JP2000028394A - Capacitance-type detecting apparatus - Google Patents

Capacitance-type detecting apparatus

Info

Publication number
JP2000028394A
JP2000028394A JP10200059A JP20005998A JP2000028394A JP 2000028394 A JP2000028394 A JP 2000028394A JP 10200059 A JP10200059 A JP 10200059A JP 20005998 A JP20005998 A JP 20005998A JP 2000028394 A JP2000028394 A JP 2000028394A
Authority
JP
Japan
Prior art keywords
circuit
output
sensor
signal
input terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10200059A
Other languages
Japanese (ja)
Other versions
JP3326521B2 (en
Inventor
Takeshi Endo
武 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP20005998A priority Critical patent/JP3326521B2/en
Publication of JP2000028394A publication Critical patent/JP2000028394A/en
Application granted granted Critical
Publication of JP3326521B2 publication Critical patent/JP3326521B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a capacitance-type detecting apparatus which prevents the noise and the drift of a sensor output from being amplified and output. SOLUTION: The apparatus comprises a square-wave generator 6. The apparatus is composed of a phase conversion circuit 41 by which the output of the square-wave generator 6 is converted into sawtooth waves through a time constant circuit so as to be input to a threshold circuit and which outputs square waves whose phase is delayed by a prescribed time τ3. The apparatus is composed of a synchronous frequency divider circuit 42 by which the output of the square-wave generator 6 is frequency-divided to 1/2 so as to generate a sensor driving signal SD and by which the output of the phase conversion circuit 41 to 1/2 so as to generate a sensor driving signal SE which is delayed by the prescribed time τ3 from the phase of the signal SD. The apparatus is composed of a capacitance-type PWM output sensor 8 by which the signal SD is applied to the input terminal, on one side, of an EXOR circuit 7 through a time constant circuit composed of a resistor R1 and a capacitor C1, by which the signal SE is applied to the input terminal, on the other side, of the EXOR circuit 7 through a time constant circuit composed of a resistor R2 and a capacitor C2 (which is changed differentially with reference to the capacitor C1) and which obtains a PWM(pulse- width mudulation) signal from the output of the EXOR circuit 7. The apparatus comprises a detection circuit 20. In addition, the apparatus is composed of a feedback amplifier 33 which amplifies the output of the detection circuit 20 so as to be fed back to a threshold circuit inside the phase conversion circuit 41 and which controls its threshold.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】この発明は、外力、圧力、加速度等を検出
する静電容量式PWM出力センサを用いた静電容量式検
出装置に関する。
The present invention relates to a capacitance type detection device using a capacitance type PWM output sensor for detecting external force, pressure, acceleration and the like.

【0002】[0002]

【従来の技術】従来のこの種の静電容量式検出装置は図
8に示すように、矩形波発生器6と静電容量式PWM出
力センサ8とPWMパルス復調器10で構成される。静
電容量式PWM出力センサ(以下センサと言う)8には
例えばデューティ比50%の矩形波の駆動信号S0が印
加される。駆動信号S0は抵抗器R1とコンデンサC1
より成る第1の時定数回路及び抵抗器R2とコンデンサ
C2より成る第2の時定数回路を介してAND回路7の
二つの入力端子にそれぞれ与えられる。
2. Description of the Related Art As shown in FIG. 8, this type of conventional capacitance-type detection device comprises a rectangular wave generator 6, a capacitance-type PWM output sensor 8, and a PWM pulse demodulator 10. A drive signal S0 of a rectangular wave having a duty ratio of, for example, 50% is applied to a capacitance type PWM output sensor (hereinafter referred to as a sensor) 8. The drive signal S0 includes a resistor R1 and a capacitor C1.
And a second time constant circuit comprising a resistor R2 and a capacitor C2.

【0003】R1、C1の時定数τ1とR2、C2の時
定数τ2とは、例えば標準圧力のとき、τ1=τ2に設
定されており、これら時定数回路の出力S1、S2は例
えば図9Aに示すような歪んだ波形となる。時定数τ
1,τ2を調整することにより、AND回路7の出力に
は図9Bのように、例えばデェーティ比50%の波形が
得られる。
The time constant τ1 of R1 and C1 and the time constant τ2 of R2 and C2 are set to τ1 = τ2 at a standard pressure, for example. The outputs S1 and S2 of these time constant circuits are shown in FIG. The waveform becomes distorted as shown. Time constant τ
By adjusting 1, τ2, a waveform having a duty ratio of, for example, 50% is obtained at the output of the AND circuit 7 as shown in FIG. 9B.

【0004】コンデンサC1,C2の容量は圧力等によ
って差動的に変化する。例えば圧力が標準値から減少す
ると、その変化に応じて、C1の容量が減少し、C2の
容量が増加する。その結果、時定数τ1は減少し、τ2
は増加し、センサ出力S3のデューティ比は50%より
減少する。また、圧力が標準値から増加すると、逆にデ
ューティ比は50%より増加する。
[0004] The capacitances of the capacitors C1 and C2 change differentially with pressure or the like. For example, when the pressure decreases from the standard value, the capacity of C1 decreases and the capacity of C2 increases according to the change. As a result, the time constant τ1 decreases and τ2
Increases, and the duty ratio of the sensor output S3 decreases from 50%. When the pressure increases from the standard value, the duty ratio increases more than 50%.

【0005】次にPWMパルス復調器10について説明
する。入力端子11よりの入力PWMパルスS3は排他
的論理和回路より成る振幅可変回路21の一方の入力端
へ供給され、他方の入力端は接地される。振幅可変回路
21の出力は平滑フィルタ22で平滑され、その平滑出
力は比較増幅器23の非反転入力端へ供給される。基準
電源24の基準電圧Er がバイアスバランス回路25を
通じて比較増幅器23の反転入力端へ印可される。
Next, the PWM pulse demodulator 10 will be described. The input PWM pulse S3 from the input terminal 11 is supplied to one input terminal of an amplitude variable circuit 21 composed of an exclusive OR circuit, and the other input terminal is grounded. The output of the amplitude variable circuit 21 is smoothed by a smoothing filter 22, and the smoothed output is supplied to a non-inverting input terminal of a comparison amplifier 23. The reference voltage Er of the reference power supply 24 is applied to the inverting input terminal of the comparison amplifier 23 through the bias balance circuit 25.

