JP2000024104A - Membrane for blood treatment and its production - Google Patents
Membrane for blood treatment and its productionInfo
- Publication number
- JP2000024104A JP2000024104A JP10207075A JP20707598A JP2000024104A JP 2000024104 A JP2000024104 A JP 2000024104A JP 10207075 A JP10207075 A JP 10207075A JP 20707598 A JP20707598 A JP 20707598A JP 2000024104 A JP2000024104 A JP 2000024104A
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- blood
- water
- radiation
- test
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- External Artificial Organs (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、血液透析あるいは
濾過療法、吸着療法などに使用される血液処理用膜およ
びその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a membrane for blood treatment used for hemodialysis or filtration therapy, adsorption therapy, and the like, and a method for producing the same.
【0002】[0002]
【従来の技術】従来、血液透析あるいは濾過療法、吸着
療法などに使用される血液処理用膜は、血液中に蓄積し
た老廃物あるいは有害物を、拡散、濾過、吸着などの原
理に基づき血中から除去し、例えば、腎機能が完全に喪
失した患者の治療用途に用いられている。血液処理用膜
の材質としては、再生セルロースからなる膜や、例え
ば、ポリアクリロニトリルやポリスルホン、ポリエチレ
ンなどの合成高分子からなる膜が公知であり、形状は平
膜あるいは中空糸膜があるが、血液との接触面積が大き
くでき、処理能力の高い中空糸状の膜が近年主流となっ
ている。2. Description of the Related Art Conventionally, membranes for blood treatment used in hemodialysis, filtration therapy, adsorption therapy, etc., dispose waste or harmful substances accumulated in blood based on the principle of diffusion, filtration, adsorption and the like. And is used, for example, in the treatment of patients with complete loss of renal function. Examples of the material for the blood treatment membrane include a membrane made of regenerated cellulose and, for example, a membrane made of a synthetic polymer such as polyacrylonitrile, polysulfone, or polyethylene, and have a flat membrane or a hollow fiber membrane. In recent years, hollow fiber membranes that have a large contact area with the membrane and have a high processing capacity have become mainstream in recent years.
【0003】これら血液処理用膜は、平膜であれば、一
般に複数枚積層してプラスチック製の容器に装填し、ま
た、中空糸膜であれば、数百から数万本を束ねて円筒形
プラスチック製容器に装填し、ポッティング材で固定し
て半製品を作成し、さらに滅菌処理を行って血液処理用
モジュールとし使用される。また、これら血液処理用モ
ジュールは、血液と接触するため滅菌処理が必須であ
る。滅菌処理方法としては、従来から薬剤、ガス、高圧
蒸気などの手段が用いられてきたが、薬剤やガスの残留
がないこと、また、滅菌力が高いことなどの観点から、
γ線や電子線を使用した放射線処理が行われている。[0003] If these blood treatment membranes are flat membranes, a plurality of them are generally laminated and loaded into a plastic container. If they are hollow fiber membranes, hundreds to tens of thousands of them are bundled to form a cylindrical membrane. It is loaded into a plastic container, fixed with a potting material to produce a semi-finished product, and further sterilized to be used as a blood processing module. In addition, these blood processing modules require sterilization because they come into contact with blood. As a sterilization method, a drug, a gas, means of high-pressure steam and the like have been conventionally used.However, from the viewpoint that there is no residual drug or gas, and that the sterilization power is high,
Radiation treatment using gamma rays and electron beams has been performed.
【0004】一方、放射線処理を行うと、放射線の影響
により膜が劣化することが懸念され、抗酸化剤を使用し
放射線を照射する方法(特開平4−338223号公
報)や、充填液の酸性化を抑制する方法(特開平7−1
94949号公報)が明らかにされている。特開平7−
194949号公報には、劣化の結果として、封入した
水のpHが酸性側に大きく変化し使用時に支障を生じる
とともに、膜成分の分解を生じ溶出量が増加すること、
さらに、長期間保存した場合に、膜の劣化が進行し膜が
性能面で変化することを課題とし、それらを解決するた
め、pH緩衝液またはアルカリ水溶液でγ線処理する方
法が開示されている。[0004] On the other hand, when the radiation treatment is carried out, there is a concern that the film may be deteriorated by the influence of the radiation. Therefore, a method of irradiating radiation using an antioxidant (Japanese Patent Application Laid-Open No. 4-338223), and (Japanese Unexamined Patent Publication No. 7-1)
94949). JP-A-7-
194949 discloses that as a result of the deterioration, the pH of the enclosed water greatly changes to the acidic side, causing a problem during use, and also decomposing the membrane components to increase the elution amount.
