JP2000030963A - Magnetic circuit for sputtering - Google Patents

Magnetic circuit for sputtering

Info

Publication number
JP2000030963A
JP2000030963A JP10201622A JP20162298A JP2000030963A JP 2000030963 A JP2000030963 A JP 2000030963A JP 10201622 A JP10201622 A JP 10201622A JP 20162298 A JP20162298 A JP 20162298A JP 2000030963 A JP2000030963 A JP 2000030963A
Authority
JP
Japan
Prior art keywords
magnetic circuit
frame
magnetic field
positioning
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10201622A
Other languages
Japanese (ja)
Inventor
Teruaki Hida
輝昭 飛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP10201622A priority Critical patent/JP2000030963A/en
Publication of JP2000030963A publication Critical patent/JP2000030963A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Magnetic Heads (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic circuit for sputtering which can economically and easily be manufactured and makes it easy to adjust magnetic field parallelism after assembly. SOLUTION: This circuit consists of columnar magnets 1 which have positioning grooves on their outer peripheries along the length and are magnetized radially, a frame 3 which has storage holes for storing the columnar magnets 1 and positioning grooves provided adjacently to the storage holes, and positioning pins which are inserted into gaps formed of both grooves to position the columnar magnets 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ハードディスクの
MRやGMR(Giant Magneto−Resi
stance)を用いた磁気記録ヘッドのパーマロイ膜
等のような磁気抵抗素子をスパッタ成膜する工程におい
て、磁気抵抗素子に一軸磁気異方性を付与するために用
いるスパッタ用磁気回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an MR or GMR (Giant Magneto-Resi) for a hard disk.
The present invention relates to a sputter magnetic circuit used for imparting uniaxial magnetic anisotropy to a magnetoresistive element in a step of forming a magnetoresistive element such as a permalloy film of a magnetic recording head using a magnetic field (stand).

【0002】[0002]

【従来の技術】基板に磁気抵抗素子をスパッタ法で成膜
する場合、成膜する磁気抵抗素子に一軸磁気異方性を付
与するため、基板全体に一定方向の均一磁界を印加する
必要がある。その場合、従来、図4に示すようなロの字
型又はコの字型の永久磁石12を対向させ、ヨーク11
で支持した磁石対向型磁気回路が使用されてきた。 こ
の磁石対向型磁気回路は、磁化方向(図4中、各磁石内
の矢印方向)が微妙に異なる異形状の永久磁石12を複
数組み合わせることにより、一定方向の均一磁界を形成
させていた。
2. Description of the Related Art When a magnetoresistive element is formed on a substrate by a sputtering method, it is necessary to apply a uniform magnetic field in a certain direction to the entire substrate in order to impart uniaxial magnetic anisotropy to the formed magnetoresistive element. . In this case, a conventional U-shaped or U-shaped permanent magnet 12 as shown in FIG.
A magnet-facing magnetic circuit supported by the above has been used. In this magnet-facing magnetic circuit, a uniform magnetic field in a certain direction is formed by combining a plurality of permanent magnets 12 having different shapes with slightly different magnetization directions (arrow directions in each magnet in FIG. 4).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな磁石対向型磁気回路は、形状がそれぞれ異なる永久
磁石を使用するため、一定方向の均一磁界を形成するよ
うに組み合わせるのが容易ではなく、また、コスト的に
もよくなかった。その上、組立後に発生する恐れのあ
る、中心軸からの磁界方向の部分的乱れ(磁界平行度)
を調整することも困難であった。そこで、本発明は、経
済的かつ簡易に製作することができ、しかも、組立後に
おける磁界平行度の調整が容易であるスパッタ用磁気回
路を提供することを課題とする。
However, since such a magnet-facing magnetic circuit uses permanent magnets having different shapes, it is not easy to combine them so as to form a uniform magnetic field in a certain direction. It was not good in terms of cost. Moreover, partial disturbance in the direction of the magnetic field from the central axis, which may occur after assembly (magnetic field parallelism)
It was also difficult to adjust. SUMMARY OF THE INVENTION It is an object of the present invention to provide a magnetic circuit for sputtering that can be manufactured economically and easily, and that can easily adjust the magnetic field parallelism after assembly.

