JP2000028213A - Compression refrigeration machine - Google Patents

Compression refrigeration machine

Info

Publication number
JP2000028213A
JP2000028213A JP10198991A JP19899198A JP2000028213A JP 2000028213 A JP2000028213 A JP 2000028213A JP 10198991 A JP10198991 A JP 10198991A JP 19899198 A JP19899198 A JP 19899198A JP 2000028213 A JP2000028213 A JP 2000028213A
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
evaporator
absorbing
molecules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10198991A
Other languages
Japanese (ja)
Inventor
Kazuaki Mizukami
和明 水上
Taiji Yamamoto
泰司 山本
Tetsuya Masuda
哲也 増田
Takashi Yamakawa
貴志 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP10198991A priority Critical patent/JP2000028213A/en
Publication of JP2000028213A publication Critical patent/JP2000028213A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate the possibility of a refrigerant fluid being sent to a compressor even upon low load and upon rapid load variations in a compression refrigeration machine in which there are mutually connected through piping an evaporator, a compressor, a condenser, and a throttle valve, and a refrigerant is circulated. SOLUTION: A liquid separator 7 filled with a refrigerant absorbing/releasing agent is intervened on a piping 5 extending from an evaporator 1 to a compressor 2, and refrigerant molecules are absorbed in a first thermodynamical state where refrigerant temperature on an outlet side of the evaporator 1 is lower than refrigerant saturated vapor temperature, while the refrigerant molecules are desorbed in a second thermodynamical state where the refrigerant temperature on the outlet side of the evaporator 1 is higher than the refrigerant saturated vapor temperature. There is employed carbon dioxide as the refrigerant and there are employed as the refrigerant absorbing/desorbing agent lithium zirconate, dialkyl ether, or an amine absorption/desorption agent.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷媒として二酸化
炭素、アンモニア等の自然冷媒を用いた圧縮式冷凍機に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compression refrigerator using a natural refrigerant such as carbon dioxide and ammonia as a refrigerant.

【0002】[0002]

【従来の技術】一般に圧縮式冷凍機は、図7に示す如
く、蒸発器(1)、圧縮機(2)、凝縮器(3)及び絞り弁
(4)を配管(5)(51)(52)(53)によって互いに接続して構
成され、図8に示す如き冷凍サイクルを実現するもので
ある。即ち、蒸発器(1)からの冷媒ガスが圧縮機(2)に
よって圧縮(→)されて、高温、高圧のガスとなり、
圧縮機(2)から吐出された冷媒ガスは凝縮器(3)へ送ら
れ、高温熱源(外気)へ熱を放出することによって凝縮
(→)する。凝縮によって液化した高温、高圧の冷媒
液は絞り弁(4)へ供給され、膨張(→)によって低
温、低圧の冷媒液となる。絞り弁(4)からの冷媒液は蒸
発器(1)へ送り込まれ、低温熱源(冷凍室)から熱を奪っ
て蒸発(→)し、冷媒ガスとなって圧縮機(2)へ供給
される。上述の冷凍サイクル(→→→→)を繰
り返すことによって、低温熱源から高温熱源へ熱が輸送
され、低温熱源が冷却されるのである。尚、冷媒として
はCFC、HCFC、HFC等のフロン系の冷媒が最も
普及している。
2. Description of the Related Art Generally, a compression refrigerator has an evaporator (1), a compressor (2), a condenser (3) and a throttle valve as shown in FIG.
(4) is connected to each other by pipes (5), (51), (52) and (53) to realize a refrigeration cycle as shown in FIG. That is, the refrigerant gas from the evaporator (1) is compressed (→) by the compressor (2) to become a high-temperature, high-pressure gas,
The refrigerant gas discharged from the compressor (2) is sent to the condenser (3), where it is condensed by releasing heat to a high-temperature heat source (outside air)
(→). The high-temperature, high-pressure refrigerant liquid liquefied by condensation is supplied to the throttle valve (4), and becomes a low-temperature, low-pressure refrigerant liquid by expansion (→). The refrigerant liquid from the throttle valve (4) is sent to the evaporator (1), removes heat from the low-temperature heat source (freezer), evaporates (→), and is supplied to the compressor (2) as refrigerant gas. . By repeating the above refrigeration cycle (→→→→), heat is transferred from the low-temperature heat source to the high-temperature heat source, and the low-temperature heat source is cooled. As a refrigerant, a CFC-based refrigerant such as CFC, HCFC, or HFC is most widely used.

【0003】圧縮式冷凍機においては、負荷変動や伝熱
性能の低下等に伴って、蒸発器(1)出口側の温度が図8
中に鎖線で示す様に飽和蒸気温度(乾き飽和蒸気温度)よ
りも低下し、一部の冷媒が液体のまま残ることがある。
この様な冷媒液を含むミスト状の冷媒が圧縮機(2)へ送
り込まれて圧縮(′→′)されると、弾性係数の極め
て小さい冷媒液の圧縮に伴って、冷媒の圧力が過大とな
り、圧縮機(2)が破損する虞れがある。そこで従来は、
図7の如く蒸発器出口配管(5)にアキュムレータ(6)を
設置して、冷媒ガスのみを圧縮機(2)へ供給する様にし
ている。
[0003] In a compression refrigerator, the temperature at the outlet side of the evaporator (1) is reduced as shown in FIG.
As indicated by a chain line in the drawing, the temperature may drop below the saturated vapor temperature (dry saturated vapor temperature), and some refrigerant may remain liquid.
When the mist-like refrigerant containing such a refrigerant liquid is sent to the compressor (2) and compressed ('→'), the pressure of the refrigerant becomes excessive due to the compression of the refrigerant liquid having an extremely small elastic coefficient. The compressor (2) may be damaged. So conventionally,
As shown in FIG. 7, an accumulator (6) is provided in the evaporator outlet pipe (5) so that only the refrigerant gas is supplied to the compressor (2).