Furthermore, when stored for a long period of time, the problem is that the deterioration of the film progresses and the film changes in terms of performance, and in order to solve them, a method of performing γ-ray treatment with a pH buffer solution or an alkaline aqueous solution is disclosed. .
【0005】しかしながら、上記公知の方法等によって
作成された血液処理用膜は、分解による充填液の酸性化
を防ぐことはできても、膜中に残存する放射線処理によ
り生じた酸化作用を持つ化学種を抑制することはなく、
実際に使用する時、膜と血液の接触によって、血液成分
の変質あるいは血液成分への刺激が起こり、生体作用因
子の放出を惹起し、生体に影響を及ぼす可能性があっ
た。[0005] However, although the blood treatment membrane prepared by the above-mentioned known method or the like can prevent acidification of the filling solution due to decomposition, it has a chemical action having an oxidizing action caused by the radiation treatment remaining in the membrane. Without suppressing the seeds,
When actually used, the contact between the membrane and the blood may alter the blood components or stimulate the blood components, causing the release of biologically active factors and possibly affecting the living body.
【0006】[0006]
【発明が解決しようとする課題】本発明は、放射線処理
された血液処理用膜による血液への影響をより少なくす
るため、放射線処理され生じた酸化作用を持つ化学種の
血液処理膜中への残存を抑制し、血液成分の変質あるい
は血液成分への刺激ををより少なくすることを課題とす
る。DISCLOSURE OF THE INVENTION The present invention aims at reducing the influence of radiation-treated blood treatment membranes on blood by reducing the effect of radiation-treated chemical species having an oxidizing action on the blood treatment membrane. An object of the present invention is to suppress the residual and reduce the deterioration of blood components or the stimulation to blood components.
【0007】[0007]
【課題を解決するための手段】本発明者らは、放射線処
理時の環境を鋭意検討した結果、驚くべきことに、放射
線処理された血液処理用膜であっても還元能を持たせる
ことが可能となり、血液への影響を抑えられることを見
いだし、本発明をなすに至った。すなわち、本発明は、
次のような構成を有する血液処理用膜とその製造方法で
ある。 (1)放射線処理された血液処理用膜の少なくとも膜表
面が還元能を有することを特徴とする血液処理用膜。 (2)還元能がNR試験によって得られるa* 値で20
以下の膜であることを特徴とする上記(1)記載の血液
処理用膜。 (3)血液処理用膜がポリスルホンと親水性高分子より
なることを特徴とする上記(1)または(2)記載の血
液処理用膜。 (4)血液処理用膜を放射線処理するに際して、酸化還
元電位が−500mV以下の水中で該膜を放射線処理す
ることを特徴とする還元能を有する血液処理用膜の製造
方法。 (5)血液処理用膜を放射線処理するに際して、酸素を
飽和溶存させた水中で該膜を放射線処理することを特徴
とする還元能を有する血液処理用膜の製造方法。Means for Solving the Problems As a result of intensive studies on the environment at the time of radiation treatment, the present inventors have surprisingly found that even a radiation-treated blood treatment membrane has a reducing ability. The present invention has been found to be possible and the effect on blood can be suppressed, and the present invention has been accomplished. That is, the present invention
A blood treatment membrane having the following configuration and a method for producing the same. (1) A blood processing membrane, wherein at least the surface of the radiation-treated blood processing membrane has a reducing ability. (2) The a * value obtained by the NR test is 20 as the reducing ability.
The blood processing membrane according to the above (1), which is the following membrane. (3) The blood processing membrane according to the above (1) or (2), wherein the blood processing membrane comprises polysulfone and a hydrophilic polymer. (4) A method for producing a blood processing membrane having reducing ability, which comprises subjecting the blood processing membrane to radiation treatment in water having an oxidation-reduction potential of -500 mV or less when the blood treatment membrane is subjected to radiation treatment. (5) A method for producing a blood processing membrane having a reducing ability, wherein the membrane is subjected to radiation treatment in water in which oxygen is saturated and dissolved when the blood treatment membrane is subjected to radiation treatment.