【0006】比較増幅器23の出力は出力端子15へ供
給されると共に、差動増幅器26の反転入力端へ供給さ
れる。差動増幅器26の非反転入力端に出力基準電圧E
roが印加される。この差動増幅器26の反転入力端と直
列に、コンデンサ28と抵抗素子29の並列回路が挿入
され、また差動増幅器26の反転入力端と出力端の間に
抵抗素子31が接続される。差動増幅器26、コンデン
サ28、抵抗素子29,31より成る帰還増幅器33は
高域通過フィルタ(比較増幅器23と組み合わせた閉ル
ープで低域通過フィルタとなる)としても動作してい
る。差動増幅器26の出力端は振幅可変回路21の排他
的論理和回路の動作電源端子に接続されて帰還電圧VF
が印加される。
The output of the comparison amplifier 23 is supplied to the output terminal 15 and to the inverting input terminal of the differential amplifier 26. The output reference voltage E is applied to the non-inverting input terminal of the differential amplifier 26.
ro is applied. A parallel circuit of a capacitor 28 and a resistance element 29 is inserted in series with the inverting input terminal of the differential amplifier 26, and a resistance element 31 is connected between the inverting input terminal and the output terminal of the differential amplifier 26. The feedback amplifier 33 including the differential amplifier 26, the capacitor 28, and the resistance elements 29 and 31 also operates as a high-pass filter (a low-pass filter in a closed loop combined with the comparison amplifier 23). The output terminal of the differential amplifier 26 is connected to the operation power supply terminal of the exclusive OR circuit of the amplitude variable circuit 21 and receives the feedback voltage V F
Is applied.

【0007】従って振幅可変回路21から出力されるパ
ルスは幅が入力PWMパルスS3の幅と一致し、振幅が
帰還電圧VF にほぼ等しくなる。入力端子11よりの入
力PWMパルスS3のデューティ比が50%で、出力端
子15の出力電圧V0 が出力基準電圧Er0、例えば5V
になるように基準電圧E r を調整する。
Therefore, the output from the amplitude variable circuit 21 is
The width is equal to the width of the input PWM pulse S3, and the amplitude is
Feedback voltage VFIs almost equal to Input from input terminal 11
When the duty ratio of the power PWM pulse S3 is 50% and the output terminal
Output voltage V of child 150Is the output reference voltage Er0, For example, 5V
So that the reference voltage E rTo adjust.

【0008】PWMパルスS3のデューティ比が50%
を越えると、平滑フィルタ22の出力レベルが上がりこ
れに応じて比較増幅器23の出力V0 が増加し、その増
加分が差動増幅器26で反転増幅され、帰還電圧VF
即ち振幅可変回路21の電源電圧が減少し、従って、振
幅可変回路21の出力はパルスの振幅が減少し、平滑フ
ィルタ22の出力電圧が減少し、出力電圧V0 が減少す
る。つまり負帰還がかかり、比較増幅器23の利得は著
しく大きいが、出力電圧V0 は入力PWMパルスのパル
ス幅に応じて、出力基準電圧Er0より高いレベルで安定
する。
[0008] The duty ratio of the PWM pulse S3 is 50%
, The output level of the smoothing filter 22 rises, and the output V 0 of the comparison amplifier 23 increases accordingly. The increase is inverted and amplified by the differential amplifier 26, and the feedback voltage V F ,
That is, the power supply voltage of the amplitude variable circuit 21 decreases, and accordingly, the amplitude of the pulse output from the amplitude variable circuit 21 decreases, the output voltage of the smoothing filter 22 decreases, and the output voltage V 0 decreases. That is, negative feedback is applied, and the gain of the comparison amplifier 23 is extremely large, but the output voltage V 0 is stabilized at a level higher than the output reference voltage Er 0 according to the pulse width of the input PWM pulse.

【0009】入力PWMパルスS3のデューティ比が5
0%より下ると同様に動作してパルス幅に応じて、出力
基準電圧Er0より低い出力電圧V0 が得られる。
The duty ratio of the input PWM pulse S3 is 5
Depending on the pulse width operates similarly when down than 0%, the output voltage V 0 is lower than the output reference voltage E r0 obtained.

【0010】[0010]

【発明が解決しようとする課題】従来の回路では、セン
サ8と復調器10とが独立しており復調器の利得を大き
くした場合、何等かの原因でセンサ8の出力のノイズ及
びドリフトが大きくなると、これらは復調器10の比較
増幅器23で増幅され、出力V0 の安定性が悪くなると
云う問題があった。
In the conventional circuit, when the sensor 8 and the demodulator 10 are independent and the gain of the demodulator is increased, the noise and the drift of the output of the sensor 8 increase for some reason. Then, these are amplified by the comparison amplifier 23 of the demodulator 10 and there is a problem that the stability of the output V 0 is deteriorated.

【0011】[0011]