【0004】アキュムレータ(6)は図9に示す様に円筒
状の容器(60)を具え、該容器(60)の上部に、前記蒸発器
(1)から伸びる入口側配管(5a)の先端部を接続すると共
に、容器底部には、基端部が容器内部へ垂直に突出する
出口側配管(5b)を接続して、該出口側配管(5b)の先端部
を前記圧縮機(2)へ連結している。従って、入口側配管
(5a)からミスト状の冷媒が侵入してきたとしても、冷媒
液は容器(60)の底部に溜まり、冷媒ガスのみが出口側配
管(5b)から圧縮機(2)へ送り込まれることになる。又、
容器(60)底部に溜まった冷媒液は徐々に蒸発して、圧縮
機(2)へ送り込まれることになる。
The accumulator (6) comprises a cylindrical container (60) as shown in FIG. 9, and the evaporator is provided on the upper part of the container (60).
Connect the distal end of the inlet pipe (5a) extending from (1), and connect the outlet pipe (5b) whose base end protrudes vertically into the container to the bottom of the vessel. The tip of (5b) is connected to the compressor (2). Therefore, the inlet side piping
Even if the mist-like refrigerant enters from (5a), the refrigerant liquid accumulates at the bottom of the container (60), and only the refrigerant gas is sent from the outlet pipe (5b) to the compressor (2). or,
The refrigerant liquid accumulated at the bottom of the container (60) evaporates gradually and is sent to the compressor (2).

【0005】又、圧縮式冷凍機においては、高負荷時等
に圧縮機(2)出口側の圧力が異常に高くなる虞れがあ
り、これによって配管が破裂する等の問題が生ずる。そ
こで従来は、圧縮機出口配管(51)に安全弁(61)を設置し
て、圧力が閾値を越えて高くなったとき、安全弁(61)か
ら外界へガスを放出する様にしている。
In the case of a compression refrigerator, there is a possibility that the pressure at the outlet of the compressor (2) becomes abnormally high when the load is high or the like, which causes problems such as rupture of piping. Therefore, conventionally, a safety valve (61) is provided in the compressor outlet pipe (51) so that when the pressure exceeds a threshold value and rises, gas is released from the safety valve (61) to the outside.

【0006】[0006]

【発明が解決しようとする課題】ところで、近年、冷媒
として広く普及しているCFCやHCFC等のフロン
(デュポン社の商品名)が、オゾン層破壊や地球温暖化等
の原因として大きな問題になっており、冷媒としてフロ
ンを全廃する動きが強まっている。この様な状況におい
て、二酸化炭素、アンモニア、炭化水素等の自然冷媒が
注目を浴びている。特に二酸化炭素は毒性や爆発性がな
いので、冷媒として採用することが検討されている。
In recent years, fluorocarbons such as CFC and HCFC, which have been widely used as refrigerants, have been used in recent years.
(Dupont's trade name) has become a major problem as a cause of depletion of the ozone layer and global warming, and the movement to completely abolish CFC as a refrigerant is increasing. Under such circumstances, natural refrigerants such as carbon dioxide, ammonia, and hydrocarbons are receiving attention. In particular, since carbon dioxide has no toxicity or explosive properties, its use as a refrigerant has been studied.

【0007】しかしながら、二酸化炭素を冷媒として採
用した場合、二酸化炭素自体の熱力学的特性から、冷凍
サイクルの高圧側の圧力、即ち圧縮機(2)出口側の圧力
が約10MPaと、フロン(R22)の場合(約2MPa)の
5倍となり、低圧側の圧力は約3MPaと、フロン(R2
2)の場合(約600kPa)の5倍に達することになる。
従って、圧縮機(2)や配管系には高い耐圧性とシール性
が必要となる。
However, when carbon dioxide is employed as the refrigerant, the pressure on the high-pressure side of the refrigeration cycle, that is, the pressure on the outlet side of the compressor (2) is about 10 MPa, and CFC (R22) ) (About 2 MPa), the pressure on the low pressure side is about 3 MPa, and the freon (R2
In the case of 2), it will reach 5 times of (about 600 kPa).
Therefore, the compressor (2) and the piping system need to have high pressure resistance and sealing properties.

【0008】ところが、従来の圧縮式冷凍機に採用され
ていたアキュムレータ(6)においては、容器底部に冷媒
液が溜まっているので、低負荷時や急激な負荷変動時に
冷媒液が漏れ出て、圧縮機(2)へ送り込まれる虞れがあ
り、特に二酸化炭素を冷媒として採用した圧縮式冷凍機
においては、その高い圧力によって圧縮機(2)が破損す
る危険性が高い問題があった。
However, in the accumulator (6) used in the conventional compression refrigerator, the refrigerant liquid is stored at the bottom of the container. There is a risk that the compressor (2) may be sent to the compressor (2). In particular, in a compression refrigerator using carbon dioxide as a refrigerant, there is a high risk that the compressor (2) may be damaged by the high pressure.