【0008】本発明でいうNR試験は、膜の還元能を把
握するために行う試験で、酸化還元指示薬であるニュー
トラルレッドを使用し、膜と試薬の接触前後における試
薬の色調変化を測定し、膜のもつ還元能を評価するもの
である。ニュートラルレッドは酸化状態では赤色、還元
状態では無色となるため、目視により試薬の酸化還元状
態は推定できるが、さらに、JISZ8729に従い、
L* 、a* およびb* 表色系で色調を数値化すること
で、定量的に試薬の酸化還元状態を評価することができ
る。[0008] The NR test referred to in the present invention is a test performed to ascertain the reducing ability of a membrane, using neutral red which is a redox indicator, and measuring the change in color tone of the reagent before and after the contact of the membrane with the reagent. This is to evaluate the reducing ability of the membrane. Since neutral red is red in an oxidized state and colorless in a reduced state, the oxidation-reduction state of the reagent can be estimated visually, and further, according to JISZ8729.
By digitizing the color tone using the L * , a *, and b * color systems, the oxidation-reduction state of the reagent can be quantitatively evaluated.
【0009】すなわち、L* 、a* およびb* 表色系で
は、酸化状態のニュートラルレッドの赤色はa* 値で表
され、a* 値が大きい場合ニュートラルレッドは酸化状
態、低い場合にはより還元された状態であることを示
し、膜と接触させた後のニュートラルレッドの色調を測
定することによって、膜がニュートラルレッドを還元す
る能力(還元能)を有するかを知ることができる。した
がって、膜の還元能を示すa* 値が低い方が還元能は高
く、血液への酸化的な影響が少ないと考えられ、血液と
の接触実験によりa* 値は20以下が好ましく、さら
に、15以下がより好ましいが、ニュートラルレッドは
十分に還元されても無色になるだけであるから、赤色を
表すa* 値は0未満にはならず、下限はおのずと0以上
である。[0009] That is, L *, the a * and b * color system, the red neutral red oxidation state is represented by a * value, a * if neutral red value is high oxidation state, more if low By indicating that the film is in a reduced state, and by measuring the color tone of the neutral red after being brought into contact with the film, it is possible to know whether the film has the ability to reduce neutral red (reducing ability). Therefore, it is considered that the lower the a * value indicating the reducing ability of the membrane is, the higher the reducing ability is and the less oxidative effect on blood is, and the a * value is preferably 20 or less by a contact experiment with blood. The value of a * representing red is not less than 0, and the lower limit is naturally 0 or more since neutral red is only colorless even when sufficiently reduced.
【0010】ここで用いられる血液処理用膜の材質は特
に限定されないが、放射線により処理されてなる公知の
材質であれば、例えば、再生セルロース系膜やポリスル
ホンを基材とし、親水性を得るためにポリビニルピロリ
ドン、ポリビニルアルコール、ポリエチレングリコール
などの親水性高分子を有するポリスルホン系膜、あるい
はセルロースアセテート、ポリメチルメタクリレートな
どに実施可能である。なかでも、ポリスルホンにポリビ
ニルピロリドンを添加してなる中空糸膜が、本発明の好
ましい具体例として挙げられる。また、膜の形状は、中
空糸、平膜など、どのような形状であってもよい。[0010] The material of the blood treatment membrane used here is not particularly limited, and any known material treated with radiation, for example, using a regenerated cellulose-based membrane or polysulfone as a base material to obtain hydrophilicity. And a polysulfone-based membrane having a hydrophilic polymer such as polyvinylpyrrolidone, polyvinyl alcohol and polyethylene glycol, or cellulose acetate, polymethyl methacrylate and the like. Among them, a hollow fiber membrane obtained by adding polyvinylpyrrolidone to polysulfone is mentioned as a preferred specific example of the present invention. The shape of the membrane may be any shape such as a hollow fiber or a flat membrane.
【0011】上記の血液処理用膜を提供する製造方法を
鋭意検討した結果、次のような方法を見い出した。すな
わち、膜やモジュールに酸化還元電位が−500mV以
下の水を封入し、その後、放射線により処理する方法、
または膜やモジュールに酸素を飽和溶存させた水を封入
し、その後、放射線により処理する方法である。第一の
方法で用いる所定の酸化還元電位を持つ水は、例えば、
イオン透過性隔膜を介して2枚の電極が配置された電解
水槽において電気分解を行うことによって作成されるも
ので、生成装置は強電解水生成装置など公知の装置が利
用でき、作成された水は、一般に強電解アルカリ水と呼
ばれる。得られる強電解アルカリ水の白金電極との間に
生じる酸化還元電位は、−300mVから−900mV
と非常に低く、一般に飲用に用いられるようなアルカリ
イオン水とは際だって異なる物理的特徴を有している。As a result of intensive studies on a manufacturing method for providing the above-mentioned blood processing membrane, the following method was found. That is, a method in which water having an oxidation-reduction potential of -500 mV or less is sealed in a membrane or a module, and then treated with radiation.