【課題を解決するための手段】(1) 請求項1の静電
容量式検出装置は、矩形波発生器と、その矩形波発生器
の出力を時定数回路を通して鋸歯状波に変換し、その鋸
歯状波をしきい値回路に入力して、矩形波発生器の出力
の位相を所定時間(τ3)だけ遅らせた矩形波を出力す
る位相変換回路と、矩形波発生器の出力の周波数を第1
フリップフロップ回路により1/2に分周して第1セン
サ駆動信号を発生すると共に位相変換回路の出力の周波
数を第2フリップフロップ回路により1/2に分周し、
第1センサ駆動信号の位相より前記所定時間(τ3)だ
け遅れた分周出力を第2センサ駆動信号として発生する
同期分周回路と、第1センサ駆動信号を第1直列入力抵
抗(R1)と第1並列センサ容量(C1)より成る第1
時定数回路を通して排他的論理和回路(EXORと言
う)の一方の入力端子に加え、第2センサ駆動信号を第
2直列入力抵抗(R2)と第2並列センサ容量(C2;
C1と差動的に変化する)より成る第2時定数回路を通
してEXORの他方の入力端子に加え、そのEXOR出
力よりPWM(パルス幅変調)信号を得る静電容量式P
WM出力センサと、そのPWM信号を直流に変換して外
部に出力する検波回路と、検波回路の出力を増幅して、
その増幅した信号を位相変換回路内のしきい値回路に帰
還して、そのしきい値を制御する帰還増幅器とを具備す
るものである。 (2) 請求項2の発明は、前記(1)において、矩形
波発生器の出力を時定数回路を通して鋸歯状波に変換
し、その鋸歯状波をしきい値回路に入力して、矩形波発
生器の出力の位相を所定時間(τ4)だけ遅らせた矩形
波を得、その矩形波を同期分周回路の第1フリップフロ
ップ回路に入力する第2の位相変換回路と、帰還増幅器
の出力の極性を反転して、その極性反転した信号を第2
の位相変換回路内のしきい値回路に帰還してそのしきい
値を制御する極性反転回路と、を追加したものである。 (3) 請求項3の発明は、前記(1)または(2)に
おいて、帰還増幅器または極性反転回路の出力が、位相
変換回路または第2の位相変換回路のしきい値回路の電
源入力端子に与えられているものである。 (4) 請求項4の発明は前記(1)または(2)にお
いて、位相変換回路または第2の位相変換回路のしきい
値回路が片方の入力端子を接地した排他的論理和回路、
または両方の入力端子を互いに接続したAND回路また
はOR回路より成るものである。 (5) 請求項5の発明は、前記(1),(2)のいず
れかにおいて、同期分周回路のフリップフロップ回路の
一方及び他方の出力端子が第2フリップ回路の一方及び
他方の入力端子にそれぞれ接続されているものである。 (6) 請求項6の発明は、前記(5)において、第
1、第2フリップフロップ回路がJKフリップフロップ
回路とされている。 (7) 請求項7の静電容量式検出装置は、矩形波発生
器と、その矩形波発生器の出力を第1直列入力抵抗(R
1)と第1並列センサ容量(C1,C1’)より成る第
1時定数回路を通して、AND回路またはOR回路より
成るゲート回路の一方の入力端子に加え、矩形波発生器
の出力を第2直列入力抵抗(R2)と第2並列センサ容
量(C2,C2’)より成る第2時定数回路を通してゲ
ート回路の他方の入力端子に加え、そのゲート回路の出
力によりPWM信号を得る静電容量式PWM出力センサ
と、PWM出力センサの出力を入力して、その入力信号
の振幅を一定にして出力する振幅固定回路と、その振幅
固定回路の出力を直流に変換して外部に出力する検波回
路と、検波回路の出力を増幅して、その増幅した信号を
PWM出力センサの前記ゲート回路の電源入力端子に帰
還して、そのゲート回路のしきい値を制御する帰還増幅
器とを具備するものである。 (8) 請求項8の静電容量式検出装置は、矩形波発生
器と、その矩形波発生器の出力の振幅を可変する振幅可
変回路と、その振幅可変回路の出力を第1直列入力抵抗
(R1)と第1並列センサ容量(C1,C1’)より成
る第1時定数回路を通して、AND回路またはOR回路
より成るゲート回路の一方の入力端子に加え、振幅可変
回路の出力を第2直列入力抵抗(R2)と第2並列セン
サ容量(C2,C2’)より成る第2時定数回路を通し
てゲート回路の他方の入力端子に加え、そのゲート回路
の出力よりPWM信号を得る静電容量式PWM出力セン
サと、そのPWM出力センサの出力を直流に変換して外
部に出力する検波回路と、その検波回路の出力を増幅し
て、その増幅した信号を振幅可変回路に与えて、その出
力の振幅を制御する帰還増幅器とを具備するものであ
る。 (9) 請求項9の発明は、前記(8)において、振幅
可変回路が両方の入力端子を互いに接続したAND回路
またはOR回路より成り、その電源入力端子に帰還増幅
器の出力が与えられているものである。
According to a first aspect of the present invention, there is provided an electrostatic capacitance type detection device which converts a rectangular wave generator and an output of the rectangular wave generator into a sawtooth wave through a time constant circuit. A phase conversion circuit that inputs a sawtooth wave to a threshold circuit and outputs a rectangular wave obtained by delaying the phase of the output of the rectangular wave generator by a predetermined time (τ3); 1
A first sensor drive signal is generated by dividing the frequency by に よ り by a flip-flop circuit, and the frequency of the output of the phase conversion circuit is divided by に よ り by a second flip-flop circuit.
A synchronous frequency dividing circuit for generating a frequency-divided output delayed from the phase of the first sensor drive signal by the predetermined time (τ3) as a second sensor drive signal; a first sensor drive signal for a first series input resistor (R1); A first parallel sensor capacitance (C1)
In addition to one input terminal of an exclusive OR circuit (referred to as EXOR) through a time constant circuit, a second sensor drive signal is supplied to a second series input resistor (R2) and a second parallel sensor capacitance (C2;
C1) which is differentially changed from C1) to the other input terminal of the EXOR, and obtains a PWM (Pulse Width Modulation) signal from the EXOR output.
A WM output sensor, a detection circuit that converts the PWM signal into DC and outputs the DC signal to the outside, and amplifies the output of the detection circuit.
A feedback amplifier for feeding back the amplified signal to a threshold circuit in the phase conversion circuit and controlling the threshold. (2) The invention according to claim 2, wherein in (1), the output of the rectangular wave generator is converted into a sawtooth wave through a time constant circuit, and the sawtooth wave is input to a threshold circuit, A second phase conversion circuit that obtains a rectangular wave whose output phase of the generator is delayed by a predetermined time (τ4) and inputs the rectangular wave to a first flip-flop circuit of a synchronous frequency divider; The polarity is inverted and the inverted signal is
And a polarity inversion circuit for controlling the threshold value by feeding back to the threshold value circuit in the phase conversion circuit. (3) In the invention according to claim 3, in the above (1) or (2), the output of the feedback amplifier or the polarity inversion circuit is connected to the power supply input terminal of the threshold value circuit of the phase conversion circuit or the second phase conversion circuit. Is given. (4) The exclusive-OR circuit according to (1) or (2), wherein the threshold circuit of the phase conversion circuit or the second phase conversion circuit has one input terminal grounded.
Or an AND circuit or an OR circuit in which both input terminals are connected to each other. (5) The invention according to claim 5, wherein in any one of (1) and (2), one and the other output terminals of the flip-flop circuit of the synchronous frequency divider circuit are one and the other input terminal of the second flip circuit. Are connected to each other. (6) In the invention of claim 6, in the above (5), the first and second flip-flop circuits are JK flip-flop circuits. (7) The capacitance type detection device according to claim 7, wherein a rectangular wave generator and an output of the rectangular wave generator are connected to a first series input resistor (R
1) through a first time constant circuit comprising a first parallel sensor capacitor (C1, C1 '), to one input terminal of a gate circuit comprising an AND circuit or an OR circuit, and to output the output of the rectangular wave generator to a second series circuit. A capacitive PWM that obtains a PWM signal by an output of the gate circuit in addition to the other input terminal of the gate circuit through a second time constant circuit including an input resistance (R2) and a second parallel sensor capacitance (C2, C2 ′). An output sensor, a fixed-amplitude circuit that receives the output of the PWM output sensor and outputs the input signal with a constant amplitude, a detection circuit that converts the output of the fixed-amplitude circuit to DC and outputs the same to the outside, A feedback amplifier that amplifies the output of the detection circuit, feeds back the amplified signal to a power input terminal of the gate circuit of the PWM output sensor, and controls a threshold value of the gate circuit. A. (8) A capacitance type detection device according to claim 8, wherein a rectangular wave generator, an amplitude variable circuit for varying the amplitude of the output of the rectangular wave generator, and an output of the variable amplitude circuit are connected to a first serial input resistor. (R1) and a first parallel sensor capacitor (C1, C1 ') through a first time constant circuit, to one input terminal of a gate circuit formed of an AND circuit or an OR circuit, and to output the output of the variable amplitude circuit to a second series circuit. A capacitive PWM that obtains a PWM signal from the output of the gate circuit in addition to the other input terminal of the gate circuit through a second time constant circuit including an input resistor (R2) and a second parallel sensor capacitance (C2, C2 ′). An output sensor, a detection circuit for converting the output of the PWM output sensor into a direct current and outputting the output to the outside, amplifying the output of the detection circuit, giving the amplified signal to an amplitude variable circuit, Control the return Those comprising an amplifier. (9) In the ninth aspect of the present invention, in the above (8), the amplitude variable circuit comprises an AND circuit or an OR circuit having both input terminals connected to each other, and the output of the feedback amplifier is given to the power supply input terminal. Things.