【0009】又、従来の圧縮式冷凍機に採用されていた
安全弁(61)においては、異常高圧発生時に安全弁(61)か
ら外部へ冷媒が放出されるので、その後、正常運転を再
開するには、冷媒を再充填せねばならない問題があっ
た。
In the safety valve (61) employed in the conventional compression refrigerator, the refrigerant is discharged from the safety valve (61) to the outside when an abnormally high pressure is generated. There was a problem that the refrigerant had to be refilled.

【0010】本発明の第1の目的は、低負荷時や急激な
負荷変動時においても圧縮機へ冷媒液が送り込まれる虞
れのない圧縮式冷凍機を提供することである。又、本発
明の第2の目的は、異常高圧発生の虞れがなく、然も正
常運転の再開時に冷媒の再充填が不要な圧縮式冷凍機を
提供することである。
[0010] A first object of the present invention is to provide a compression refrigerating machine in which the refrigerant liquid is not likely to be supplied to the compressor even when the load is low or the load fluctuates rapidly. Further, a second object of the present invention is to provide a compression refrigerator which does not need to be refilled with refrigerant when normal operation is resumed without fear of occurrence of abnormally high pressure.

【0011】[0011]

【課題を解決する為の手段】本発明に係る圧縮式冷凍機
においては、蒸発器(1)から圧縮機(2)を経て凝縮器
(3)へ至る冷媒流路の途中に、異常な運転状態である第
1の熱力学状態で冷媒分子を吸収し若しくは吸着し、正
常な運転状態である第2の熱力学的状態で冷媒分子を放
出すべき冷媒吸放出剤が介在していることを特徴とす
る。
In a compression refrigerator according to the present invention, a condenser is provided from an evaporator (1) through a compressor (2).
In the middle of the refrigerant flow path leading to (3), the refrigerant molecules are absorbed or adsorbed in the first thermodynamic state, which is an abnormal operation state, and in the second thermodynamic state, which is the normal operation state. Characterized in that a refrigerant absorbing / desorbing agent to be released is interposed.

【0012】ここで、蒸発器(1)から圧縮機(2)へ至る
配管(5)に、前記冷媒吸放出剤が充填された液分離器
(7)を介在させ、蒸発器出口側の冷媒温度が冷媒飽和蒸
気温度(乾き飽和蒸気温度)よりも低い第1熱力学的状態
で冷媒分子を吸収し、蒸発器出口側の冷媒温度が冷媒飽
和蒸気温度(乾き飽和蒸気温度)よりも高い第2熱力学的
状態で冷媒分子を放出する様に構成することによって、
第1の目的を達成することが出来る。
Here, a pipe (5) from the evaporator (1) to the compressor (2) is filled with the refrigerant absorbing / desorbing agent.
(7) is interposed to absorb the refrigerant molecules in the first thermodynamic state in which the refrigerant temperature at the evaporator outlet side is lower than the refrigerant saturated vapor temperature (dry saturated vapor temperature), and the refrigerant temperature at the evaporator outlet side is By arranging to release refrigerant molecules in a second thermodynamic state higher than the saturated vapor temperature (dry saturated vapor temperature),
The first object can be achieved.

【0013】即ち、蒸発器(1)から液分離器(7)へ供給
される冷媒の温度が冷媒飽和蒸気温度よりも低く、該冷
媒の一部が液化している場合は、液分離器(7)内の冷媒
吸放出剤が冷媒吸収能を発揮して、液化した冷媒を吸収
する。従って、冷媒液が液分離器(7)に溜まることはな
く、冷媒ガスのみが圧縮機(2)へ送り込まれることにな
る。これに対し、蒸発器(1)から液分離器(7)へ供給さ
れる冷媒の温度が冷媒飽和蒸気温度よりも高い場合は、
該冷媒は全てガス化しており、該冷媒ガスが圧縮機(2)
へ送り込まれることになる。又、上述の如く液分離器
(7)内の冷媒吸放出剤が冷媒放出能を発揮して、前述の
如く冷媒吸放出剤に吸収されている冷媒分子が放出さ
れ、圧縮機(2)へ送り込まれることになる。上述の如く
冷媒液が液分離器(7)に溜まることはないので、低負荷
時や急激な負荷変動時においても、冷媒液が圧縮機(2)
へ送り込まれる虞れはない。
That is, when the temperature of the refrigerant supplied from the evaporator (1) to the liquid separator (7) is lower than the refrigerant saturated vapor temperature and a part of the refrigerant is liquefied, the liquid separator ( The refrigerant absorbing / desorbing agent in 7) exhibits the refrigerant absorbing ability and absorbs the liquefied refrigerant. Therefore, the refrigerant liquid does not accumulate in the liquid separator (7), and only the refrigerant gas is sent to the compressor (2). On the other hand, when the temperature of the refrigerant supplied from the evaporator (1) to the liquid separator (7) is higher than the refrigerant saturated vapor temperature,
All of the refrigerant is gasified, and the refrigerant gas is supplied to the compressor (2).
Will be sent to Also, as described above, the liquid separator
The refrigerant absorbing / releasing agent in (7) exhibits the refrigerant releasing ability, and the refrigerant molecules absorbed by the refrigerant absorbing / releasing agent are released as described above and sent to the compressor (2). As described above, the refrigerant liquid does not accumulate in the liquid separator (7), so that the refrigerant liquid remains in the compressor (2) even at a low load or a sudden load change.
There is no danger of being sent to

【0014】具体的には、冷媒として二酸化炭素を採用
した場合、冷媒吸放出剤としては、リチウムジルコネー
ト、ジアルキルエーテル、若しくはアミン系吸放出剤を
用いることが出来る。
Specifically, when carbon dioxide is employed as the refrigerant, lithium zirconate, dialkyl ether, or an amine-based absorbent can be used as the refrigerant absorbent.