Alternatively, this is a method in which water in which oxygen is dissolved and dissolved is sealed in a membrane or a module, and thereafter, treatment is performed with radiation. Water having a predetermined oxidation-reduction potential used in the first method is, for example,
It is created by performing electrolysis in an electrolyzed water tank in which two electrodes are arranged via an ion-permeable diaphragm. A known apparatus such as a strongly electrolyzed water generator can be used as a generator, and the generated water can be used. Is generally called strong electrolytic alkaline water. The oxidation-reduction potential generated between the obtained strongly electrolyzed alkaline water and the platinum electrode ranges from -300 mV to -900 mV.
It has very different physical characteristics from alkaline ionized water that is generally used for drinking.
【0012】このように作成した強電解アルカリ水を、
例えば、中空糸膜であれば、数百から数万本を束ねて円
筒形プラスチック製容器に装填、固定した半製品に充填
し、栓を施した後、γ線などの放射線を照射して製品と
する。強電解アルカリ水の充填は、膜を試験管などの容
器に入れた後、強電解アルカリ水を充填し放射線処理し
た後、モジュール状に組み立てる場合もあり得るが、こ
の場合、放射線処理に限らないものの再度滅菌処理が必
要となるため、モジュール状に組み立てた後、上記強電
解アルカリ水を充填し、放射線処理により滅菌する方が
好ましい。The strong electrolyzed alkaline water thus prepared is
For example, in the case of hollow fiber membranes, hundreds to tens of thousands are bundled, loaded into a cylindrical plastic container, filled into a fixed semi-finished product, plugged, and irradiated with radiation such as γ-rays. And Filling with strong electrolytic alkaline water, after putting the membrane in a container such as a test tube, filling with strong electrolytic alkaline water and performing radiation treatment, may be assembled into a module, but in this case, it is not limited to radiation treatment However, it is necessary to sterilize again, so it is preferable to assemble in a module, fill with the strong electrolytic alkaline water, and sterilize by radiation treatment.
【0013】上記強電解アルカリ水が本発明の目的を達
成する理由は必ずしも明らかではないが、放射線処理を
行うと、膜中あるいは膜周辺に存在する水中に、例え
ば、ヒドロキシルラジカルやパーオキサイドラジカル等
の酸化力の強いラジカル種が発生するが、上記強電解ア
ルカリ水は放射線によって発生するこれらのラジカルを
消去する、あるいはより酸化力の弱いラジカルに変性さ
せる液として機能すると考えられる。したがって、封入
する強電解アルカリ水の酸化還元電位は低い方が好まし
いが、水の性質上あるいは電解水生成装置の能力により
実質的に下限は規定され、およそ−900mVが下限で
あり、−500mV以下の酸化還元電位を持つ水中であ
れば、本発明の目的を達成できるが、酸化還元電位が−
800mV以下の水を使用することがより好ましい。Although the reason why the above-mentioned strongly electrolytic alkaline water achieves the object of the present invention is not necessarily clear, when the radiation treatment is performed, for example, hydroxyl radicals and peroxide radicals are present in water existing in or around the film. The strongly electrolyzed alkaline water is considered to function as a liquid that eliminates these radicals generated by radiation or denatures them into radicals with weaker oxidative power. Therefore, it is preferable that the oxidation-reduction potential of the strongly electrolyzed alkaline water to be enclosed is low, but the lower limit is substantially defined by the properties of water or the capacity of the electrolyzed water generator, and the lower limit is about -900 mV, and is not more than -500 mV. In water having an oxidation-reduction potential of, the object of the present invention can be achieved.
More preferably, water of 800 mV or less is used.
【0014】上記強電解アルカリ水中には、ピロ亜硫酸
ナトリウム、アセトンソジウムバイサルファイト等の水
溶性の物質で、強電解アルカリ水の酸化還元電位を上記
範囲から逸脱させることがなければ溶存してもさしつか
えない。また、強電解アルカリ水作成の原水は、水道法
に定める飲用水あるいはイオン交換膜で処理した純水等
を用いることができる。一方、第二の酸素を飽和溶存さ
せた水を封入し、その後、放射線により処理する方法
は、酸素溶解度を高めるため冷却しながら酸素ガスをボ
ンベから導き、酸素を飽和溶解した水を、上記強電解ア
ルカリ水に代えて充填し、放射線処理を施す。In the strong electrolytic alkaline water, a water-soluble substance such as sodium pyrosulfite, acetone sodium bisulfite or the like may be dissolved if the oxidation-reduction potential of the strong electrolytic alkaline water does not deviate from the above range. I can't tell. In addition, as raw water for preparing strong electrolyzed alkaline water, drinking water specified by the Water Supply Law or pure water treated with an ion exchange membrane can be used. On the other hand, the method of encapsulating the water in which the second oxygen is dissolved and then treating it with radiation is to introduce oxygen gas from a cylinder while cooling in order to increase the oxygen solubility, and to disperse the oxygen-saturated water into the above-mentioned strong water. Filling is performed instead of electrolytic alkaline water, and radiation treatment is performed.