【0012】[0012]

【発明の実施の形態】(1) 実施例1 この発明の第1の実施例を図1、図2に図8と対応する
部分に同じ符号を付けて示す。この発明の静電容量式検
出装置は、矩形波発生器6、静電容量式PWM出力セン
サ8、検波回路20、帰還増幅器33、位相変換回路4
1及び同期分周回路42からなる。センサ8の一方の駆
動信号SDの周波数及び位相を位相変換回路41及び同
期分周回路42によりあらかじめ遅れた位相で駆動する
もので、外力“0”の時のPWM出力パルス幅を時定数
τ1,τ2により設定する。センサ8は回路20−33
−41−42−8より成るフィードバックループ内に組
み込まれている。検波回路20は、PWM信号SGを平
滑し、比較増幅器23よりV0 を出力し、帰還増幅器3
3はV0 の極性を反転した信号を出力する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (1) Embodiment 1 A first embodiment of the present invention is shown in FIGS. 1 and 2 by attaching the same reference numerals to parts corresponding to those in FIG. The capacitance type detection device of the present invention includes a rectangular wave generator 6, a capacitance type PWM output sensor 8, a detection circuit 20, a feedback amplifier 33, and a phase conversion circuit 4.
1 and a synchronous frequency dividing circuit 42. The frequency and phase of one of the driving signals SD of the sensor 8 are driven with a phase delayed by a phase conversion circuit 41 and a synchronization frequency dividing circuit 42. When the external force is "0", the PWM output pulse width is set to a time constant τ1, Set by τ2. The sensor 8 is a circuit 20-33
-41-42-8. The detection circuit 20 smoothes the PWM signal SG, outputs V 0 from the comparison amplifier 23,
3 outputs a signal in which the polarity of V 0 is inverted.

【0013】位相変換回路41及び同期分周回路42
は、帰還信号VF を、位相変換回路41のしきい値回路
(EXORより成る)43の電源入力にすることによ
り、アナログ帰還信号VF に応じてしきい値が変化し、
出力信号SCの位相を早めることができる。以上の様に
センサ8の出力SHに対し、センサ8の駆動信号SEの
位相を制御することにより出力V0 の安定を図ることが
できる。即ち、PWM出力センサ8がフィードバックル
ープに組み込まれていることで出力の安定が図られてい
る。
The phase conversion circuit 41 and the synchronization frequency dividing circuit 42
Is the feedback signal V F, (consisting EXOR) threshold circuit of the phase conversion circuit 41 by the power input 43, the threshold is changed according to the analog feedback signal V F,
The phase of the output signal SC can be advanced. As described above, the output V 0 can be stabilized by controlling the phase of the drive signal SE of the sensor 8 with respect to the output SH of the sensor 8. In other words, the output is stabilized by incorporating the PWM output sensor 8 in the feedback loop.

【0014】位相変換回路41はR3,C3より成る時
定数回路を持ち、駆動パルスSAを入力とし、EXOR
より成るしきい値回路43の電源電圧変化によるしきい
値V thの変化を利用し、出力SCの位相変化を得るもの
で出力SCは位相と共に出力デューティ(幅)も同時に
変化する為、この信号SCを同期分周回路42のT型フ
リップフロップ回路F/F2により分周することにより
デューティ比50%の駆動パルスSEを出力する。また
入力駆動パルスSAと同期分周回路42のF/F1(T
型F/F)で分周することにより、センサ8のデューテ
ィ比50%の一方の駆動パルスSDを得る。駆動パルス
SDとSEとは入力駆動パルスSAに同期しており、従
って互いに同期したパルスである。センサ出力SHはS
Aの立下りよりa時間だけ遅れて立下る。この遅延時間
aはセンサ8の時定数τ1(R1,C1)=τ2(R
2,C2)により遅れる時間であり、SHの幅bはセン
サの入力(例えば圧力、外力等)がゼロまたは標準値で
あるときの幅であり、位相変換回路41のR3,C3の
時定数τ3によって定まる。
When the phase conversion circuit 41 is composed of R3 and C3
It has a constant circuit, receives drive pulse SA as input,
Caused by power supply voltage change of the threshold circuit 43 composed of
Value V thTo obtain the phase change of the output SC using the change of
The output SC has the phase and the output duty (width) at the same time
Therefore, the signal SC is transmitted to the T-type
By dividing by the flip-flop circuit F / F2
A drive pulse SE having a duty ratio of 50% is output. Also
The input drive pulse SA and the F / F1 (T
By dividing the frequency by the type F / F, the duty
One drive pulse SD having a ratio of 50% is obtained. Drive pulse
SD and SE are synchronized with the input drive pulse SA, and
Are pulses synchronized with each other. The sensor output SH is S
It falls after a time delay from the fall of A. This delay time
a is the time constant τ1 (R1, C1) = τ2 (R
2, C2), and the SH width b is
Input (eg pressure, external force, etc.) is zero or standard value
It is a width at a certain time, and R3 and C3 of the phase conversion circuit 41
It is determined by the time constant τ3.