【0015】又、圧縮機(2)から凝縮器(3)へ至る配管
(51)に、前記冷媒吸放出剤が充填された圧力調整器(8)
を介在させ、圧縮機出口側の冷媒圧力が正常値よりも高
い第1熱力学的状態で冷媒分子を吸着し、圧縮機出口側
の冷媒圧力が正常値よりも低い第2熱力学的状態で冷媒
分子を放出する様に構成することによって、上記第2の
目的を達成することが出来る。
Further, piping from the compressor (2) to the condenser (3)
(51) a pressure regulator (8) filled with the refrigerant absorbing / releasing agent;
To adsorb refrigerant molecules in the first thermodynamic state where the refrigerant pressure at the compressor outlet side is higher than the normal value, and in the second thermodynamic state where the refrigerant pressure at the compressor outlet side is lower than the normal value. The above-mentioned second object can be achieved by a configuration in which the refrigerant molecules are released.

【0016】即ち、圧縮機(2)出口側の圧力が異常に高
くなったとき、圧力調整器(8)内の冷媒吸放出剤が冷媒
吸着能を発揮して、冷媒を吸着する。この結果、冷媒ガ
スの流量が減少して、圧力が低下することになる。その
後、圧力異常の原因が排除されて、圧縮機(2)出口側の
圧力が正常値に戻ると、圧力調整器(8)内の冷媒吸放出
剤が冷媒放出能を発揮して、前述の如く冷媒吸放出剤に
吸着されて冷媒分子が離脱され、冷媒ガスの流量が正常
値に戻ることになる。従って、高負荷時等においても、
圧縮機(2)出口側の圧力が異常に高くなる虞れはない。
That is, when the pressure on the outlet side of the compressor (2) becomes abnormally high, the refrigerant absorbing / releasing agent in the pressure regulator (8) exhibits the refrigerant adsorbing ability and adsorbs the refrigerant. As a result, the flow rate of the refrigerant gas decreases, and the pressure decreases. Thereafter, when the cause of the pressure abnormality is eliminated and the pressure at the outlet side of the compressor (2) returns to the normal value, the refrigerant absorbing / desorbing agent in the pressure regulator (8) exhibits the refrigerant releasing ability, and As described above, the refrigerant molecules are desorbed by being adsorbed by the refrigerant absorbing / desorbing agent, and the flow rate of the refrigerant gas returns to the normal value. Therefore, even under high load, etc.
There is no fear that the pressure on the outlet side of the compressor (2) becomes abnormally high.

【0017】具体的には、冷媒として二酸化炭素を採用
した場合、冷媒吸放出剤としては、ゼオライトを用いる
ことが出来る。
Specifically, when carbon dioxide is used as the refrigerant, zeolite can be used as the refrigerant absorbing / desorbing agent.

【0018】[0018]

【発明の効果】本発明に係る圧縮式冷凍機によれば、低
負荷時や急激な負荷変動時においても圧縮機へ冷媒液が
送り込まれる虞れはない。又、異常高圧発生の虞れがな
く、然も正常運転の再開時に冷媒を再充填する必要はな
い。
According to the compression refrigerator of the present invention, there is no danger that the refrigerant liquid will be sent to the compressor even when the load is low or the load fluctuates rapidly. In addition, there is no fear of occurrence of abnormally high pressure, and it is not necessary to refill the refrigerant when normal operation is resumed.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態につ
き、図面に沿って具体的に説明する。本発明に係る圧縮
式冷凍機は、図1に示す如く、蒸発器(1)、圧縮機
(2)、凝縮器(3)及び絞り弁(4)を配管(5)(51)(52)(5
3)によって互いに接続して構成され、図7に示す如き冷
凍サイクルを実現するものである。尚、冷媒としては二
酸化炭素(CO2ガス)が採用されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be specifically described below with reference to the drawings. As shown in FIG. 1, a compression refrigerator according to the present invention comprises an evaporator (1), a compressor,
(2) Connect the condenser (3) and the throttle valve (4) to the piping (5) (51) (52) (5
3) are connected to each other to realize a refrigeration cycle as shown in FIG. Note that carbon dioxide (CO 2 gas) is used as the refrigerant.