【0015】酸素を飽和溶存した水を充填したモジュー
ルは、強電解アルカリ水と同様に、放射線によって膜中
あるいは水中に発生した酸化力の強いラジカル種を、溶
存酸素が消去する、あるいはより酸化力の弱いラジカル
に変性させるため、酸化力の強い酸化種の膜中への残存
を抑制し、還元能を持つ血液処理用膜となるものと考え
られる。しかしながら、酸素飽和水を封入した方法は、
溶存酸素の管理の観点から安定的に製造することが難し
く、また、得られる膜は強電解アルカリ水を充填して得
られた膜の方がより還元能を有するため、強電解アルカ
リ水を使用する方が望ましい。本発明における放射線処
理方法は、α線、β線、γ線あるいは電子線などを用い
て実施できるが、放射線の物質透過性などの観点から、
γ線あるいは電子線が一般に使用される。本発明におい
ては、線種および照射する線量で特に限定されるもので
はない。[0015] The module filled with water saturated with oxygen dissolves the radical species having strong oxidizing power generated in the film or water by the radiation, as in the case of the strongly electrolytic alkaline water, in which the dissolved oxygen eliminates or increases the oxidizing power. It is considered that the oxidized species having a strong oxidizing power is suppressed from remaining in the film because the radical is denatured into a weak radical, and the resulting film becomes a blood treatment film having a reducing ability. However, the method of enclosing oxygen-saturated water,
It is difficult to manufacture stably from the viewpoint of the control of dissolved oxygen, and the obtained membrane is filled with strong electrolytic alkaline water. It is better to do. The radiation treatment method of the present invention can be carried out using α-rays, β-rays, γ-rays, electron beams, or the like.
Gamma rays or electron beams are generally used. In the present invention, there is no particular limitation on the type of radiation and the irradiation dose.
【0016】[0016]
【発明の実施の形態】以下に、本発明をさらに具体的に
説明するために実施例および比較例を挙げて説明する
が、本発明は、これらの実施例により限定されるもので
はない。なお、実施例、比較例中のNR試験および血液
刺激試験は、以下の方法に従い行った。いずれの試験に
際しても、試験に供した血液処理用膜は、モジュールに
充填されている液を予め排出し、さらに、実際に透析等
で使用されるのと同様に生理食塩水で洗浄操作を行った
後に、解体し膜を取り出した。DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to these examples. The NR test and the blood stimulation test in Examples and Comparative Examples were performed according to the following methods. In any of the tests, the blood treatment membrane used for the test drains the liquid filled in the module in advance, and further performs a washing operation with a physiological saline in the same manner as actually used in dialysis or the like. After disassembly, the membrane was taken out.
【0017】(NR試験)モジュールから取り出した膜
を5g精秤し、別途準備したニュートラルレッド水溶液
(50mg/L)50ml中に1時間浸漬した。その
後、膜を液から取り出し、濾紙等で余残な液を除去し、
a* 値を測定した。a* 値測定は色彩色差計(ミノルタ
社製CR−300)を用いて定量した。 (血液刺激試験)モジュールから取り出した膜(5g)
を細断し、新鮮人血液(37℃、50ml)に10分間
接触させ、白血球刺激によって血中に放出されるプロス
タグランジンE2 (以下、PGE2 )の血中濃度の定量
を行った。PGE2 の測定は、PGE2 EIAキット
(フナコシ社製)を使用して行い、PGE2 は異物との
接触前にも血液中にはある濃度存在するため、接触前後
の濃度差と接触前の濃度の比(増加率)を算出した。(NR test) 5 g of the membrane taken out from the module was precisely weighed and immersed in 50 ml of a separately prepared neutral red aqueous solution (50 mg / L) for 1 hour. After that, remove the membrane from the liquid, remove the remaining liquid with filter paper, etc.,
The a * value was measured. The a * value measurement was quantified using a colorimeter (CR-300 manufactured by Minolta). (Blood stimulation test) Membrane (5g) taken out of module
Was cut into pieces and contacted with fresh human blood (37 ° C., 50 ml) for 10 minutes to quantify the blood concentration of prostaglandin E 2 (hereinafter, PGE 2 ) released into the blood upon leukocyte stimulation. PGE 2 was measured using a PGE 2 EIA kit (Funakoshi). Since PGE 2 has a certain concentration in blood even before contact with a foreign substance, the difference in concentration between before and after contact and the difference before and after contact The concentration ratio (increase rate) was calculated.
【0018】[0018]
【実施例1】ポリスルホンおよびポリビニルピロリドン
を原料とする中空糸膜を、有効膜面積1.5m2 のモジ
ュールに組み立て、放射線を照射するに先だって、強電
解アルカリ水生成装置(東亜医用電子株式会社製SL−
2500)によって作成した酸化還元電位が−820m
Vの強電解アルカリ水を封入し、γ線を25kGy照射
した。試験に供した血液処理用膜は、モジュールに充填
されている液を予め排出し、さらに、実際に透析等で使
用されるのと同様に生理食塩水で洗浄操作を行った後
に、解体して膜を取り出し、NR試験および血液刺激試
験を行った。その結果を表1に示した。Example 1 A hollow fiber membrane made of polysulfone and polyvinylpyrrolidone was assembled into a module having an effective membrane area of 1.5 m 2 , and prior to irradiation with a radiation, a strong electrolytic alkaline water generator (manufactured by Toa Medical Electronics Co., Ltd.) SL-
2500), the oxidation-reduction potential is -820 m
V strong electrolyzed alkaline water was sealed, and γ-rays were irradiated at 25 kGy. The blood treatment membrane subjected to the test was drained in advance of the liquid filled in the module, and further washed with physiological saline in the same manner as actually used in dialysis and the like, and then disassembled. The membrane was removed and subjected to an NR test and a blood irritation test. The results are shown in Table 1.
【0019】[0019]
【実施例2】酸化還元電位が−740mVである強電解
アルカリ水を封入した以外、実施例1と同一の操作を行
った後、NR試験および血液刺激試験を行った結果を表
1に示した。Example 2 The same operation as in Example 1 was carried out except that a strongly electrolyzed alkaline water having an oxidation-reduction potential of -740 mV was sealed, and the results of NR test and blood stimulation test were shown in Table 1. .
【実施例3】酸化還元電位が−510mVである強電解
アルカリ水を封入した以外、実施例1と同一の操作を行
った後、NR試験および血液刺激試験を行った結果を表
1に示した。Example 3 The same operation as in Example 1 was carried out except that a strongly electrolyzed alkaline water having an oxidation-reduction potential of -510 mV was enclosed, and the results of an NR test and a blood stimulation test were shown in Table 1. .
【実施例4】イオン交換膜で処理した純水を5℃に冷却
し、酸素ボンベから導いた酸素ガスを毎分100mlで
2時間通過させて作成した酸素飽和水を封入した以外、
実施例1と同一の操作を行った後、NR試験および血液
刺激試験を行った結果を表1に示した。Example 4 Pure water treated with an ion-exchange membrane was cooled to 5 ° C., and oxygen-saturated water produced by passing oxygen gas introduced from an oxygen cylinder at 100 ml per minute for 2 hours was sealed.
After performing the same operation as in Example 1, the results of NR test and blood stimulation test are shown in Table 1.
【0020】[0020]
【比較例1】酸化還元電位が−450mVである強電解
アルカリ水を封入した以外、実施例1と同一の操作を行
った後、NR試験および血液刺激試験を行った結果を比
較例1とし表1に示した。[Comparative Example 1] The same operation as in Example 1 was carried out except that a strongly electrolyzed alkaline water having an oxidation-reduction potential of -450 mV was enclosed, and then an NR test and a blood stimulation test were performed. 1 is shown.
【比較例2】酸化還元電位が−180mVであるアルカ
リイオン水を封入した以外、実施例1と同一の操作を行
った後、NR試験および血液刺激試験を行った結果を比
較例2とし表1に示した。Comparative Example 2 The same operation as in Example 1 was performed, except that alkaline ionized water having an oxidation-reduction potential of -180 mV was sealed, and then an NR test and a blood stimulation test were performed. It was shown to.