【0004】[0004]

【課題を解決するための手段】本発明者は、鋭意検討し
た結果、溝を設けたダイポールリング型磁石を用いるこ
とで、上記課題を解決し得ることを見いだし、本発明を
完成するに至った。すなわち、本発明は、長手方向に沿
って位置決め用溝を外周上に有する、径方向に磁化され
た複数の円柱磁石と、円柱磁石を収納する収納孔とその
収納孔に隣接して設けられた複数の位置合わせ用溝を有
するフレームと、上記両溝により形成される空隙に挿嵌
して円柱磁石を位置決めする位置決めピンとで構成され
ることを特徴とするダイポールリング型のスパッタ用磁
気回路である。本発明は、フレームの外周全体又は部分
的に磁性材からなるヨークを配設するのが好ましい。
Means for Solving the Problems As a result of intensive studies, the present inventor has found that the above problem can be solved by using a dipole ring type magnet provided with a groove, and has completed the present invention. . That is, in the present invention, a plurality of radially magnetized cylindrical magnets having positioning grooves on the outer circumference along the longitudinal direction, a storage hole for storing the cylindrical magnet, and a storage hole provided adjacent to the storage hole are provided. A dipole ring type sputtering magnetic circuit, comprising: a frame having a plurality of alignment grooves; and a positioning pin for positioning a cylindrical magnet by being inserted into a gap formed by the two grooves. . In the present invention, it is preferable to dispose a yoke made of a magnetic material on the entire outer periphery of the frame or partially.

【0005】[0005]

【発明の実施の形態】以下、本発明について図面を参照
して詳細に説明する。図1は本発明のスパッタ用磁気回
路の一例を示した断面図であり、図2はその一部分の拡
大図である。図1に示すように、本発明の磁気回路は、
磁化方向を徐々に変化させた複数の円柱磁石1が中心軸
対称に対向して配設され、ダイポールリング型磁気回路
を構成する。ダイポールリング型磁気回路とは、リング
の周方向に沿って磁石の磁化方向が徐々に変化し、リン
グ周上を1回転する間に、磁化方向が2回転するような
磁気回路である。円柱磁石1の個数は、磁気回路の大き
さや磁場仕様により決めればよいが、実用的には8〜3
2個で1リングを構成することが多い。こうして、上記
磁気回路の内部空間には、N極とS極の磁界が生じ、径
方向に均一な面内磁場が発生する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a sectional view showing an example of a magnetic circuit for sputtering according to the present invention, and FIG. 2 is an enlarged view of a part thereof. As shown in FIG. 1, the magnetic circuit of the present invention
A plurality of columnar magnets 1 whose magnetization directions are gradually changed are arranged to face each other symmetrically with respect to the central axis, and constitute a dipole ring type magnetic circuit. The dipole ring type magnetic circuit is a magnetic circuit in which the magnetization direction of the magnet gradually changes along the circumferential direction of the ring, and the magnetization direction rotates twice while making one rotation on the ring circumference. The number of the columnar magnets 1 may be determined according to the size of the magnetic circuit and the magnetic field specifications.
Often two rings constitute one ring. Thus, a magnetic field of N pole and S pole is generated in the internal space of the magnetic circuit, and a uniform in-plane magnetic field is generated in the radial direction.

【0006】本発明で使用する円柱磁石1は、同一形状
のものを一種類だけ使用すればよい。そのため、本発明
の磁気回路の製作は容易であり、従来のものに比べ、コ
スト的に有利である。円柱磁石1の形状は、円柱形だけ
でなく、円盤形や円筒形も含む。ただし、リング内部の
径方向に向いた均一な磁場分布を得るには、ある程度の
長手方向長さが必要である。円柱磁石1の外周上には、
その長手方向に沿って断面視半円形状の位置決め用溝を
設ける。同様に、複数の断面視半円形状の位置合わせ用
溝4をフレーム3の収納孔に隣接して設ける。そして、
位置決め用溝をフレーム3に設けた円柱磁石1との位置
合わせ用溝4のうち、所望する溝に向かい合わせ、両溝
で形成される空隙に位置決めピン2を挿嵌することによ
り、円柱磁石1を固定、位置決めできるようにする。例
えば、図2では、位置合わせ用溝4を5箇所設け、その
内の右から2番目の位置合わせ用溝4に位置合わせして
いる。本発明では、これらの溝を設けたことにより、磁
界平行度の調整を容易に行うことが可能となり、その結
果、基板全体に一定方向の均一磁界を印加できるように
なる。特に、両溝の径をなるべく小さくし、位置合わせ
用溝4を多数設けることにより、磁界平行度の微調整が
可能となる。なお、円柱磁石1には、希土類焼結磁石を
使用し、特に耐熱性(200℃程度)の理由から、温度
特性に良好なサマリウム磁石、又は耐熱性タイプのネオ
ジム磁石が好ましい。
As the cylindrical magnet 1 used in the present invention, only one type having the same shape may be used. Therefore, it is easy to manufacture the magnetic circuit of the present invention, and it is more cost effective than the conventional one. The shape of the cylindrical magnet 1 includes not only a cylindrical shape but also a disk shape and a cylindrical shape. However, in order to obtain a uniform magnetic field distribution directed in the radial direction inside the ring, a certain length in the longitudinal direction is required. On the outer periphery of the cylindrical magnet 1,
A positioning groove having a semicircular cross section is provided along the longitudinal direction. Similarly, a plurality of alignment grooves 4 having a semicircular cross section are provided adjacent to the storage holes of the frame 3. And
By positioning the positioning groove with the desired groove among the positioning grooves 4 with the cylindrical magnet 1 provided in the frame 3 and inserting the positioning pin 2 into a gap formed by both grooves, the cylindrical magnet 1 Can be fixed and positioned. For example, in FIG. 2, five positioning grooves 4 are provided, and the positioning grooves 4 are positioned in the second positioning groove 4 from the right. According to the present invention, by providing these grooves, it is possible to easily adjust the magnetic field parallelism, and as a result, a uniform magnetic field in a certain direction can be applied to the entire substrate. In particular, by making the diameters of both grooves as small as possible and providing a large number of positioning grooves 4, fine adjustment of the magnetic field parallelism becomes possible. It should be noted that a rare earth sintered magnet is used as the cylindrical magnet 1, and a samarium magnet having a good temperature characteristic or a heat-resistant neodymium magnet is preferable because of its heat resistance (about 200 ° C.).