【0015】なお、しきい値回路43としてEXORの
代わりに2つの入力端子を互いに接続したANDゲート
またはORゲートを用いることもできる。図3に示す同
期分周回路は静電容量式PWMセンサ8へ駆動パルスS
D及びSEを供給するもので、SE信号はSD信号に対
し位相変換回路41による遅延時間を持つ相似信号でな
ければならない。フリップフロップ回路F/F1,F/
F2を各々独立に2回路動作させた場合、電源投入時あ
るいは片方がノイズによる誤作動をした場合等出力SE
の極性設定ができなくなる。本回路は常に同期極性分周
出力を得る為の回路で、Q1とJ2,Q- 1 とK2を接
続することによりF/F1の出力極性に従属し作動す
る。図3に示す様にSDはF/F2の極性判別出力とな
り、ノイズ作動を少なくすると共に、SE出力幅に影響
を生ずる作動をしてもその影響をノイズ作動した1周期
パルスのみに押さえる事ができる。 (2) 実施例2 第2の実施例を図4に示す。図4では図1の回路に、帰
還極性反転回路45、位相変換回路46を追加し、セン
サ8の2つの駆動信号SD,SEの位相を帰還制御する
ことにより出力V0 の安定化を図っている。しきい値回
路43,47として2つの入力端子を互いに接続したA
NDゲートまたはORゲートを用いてもよい。 (3) 実施例3 第3の実施例を図5、図6に示す。検出装置は、矩形波
発生器6とセンサ(ANDまたはOR信号処理)8と振
幅固定回路51、検波回路20、帰還増幅器33からな
り、センサ8はあらかじめセンサ外部に取付けたキャパ
シタC2’またはC1’により外力“0”または基準値
の時の出力S3のパルス幅を時定数τ1とτ2の差によ
り設定する。インバータ回路より成る振幅固定回路51
は、センサ出力S3の振幅変動を除去し、一定振幅のP
WM信号S4を出力する。検波回路20はこのPWM信
号S4を平滑(アナログ変換)し、増幅した信号V0
出力する。帰還増幅器33は出力信号V0 の極性を反転
し、センサ8のANDまたはOR回路7’の電源端子に
接続する。外力によりセンサ8の時定数τ1,τ2か差
動的8に変化され、パルス幅変調された出力信号S3に
対し、AND/OR回路7’のしきい値Vthを制御し、
出力の安定を図っている。
It should be noted that an AND gate or OR gate having two input terminals connected to each other can be used as the threshold circuit 43 instead of EXOR. The synchronous frequency dividing circuit shown in FIG.
In order to supply D and SE, the SE signal must be a similar signal having a delay time by the phase conversion circuit 41 with respect to the SD signal. Flip-flop circuits F / F1, F /
Output SE when F2 is operated independently by two circuits, when power is turned on, or when one of them malfunctions due to noise.
Cannot be set. This circuit is a circuit for always obtaining a synchronous polarity frequency divided output, and operates depending on the output polarity of F / F1 by connecting Q1 and J2 and Q - 1 and K2. As shown in FIG. 3, SD becomes an output for discriminating the polarity of F / F2, thereby reducing the noise operation and suppressing the effect to only the one-period pulse that operates the noise even if the operation has an effect on the SE output width. it can. (2) Embodiment 2 FIG. 4 shows a second embodiment. In FIG. 4, a feedback polarity inversion circuit 45 and a phase conversion circuit 46 are added to the circuit of FIG. 1, and the output V 0 is stabilized by feedback controlling the phases of the two drive signals SD and SE of the sensor 8. I have. A circuit in which two input terminals are connected to each other as threshold circuits 43 and 47
An ND gate or an OR gate may be used. (3) Embodiment 3 FIGS. 5 and 6 show a third embodiment. The detection device comprises a rectangular wave generator 6, a sensor (AND or OR signal processing) 8, an amplitude fixing circuit 51, a detection circuit 20, and a feedback amplifier 33, and the sensor 8 is a capacitor C2 'or C1' previously mounted outside the sensor. , The pulse width of the output S3 at the time of the external force “0” or the reference value is set by the difference between the time constants τ1 and τ2. Amplitude fixing circuit 51 composed of an inverter circuit
Removes fluctuations in the amplitude of the sensor output S3, and sets P
The WM signal S4 is output. Detection circuit 20 is the PWM signal S4 and smooth (analog conversion), and outputs a signal V 0 obtained by amplifying. The feedback amplifier 33 inverts the polarity of the output signal V 0 and connects it to the power supply terminal of the AND or OR circuit 7 ′ of the sensor 8. The time constants τ1 and τ2 of the sensor 8 are changed to the differential 8 by the external force, and the threshold value V th of the AND / OR circuit 7 ′ is controlled with respect to the pulse width modulated output signal S3.
The output is stabilized.