【0021】[0021]
【比較例3および4】実施例1に示したモジュール作成
時に、封入液をイオン交換膜で処理した純水に炭酸水素
ナトリウム(0.1w/v%)を溶解した酸化還元電位
+98mVの液に変えて作成し、γ線25kGyを照射
した後、実施例1と同一の洗浄操作後に取り出した膜に
対し、NR試験および血液刺激試験を行った結果を比較
例3として表1に示した。また、比較例3と同様である
が炭酸水素ナトリウムを水酸化ナトリウム(0.1w/
v%)に変えた酸化還元電位+146mVの液を充填
し、γ線25kGyを照射したモジュールから、実施例
1と同一の洗浄操作後に取り出した膜を比較例4とし、
NR試験および血液刺激試験を行った結果を表1に示し
た。[Comparative Examples 3 and 4] At the time of making the module shown in Example 1, the sealing solution was converted to a solution having a redox potential of +98 mV obtained by dissolving sodium hydrogen carbonate (0.1 w / v%) in pure water treated with an ion exchange membrane. Table 1 shows the results of the NR test and the blood irritation test performed on the membrane that was prepared in a different manner, irradiated with 25 kGy of γ-rays, and taken out after the same washing operation as in Example 1 as Comparative Example 3. Further, the same as Comparative Example 3 was carried out except that sodium hydrogen carbonate was replaced with sodium hydroxide (0.1 w /
v%), and a film taken out after the same washing operation as in Example 1 from a module filled with a solution having an oxidation-reduction potential of +146 mV and irradiated with 25 kGy of γ-ray was taken as Comparative Example 4.
Table 1 shows the results of the NR test and the blood stimulation test.
【0022】[0022]
【比較例5】実施例1に示したモジュール作成時に、封
入液をイオン交換膜で処理した純水に変えて作成し、γ
線25kGyを照射した後、実施例1と同一の洗浄操作
後に取り出した膜に対し、NR試験および血液刺激試験
を行った結果を比較例5として表1に示した。[Comparative Example 5] When the module shown in Example 1 was prepared, the filling liquid was changed to pure water treated with an ion exchange membrane, and γ was prepared.
After irradiation with 25 kGy of the line, the NR test and the blood stimulation test were performed on the membrane taken out after the same washing operation as in Example 1. The results are shown in Table 1 as Comparative Example 5.
【参考例】比較例5と同様に純水を充填し、γ線を照射
しないモジュールから、実施例1と同一の洗浄操作後に
取り出した膜を参考例とし、NR試験および血液刺激試
験を行った結果を表1に示した。放射線照射によりa*
値は上昇し、それに伴いPGE2 は有意に増加した。REFERENCE EXAMPLE In the same manner as in Comparative Example 5, a NR test and a blood irritation test were performed using a membrane taken out from a module filled with pure water and not irradiated with gamma rays after the same washing operation as in Example 1 as a reference example. The results are shown in Table 1. A * by irradiation
The values increased, and PGE 2 increased significantly.
【0023】[0023]
【表1】 [Table 1]
【0024】酸化還元電位が−500mV以下のアルカ
リイオン水を封入した本発明による実施例1、2および
3では、放射線処理したにも関わらず、a* 値は上昇す
ることがなく、血中PGE2 濃度は殆ど上昇しなかっ
た。しかしながら、酸化還元電位が−450mVのアル
カリイオン水を封入した比較例1では、a* 値が20を
越え、血中PGE2 濃度は上昇し、血液への刺激は多か
った。また、比較例2の酸化還元電位が−180mVの
アルカリイオン水、また、溶液の酸化還元電位がプラス
側の値を示した比較例3および4では、a* 値は純水を
使用した比較例5と同様に血中PGE2 濃度は上昇し、
血液への刺激は多かった。In Examples 1, 2 and 3 according to the present invention in which alkaline ionized water having an oxidation-reduction potential of -500 mV or less was encapsulated, the a * value did not increase despite the radiation treatment, and the blood PGE was not increased. 2 The concentration hardly increased. However, in Comparative Example 1 in which alkaline ionized water having an oxidation-reduction potential of -450 mV was enclosed, the a * value exceeded 20, the blood PGE 2 concentration increased, and the blood was stimulated more. Further, in Comparative Example 2, the redox potential was −180 mV in alkaline ionized water, and in Comparative Examples 3 and 4 where the redox potential of the solution was a positive value, the a * value was a comparative example using pure water. Blood PGE 2 concentration rises as in 5,
There was much irritation to the blood.
【0025】[0025]
【発明の効果】本発明によって放射線により滅菌された
血液処理用膜であっても、還元能を有することが可能と
なり、血液への影響をより少なくすることができた。According to the present invention, even a blood treatment membrane sterilized by radiation can have a reducing ability, and the influence on blood can be further reduced.
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4C077 AA01 AA05 BB01 BB02 BB03 GG05 LL02 LL05 LL23 PP15 4D006 GA13 HA01 MA01 MA03 MB09 MB20 MC40X MC62 MC62X ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4C077 AA01 AA05 BB01 BB02 BB03 GG05 LL02 LL05 LL23 PP15 4D006 GA13 HA01 MA01 MA03 MB09 MB20 MC40X MC62 MC62X
Claims (5)
とも膜表面が還元能を有することを特徴とする血液処理
用膜。1. A blood processing membrane, wherein at least the surface of the radiation-treated blood processing membrane has a reducing ability.
値で20以下であることを特徴とする請求項1記載の血
液処理用膜。2. The method of claim 1, wherein the reducing ability is obtained by an NR test .
2. The blood processing membrane according to claim 1, wherein the value is 20 or less.
分子よりなることを特徴とする請求項1または2記載の
血液処理用膜。3. The blood processing membrane according to claim 1, wherein the blood processing membrane is made of polysulfone and a hydrophilic polymer.
て、酸化還元電位が−500mV以下の水中で該膜を放
射線処理することを特徴とする還元能を有する血液処理
用膜の製造方法。4. A method for producing a blood processing membrane having reducing ability, which comprises irradiating the blood processing membrane with water having an oxidation-reduction potential of -500 mV or less when the blood processing membrane is subjected to radiation treatment.
て、酸素を飽和溶存させた水中で該膜を放射線処理する
ことを特徴とする還元能を有する血液処理用膜の製造方
法。5. A method for producing a blood processing membrane having a reducing ability, wherein the blood processing membrane is subjected to radiation treatment in water in which oxygen is saturated and dissolved when the blood treatment membrane is subjected to radiation treatment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10207075A JP2000024104A (en) | 1998-07-08 | 1998-07-08 | Membrane for blood treatment and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10207075A JP2000024104A (en) | 1998-07-08 | 1998-07-08 | Membrane for blood treatment and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000024104A true JP2000024104A (en) | 2000-01-25 |
Family
ID=16533796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10207075A Withdrawn JP2000024104A (en) | 1998-07-08 | 1998-07-08 | Membrane for blood treatment and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000024104A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001036072A1 (en) * | 1999-11-17 | 2001-05-25 | Asahi Medical Co., Ltd. | Blood treating membrane, blood treating container and process for producing the same |
-
1998
- 1998-07-08 JP JP10207075A patent/JP2000024104A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001036072A1 (en) * | 1999-11-17 | 2001-05-25 | Asahi Medical Co., Ltd. | Blood treating membrane, blood treating container and process for producing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2180487C (en) | Water for medical treatment, production method thereof, and dialysis apparatus using water for medical treatment as dialysis liquid | |
JP2599204B2 (en) | Hemodialysis agent | |
DE2742588B2 (en) | Process for the sterilization of a dialyzer with a semipermeable membrane | |
EP1103264A2 (en) | Active oxygen containing solution for promoting growth of tissue cells at wound sites | |
DE19640840C2 (en) | Method for disinfecting a dialysis machine | |
EP3603691B1 (en) | Dialysate for hemodialysis | |
US4663006A (en) | Cyclic controlled electrolysis | |
DE19640839C2 (en) | Method and device for disinfecting a dialysis machine | |
JP5320941B2 (en) | Method for producing membrane for biocomponent contact application | |
JP2000024104A (en) | Membrane for blood treatment and its production | |
WO2001036072A1 (en) | Blood treating membrane, blood treating container and process for producing the same | |
JP3442842B2 (en) | Processing method of permselective membrane | |
DE3412143C2 (en) | Method for sterilizing a cell suspension | |
CA2406476C (en) | Water for medical treatment, production method thereof, and dialysis apparatus using water for medical treatment as dialysis liquid | |
RU2076736C1 (en) | Method of treatment of ready medicinal articles made of silicon rubber by peroxide vulcanization | |
CA2303676C (en) | Water for medical treatment, production method thereof, and dialysis apparatus using water for medical treatment as dialysis liquid | |
JP2004321720A (en) | Production method of hollow fiber membrane type module and hollow fiber membrane type module | |
CN111263649A (en) | Preparation device of dialysate | |
JP2024010704A (en) | Dialysis fluid for hemodialysis | |
JPS598970A (en) | Washing of non-cellulosic artificial kindney | |
DE19640841A1 (en) | Preparation of ultra-pure infusion or dialysis solution | |
JPS58219987A (en) | Apparatus for sterilizing recirculation water of swimming pool | |
JPH07328111A (en) | Sterilization method of blood purifier | |
JPS6137166A (en) | Disinfection apparatus of dialysate supply apparatus | |
JPH06343967A (en) | Method and apparatus for sterilization in water treatment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050620 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20070718 |