【0020】蒸発器出口配管(5)には液分離器(7)が介
在し、該液分離器(7)中には、リチウムジルコネート、
ジアルキルエーテル、アミン系吸放出剤等の二酸化炭素
吸放出剤が充填されている。これらの二酸化炭素吸放出
剤は、蒸発器(1)出口側の冷媒温度が冷媒飽和蒸気温度
よりも低い熱力学的状態で二酸化炭素分子を吸収し、蒸
発器(1)出口側の冷媒温度が冷媒飽和蒸気温度よりも高
い熱力学的状態で二酸化炭素分子を放出するものであ
る。
A liquid separator (7) is interposed in the evaporator outlet pipe (5). In the liquid separator (7), lithium zirconate,
It is filled with a carbon dioxide absorbing / releasing agent such as a dialkyl ether or an amine-based absorbing / releasing agent. These carbon dioxide absorbing / desorbing agents absorb carbon dioxide molecules in a thermodynamic state in which the refrigerant temperature at the outlet side of the evaporator (1) is lower than the refrigerant saturated vapor temperature, and the refrigerant temperature at the outlet side of the evaporator (1) becomes lower. It releases carbon dioxide molecules in a thermodynamic state higher than the refrigerant saturated vapor temperature.

【0021】又、圧縮機出口配管(51)には圧力調整器
(8)が介在し、該圧力調整器(8)中には、ゼオライト等
の二酸化炭素吸放出剤が充填されている。ゼオライト
は、圧縮機(2)出口側の冷媒圧力が正常値よりも高い熱
力学的状態で二酸化炭素分子を吸着し、圧縮機出口側の
冷媒圧力が正常値よりも低い熱力学的状態で二酸化炭素
分子を離脱するものである。図6は、ゼオライトの圧力
Pと炭酸ガス吸着量Cの関係を定性的に表わしたもので
あり、圧力Pが正常値Pnから異常値Peに上昇するこ
とによって、吸着量Cは、圧力上昇分に応じた量ΔCだ
け増大する。
A pressure regulator is provided at the compressor outlet pipe (51).
(8) is interposed, and the pressure regulator (8) is filled with a carbon dioxide absorbing / releasing agent such as zeolite. The zeolite adsorbs carbon dioxide molecules in a thermodynamic state in which the refrigerant pressure at the compressor (2) outlet side is higher than a normal value, and emits carbon dioxide in a thermodynamic state in which the refrigerant pressure at the compressor outlet side is lower than a normal value. It releases carbon molecules. FIG. 6 qualitatively shows the relationship between the pressure P of the zeolite and the carbon dioxide adsorption amount C. When the pressure P rises from the normal value Pn to the abnormal value Pe, the adsorption amount C increases by the pressure increase. Increases by an amount ΔC corresponding to.

【0022】液分離器(7)は、例えば図2に示す如く、
円筒状密閉容器(71)中に上述の二酸化炭素吸放出剤(9)
を充填し、該容器(71)の上壁に、前記蒸発器(1)から伸
びる入口側配管(5a)の先端部を接続すると共に、容器底
壁には、出口側配管(5b)の基端部を接続し、該出口側配
管(5b)の先端部を前記圧縮機(2)へ連結したものであ
る。又、図3に示す如く、密閉容器(71)の外周壁上部に
入口側配管(5a)を接続し、容器底壁には、出口側配管(5
b)をその基端部が容器中央部まで突出する様に接続し
て、従来のアキュムレータの機能を併せ持つ構造を採用
することも可能である。更に又、図4に示す如く、密閉
容器(71)の内部に、1或いは複数の貫通孔(9a)が開設さ
れた二酸化炭素吸放出剤(9)の成型品を収容すれば、冷
媒ガスの流動抵抗を軽減することが出来る。上記何れの
液分離器(7)においても、構造が簡単で製造が容易であ
る。
The liquid separator (7) is, for example, as shown in FIG.
The above carbon dioxide absorbing and releasing agent (9) in a cylindrical closed container (71)
Is connected to the upper wall of the container (71), and the distal end of an inlet pipe (5a) extending from the evaporator (1) is connected to the bottom wall of the outlet pipe (5b). The end is connected, and the tip of the outlet pipe (5b) is connected to the compressor (2). As shown in FIG. 3, an inlet pipe (5a) is connected to the upper part of the outer peripheral wall of the sealed container (71), and an outlet pipe (5a) is connected to the container bottom wall.
It is also possible to adopt a structure that combines the function of a conventional accumulator by connecting b) such that its base end protrudes to the center of the container. Furthermore, as shown in FIG. 4, if a molded product of the carbon dioxide absorbing and releasing agent (9) having one or a plurality of through holes (9a) is accommodated in the closed container (71), the refrigerant gas can be cooled. Flow resistance can be reduced. Any of the above liquid separators (7) has a simple structure and is easy to manufacture.

【0023】一方、圧力調整器(8)は、図5に示す如
く、密閉容器(81)内に上述の二酸化炭素吸放出剤(91)を
充填し、該容器の一端に、前記圧縮機(2)から伸びる入
口配管(51a)の先端部を接続し、該容器の他端には、出
口配管(51b)の基端部を接続し、該出口側配管(5b)の先
端部を前記凝縮器(3)へ連結したものである。尚、圧力
調整器(8)は、図4と同様の構造を採用することも可能
である。
On the other hand, as shown in FIG. 5, the pressure regulator (8) fills the above-mentioned carbon dioxide absorbing / releasing agent (91) in a closed container (81), and the compressor ( Connect the tip of the inlet pipe (51a) extending from 2), connect the other end of the vessel to the base end of the outlet pipe (51b), and connect the tip of the outlet pipe (5b) to the condenser. It is connected to the vessel (3). Incidentally, the pressure regulator (8) can adopt the same structure as that of FIG.