【0007】フレーム3は非磁性材で構成し、円柱磁石
1を収納することができる複数の収納孔と円柱磁石との
位置合わせ用溝4を設ける。フレーム3の収納孔は、円
柱磁石1を挿嵌して、回転できる程度の大きさとし、な
るべく空隙がないようにするのが好ましい。空隙がある
と、磁束が外部に漏洩するからである。ただし、磁場調
整や磁場分布仕様の要求から空隙を設けることは差し支
えない。
The frame 3 is made of a non-magnetic material, and has a plurality of storage holes in which the columnar magnets 1 can be stored and grooves 4 for positioning the columnar magnets. It is preferable that the storage hole of the frame 3 be large enough to be able to rotate by inserting the columnar magnet 1 and to have as little air gap as possible. This is because if there is a gap, the magnetic flux leaks to the outside. However, it is acceptable to provide a gap due to the requirements of magnetic field adjustment and magnetic field distribution specifications.

【0008】上記位置決め用溝と位置合わせ用溝4によ
り形成される空隙に挿嵌して、円柱磁石を固定する位置
決めピン2は、材質としては、アルミ等の非磁性材を使
用すればよい。また、位置決めピン2の大きさは、位置
決め用溝と位置合わせ用溝4を合わせた大きさにする。
The positioning pin 2 for fixing the cylindrical magnet by being inserted into the gap formed by the positioning groove and the positioning groove 4 may be made of a non-magnetic material such as aluminum. Further, the size of the positioning pin 2 is set to a size obtained by combining the positioning groove and the positioning groove 4.

【0009】本発明の磁気回路は、図3に示すように、
フレーム3の外周全体又は部分的(図示せず)に磁性材
からなるヨーク5を固着、配設することにより、漏洩磁
束を低減させるのが好ましい。このヨーク5は飽和磁化
の高さ、保磁力の大きさ、機械強度、加工性、コストの
観点から磁性体とし、焼結鉄、低炭素鋼等の材料が例示
される。フレーム3にヨーク5を固着するには、接着等
の方法で行えばよい。
The magnetic circuit of the present invention, as shown in FIG.
It is preferable to reduce the leakage magnetic flux by fixing and arranging the yoke 5 made of a magnetic material on the entire outer periphery of the frame 3 or partially (not shown). The yoke 5 is made of a magnetic material from the viewpoint of the saturation magnetization, the magnitude of the coercive force, the mechanical strength, the workability, and the cost, and examples thereof include materials such as sintered iron and low carbon steel. The yoke 5 can be fixed to the frame 3 by a method such as bonding.

【0010】[0010]

【実施例】次に、実施例によって本発明をさらに詳細に
説明するが、本発明はこれに限定されるものではない。
Next, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.

