although not shown, a light-emitting element having a structure in which a ZnO buffer layer, a low-temperature-grown GaN buffer layer, an n-type GaN layer, and a p-type GaN layer are stacked on a glass substrate may be used.

【0020】さらには、図4に示すように、導電性Si
基板42の上に低抵抗ZnOバッファ層43を形成し、
n型GaNクラッド層44、p型GaN活性層45、p
型GaNクラッド層46を積層し、p側GaNクラッド
層46の上面の中央部を除く領域にSiO2膜47を形
成し、SiO2膜47の上からp型GaNクラッド層4
6の上にp側電極48を設け、Si基板42の下面にn
側電極49を設けた、レーザーダイオードや端面出射型
の発光ダイオードなどの半導体発光素子41でもよい。
これらの場合には、ZnOバッファ層には、Ga以外の
III族元素やV族元素を不純物としてドープする。
Further, as shown in FIG.
Forming a low-resistance ZnO buffer layer 43 on a substrate 42;
n-type GaN cladding layer 44, p-type GaN active layer 45, p-type GaN
Laminated type GaN cladding layer 46, the SiO 2 film 47 is formed in a region excluding the central portion of the upper surface of the p-side GaN cladding layer 46, p-type GaN clad layer 4 on the SiO 2 film 47
6, a p-side electrode 48 is provided on the lower surface of the Si substrate 42.
The semiconductor light emitting device 41 such as a laser diode or an edge emitting light emitting diode provided with the side electrode 49 may be used.
In these cases, the ZnO buffer layer contains
A group III element or a group V element is doped as an impurity.

【0021】また、従来例として図1に示した構造の半
導体発光素子において、ZnOバッファ層にIn、G
a、Al以外のIII族元素又はV族元素を不純物として
ドープすることにより、ZnOバッファ層の比抵抗を小
さくするようにしてもよい。
In a conventional semiconductor light emitting device having the structure shown in FIG.
The specific resistance of the ZnO buffer layer may be reduced by doping a group III element or a group V element other than a and Al as impurities.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来例による半導体発光素子の構造を示す断面
図である。
FIG. 1 is a cross-sectional view showing a structure of a conventional semiconductor light emitting device.

【図2】本発明の一実施形態による半導体発光素子の構
造を示す断面図である。
FIG. 2 is a cross-sectional view illustrating a structure of a semiconductor light emitting device according to an embodiment of the present invention.

【図3】本発明の別な実施形態による半導体発光素子の
構造を示す斜視図である。
FIG. 3 is a perspective view illustrating a structure of a semiconductor light emitting device according to another embodiment of the present invention.

【図4】本発明のさらに別な実施形態による半導体発光
素子の構造を示す斜視図である。
FIG. 4 is a perspective view illustrating a structure of a semiconductor light emitting device according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

2 導電性Si基板 3 ZnOバッファ層 4 n型GaN層 5 n型AlGaN層 6 InGaN層(発光層) 2 conductive Si substrate 3 ZnO buffer layer 4 n-type GaN layer 5 n-type AlGaN layer 6 InGaN layer (light emitting layer)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 導電性Si基板の上に低抵抗のZnOバ
ッファ層を形成し、このZnOバッファ層の上にInx
GayAlzN(ただし、x+y+z=1、0≦x≦1、
0≦y≦1、0≦z≦1)で表わされる化合物半導体層
を形成した半導体発光素子において、 前記ZnOバッファ層は、その上方の化合物半導体層の
組成元素を含まないことを特徴とする半導体発光素子。
1. A low-resistance ZnO buffer layer is formed on a conductive Si substrate, and an Inx buffer layer is formed on the ZnO buffer layer.
GayAlzN (where x + y + z = 1, 0 ≦ x ≦ 1,
In a semiconductor light emitting device in which a compound semiconductor layer represented by 0 ≦ y ≦ 1, 0 ≦ z ≦ 1) is formed, the ZnO buffer layer does not contain a constituent element of a compound semiconductor layer thereabove. Light emitting element.
【請求項2】 前記ZnOバッファ層は、Al、In及
びGaを不純物元素として含まないことを特徴とする、
請求項1に記載の半導体発光素子。
2. The ZnO buffer layer does not contain Al, In, and Ga as impurity elements.
The semiconductor light emitting device according to claim 1.
【請求項3】 前記ZnOバッファ層は、B、Sc、
Y、La、Ac、Tl、V、Nb、Ta、P、As、S
b、Biの群からなる少なくとも1つの元素をドープす
ることによって低抵抗化されていることを特徴とする、
請求項1又は請求項2に記載の半導体発光素子。
3. The ZnO buffer layer comprises B, Sc,
Y, La, Ac, Tl, V, Nb, Ta, P, As, S
characterized in that the resistance is reduced by doping at least one element selected from the group consisting of b and Bi.
The semiconductor light emitting device according to claim 1.
JP19606998A 1998-07-10 1998-07-10 Semiconductor light emitting device Expired - Lifetime JP3534227B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP19606998A JP3534227B2 (en) 1998-07-10 1998-07-10 Semiconductor light emitting device
US09/340,306 US6606333B2 (en) 1998-07-10 1999-06-28 Semiconductor photonic device
DE19932201A DE19932201B4 (en) 1998-07-10 1999-07-09 Photonic semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19606998A JP3534227B2 (en) 1998-07-10 1998-07-10 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2000031535A true JP2000031535A (en) 2000-01-28
JP3534227B2 JP3534227B2 (en) 2004-06-07