【0016】センサ8の出力段7がANDの場合はC
2’を付けてτ1<τ2とし、ORの場合はC1’を付
けてτ1>τ2とする。いずれの場合も、外力によりC
1が減少し、C2が増加すると、センサ出力S3のH
(ハイ)レベルの期間が減少する。振幅固定回路(イン
バータ)51の出力S4は逆にHレベルの期間が増加す
る。 (4) 実施例4 第4の実施例を図7に示す。矩形波発生器6とセンサ
(ANDまたはOR信号処理)8と検波回路20と、帰
還増幅器33と、振幅可変回路21とからなり、センサ
8は、あらかじめセンサ外部に取付けたキャパシタC
2’またはC1’により外力“0”または基準値の時の
出力S5のパルス幅を時定数τ1,τ2の差により設定
する。検波回路20はこのセンサ8のPWM出力S5を
平滑(アナログ変換)し、増幅して信号V0 を出力す
る。帰還増幅器33は出力信号V0 の極性を反転し、A
NDゲートまたはORゲートまたはEXORより成る振
幅可変回路の電源端子に接続する。出力V0 が増加する
と帰還信号VF が減少し、振幅可変回路21の出力S2
の振幅が減少する。そのためゲート回路7の入力S3,
S4のレベルが減少し、その出力S5のHレベルの期間
が減少する。よって出力V 0 は減少する。このように負
帰還制御が行われることにより出力V0 の安定化を図っ
ている。
When the output stage 7 of the sensor 8 is AND, C
2 ′ to make τ1 <τ2, and in the case of OR, add C1 ′
Τ1> τ2. In either case, C
When 1 decreases and C2 increases, H of the sensor output S3 increases.
The period of the (high) level decreases. Fixed amplitude circuit
Conversely, the output S4 of the (verter) 51 has an increased H level period.
You. (4) Fourth Embodiment FIG. 7 shows a fourth embodiment. Square wave generator 6 and sensor
(AND or OR signal processing) 8, the detection circuit 20,
A feedback amplifier 33 and a variable amplitude circuit 21
8 is a capacitor C previously mounted outside the sensor.
2 'or C1' when the external force is "0" or the reference value
Set the pulse width of output S5 by the difference between time constants τ1 and τ2
I do. The detection circuit 20 detects the PWM output S5 of the sensor 8
After smoothing (analog conversion), amplifying the signal V0Output
You. The feedback amplifier 33 outputs the output signal V0The polarity of A
ND gate or OR gate or EXOR
Connect to power supply terminal of variable width circuit. Output V0Increases
And feedback signal VFDecreases, and the output S2 of the variable amplitude circuit 21
Decrease in amplitude. Therefore, the input S3 of the gate circuit 7
The period when the level of S4 decreases and the output S5 is at the H level
Decrease. Therefore, the output V 0Decreases. So negative
Output V is obtained by performing feedback control.0To stabilize
ing.

【0017】前述の(3)項と同様にセンサ8がORで
信号処理する場合、C2’の代わりにC1’を取り付け
る必要がある。
When the sensor 8 performs signal processing by OR similarly to the above-mentioned item (3), it is necessary to attach C1 'instead of C2'.

【0018】[0018]

【発明の効果】この発明では、検波回路20の出力を帰
還増幅器33を介して検波回路20の入力側に負帰還す
るループの中に、PWM出力センサ8を挿入するように
したので、センサ出力のノイズ及びドリフトが抑圧さ
れ、検波回路20の出力はそのノイズ及びドリフトが低
減し、安定化される。
According to the present invention, the PWM output sensor 8 is inserted into a loop for negatively feeding the output of the detection circuit 20 to the input side of the detection circuit 20 via the feedback amplifier 33. Is suppressed, and the noise and drift of the output of the detection circuit 20 are reduced and stabilized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施例を示す回路図。FIG. 1 is a circuit diagram showing a first embodiment.

【図2】図1の動作波形図。FIG. 2 is an operation waveform diagram of FIG.

【図3】Aは図1の同期分周回路の結線図、BはAの機
能表、CはAの動作波形図。
3A is a connection diagram of the synchronous frequency dividing circuit of FIG. 1, B is a function table of A, and C is an operation waveform diagram of A. FIG.

【図4】第2の実施例を示す回路図。FIG. 4 is a circuit diagram showing a second embodiment.

【図5】第3の実施例を示す回路図。FIG. 5 is a circuit diagram showing a third embodiment.

【図6】図5の要部の動作波形図。FIG. 6 is an operation waveform diagram of a main part of FIG. 5;

【図7】第4の実施例を示す回路図。FIG. 7 is a circuit diagram showing a fourth embodiment.

【図8】従来の静電容量式検出装置の回路図。FIG. 8 is a circuit diagram of a conventional capacitance-type detection device.

【図9】図8の要部の動作波形図。9 is an operation waveform diagram of a main part of FIG. 8;

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01R 19/00 G01R 19/00 P G01D 3/04 F Fターム(参考) 2F055 AA01 AA03 BB11 CC14 EE25 GG31 GG44 2F075 AA05 AA06 AA10 EE04 2F077 AA16 AA21 HH13 TT09 TT21 TT35 TT82 2G035 AA06 AA08 AB00 AB06 AC16 AD12 AD14 AD20 AD23 AD25 AD27 AD29 AD51 AD55 AD56 AD60 AD61 AD62 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (reference) G01R 19/00 G01R 19/00 P G01D 3/04 FF term (reference) 2F055 AA01 AA03 BB11 CC14 EE25 GG31 GG44 2F075 AA05 AA06 AA10 EE04 2F077 AA16 AA21 HH13 TT09 TT21 TT35 TT82 2G035 AA06 AA08 AB00 AB06 AC16 AD12 AD14 AD20 AD23 AD25 AD27 AD29 AD51 AD55 AD56 AD60 AD61 AD62