【0011】(実施例)図1に示すように、直径50m
m、長さ100mmの円柱磁石16個を、アルミからな
るフレームの収納孔に挿入し、中心軸対称に配設して、
ダイポール型磁気回路を構成した。円柱磁石にはサマリ
ウム焼結磁石で、Br=10.7(kG)の磁気特性を
有するR26HS(信越化学社製、商品名)を使用し
た。そして円柱磁石の外周上に設けた位置決め用溝を、
フレームの位置合わせ用溝に位置を合わせ、位置決めピ
ンを挿嵌して円柱磁石を固定した。このフレームの外周
全体に、鉄系SS400の素材を使用し、幅が5mmの
リング状のヨークを固着した。得られた本発明のダイポ
ール型磁気回路に6インチ基板を配置し、該回路の中心
軸に対して所定の角度の位置における該基板円周上の磁
界強度分布及び磁界方向の中心軸からのズレ角(磁界平
行度)を測定し、その結果をそれぞれ図5、6に示し
た。
(Embodiment) As shown in FIG.
m, 16 cylindrical magnets having a length of 100 mm are inserted into the accommodating holes of the frame made of aluminum, and are arranged symmetrically with respect to the central axis.
A dipole magnetic circuit was constructed. As the cylindrical magnet, a sintered samarium magnet, R26HS (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) having a magnetic property of Br = 10.7 (kG) was used. And the positioning groove provided on the outer circumference of the cylindrical magnet,
The column was aligned with the positioning groove, and a positioning pin was inserted and fitted to fix the columnar magnet. A ring-shaped yoke having a width of 5 mm was fixed to the entire outer periphery of the frame using an iron-based SS400 material. A 6-inch substrate is arranged on the obtained dipole type magnetic circuit of the present invention, and the magnetic field intensity distribution on the circumference of the substrate at a position at a predetermined angle with respect to the central axis of the circuit and the deviation of the magnetic field direction from the central axis. The angle (magnetic field parallelism) was measured, and the results are shown in FIGS.

【0012】(比較例)比較のために、特開平10−2
7313号公報に記載された、図4に示すような従来の
磁石対向型磁気回路で、実施例と同様の測定を行い、そ
の結果をそれぞれ図5、6に示した。
Comparative Example For comparison, see Japanese Patent Application Laid-Open No. 10-2
The same measurement as in the example was performed using a conventional magnet-facing magnetic circuit as shown in FIG. 4 described in US Pat. No. 7313, and the results are shown in FIGS.

【0013】(評価)図5、6からわかるように、本発
明の磁気回路は従来のものに比べ、磁界強度分布が約5
0%、磁界平行度が2.5〓程度から1.0〓以内に改
善された。
(Evaluation) As can be seen from FIGS. 5 and 6, the magnetic circuit of the present invention has a magnetic field intensity distribution of about 5
0%, the magnetic field parallelism was improved from about 2.5 ° to within 1.0 °.

【0014】[0014]

【発明の効果】本発明の磁気回路は、経済的かつ簡易に
製作することができ、しかも、組立後における磁界平行
度の調整が容易であるため、スパッタ成膜する工程で、
基板に均一磁界を印加するのに適する。
The magnetic circuit of the present invention can be manufactured economically and easily, and the adjustment of the magnetic field parallelism after assembly is easy.
Suitable for applying a uniform magnetic field to the substrate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のスパッタ用磁気回路の一例を示した断
面図である。
FIG. 1 is a sectional view showing an example of a magnetic circuit for sputtering according to the present invention.

【図2】本発明のスパッタ用磁気回路の一部を拡大した
拡大図である。
FIG. 2 is an enlarged view of a part of a magnetic circuit for sputtering according to the present invention;

【図3】フレームの外周にヨークを配設した本発明のス
パッタ用磁気回路の一例を示した断面図である。
FIG. 3 is a cross-sectional view showing an example of a magnetic circuit for sputtering according to the present invention in which a yoke is provided on the outer periphery of a frame.

【図4】従来の磁石対向型磁気回路の断面図である。FIG. 4 is a cross-sectional view of a conventional magnet-facing magnetic circuit.

【図5】実施例及び比較例の磁界強度を示す図である。FIG. 5 is a diagram illustrating magnetic field strengths of an example and a comparative example.

【図6】実施例及び比較例の磁界平行度を示す図であ
る。
FIG. 6 is a diagram illustrating the magnetic field parallelism of an example and a comparative example.

【符号の説明】[Explanation of symbols]

1 円柱磁石 2 位置決めピン 3 フレーム 4 位置合わせ用溝 5、11 ヨーク 12 永久磁石 Reference Signs List 1 cylindrical magnet 2 positioning pin 3 frame 4 positioning groove 5, 11 yoke 12 permanent magnet

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成10年7月21日(1998.7.2
1)
[Submission date] July 21, 1998 (7.27.2
1)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0013】(評価)図5、6からわかるように、本発
明の磁気回路は従来のものに比べ、磁界強度分布が約5
0%、磁界平行度が2.5°程度から1.0°以内に改
善された。
(Evaluation) As can be seen from FIGS. 5 and 6, the magnetic circuit of the present invention has a magnetic field intensity distribution of about 5
0%, the magnetic field parallelism was improved from about 2.5 ° to within 1.0 ° .

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 長手方向に沿って位置決め用溝を外周上
に有する、径方向に磁化された複数の円柱磁石と、円柱
磁石を収納する収納孔とその収納孔に隣接して設けられ
た複数の位置合わせ用溝を有するフレームと、上記両溝
により形成される空隙に挿嵌して円柱磁石を位置決めす
る位置決めピンとで構成されることを特徴とするダイポ
ールリング型のスパッタ用磁気回路。
1. A plurality of radially magnetized cylindrical magnets having positioning grooves on the outer circumference along a longitudinal direction, a plurality of storage holes for storing the cylindrical magnets, and a plurality of storage holes provided adjacent to the storage holes. A dipole ring-type magnetic circuit for sputtering, comprising: a frame having the positioning grooves described above; and a positioning pin for positioning the cylindrical magnet by being inserted into a gap formed by the two grooves.
【請求項2】 フレームの外周に磁性材からなるヨーク
を配設した請求項1記載のスパッタ用磁気回路。
2. The sputter magnetic circuit according to claim 1, wherein a yoke made of a magnetic material is provided on an outer periphery of the frame.
【請求項3】 ヨークをフレームの外周全体に配設した
請求項2記載のスパッタ用磁気回路。
3. The magnetic circuit for sputtering according to claim 2, wherein the yoke is disposed on the entire outer periphery of the frame.
【請求項4】 ヨークをフレームの外周に部分的に配設
した請求項2記載のスパッタ用磁気回路。
4. The magnetic circuit for sputtering according to claim 2, wherein the yoke is partially disposed on the outer periphery of the frame.
JP10201622A 1998-07-16 1998-07-16 Magnetic circuit for sputtering Pending JP2000030963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10201622A JP2000030963A (en) 1998-07-16 1998-07-16 Magnetic circuit for sputtering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10201622A JP2000030963A (en) 1998-07-16 1998-07-16 Magnetic circuit for sputtering

Publications (1)

Publication Number Publication Date
JP2000030963A true JP2000030963A (en) 2000-01-28

Family

ID=16444122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10201622A Pending JP2000030963A (en) 1998-07-16 1998-07-16 Magnetic circuit for sputtering

Country Status (1)

Country Link
JP (1) JP2000030963A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6616816B2 (en) 2000-08-01 2003-09-09 Anelva Corporation Substrate processing device and method
JP2004304173A (en) * 2003-03-17 2004-10-28 Neomax Co Ltd Generation magnetic field equipment, and magnetic field orientation equipment using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6616816B2 (en) 2000-08-01 2003-09-09 Anelva Corporation Substrate processing device and method
JP2004304173A (en) * 2003-03-17 2004-10-28 Neomax Co Ltd Generation magnetic field equipment, and magnetic field orientation equipment using the same

Similar Documents

Publication Publication Date Title
US11410808B2 (en) Rotary encoder with shielded magnet
WO2002078018A1 (en) Magnetic field generator
KR950020782A (en) Dipole ring magnet for magnetron sputtering or magnetron etching
JP2009066399A (en) Magnet system and mri apparatus
JP6449090B2 (en) Magnetic encoder magnetizer
JP6437025B2 (en) Low stray field permanent magnet arrangement for MR devices
KR20170015235A (en) Dipole ring magnetic field generator
JP2000030963A (en) Magnetic circuit for sputtering
JPH10239338A (en) Detector
JP2000173851A (en) Magnetic circuit for sputtering
JP2000182877A (en) Magnetic circuit for sputtering
JP4617279B2 (en) Magnetic circuit and magnetic field application method
JP2014003207A (en) Cylindrical magnetic circuit and assembly method thereof
JP4218762B2 (en) Magnetic field heat treatment equipment
US20080055029A1 (en) Method for manufacturing stator, and magnetizing core
JP4648876B2 (en) Magnetic circuit for radial magnetic field generation
JP2001074499A (en) Magnetic-type encoder and magnetic scale
JP2002199669A (en) Magnetizing method for permanent magnet
JP2627848B2 (en) Permanent magnet disk
JP2007242140A (en) Magnetoresistance effect type reproducing head and magnetic disk device
JP2536297Y2 (en) Magnetic circuit for sputtering equipment
JPH07113698A (en) Torque sensor
JP2005042184A5 (en)
JP2000230551A (en) Superconducting bearing device and assembling method for its magnetic part
SU918987A1 (en) Magnetic lens