Family

ID=16351690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19606998A Expired - Lifetime JP3534227B2 (en) 1998-07-10 1998-07-10 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3534227B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100629857B1 (en) 2004-04-27 2006-09-29 에피테크 테크놀로지 코포레이션 Nitride device and method for manufacturing the same
KR100733915B1 (en) 2006-07-31 2007-07-02 인하대학교 산학협력단 Transparent conductive oxide thin film deposited with buffer layer on polymer substrate and its preparation
GB2467911A (en) * 2009-02-16 2010-08-25 Rfmd Flip Chip GaN LED device, comprising a silicon substrate, partially covering an AlN buffer layer.
US8076694B2 (en) 2005-05-02 2011-12-13 Nichia Corporation Nitride semiconductor element having a silicon substrate and a current passing region
US8405068B2 (en) 2009-07-22 2013-03-26 Rfmd (Uk) Limited Reflecting light emitting structure and method of manufacture thereof
US8988097B2 (en) 2012-08-24 2015-03-24 Rf Micro Devices, Inc. Method for on-wafer high voltage testing of semiconductor devices
US9070761B2 (en) 2012-08-27 2015-06-30 Rf Micro Devices, Inc. Field effect transistor (FET) having fingers with rippled edges
US9093420B2 (en) 2012-04-18 2015-07-28 Rf Micro Devices, Inc. Methods for fabricating high voltage field effect transistor finger terminations
US9124221B2 (en) 2012-07-16 2015-09-01 Rf Micro Devices, Inc. Wide bandwidth radio frequency amplier having dual gate transistors
US9129802B2 (en) 2012-08-27 2015-09-08 Rf Micro Devices, Inc. Lateral semiconductor device with vertical breakdown region
US9142620B2 (en) 2012-08-24 2015-09-22 Rf Micro Devices, Inc. Power device packaging having backmetals couple the plurality of bond pads to the die backside
US9147632B2 (en) 2012-08-24 2015-09-29 Rf Micro Devices, Inc. Semiconductor device having improved heat dissipation
US9202874B2 (en) 2012-08-24 2015-12-01 Rf Micro Devices, Inc. Gallium nitride (GaN) device with leakage current-based over-voltage protection
US9325281B2 (en) 2012-10-30 2016-04-26 Rf Micro Devices, Inc. Power amplifier controller
US9455327B2 (en) 2014-06-06 2016-09-27 Qorvo Us, Inc. Schottky gated transistor with interfacial layer
US9536803B2 (en) 2014-09-05 2017-01-03 Qorvo Us, Inc. Integrated power module with improved isolation and thermal conductivity
US9917080B2 (en) 2012-08-24 2018-03-13 Qorvo US. Inc. Semiconductor device with electrical overstress (EOS) protection
US10062684B2 (en) 2015-02-04 2018-08-28 Qorvo Us, Inc. Transition frequency multiplier semiconductor device
US10615158B2 (en) 2015-02-04 2020-04-07 Qorvo Us, Inc. Transition frequency multiplier semiconductor device

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100629857B1 (en) 2004-04-27 2006-09-29 에피테크 테크놀로지 코포레이션 Nitride device and method for manufacturing the same
US8076694B2 (en) 2005-05-02 2011-12-13 Nichia Corporation Nitride semiconductor element having a silicon substrate and a current passing region
KR100733915B1 (en) 2006-07-31 2007-07-02 인하대학교 산학협력단 Transparent conductive oxide thin film deposited with buffer layer on polymer substrate and its preparation
GB2467911A (en) * 2009-02-16 2010-08-25 Rfmd Flip Chip GaN LED device, comprising a silicon substrate, partially covering an AlN buffer layer.
GB2467911B (en) * 2009-02-16 2013-06-05 Rfmd Uk Ltd A semiconductor structure and a method of manufacture thereof
US8502258B2 (en) 2009-02-16 2013-08-06 Rfmd (Uk) Limited Light emitting structure and method of manufacture thereof
US8405068B2 (en) 2009-07-22 2013-03-26 Rfmd (Uk) Limited Reflecting light emitting structure and method of manufacture thereof
US9136341B2 (en) 2012-04-18 2015-09-15 Rf Micro Devices, Inc. High voltage field effect transistor finger terminations
US9564497B2 (en) 2012-04-18 2017-02-07 Qorvo Us, Inc. High voltage field effect transitor finger terminations
US9093420B2 (en) 2012-04-18 2015-07-28 Rf Micro Devices, Inc. Methods for fabricating high voltage field effect transistor finger terminations
US9124221B2 (en) 2012-07-16 2015-09-01 Rf Micro Devices, Inc. Wide bandwidth radio frequency amplier having dual gate transistors
US9640632B2 (en) 2012-08-24 2017-05-02 Qorvo Us, Inc. Semiconductor device having improved heat dissipation
US8988097B2 (en) 2012-08-24 2015-03-24 Rf Micro Devices, Inc. Method for on-wafer high voltage testing of semiconductor devices
US9142620B2 (en) 2012-08-24 2015-09-22 Rf Micro Devices, Inc. Power device packaging having backmetals couple the plurality of bond pads to the die backside
US9147632B2 (en) 2012-08-24 2015-09-29 Rf Micro Devices, Inc. Semiconductor device having improved heat dissipation
US9202874B2 (en) 2012-08-24 2015-12-01 Rf Micro Devices, Inc. Gallium nitride (GaN) device with leakage current-based over-voltage protection
US9917080B2 (en) 2012-08-24 2018-03-13 Qorvo US. Inc. Semiconductor device with electrical overstress (EOS) protection
US9129802B2 (en) 2012-08-27 2015-09-08 Rf Micro Devices, Inc. Lateral semiconductor device with vertical breakdown region
US9070761B2 (en) 2012-08-27 2015-06-30 Rf Micro Devices, Inc. Field effect transistor (FET) having fingers with rippled edges
US9325281B2 (en) 2012-10-30 2016-04-26 Rf Micro Devices, Inc. Power amplifier controller
US9455327B2 (en) 2014-06-06 2016-09-27 Qorvo Us, Inc. Schottky gated transistor with interfacial layer
US9536803B2 (en) 2014-09-05 2017-01-03 Qorvo Us, Inc. Integrated power module with improved isolation and thermal conductivity
US10062684B2 (en) 2015-02-04 2018-08-28 Qorvo Us, Inc. Transition frequency multiplier semiconductor device
US10615158B2 (en) 2015-02-04 2020-04-07 Qorvo Us, Inc. Transition frequency multiplier semiconductor device

Also Published As

Publication number Publication date
JP3534227B2 (en) 2004-06-07

Similar Documents

Publication Publication Date Title
JP3534227B2 (en) Semiconductor light emitting device
US20080191191A1 (en) Light Emitting Diode of a Nanorod Array Structure Having a Nitride-Based Multi Quantum Well
US8502254B2 (en) Group III nitride semiconductor light-emitting device and method of manufacturing the same, and lamp
US7884351B2 (en) Nitride semiconductor light-emitting device
CN1484324B (en) Epitaxial substrate for compound semiconductor lumination device and MFG method and luminous device
KR100770441B1 (en) Nitride semiconductor light emitting device
KR100689975B1 (en) Ternary nitride-based buffer layer of a nitride-based light-emitting device and a method for manufacturing the same
JPH0621511A (en) Semiconductor light emitting element
US6606333B2 (en) Semiconductor photonic device
JP2002033512A (en) Nitride semiconductor light emitting diode
JPH08139361A (en) Compound semiconductor light emitting device
JP3545197B2 (en) Semiconductor device and method of manufacturing the same
JP2000091628A (en) Semiconductor light emitting element
JP3289682B2 (en) Semiconductor light emitting device
JP4530234B2 (en) Semiconductor light emitting device
JPH11191639A (en) Nitride semiconductor device
US20050285125A1 (en) Nitride based semiconductor device
JP2003309071A (en) GaN SEMICONDUCTOR CRYSTAL BASE MATERIAL
JP4313478B2 (en) AlGaInP light emitting diode
JP2000058918A (en) Semiconductor light emitting element
KR20080030042A (en) Light emitting diode of a nanorod array structure having a nitride-baseed multi quantum well
JP4229625B2 (en) Nitride semiconductor layer and nitride semiconductor device including the same
JPH11112109A (en) Nitride semiconductor light emitting element
JP3387491B2 (en) Semiconductor light emitting device
JP2000036618A (en) SEMICONDUCTOR LIGHT-EMITTING ELEMENT AND METHOD FOR FORMING ZnO FILM

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040303

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 9