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 矩形波発生器と、その矩形波発生器の出
力を時定数回路を通して鋸歯状波に変換し、その鋸歯状
波をしきい値回路に入力して、前記矩形波発生器の出力
の位相を所定時間(τ3)だけ遅らせた矩形波を出力す
る位相変換回路と、 前記矩形波発生器の出力の周波数を第1フリップフロッ
プ回路により1/2に分周して第1センサ駆動信号を発
生すると共に、前記位相変換回路の出力の周波数を第2
フリップフロップ回路により1/2に分周し、前記第1
センサ駆動信号の位相より前記所定時間(τ3)だけ遅
れた分周出力を第2センサ駆動信号として発生する同期
分周回路と、 前記第1センサ駆動信号を第1直列入力抵抗(R1)と
第1並列センサ容量(C1)より成る第1時定数回路を
通して排他的論理和回路(EXORと言う)の一方の入
力端子に加え、前記第2センサ駆動信号を第2直列入力
抵抗(R2)と第2並列センサ容量(C2;C1と差動
的に変化する)より成る第2時定数回路を通して前記E
XORの他方の入力端子に加え、そのEXOR出力より
PWM(パルス幅変調)信号を得る静電容量式PWM出
力センサと、 前記PWM信号を直流に変換して外部に出力する検波回
路と、 前記検波回路の出力を増幅して、その増幅した信号を前
記位相変換回路内の前記しきい値回路に帰還して、その
しきい値を制御する帰還増幅器と、 を具備することを特徴とする静電容量式検出装置。
1. A rectangular wave generator and an output of the rectangular wave generator are converted into a sawtooth wave through a time constant circuit, and the sawtooth wave is input to a threshold circuit, and A phase conversion circuit that outputs a rectangular wave whose output phase is delayed by a predetermined time (τ3); and a first flip-flop circuit that divides the frequency of the output of the rectangular wave generator by half to drive the first sensor A signal is generated and the frequency of the output of the phase conversion circuit is changed to a second
The frequency is divided by 1/2 by a flip-flop circuit,
A synchronous frequency divider circuit for generating a frequency-divided output delayed from the phase of the sensor drive signal by the predetermined time (τ3) as a second sensor drive signal, and a first series input resistor (R1) In addition to one input terminal of an exclusive OR circuit (referred to as EXOR) through a first time constant circuit comprising one parallel sensor capacitor (C1), the second sensor drive signal is supplied to a second serial input resistor (R2) and a second serial input resistor (R2). The above E is passed through a second time constant circuit comprising two parallel sensor capacitors (C2; which changes differentially with C1).
A capacitive PWM output sensor that obtains a PWM (pulse width modulation) signal from the EXOR output in addition to the other input terminal of the XOR; a detection circuit that converts the PWM signal into DC and outputs the DC to the outside; A feedback amplifier that amplifies the output of the circuit, feeds back the amplified signal to the threshold circuit in the phase conversion circuit, and controls the threshold. Capacitive detector.
【請求項2】 請求項1において、前記矩形波発生器の
出力を時定数回路を通して鋸歯状波に変換し、その鋸歯
状波をしきい値回路に入力して、前記矩形波発生器の出
力の位相を所定時間(τ4)だけ遅らせた矩形波を得、
その矩形波を前記同期分周回路の前記第1フリップフロ
ップ回路に入力する第2の位相変換回路と、 前記帰還増幅器の出力の極性を反転して、その極性反転
した信号を前記第2の位相変換回路内の前記しきい値回
路に帰還してそのしきい値を制御する極性反転回路と、 を追加したことを特徴とする静電容量式検出装置。
2. The rectangular wave generator according to claim 1, wherein the output of said rectangular wave generator is converted into a sawtooth wave through a time constant circuit, and the sawtooth wave is input to a threshold circuit. Is obtained by delaying the phase by a predetermined time (τ4),
A second phase conversion circuit for inputting the rectangular wave to the first flip-flop circuit of the synchronous frequency dividing circuit; and inverting the polarity of the output of the feedback amplifier, and applying the inverted signal to the second phase. And a polarity inversion circuit for controlling the threshold value by feeding back to the threshold value circuit in the conversion circuit.
【請求項3】 請求項1または2において、前記帰還増
幅器または前記極性反転回路の出力が、前記位相変換回
路または前記第2の位相変換回路の前記しきい値回路の
電源入力端子に与えられていることを特徴とする静電容
量式検出装置。
3. The power supply input terminal according to claim 1, wherein an output of said feedback amplifier or said polarity inversion circuit is supplied to a power supply input terminal of said threshold value circuit of said phase conversion circuit or said second phase conversion circuit. A capacitance type detection device.
【請求項4】 請求項1または2において、前記位相変
換回路または前記第2の位相変換回路の前記しきい値回
路が、片方の入力端子を接地した排他的論理和回路、ま
たは両方の入力端子を互いに接続したAND回路または
OR回路より成ることを特徴とする静電容量式検出装
置。
4. The exclusive OR circuit according to claim 1, wherein the threshold circuit of the phase conversion circuit or the second phase conversion circuit has one input terminal grounded, or both input terminals. Characterized by an AND circuit or an OR circuit connected to each other.
【請求項5】 請求項1,2のいずれかにおいて、前記
同期分周回路の前記フリップフロップ回路の一方及び他
方の出力端子が前記第2フリップ回路の一方及び他方の
入力端子にそれぞれ接続されていることを特徴とする静
電容量式検出装置。
5. The synchronous frequency dividing circuit according to claim 1, wherein one and the other output terminals of the flip-flop circuit of the synchronous frequency dividing circuit are connected to one and the other input terminal of the second flip circuit, respectively. A capacitance type detection device.
【請求項6】 請求項5において、前記第1、第2フリ
ップフロップ回路がJKフリップフロップ回路であるこ
とを特徴とする静電容量式検出装置。
6. The electrostatic capacitance detection device according to claim 5, wherein the first and second flip-flop circuits are JK flip-flop circuits.
【請求項7】 矩形波発生器と、 その矩形波発生器の出力を第1直列入力抵抗(R1)と
第1並列センサ容量(C1,C1 ’)より成る第1時定
数回路を通して、AND回路またはOR回路より成るゲ
ート回路の一方の入力端子に加え、前記矩形波発生器の
出力を第2直列入力抵抗(R2)と第2並列センサ容量
(C2,C2’)より成る第2時定数回路を通して前記
ゲート回路の他方の入力端子に加え、そのゲート回路の
出力によりPWM信号を得る静電容量式PWM出力セン
サと、 前記PWM出力センサの出力を入力して、その入力信号
の振幅を一定にして出力する振幅固定回路と、 その振幅固定回路の出力を直流に変換して外部に出力す
る検波回路と、 その検波回路の出力を増幅して、その増幅した信号を前
記PWM出力センサの前記ゲート回路の電源入力端子に
帰還して、そのゲート回路のしきい値を制御する帰還増
幅器と、 を具備することを特徴とする静電容量式検出装置。
7. An AND circuit which outputs the output of the rectangular wave generator through a first time constant circuit comprising a first series input resistor (R1) and a first parallel sensor capacitor (C1, C1 '). Alternatively, in addition to one input terminal of a gate circuit composed of an OR circuit, the output of the rectangular wave generator is connected to a second time constant circuit composed of a second series input resistance (R2) and a second parallel sensor capacitance (C2, C2 ′). And a capacitance-type PWM output sensor that obtains a PWM signal from the output of the gate circuit in addition to the other input terminal of the gate circuit, and the output of the PWM output sensor is input to make the amplitude of the input signal constant. An amplitude fixing circuit that converts the output of the amplitude fixing circuit into a direct current and outputs the output to the outside; amplifies the output of the detection circuit and outputs the amplified signal to the gate of the PWM output sensor. Fed back to the power supply input terminal of the bets circuit, the electrostatic capacitance detection device, characterized by comprising a feedback amplifier for controlling the threshold value of the gate circuit.
【請求項8】 矩形波発生器と、 その矩形波発生器の出力の振幅を可変する振幅可変回路
と、 その振幅可変回路の出力を第1直列入力抵抗(R1)と
第1並列センサ容量(C1,C1’)より成る第1時定
数回路を通して、AND回路またはOR回路より成るゲ
ート回路の一方の入力端子に加え、前記振幅可変回路の
出力を第2直列入力抵抗(R2)と第2並列センサ容量
(C2,C2’)より成る第2時定数回路を通して前記
ゲート回路の他方の入力端子に加え、そのゲート回路の
出力よりPWM信号を得る静電容量式PWM出力センサ
と、 そのPWM出力センサの出力を直流に変換して外部に出
力する検波回路と、 前記検波回路の出力を増幅して、その増幅した信号を前
記振幅可変回路に与えて、その出力の振幅を制御する帰
還増幅器と、 を具備することを特徴とする静電容量式検出装置。
8. A rectangular wave generator, an amplitude variable circuit for varying the amplitude of an output of the rectangular wave generator, and an output of the variable amplitude circuit, the first series input resistor (R1) and the first parallel sensor capacitance ( C1, C1 '), the output of the variable amplitude circuit is applied to one input terminal of a gate circuit composed of an AND circuit or an OR circuit and a second parallel input resistance (R2) through a first time constant circuit composed of a second serial input resistance (R2). A capacitive PWM output sensor that obtains a PWM signal from an output of the gate circuit in addition to the other input terminal of the gate circuit through a second time constant circuit including a sensor capacitor (C2, C2 ′); and the PWM output sensor. A detection circuit that converts the output of the detection circuit into a direct current and outputs the output to the outside; a feedback amplifier that amplifies the output of the detection circuit, supplies the amplified signal to the amplitude variable circuit, and controls the amplitude of the output, A capacitance type detection device comprising:
【請求項9】 請求項8において、前記振幅可変回路が
両方の入力端子を互いに接続したAND回路またはOR
回路より成り、その電源入力端子に前記帰還増幅器の出
力が与えられていることを特徴とする静電容量式検出装
置。
9. An AND circuit or OR circuit according to claim 8, wherein said variable amplitude circuit has both input terminals connected to each other.
A capacitance type detection device comprising a circuit, and an output of the feedback amplifier is given to a power supply input terminal thereof.
JP20005998A 1998-07-15 1998-07-15 Capacitive detection device Expired - Fee Related JP3326521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20005998A JP3326521B2 (en) 1998-07-15 1998-07-15 Capacitive detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20005998A JP3326521B2 (en) 1998-07-15 1998-07-15 Capacitive detection device