【0024】上述の圧縮式冷凍機においては、低負荷時
や急激な負荷変動時に、蒸発器(1)から液分離器(7)へ
供給される冷媒の温度が例えば5℃前後に低下して、該
冷媒の一部が液化している場合(図8中の′の状態)、
液分離器(7)内の二酸化炭素吸放出剤(9)が二酸化炭素
吸収能を発揮して、液化した冷媒を吸収する。従って、
冷媒液が液分離器(7)に溜まることはなく、冷媒ガスの
みが圧縮機(2)へ送り込まれることになる。その後、蒸
発器(1)から液分離器(7)へ供給される冷媒の温度が例
えば10℃前後に上昇した場合(図8中のの状態)、該
冷媒は全てガス化しており、該冷媒ガスが圧縮機(2)へ
送り込まれることになる。又、上述の如く二酸化炭素吸
放出剤(9)が二酸化炭素放出能を発揮して、二酸化炭素
吸放出剤(9)から冷媒ガスが放出され、圧縮機(2)へ送
り込まれることになる。従って、圧縮機(2)が液戻りに
起因する高圧によって破損する虞れはない。然も、蒸発
器でも熱交換量が大きく、十分な冷凍能力が得られるば
かりでなく、圧縮機(2)の投入エネルギーが冷媒の蒸発
に消費されることはないので、成績係数(COP)が向上
する。
In the above-mentioned compression refrigerator, the temperature of the refrigerant supplied from the evaporator (1) to the liquid separator (7) drops to, for example, about 5 ° C. at a low load or a sudden load change. When a part of the refrigerant is liquefied (the state of 'in FIG. 8),
The carbon dioxide absorbing / desorbing agent (9) in the liquid separator (7) exhibits carbon dioxide absorbing ability and absorbs the liquefied refrigerant. Therefore,
The refrigerant liquid does not accumulate in the liquid separator (7), and only the refrigerant gas is sent to the compressor (2). Thereafter, when the temperature of the refrigerant supplied from the evaporator (1) to the liquid separator (7) rises to, for example, about 10 ° C. (the state in FIG. 8), the refrigerant is all gasified, Gas will be sent to the compressor (2). Further, as described above, the carbon dioxide absorbing / releasing agent (9) exhibits the carbon dioxide releasing ability, and the refrigerant gas is released from the carbon dioxide absorbing / releasing agent (9) and sent to the compressor (2). Therefore, there is no possibility that the compressor (2) is damaged by the high pressure caused by the liquid return. Of course, the evaporator also has a large heat exchange amount and not only a sufficient refrigerating capacity can be obtained, but also the input energy of the compressor (2) is not consumed for the evaporation of the refrigerant, so that the coefficient of performance (COP) is low. improves.

【0025】又、圧縮機(2)出口側の圧力が異常に高く
なったとき、圧力調整器(8)内の二酸化炭素吸放出剤(9
1)が二酸化炭素吸着能を発揮して、冷媒を吸着する。こ
の結果、冷媒ガスの流量が減少して、圧力が低下するこ
とになる。その後、圧力異常の原因が排除されて、圧縮
機(2)出口側の圧力が正常値に戻ると、圧力調整器(8)
内の二酸化炭素吸放出剤(91)が二酸化炭素放出能を発揮
して、前述の如く二酸化炭素吸放出剤(91)に吸着されて
いた冷媒分子が離脱され、冷媒ガスの流量が正常値に戻
ることになる。従って、高負荷時等においても、圧縮機
(2)出口側の圧力が異常に高くなる虞れはなく、安全で
ある。然も、異常発生時に冷媒ガスが外部に放出される
ことはないので、正常運転の再開時に冷媒を再充填する
必要はない。
When the pressure on the outlet side of the compressor (2) becomes abnormally high, the carbon dioxide absorbing / releasing agent (9) in the pressure regulator (8) is turned off.
1) exhibits the carbon dioxide adsorption ability and adsorbs the refrigerant. As a result, the flow rate of the refrigerant gas decreases, and the pressure decreases. Thereafter, when the cause of the pressure abnormality is eliminated and the pressure at the outlet of the compressor (2) returns to a normal value, the pressure regulator (8)
The carbon dioxide-absorbing / releasing agent (91) inside exhibits the carbon dioxide releasing ability, the refrigerant molecules adsorbed by the carbon dioxide-absorbing / releasing agent (91) are released as described above, and the flow rate of the refrigerant gas becomes a normal value. I will return. Therefore, even under high load, etc.
(2) There is no fear that the pressure on the outlet side becomes abnormally high, and safety is achieved. Needless to say, since the refrigerant gas is not released to the outside when an abnormality occurs, it is not necessary to refill the refrigerant when the normal operation is resumed.

【0026】尚、本発明の各部構成は上記実施の形態に
限らず、特許請求の範囲に記載の技術的範囲内で種々の
変形が可能である。例えば、冷媒としては、二酸化炭素
に限らず、アンモニア等の自然冷媒を用いることも可能
であり、この場合、冷媒の種類に応じて適切な吸放出剤
若しくは吸放出剤を採用する必要がある。
The configuration of each part of the present invention is not limited to the above embodiment, and various modifications can be made within the technical scope described in the claims. For example, as the refrigerant, not only carbon dioxide but also a natural refrigerant such as ammonia can be used. In this case, it is necessary to employ a suitable absorbing / desorbing agent or an absorbing / desorbing agent according to the type of the refrigerant.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る圧縮式冷凍機の系統図である。FIG. 1 is a system diagram of a compression refrigerator according to the present invention.

【図2】液分離器の断面図である。FIG. 2 is a sectional view of a liquid separator.

【図3】液分離器の他の例を示す断面図である。FIG. 3 is a sectional view showing another example of the liquid separator.

【図4】液分離器の更に他の例を示す断面図である。FIG. 4 is a sectional view showing still another example of the liquid separator.

【図5】圧力調整器の一部破断正面図である。FIG. 5 is a partially cutaway front view of the pressure regulator.

【図6】二酸化炭素吸放出剤の圧力と吸収量の関係を示
すグラフである。
FIG. 6 is a graph showing the relationship between the pressure and the amount of carbon dioxide absorbed and released.

【図7】従来の圧縮式冷凍機の系統図である。FIG. 7 is a system diagram of a conventional compression refrigerator.

【図8】冷凍サイクルを表わすP(圧力)−i(エンタル
ピ)線図である。
FIG. 8 is a P (pressure) -i (enthalpy) diagram showing a refrigeration cycle.

【図9】アキュムレータの構成を表わす図である。FIG. 9 is a diagram illustrating a configuration of an accumulator.

【符号の説明】[Explanation of symbols]

(1) 蒸発器 (2) 圧縮機 (3) 凝縮器 (4) 絞り弁 (7) 液分離器 (9) 二酸化炭素吸放出剤 (8) 圧力調整器 (91) 二酸化炭素吸放出剤 (1) Evaporator (2) Compressor (3) Condenser (4) Throttle valve (7) Liquid separator (9) Carbon dioxide absorbing and releasing agent (8) Pressure regulator (91) Carbon dioxide absorbing and releasing agent

───────────────────────────────────────────────────── フロントページの続き (72)発明者 増田 哲也 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 山川 貴志 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tetsuya Masuda 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Takashi Yamakawa 2-5-2 Keihanhondori, Moriguchi-shi, Osaka No. 5 Sanyo Electric Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 蒸発器(1)、圧縮機(2)、凝縮器(3)及
び絞り弁(4)を互いに配管接続して、冷媒を循環させる
圧縮式の冷凍機において、蒸発器(1)から圧縮機(2)を
経て凝縮器(3)へ至る冷媒流路の途中に、異常な運転状
態である第1の熱力学状態で冷媒分子を吸収し若しくは
吸着し、正常な運転状態である第2の熱力学的状態で冷
媒分子を放出すべき冷媒吸放出剤が介在していることを
特徴とする圧縮式冷凍機。
An evaporator (1), a compressor (2), a condenser (3), and a throttle valve (4) are connected to each other by piping so as to circulate a refrigerant. ) Through the compressor (2) to the condenser (3), in the first thermodynamic state, which is an abnormal operation state, to absorb or adsorb refrigerant molecules in the refrigerant flow path. A compression refrigerator having a refrigerant absorbing / releasing agent for releasing refrigerant molecules in a certain second thermodynamic state.
【請求項2】 蒸発器(1)から圧縮機(2)へ至る配管
(5)に、前記冷媒吸放出剤が充填された液分離器(7)が
介在し、蒸発器出口側の冷媒温度が冷媒飽和蒸気温度よ
りも低い第1熱力学的状態で冷媒分子が吸収され、蒸発
器出口側の冷媒温度が冷媒飽和蒸気温度よりも高い第2
熱力学的状態で冷媒分子が放出される請求項1に記載の
圧縮式冷凍機。
2. A pipe from the evaporator (1) to the compressor (2).
In (5), a liquid separator (7) filled with the refrigerant absorbing / desorbing agent is interposed, and the refrigerant molecules are absorbed in the first thermodynamic state in which the refrigerant temperature at the evaporator outlet side is lower than the refrigerant saturated vapor temperature. And the refrigerant temperature at the evaporator outlet side is higher than the refrigerant saturated vapor temperature.
The compression refrigerator according to claim 1, wherein the refrigerant molecules are released in a thermodynamic state.
【請求項3】 冷媒として二酸化炭素が用いられると共
に、冷媒吸放出剤として、リチウムジルコネート、ジア
ルキルエーテル、若しくはアミン系吸放出剤が用いられ
ている請求項1又は請求項2に記載の圧縮式冷凍機。
3. The compression-type compressor according to claim 1, wherein carbon dioxide is used as the refrigerant, and lithium zirconate, dialkyl ether, or amine-based absorbent is used as the refrigerant absorbent. refrigerator.
【請求項4】 圧縮機(2)から凝縮器(3)へ至る配管(5
1)に、前記冷媒吸放出剤が充填された圧力調整器(8)が
介在し、圧縮機出口側の冷媒圧力が正常値よりも高い第
1熱力学的状態で冷媒分子が吸着され、圧縮機出口側の
冷媒圧力が正常値よりも低い第2熱力学的状態で冷媒分
子が放出される請求項1に記載の圧縮式冷凍機。
4. A pipe (5) from the compressor (2) to the condenser (3).
In 1), a pressure regulator (8) filled with the refrigerant absorbing / releasing agent is interposed, and refrigerant molecules are adsorbed in a first thermodynamic state in which the refrigerant pressure on the compressor outlet side is higher than a normal value, and compression is performed. 2. The compression refrigerator according to claim 1, wherein the refrigerant molecules are released in a second thermodynamic state in which the refrigerant pressure on the machine outlet side is lower than a normal value. 3.
【請求項5】 冷媒として二酸化炭素が用いられると共
に、冷媒吸放出剤として、ゼオライトが用いられている
請求項1又は請求項4に記載の圧縮式冷凍機。
5. The compression refrigerator according to claim 1, wherein carbon dioxide is used as a refrigerant, and zeolite is used as a refrigerant absorbing / desorbing agent.
JP10198991A 1998-07-14 1998-07-14 Compression refrigeration machine Pending JP2000028213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10198991A JP2000028213A (en) 1998-07-14 1998-07-14 Compression refrigeration machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10198991A JP2000028213A (en) 1998-07-14 1998-07-14 Compression refrigeration machine

Publications (1)

Publication Number Publication Date
JP2000028213A true JP2000028213A (en) 2000-01-28

Family

ID=16400297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10198991A Pending JP2000028213A (en) 1998-07-14 1998-07-14 Compression refrigeration machine

Country Status (1)

Country Link
JP (1) JP2000028213A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102003827A (en) * 2010-11-15 2011-04-06 西安思安新能源有限公司 Absorption type power and refrigeration cogeneration circulatory system and absorption type power and refrigeration cogeneration method
US8157951B2 (en) 2005-10-11 2012-04-17 Applied Materials, Inc. Capacitively coupled plasma reactor having very agile wafer temperature control
US8221580B2 (en) 2005-10-20 2012-07-17 Applied Materials, Inc. Plasma reactor with wafer backside thermal loop, two-phase internal pedestal thermal loop and a control processor governing both loops
US8801893B2 (en) * 2005-10-11 2014-08-12 Be Aerospace, Inc. Method of cooling a wafer support at a uniform temperature in a capacitively coupled plasma reactor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8157951B2 (en) 2005-10-11 2012-04-17 Applied Materials, Inc. Capacitively coupled plasma reactor having very agile wafer temperature control
US8337660B2 (en) 2005-10-11 2012-12-25 B/E Aerospace, Inc. Capacitively coupled plasma reactor having very agile wafer temperature control
US8801893B2 (en) * 2005-10-11 2014-08-12 Be Aerospace, Inc. Method of cooling a wafer support at a uniform temperature in a capacitively coupled plasma reactor
US8221580B2 (en) 2005-10-20 2012-07-17 Applied Materials, Inc. Plasma reactor with wafer backside thermal loop, two-phase internal pedestal thermal loop and a control processor governing both loops
US8329586B2 (en) 2005-10-20 2012-12-11 Applied Materials, Inc. Method of processing a workpiece in a plasma reactor using feed forward thermal control
US8546267B2 (en) 2005-10-20 2013-10-01 B/E Aerospace, Inc. Method of processing a workpiece in a plasma reactor using multiple zone feed forward thermal control
US8608900B2 (en) 2005-10-20 2013-12-17 B/E Aerospace, Inc. Plasma reactor with feed forward thermal control system using a thermal model for accommodating RF power changes or wafer temperature changes
US8980044B2 (en) 2005-10-20 2015-03-17 Be Aerospace, Inc. Plasma reactor with a multiple zone thermal control feed forward control apparatus
CN102003827A (en) * 2010-11-15 2011-04-06 西安思安新能源有限公司 Absorption type power and refrigeration cogeneration circulatory system and absorption type power and refrigeration cogeneration method

Similar Documents

Publication Publication Date Title
WO2010047116A1 (en) Cooling cycle device
JPH04350471A (en) Refrigerator
US7624586B2 (en) Freezing device
JP2007162988A (en) Vapor compression refrigerating cycle
CN102077040A (en) Refrigerating cycle apparatus, and air-conditioning apparatus
JPWO2002066907A1 (en) Refrigeration cycle device
JPH1140211A (en) Cooling device for battery
JP2008057807A (en) Refrigerating cycle, and air conditioner and refrigerator using the same
Uddin et al. Performance investigation of adsorption–compression hybrid refrigeration systems
JP5017611B2 (en) Refrigeration apparatus and multistage refrigeration apparatus
JP2013181513A (en) Compressor and refrigerating cycle device
WO2006027330A1 (en) Co2 compression refrigeration apparatus for low temperature applications
JP2000028213A (en) Compression refrigeration machine
JP2000146372A (en) Refrigerant recovering apparatus
US10174235B2 (en) Low global warming potential binary refrigerant mixture with comparable energy efficiency to R-134a and a lower heat of combustion
US20120210745A1 (en) Drier and refrigerating cycle
JP2011191032A (en) Compression refrigerating cycle
CN116697645A (en) Refrigerating system and refrigerating equipment
CN100392332C (en) Mixed working medium deep-freezing adsorption refrigerating device
JP2001174108A (en) Method for preventing backflow in refrigerant recovery system
JP3093295B2 (en) Refrigeration system
WO1996029554A1 (en) Air conditioner and moisture removing device for use with the air conditioner
JP3158596B2 (en) Refrigerator water removal equipment
JP2010096440A (en) Heat pump device
JP2000146321A (en) Refrigerating device