Publications (2)

Publication Number Publication Date
JP2000028394A true JP2000028394A (en) 2000-01-28
JP3326521B2 JP3326521B2 (en) 2002-09-24

Family

ID=16418164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20005998A Expired - Fee Related JP3326521B2 (en) 1998-07-15 1998-07-15 Capacitive detection device

Country Status (1)

Country Link
JP (1) JP3326521B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011107086A (en) * 2009-11-20 2011-06-02 Asahi Kasei Electronics Co Ltd Capacitance detection circuit, pressure detector, acceleration detector and transducer for microphone
JP2012042216A (en) * 2010-08-12 2012-03-01 Nippon Telegr & Teleph Corp <Ntt> Sensor
EP3862757A1 (en) * 2020-02-07 2021-08-11 Atlantic Inertial Systems Limited Methods for closed loop operation of capacitive accelerometers and such capacitive accelerometers

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011107086A (en) * 2009-11-20 2011-06-02 Asahi Kasei Electronics Co Ltd Capacitance detection circuit, pressure detector, acceleration detector and transducer for microphone
JP2012042216A (en) * 2010-08-12 2012-03-01 Nippon Telegr & Teleph Corp <Ntt> Sensor
EP3862757A1 (en) * 2020-02-07 2021-08-11 Atlantic Inertial Systems Limited Methods for closed loop operation of capacitive accelerometers and such capacitive accelerometers
US11662361B2 (en) 2020-02-07 2023-05-30 Atlantic Inertial Systems Limited Methods for closed loop operation of capacitive accelerometers

Also Published As

Publication number Publication date
JP3326521B2 (en) 2002-09-24

Similar Documents

Publication Publication Date Title
EP2447671B1 (en) Angular velocity sensor, and synchronous detection circuit used therein
KR100360403B1 (en) Circuit and method for duty cycle correction
US6326757B1 (en) Rotational pulse generating circuit for commutator DC motors
EP0529836A1 (en) Integrating phase detector
KR20190029204A (en) Duty cycle correction circuit and clock correction circuit including the same
US20050083113A1 (en) Class d electroacoustic amplifier and method for compensation of power supply voltage influence on output audio signal in class d electroacoustic amplifier
TWI660586B (en) Clock adjustment circuit and clock adjustment method
US8656775B2 (en) Vibratory gyro-sensor and vibratory gyro circuit
JP2002198788A (en) Phase detector with high accuracy
JP3326521B2 (en) Capacitive detection device
JP3152214B2 (en) Doubler circuit
US6483356B2 (en) Sinusoidal signal generating circuit providing small phase difference with respect to reference signal and apparatus for driving oscillating element with circuit
JP2675455B2 (en) Variable delay device
JP4232280B2 (en) Magnetic impedance sensor circuit
JP2000341116A (en) Phase synchronizing circuit
CN110635789B (en) Clock adjusting circuit and clock adjusting method
TWI681632B (en) Clock adjustment circuit and clock adjustment method
JP2007013441A (en) Pulse generation device
JPS61125229A (en) Pll circuit
JP2002372422A (en) Angular velocity detecting device
JP4421754B2 (en) Phase comparison circuit, PLL circuit using the phase comparison circuit, and vibrator driving device using the PLL circuit
CN117397169A (en) Sensor interface circuit and sensor module
JPS63240215A (en) Pll circuit
JP2002163599A (en) Square circuit and signal processing circuit using it
JPH0364126A (en) Phase locked loop oscillation circuit

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090712

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100712

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100712

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100712

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110712

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110712

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120712

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120712

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130712

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees