JP2000018546A - Method and device for detecting amount of combustion in incinerator, method and device for controlling combustion in incinerator and incinerator - Google Patents

Method and device for detecting amount of combustion in incinerator, method and device for controlling combustion in incinerator and incinerator

Info

Publication number
JP2000018546A
JP2000018546A JP10191300A JP19130098A JP2000018546A JP 2000018546 A JP2000018546 A JP 2000018546A JP 10191300 A JP10191300 A JP 10191300A JP 19130098 A JP19130098 A JP 19130098A JP 2000018546 A JP2000018546 A JP 2000018546A
Authority
JP
Japan
Prior art keywords
sound wave
combustion
amount
incinerator
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10191300A
Other languages
Japanese (ja)
Other versions
JP3723829B2 (en
Inventor
Masaaki Sakano
雅章 坂野
Tomoyuki Maeda
知幸 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP19130098A priority Critical patent/JP3723829B2/en
Publication of JP2000018546A publication Critical patent/JP2000018546A/en
Application granted granted Critical
Publication of JP3723829B2 publication Critical patent/JP3723829B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Incineration Of Waste (AREA)

Abstract

PROBLEM TO BE SOLVED: To permit the detection of an amount of combustion in a furnace instantaneously and correctly without being affected by the adhesion of dust, generation of smoke or the like and permit the restriction of discharge of incomplete combustion gas to the outside of a furnace by controlling the amount of air immediately based on the fluctuation of the amount of combustion. SOLUTION: An incinerator 1 is provided with acoustic wave oscillators 8, 8a, irradiating acoustic wave into a space in the incinerator 1, which includes unburnt gas, acoustic wave receivers 9, 9a, receiving the acoustic wave, and an operating means 10, operating the propagating time of the acoustic wave and detecting the amount of combustion. Further, the incinerator 1 is provided with a primary air ventilating means 3 as well as a primary air controlling means 4, ventilating the optimum amount of primary air (a1) against a matter to be incinerated 2, and a secondary air ventilating means 6 as well as a secondary air controlling means 7, ventilating the optimum amount of secondary air (a2) into the space 5 above the matter to be incinerated 2, which includes unburnt gas. In this case, the amount of primary air or secondary air is controlled based on an information from the operating means 10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、都市ごみ、産業廃
棄物、RDF、石炭等の固体燃料を燃料とする焼却炉
で、炉内の燃焼量を検出する方法、装置、それに基づい
て燃焼を制御する方法、装置、および焼却炉に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an incinerator using solid fuel such as municipal solid waste, industrial waste, RDF, and coal as a fuel. The present invention relates to a control method, an apparatus, and an incinerator.

【0002】[0002]

【従来の技術】通常、焼却炉で、都市ごみ、産業廃棄
物、RDF、石炭などの固体燃料を焼却する場合、燃料
の供給変動が発生する。燃料の供給過剰では燃焼ガス中
の酸素濃度が減少し不完全燃焼を起こし、また燃料の供
給過少では燃焼ガスの温度が低下し不完全燃焼をおこ
す。このような不完全燃焼が生じると、ダイオキシンや
ー酸化炭素などの有害物質が多量に放出される。
2. Description of the Related Art Normally, when solid fuel such as municipal solid waste, industrial waste, RDF, and coal is incinerated in an incinerator, the fuel supply fluctuates. If the fuel supply is excessive, the oxygen concentration in the combustion gas decreases, causing incomplete combustion, and if the fuel supply is insufficient, the temperature of the combustion gas decreases, causing incomplete combustion. When such incomplete combustion occurs, a large amount of harmful substances such as dioxin and carbon monoxide are released.

【0003】従って、不完全燃焼ガスの濃度を瞬時に検
出して、直ちに空気量を調節し、不完全燃焼ガスが排出
される前に完全燃焼させる必要がある。そこで、燃焼量
の大小によって炎の明暗の度合いが異なることに着目
し、炉内の輝度を明るさ検出センサで測定することによ
り、その輝度値に比例して空気量を制御する方法が提案
されている(特開平6─42726号公報参照)。
Therefore, it is necessary to detect the concentration of incomplete combustion gas instantaneously, adjust the air amount immediately, and perform complete combustion before the incomplete combustion gas is discharged. Therefore, focusing on the fact that the degree of brightness of the flame differs depending on the amount of combustion, a method has been proposed in which the brightness in the furnace is measured by a brightness detection sensor to control the air amount in proportion to the brightness value. (See Japanese Patent Application Laid-Open No. 6-42726).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前述の
光学的手法では、瞬時に測定できはするものの、ダスト
の付着による感度の低下や、炉壁からの光による外乱に
よって、正確に検出できないという問題がある。従っ
て、検出器の設置場所を炉頂などに限定したり、ダスト
が付着しないような特別な工夫を要し、また、煙の発生
により炉内が暗くなった場合に備えて圧力検出センサな
どの別の手段を並設させる必要も生じている。さらに、
炉内の温度分布は流動する傾向にあるが、同じ燃焼量で
も炎の位置が明るさセンサから遠く離れると検出する輝
度が低くなるなどして、検出結果に大きなバラツキを生
じてしまう傾向にある。結果として、前述の光学的手法
では、誤動作を起こしやすく、不完全燃焼を確実に防ぐ
ことはできない。
However, with the above-mentioned optical method, although the measurement can be performed instantaneously, there is a problem that the sensitivity cannot be accurately detected due to a decrease in sensitivity due to dust adhesion or disturbance due to light from the furnace wall. There is. Therefore, the installation place of the detector is limited to the furnace top, etc., special measures are required so that dust does not adhere, and the pressure detection sensor etc. should be used in case the inside of the furnace becomes dark due to the generation of smoke. There is also a need for juxtaposing other means. further,
Although the temperature distribution in the furnace tends to flow, even with the same amount of combustion, if the position of the flame is far away from the brightness sensor, the detected brightness will decrease, and the detection results will tend to vary widely. . As a result, the above-mentioned optical method is liable to cause a malfunction and cannot completely prevent incomplete combustion.

【0005】本発明は、従来の技術の有するこのような
問題点に鑑みてなされたものであり、ダストの付着や煙
の発生等に影響されず、炉内の燃焼量を瞬時に正確に検
出することができ、燃焼量の変動に則してただちに空気
量を調整し炉外への不完全燃焼ガスの放出を抑えること
ができる焼却炉の燃焼量検出方法、装置、燃焼量制御方
法、装置および焼却炉を提供することを目的とする。
The present invention has been made in view of the above-mentioned problems of the prior art, and is capable of instantaneously and accurately detecting the amount of combustion in a furnace without being affected by the adhesion of dust or the generation of smoke. A method and apparatus for detecting the amount of combustion in an incinerator, in which the amount of air in the incinerator can be adjusted immediately in accordance with the fluctuations in the amount of combustion, thereby suppressing the release of incomplete combustion gas outside the furnace. And to provide an incinerator.

【0006】[0006]

【課題を解決するための手段】請求項1にかかる発明
は、焼却炉の燃焼量検出方法であって、焼却炉内を通過
する音波の伝播時間を測定し、測定された伝播時間に基
づいて燃焼量を検出することを特徴とする。音波は高速
であり、瞬時に燃焼量を検出することができる。また、
光学的手法と異なり、センサーへのダストの付着、煙の
発生等に影響されない。さらに、音波の伝播時間は、伝
播する経路での平均的な伝播速度の結果として検出され
るものであり、局所的に温度の高いところが、炉内のど
こにあっても検出結果に影響を与えない。
The invention according to claim 1 is a method for detecting the combustion amount of an incinerator, which measures the propagation time of a sound wave passing through the incinerator, and based on the measured propagation time. It is characterized by detecting a combustion amount. The sound wave is fast, and the amount of combustion can be detected instantaneously. Also,
Unlike the optical method, it is not affected by the adhesion of dust to the sensor or the generation of smoke. In addition, the propagation time of the sound wave is detected as a result of the average propagation velocity in the propagation path, and a locally high temperature does not affect the detection result anywhere in the furnace. .

【0007】請求項2にかかる発明は、請求項1に記載
の発明に加えて、前記音波の周波数がlkHz以上であ
るものである。lkHz未満では、周辺機器の騒音の周
波数とー致するので、ノイズの影響を受けやすい。lk
Hz以上にすることによりノイズの影響を小さくし、小
さな音波出力でもS/N比を大きくすることができる。
According to a second aspect of the present invention, in addition to the first aspect, the frequency of the sound wave is 1 kHz or more. If the frequency is lower than 1 kHz, the frequency of the noise is equal to the frequency of the noise of the peripheral device, so that the frequency is easily affected by the noise. lk
By setting the frequency to Hz or more, the influence of noise can be reduced, and the S / N ratio can be increased even with a small sound wave output.

【0008】請求項3にかかる発明は、請求項1または
2に記載の発明に加えて、前記音波の周波数が20kH
z以上であるものである。lkHz以上でも20kHz
未満であれば、可聴範囲である。20kHz以上では、
人間の耳には聞こえないため騒音の問題をなくすことが
できる。
According to a third aspect of the present invention, in addition to the first or second aspect, the frequency of the sound wave is 20 kHz.
z or more. 20kHz even at lkHz or more
If less, it is within the audible range. Above 20kHz
Since it is inaudible to human ears, the problem of noise can be eliminated.

【0009】請求項4にかかる発明は、焼却炉の燃焼量
検出装置であって、燃焼炉内の未燃焼ガスを含む空間に
音波を入射する音波発振器と、前記音波を受信する音波
受信器と、前記音波の前記空間での伝播時間を演算し燃
焼量を検出する演算手段を備えてなることを特徴とす
る。音波発振器と音波受信機は、ダストの付着の有無に
関係なく、音波を発振し受信する。また煙が発生して、
内部の状態が見えなくなっていても検出できる。さら
に、局所的に燃え盛っていても全体の平均として伝搬速
度を計測するので安定して正確な燃焼量を検知すること
ができる。音波は高速であり、瞬時に燃焼量を検出する
ことができる。
According to a fourth aspect of the present invention, there is provided an apparatus for detecting the amount of combustion in an incinerator, comprising: a sound wave oscillator for emitting a sound wave into a space containing unburned gas in the combustion furnace; and a sound wave receiver for receiving the sound wave. And a calculating means for calculating a propagation time of the sound wave in the space and detecting a combustion amount. The sound wave oscillator and the sound wave receiver oscillate and receive sound waves regardless of the presence or absence of dust. Also smoke was generated,
Even if the internal state is not visible, it can be detected. Further, even if the fuel is locally burning, the propagation speed is measured as an average of the whole, so that a stable and accurate combustion amount can be detected. The sound wave is fast, and the amount of combustion can be detected instantaneously.

【0010】請求項5にかかる発明は、請求項4に記載
の発明に加えて、前記音波の周波数がlkHz以上であ
る。周辺機器のたてる騒音の周波数と一致しないので、
ノイズの影響が小さい。
According to a fifth aspect of the present invention, in addition to the fourth aspect, the frequency of the sound wave is 1 kHz or more. Since it does not match the frequency of the noise made by peripheral equipment,
The influence of noise is small.

【0011】請求項6にかかる発明は、請求項4または
5に記載の発明に加えて、前記音波の周波数が20kH
z以上である。人の耳には聞こえないので騒音問題をお
こさない。
According to a sixth aspect of the present invention, in addition to the fourth or fifth aspect, the frequency of the sound wave is 20 kHz.
z or more. It does not cause noise problems because it is inaudible to human ears.

【0012】請求項7にかかる発明は、焼却炉の燃焼制
御方法であって、焼却炉内を通過する音波の伝播時間を
測定し、測定された伝播時間に基づいて燃焼量を検出
し、該検出された燃焼量に基づいて焼却炉内に供給する
空気の量を調整することを特徴とする。音波の伝搬時間
の測定は瞬時にでき、燃焼量の変動に遅れることなく、
空気量を調整することができる。
According to a seventh aspect of the present invention, there is provided a combustion control method for an incinerator, comprising measuring a propagation time of a sound wave passing through the incinerator, detecting a combustion amount based on the measured propagation time. The amount of air supplied into the incinerator is adjusted based on the detected amount of combustion. Measurement of the propagation time of the sound wave can be instantaneous, without delaying the fluctuation of the combustion amount,
The air volume can be adjusted.

【0013】請求項8にかかる発明は、焼却炉の燃焼制
御装置であって、燃焼炉内の未燃焼ガスを含む空間に音
波を入射する音波発振器と、前記音波を受信する音波受
信器と、前記音波の前記空間での伝播時間を演算し燃焼
量を検出する演算手段と、該演算手段からの情報に基づ
いて炉内の空気量の調整を行う調整手段とを備えてなる
ことを特徴とする。音波発振器と音波受信機は、ダスト
の付着の有無に関係なく、音波を発振し受信する。また
煙が発生して、内部の状態が見えなくなっていても検出
できる。さらに、局所的に燃え盛っていても全体の平均
として伝搬速度を計測するので安定して正確な燃焼量を
検知することができる。音波の伝搬時間の測定は瞬時に
でき、燃焼量の変動に遅れることなく、空気量を調整す
ることができる。
The invention according to claim 8 is a combustion control device for an incinerator, which comprises: a sound wave oscillator for emitting a sound wave into a space containing unburned gas in the combustion furnace; a sound wave receiver for receiving the sound wave; A calculating unit for calculating a propagation time of the sound wave in the space to detect a combustion amount, and an adjusting unit for adjusting an air amount in the furnace based on information from the calculating unit. I do. The sound wave oscillator and the sound wave receiver oscillate and receive sound waves regardless of the presence or absence of dust. Further, even if smoke is generated and the internal state cannot be seen, it can be detected. Further, even if the fuel is locally burning, the propagation speed is measured as an average of the whole, so that a stable and accurate combustion amount can be detected. The measurement of the propagation time of the sound wave can be performed instantaneously, and the air amount can be adjusted without delaying the fluctuation of the combustion amount.

【0014】請求項9にかかる発明は、請求項8に記載
の発明に加えて、前記調整手段が、焼却物に向けて供給
される一次空気、または、焼却物上空の未燃焼ガスを含
む空間に供給される二次空気の空気量を調整するもので
ある。一次空気量の調整によって、流動層での燃焼量の
制御をする。例えば、流動層での燃焼量が過大で、流動
層上空で不完全燃焼ガスの全てが完全燃焼されない場合
には、一次空気量を減少させて流動層での燃焼量を減少
させ、不完全燃焼ガスの発生を抑える。二次空気量の調
整によって、流動層上空での不完全燃焼ガスの完全燃焼
量を制御する。例えば、流動層で発生する不完全燃焼ガ
スの量が増加すれば、これに対応して二次空気量を増加
させる。
According to a ninth aspect of the present invention, in addition to the eighth aspect of the present invention, the adjusting means includes a space containing the primary air supplied toward the incinerated material or the unburned gas above the incinerated material. This adjusts the amount of secondary air supplied to the air conditioner. The amount of combustion in the fluidized bed is controlled by adjusting the amount of primary air. For example, if the amount of combustion in the fluidized bed is excessive and not all of the incomplete combustion gas is completely burned above the fluidized bed, the amount of primary air is reduced to reduce the amount of combustion in the fluidized bed, resulting in incomplete combustion. Suppress gas generation. By adjusting the amount of secondary air, the amount of complete combustion of incomplete combustion gas above the fluidized bed is controlled. For example, if the amount of incomplete combustion gas generated in the fluidized bed increases, the amount of secondary air is correspondingly increased.

【0015】請求項10にかかる発明は、焼却物に向け
て一次空気を送風する一次空気送風手段と、当該一次空
気の量を調節する一次空気調節手段と、前記焼却物上空
の未燃焼ガスを含む空間に二次空気を送風する二次空気
送風手段と、当該二次空気の量を調節する二次空気調節
手段と、前記未燃焼ガスを含む空間に音波を入射する音
波発振器と、前記音波を受信する音波受信器と、前記音
波の未燃焼ガスを含む空間での伝播時間を検出する演算
手段と、前記演算手段からの情報に基づいて前記一次空
気調節手段または二次空気調節手段を制御する制御手段
を備えてなることを特徴とする。焼却炉としては、都市
ごみや産業廃棄物などを焼却するもので、流動床炉の他
にストーカ−炉や回転式炉などがある。音波は高速であ
り、瞬時に燃焼量を検出することができる。また、光学
的手法と異なり、センサーへのダストの付着、煙の発生
等に影響されない。さらに、音波の伝播時間は、伝播す
る経路での平均的な伝播速度の結果として検出されるも
のであり、局所的に温度の高いところが、炉内のどこに
あっても検出結果に影響を与えない。したがって、音波
の発振器および受信器の取付位置は、特に限定されな
い。
According to a tenth aspect of the present invention, there is provided a primary air blowing means for blowing primary air toward an incinerated material, a primary air adjusting means for adjusting the amount of the primary air, and an unburned gas over the incinerated material. Secondary air blowing means for blowing secondary air into the space containing the secondary air adjusting means for adjusting the amount of the secondary air, a sound wave oscillator for emitting a sound wave into the space containing the unburned gas, and the sound wave And a calculating means for detecting a propagation time of the sound wave in the space containing the unburned gas, and controlling the primary air adjusting means or the secondary air adjusting means based on information from the calculating means. And a control means for performing the control. The incinerator incinerates municipal solid waste and industrial waste, and includes a stoker furnace and a rotary furnace in addition to a fluidized bed furnace. The sound wave is fast, and the amount of combustion can be detected instantaneously. Also, unlike the optical method, it is not affected by dust adhesion to the sensor, generation of smoke, and the like. Furthermore, the propagation time of the sound wave is detected as a result of the average propagation velocity in the propagation path, and a locally high temperature does not affect the detection result anywhere in the furnace. . Therefore, the attachment positions of the sound wave oscillator and the receiver are not particularly limited.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施形態を図面を
参照しつつ説明する。図1は、本発明の焼却炉の一実施
例の概略説明図、図2および図3は本発明の燃焼量検出
方法および制御方法の説明図である。また、図4は、本
発明の制御方法による燃焼ガス濃度の時経的変化を示
し、図5は本発明の焼却炉の他の実施例を示す。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic explanatory diagram of an embodiment of the incinerator of the present invention, and FIGS. 2 and 3 are explanatory diagrams of a combustion amount detecting method and a control method of the present invention. FIG. 4 shows a temporal change of the combustion gas concentration by the control method of the present invention, and FIG. 5 shows another embodiment of the incinerator of the present invention.

【0017】図1に示される焼却炉1は、流動床タイプ
のものであり、炉壁22内の下方には分散板20によっ
て、風箱21が形成されており、分散板20上には焼却
物と珪砂とを含む流動層2が形成されている。炉壁22
には給塵機23が設けられている。風箱21には、配管
27を介して、一次空気調節手段4および一次空気送風
手段3が連結されており、分散板20を介して流動層2
に一次空気a1が供給される。流動層2は、一次空気a
1によって流動化されている。また、一次空気a1は、
焼却物の燃焼用空気としても使用される。流動層2上空
の燃焼室(フリーボード)5は,流動層2から出た未燃
分を多く含む燃焼ガスを完全燃焼させる空間であり、燃
焼室5横の炉壁22には完全燃焼に使用される二次空気
を送り込むための送風口24が設けられている。送風口
24には、配管28を介して二次空気調節手段7および
二次空気送風手段6が連結されている。さらに排気口手
前には廃熱ボイラ29が設けられている。
The incinerator 1 shown in FIG. 1 is of a fluidized bed type, in which a wind box 21 is formed below the inside of a furnace wall 22 by a dispersion plate 20. The fluidized bed 2 containing the material and the silica sand is formed. Furnace wall 22
Is provided with a dust collector 23. The primary air adjusting means 4 and the primary air blowing means 3 are connected to the wind box 21 through a pipe 27, and the fluidized bed 2 is dispersed through a dispersion plate 20.
Is supplied with primary air a1. Fluidized bed 2 contains primary air a
1 fluidized. The primary air a1 is
It is also used as combustion air for incineration. A combustion chamber (free board) 5 above the fluidized bed 2 is a space for completely burning the combustion gas containing a large amount of unburned matter that has come out of the fluidized bed 2, and is used for complete combustion in a furnace wall 22 next to the combustion chamber 5. An air outlet 24 for feeding the secondary air to be supplied is provided. The air outlet 24 is connected to the secondary air adjusting means 7 and the secondary air blowing means 6 via a pipe 28. Further, a waste heat boiler 29 is provided in front of the exhaust port.

【0018】図1において、燃焼室5横の炉壁22に
は、孔25が設けられており、該孔25の外部には、孔
25から燃焼室に向けて音波を入射する音波を発振する
振動子8aを備えた音波発振手段8と、燃焼室5を通過
し、対向する炉壁面22aで反射した音波を受信するマ
イクロホン9aを備えた音波受信手段9が設けられてい
る。さらに、音波発振・受信手段8、9は演算・制御手
段10に連結されている。
In FIG. 1, a hole 25 is provided in the furnace wall 22 beside the combustion chamber 5, and outside the hole 25, a sound wave which radiates a sound wave from the hole 25 toward the combustion chamber is oscillated. A sound wave oscillating means 8 provided with a vibrator 8a and a sound wave receiving means 9 provided with a microphone 9a which receives a sound wave which passes through the combustion chamber 5 and is reflected by a furnace wall 22a opposed thereto are provided. Further, the sound wave oscillation / reception means 8 and 9 are connected to the calculation / control means 10.

【0019】演算・制御手段10は、音波発振・受信手
段8、9からの情報に基づいて、音波が燃焼室5を伝播
するのに要した時間を演算し、その伝搬時間に基づい
て、一次空気調整手段18および二次空気調整手段19
を制御し、一次空気a1の量、および、二次空気a2の
量を調節する。
The calculation / control means 10 calculates the time required for the sound wave to propagate through the combustion chamber 5 based on the information from the sound wave oscillation / reception means 8 and 9, and based on the propagation time, calculates the primary time. Air adjusting means 18 and secondary air adjusting means 19
To adjust the amount of the primary air a1 and the amount of the secondary air a2.

【0020】図2に示されるように、音波発振手段8で
作られる信号は、音波を周期的に発生するものである。
この音波は所定経路を経て音波受信手段9で受信される
ので、発信音と受信音とで、位相遅れ(τ)が生じる。
演算・制御手段10は、この位相遅れ(τ)を検出す
る。
As shown in FIG. 2, the signal generated by the sound wave oscillating means 8 generates a sound wave periodically.
Since this sound wave is received by the sound wave receiving means 9 via a predetermined path, a phase delay (τ) occurs between the transmission sound and the reception sound.
The arithmetic and control means 10 detects this phase delay (τ).

【0021】音波の伝播速度(A)は、次式(1)式に
示すように、ガスの組成に依存する比熱比(κ)と、ガ
ス定数(R)、およびガスの絶対温度(T)に比例す
る。 A=√(κRT) ・・・(1) 比熱比(κ)とガス定数(R)の変化の割合は極小さい
ことから、炉内の音波の伝播速度(A)は、燃焼ガスの
温度(T)に比例する。したがって、燃焼ガスの燃焼量
が大きいときは炉内の温度が高く、音波の伝播速度が速
くなり、伝播時間が短くなるということがいえる。その
逆に、燃焼量が小さいと温度が低く伝播速度が小さく伝
播時間が長くなる。すなわち、炉内の音波の伝播時間
は、炉内の燃焼量(温度)に比例する。よって、ある速
度の音波が炉内の所定経路を通過することによって生じ
る位相遅れ(τ)〔時間〕の変化をを、燃焼量の変化と
して認識することができる。
As shown in the following equation (1), the propagation velocity (A) of the sound wave is determined by the specific heat ratio (κ) depending on the gas composition, the gas constant (R), and the absolute temperature (T) of the gas. Is proportional to A = √ (κRT) (1) Since the rate of change between the specific heat ratio (κ) and the gas constant (R) is extremely small, the propagation speed (A) of the sound wave in the furnace is determined by the temperature of the combustion gas ( T). Therefore, it can be said that when the amount of combustion of the combustion gas is large, the temperature in the furnace is high, the propagation speed of the sound wave is high, and the propagation time is short. Conversely, when the combustion amount is small, the temperature is low, the propagation speed is small, and the propagation time is long. That is, the propagation time of the sound waves in the furnace is proportional to the amount of combustion (temperature) in the furnace. Therefore, a change in phase delay (τ) [time] caused by a sound wave of a certain speed passing through a predetermined path in the furnace can be recognized as a change in the amount of combustion.

【0022】図3において、数値A、B、Cは、A>B
>Cで、τ>Aでは燃焼量が小さく、A≧τ>Bでは燃
焼量が適正、B≧τ>Cでは燃焼量が大きく、τ≦Cで
過剰に燃焼していることを示している。演算・制御手段
10は、演算された位相遅れ(τ)の値に基づいて、τ
>Aであれば、燃焼量が小さいので、二次空気量を減ら
し、A≧τ>Bでは適正燃焼なので現状を維持し、B≧
τ>Cでは燃焼量が大きいので、二次空気量を増加させ
る。τ≦Cでは過剰に燃焼しており、二次空気量の制御
だけで完全燃焼させることができないので、一次空気量
を減少させて、流動層2での燃焼を低下させ、緩慢な燃
焼を行うようにする。このように、燃焼ガス中の酸素濃
度をー定にする。その結果、燃焼室5内では常に最適な
空気比の下で燃焼が行われるため、ダイオキシンやー酸
化炭素の排出を低減することができる。
In FIG. 3, the numerical values A, B, and C are such that A> B
> C, the combustion amount is small when τ> A, the combustion amount is appropriate when A ≧ τ> B, the combustion amount is large when B ≧ τ> C, and the combustion is excessive when τ ≦ C. . The calculating and controlling means 10 calculates τ based on the calculated value of the phase delay (τ).
If> A, the amount of combustion is small, so the secondary air amount is reduced. If A ≧ τ> B, proper combustion is maintained, and B ≧
When τ> C, the amount of combustion is large, so the amount of secondary air is increased. When τ ≦ C, excessive combustion occurs, and complete combustion cannot be performed only by controlling the amount of secondary air. Therefore, the amount of primary air is reduced, combustion in the fluidized bed 2 is reduced, and slow combustion is performed. To do. Thus, the oxygen concentration in the combustion gas is kept constant. As a result, the combustion is always performed in the combustion chamber 5 under the optimum air ratio, so that emission of dioxin and carbon oxide can be reduced.

【0023】図4は、演算・制御手段10によって制御
された炉内の、燃焼ガス温度、超音波伝播時間、二次空
気量、燃焼ガス酸素の、経時的変化を模式的に示したも
のである。超音波伝播時間が長いときは燃焼ガスの温度
が低く、燃焼量が小さいので二次空気量を減らす。音波
の伝播時間が短い場合は燃焼ガスの温度が高く燃焼量が
大きいので二次空気量を増加させる。音波の伝播時間は
非常に高速であり、瞬時に燃焼量を検知することができ
るため、二次空気量を調節するのにかかる応答時間は、
極めて短時間であることがわかる。
FIG. 4 schematically shows changes over time in the combustion gas temperature, ultrasonic wave propagation time, secondary air amount, and combustion gas oxygen in the furnace controlled by the arithmetic and control means 10. is there. When the ultrasonic wave propagation time is long, the temperature of the combustion gas is low and the amount of combustion is small, so the amount of secondary air is reduced. When the sound wave propagation time is short, the temperature of the combustion gas is high and the amount of combustion is large, so the secondary air amount is increased. Since the propagation time of the sound wave is very fast and the amount of combustion can be detected instantaneously, the response time required to adjust the amount of secondary air is:
It turns out that it is a very short time.

【0024】このように、本発明では、音響式計測であ
り、ダストの影響を受けず、瞬時に空気量を調節できる
ため、図4の実線で示される燃焼ガス酸素濃度のよう
に、ほぼ一定の値が保たれる。これに比し、本発明のよ
うな音響式の計測による制御を行わない場合の酸素濃度
は、破線で示されるように、燃焼量が大きければ少な
く、小さければ多くなるため、不完全燃焼がおきやす
い。また、光学式の計測では、明るさの感度が、輝点
(局所的に温度の高い所)の遠近に左右されるのに対
し、本発明の音響式の計測では、音波に速度変化があっ
ても、伝播時間はその平均速度の結果として計測される
ものであるので、音波の経路途上に温度勾配が生じてい
ても、燃焼量は燃焼室内の平均量で検出される。したが
って、正確に燃焼量の変化を検出することができ、空気
量の調節を誤作動させることがない。
As described above, according to the present invention, since the measurement is performed by the acoustic method, and the amount of air can be instantaneously adjusted without being affected by dust, it is almost constant as shown by the combustion gas oxygen concentration shown by the solid line in FIG. Is maintained. In contrast, as shown by the broken line, the oxygen concentration when the control by acoustic measurement as in the present invention is not performed is small as the combustion amount is large and large as the combustion amount is small, so that incomplete combustion occurs. Cheap. Further, in the optical measurement, the sensitivity of brightness depends on the distance of a bright spot (a place where the temperature is locally high), whereas in the acoustic measurement of the present invention, the sound wave has a speed change. However, since the propagation time is measured as a result of the average speed, even if a temperature gradient occurs along the path of the sound wave, the combustion amount is detected by the average amount in the combustion chamber. Therefore, the change in the combustion amount can be detected accurately, and the adjustment of the air amount does not malfunction.

【0025】また、演算・制御手段10において用いら
れる音波の周波数は、S/N比を向上させるために、l
kHz以上の周波数を用いることが好ましい。lkHz
以上の音波を用いることでノイズの影響を小さくするこ
とができる。さらに大型の炉では音波の出力が大きくな
り騒音の問題が発生するため、20KHz以上の周波数
を用いることが好ましい。周波数を20KHz以上にす
ると、人間の耳には聞こえないため騒音の問題をなくす
ことができる。
The frequency of the sound wave used in the arithmetic and control means 10 is set to 1 to improve the S / N ratio.
It is preferable to use a frequency of kHz or higher. lkHz
By using the above sound waves, the influence of noise can be reduced. Further, in the case of a large furnace, the output of the sound wave becomes large and the problem of noise occurs. If the frequency is set to 20 kHz or more, the problem of noise can be eliminated because the sound cannot be heard by human ears.

【0026】なお、本発明は、図1に示すような流動床
式部市ごみ焼却炉に限られるものではなく、ストーカ−
炉や回転式炉でも同様の効果が得られる。また、音波の
経路に関しても、図1に示すような、炉壁の一側面から
発振し、対向する側面で反射する音を受信するものに限
らない。例えば、図5に示されるように、マイクロホン
9aを振動子8aの反対側に設け、音波を透過型にして
も良い。
The present invention is not limited to a fluidized bed type municipal waste incinerator as shown in FIG.
A similar effect can be obtained in a furnace or a rotary furnace. Also, the path of the sound wave is not limited to the one shown in FIG. 1 which receives the sound oscillating from one side of the furnace wall and reflected on the opposite side. For example, as shown in FIG. 5, a microphone 9a may be provided on the opposite side of the vibrator 8a, and a sound wave may be transmitted.

【0027】[0027]

【発明の効果】以上のように請求項1及び4ににかかる
発明は、音波の伝搬速度が温度に比例することから、音
波の伝搬時間を測定して燃焼室の燃焼量を検出するもの
であり、瞬時に測定でき、煙やダストなどに影響されず
に、燃焼量を検出することができる。また、音波受信手
段の感度は音波の伝播する経路でー定であるため、燃焼
量は燃焼室内の平均量で検出されるので局所的な温度の
上昇等による誤動作を防止することができる。
As described above, according to the first and fourth aspects of the present invention, since the propagation speed of the sound wave is proportional to the temperature, the propagation time of the sound wave is measured to detect the amount of combustion in the combustion chamber. Yes, it can be measured instantaneously, and the amount of combustion can be detected without being affected by smoke or dust. In addition, since the sensitivity of the sound wave receiving means is determined by the propagation path of the sound wave, the amount of combustion is detected by the average amount in the combustion chamber, so that a malfunction due to a local temperature rise or the like can be prevented.

【0028】請求項2、3、5及び6にかかる発明で
は、音波の周波数を1kHz以上、または20kHz以上と
したので、ノイズの影響を受けにくくし、また、小さな
音波出力でもS/N比を大きくすることができる。さら
に音波の周波数を20KHz以上にすると、人間の耳に
は聞こえないため騒音の問題をなくすことができる。
In the second, third, fifth and sixth aspects of the present invention, the frequency of the sound wave is set to 1 kHz or more or 20 kHz or more, so that it is hardly affected by noise, and the S / N ratio is reduced even with a small sound wave output. Can be bigger. Further, when the frequency of the sound wave is set to 20 KHz or more, the problem of noise can be eliminated because the sound cannot be heard by human ears.

【0029】請求項7、8及び9にかかる発明では、音
波の伝搬時間の測定から検出された燃焼量に基づいて焼
却炉内に供給する空気の量を調整するものであり、音波
によって瞬時に検出された燃焼量の値に従い、燃焼量の
変動に遅れることなく適正空気量に調整することができ
る。したがって、不完全燃焼による有害ガスの炉外への
放出を抑えることができる。
According to the seventh, eighth and ninth aspects of the present invention, the amount of air to be supplied into the incinerator is adjusted based on the amount of combustion detected from the measurement of the propagation time of the sound wave. According to the detected value of the combustion amount, the air amount can be adjusted to an appropriate amount without delaying the fluctuation of the combustion amount. Therefore, emission of harmful gas to the outside of the furnace due to incomplete combustion can be suppressed.

【0030】請求項10にかかる発明では、焼却物およ
び焼却物の上空に向けて空気を供給する構成の焼却炉
に、焼却炉内の音波の伝搬時間を測定し燃焼量を検出す
るための音波発振器、音波受信機および演算手段を備
え、さらに、焼却炉内に供給する空気の量を調整する調
整手段を備えたものであり、瞬時に燃焼量を検出でき、
燃焼量の変動に遅れること無く、適正空気量に調整でき
る。また、音波発振器および音波受信器は、ダストが付
着したり、炉内に煙が発生したりしていても、これらに
干渉されずに音波を発振し、受信することができる。さ
らに、炉内に局所的に燃焼量が大きく温度が高い所が発
生していても、伝搬速度は炉内の平均として捕らえられ
るので、安定して正確な燃焼量の把握ができる。
According to the tenth aspect of the present invention, there is provided an incinerator having a configuration for supplying air toward the incinerated material and the incinerated material, a sound wave for measuring a propagation time of the sound wave in the incinerator and detecting a combustion amount. It has an oscillator, a sound wave receiver and an arithmetic means, and further has an adjusting means for adjusting the amount of air to be supplied into the incinerator, so that the amount of combustion can be detected instantaneously,
The air amount can be adjusted to an appropriate amount without delaying the fluctuation of the combustion amount. Further, even if dust adheres or smoke is generated in the furnace, the sound wave oscillator and the sound wave receiver can oscillate and receive sound waves without interference. Further, even if a portion where the combustion amount is large and the temperature is high occurs locally in the furnace, the propagation speed is captured as an average in the furnace, so that the combustion amount can be stably and accurately grasped.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の焼却炉の一実施例の概略説明図であ
る。
FIG. 1 is a schematic explanatory view of one embodiment of an incinerator of the present invention.

【図2】本発明の燃焼量検出方法の説明図である。FIG. 2 is an explanatory diagram of a combustion amount detection method according to the present invention.

【図3】本発明の燃焼量検出方法の説明図である。FIG. 3 is an explanatory diagram of a combustion amount detection method according to the present invention.

【図4】本発明の焼却炉の燃焼量検出方法による各要素
の時経的変化を示した図である。
FIG. 4 is a diagram showing a temporal change of each element according to a combustion amount detection method for an incinerator according to the present invention.

【図5】本発明の焼却炉の他の実施例の概略説明図であ
る。
FIG. 5 is a schematic explanatory view of another embodiment of the incinerator of the present invention.

【符号の説明】[Explanation of symbols]

1 焼却炉 2 焼却物を含む流動層 3 一次空気送風手段 4 一次空気調節手段 5 燃焼室 6 二次空気送風手段 7 二次空気調節手段 8 音波発振手段 9 音波受信手段 10 演算・制御手段 a1 一次空気 a2 二次空気 DESCRIPTION OF SYMBOLS 1 Incinerator 2 Fluidized bed containing incineration material 3 Primary air blowing means 4 Primary air adjusting means 5 Combustion chamber 6 Secondary air blowing means 7 Secondary air adjusting means 8 Sound wave oscillating means 9 Sound wave receiving means 10 Calculation / control means a1 Primary Air a2 Secondary air

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 焼却炉内を通過する音波の伝播時間を測
定し、測定された伝播時間に基づいて燃焼量を検出する
ことを特徴とする焼却炉の燃焼量検出方法。
1. A method for detecting a combustion amount of an incinerator, comprising: measuring a propagation time of a sound wave passing through the incinerator; and detecting a combustion amount based on the measured propagation time.
【請求項2】 前記音波の周波数がlkHz以上である
請求項1記載の焼却炉の燃焼量検出方法。
2. The method according to claim 1, wherein the frequency of the sound wave is 1 kHz or more.
【請求項3】 前記音波の周波数が20kHz以上であ
る請求項1または2記載の燃焼炉の燃焼量検出方法。
3. The method according to claim 1, wherein the frequency of the sound wave is equal to or higher than 20 kHz.
【請求項4】 燃焼炉内の未燃焼ガスを含む空間に音波
を入射する音波発振器と、前記音波を受信する音波受信
器と、前記音波の前記空間での伝播時間を演算し燃焼量
を検出する演算手段を備えてなることを特徴とする焼却
炉の燃焼量検出装置。
4. A sound wave oscillator for emitting a sound wave into a space containing unburned gas in a combustion furnace, a sound wave receiver for receiving the sound wave, and a propagation time of the sound wave in the space is calculated to detect a combustion amount. A combustion amount detection device for an incinerator, comprising a calculation means for performing the calculation.
【請求項5】 前記音波の周波数がlkHz以上である
請求項4記載の焼却炉の燃焼量検出装置。
5. The incinerator combustion amount detection device according to claim 4, wherein the frequency of the sound wave is 1 kHz or more.
【請求項6】 前記音波の周波数が20kHz以上であ
る請求項4または5記載の燃焼炉の燃焼量検出装置。
6. The combustion amount detection device for a combustion furnace according to claim 4, wherein the frequency of the sound wave is 20 kHz or more.
【請求項7】 焼却炉内を通過する音波の伝播時間を測
定し、測定された伝播時間に基づいて燃焼量を検出し、
該検出された燃焼量に基づいて焼却炉内に供給する空気
の量を調整することを特徴とする燃焼炉の燃焼制御方
法。
7. A method for measuring a propagation time of a sound wave passing through an incinerator, detecting a combustion amount based on the measured propagation time,
A combustion control method for a combustion furnace, comprising: adjusting an amount of air supplied into an incinerator based on the detected combustion amount.
【請求項8】 燃焼炉内の未燃焼ガスを含む空間に音波
を入射する音波発振器と、前記音波を受信する音波受信
器と、前記音波の前記空間での伝播時間を演算し燃焼量
を検出する演算手段と、該演算手段からの情報に基づい
て炉内の空気量の調整を行う調整手段とを備えてなるこ
とを特徴とする焼却炉の燃焼制御装置。
8. A sound wave oscillator for injecting a sound wave into a space containing unburned gas in a combustion furnace, a sound wave receiver for receiving the sound wave, and calculating a propagation time of the sound wave in the space to detect a combustion amount. A combustion control apparatus for an incinerator, comprising: an arithmetic unit for performing the adjustment, and an adjusting unit for adjusting the amount of air in the furnace based on information from the arithmetic unit.
【請求項9】 前記調整手段が、焼却物に向けて供給さ
れる一次空気、または、焼却物上空の未燃焼ガスを含む
空間に供給される二次空気の空気量を調整するものであ
る請求項8記載の焼却炉の燃焼制御装置。
9. The adjusting means for adjusting the amount of primary air supplied to the incineration material or the amount of secondary air supplied to a space containing unburned gas above the incineration material. Item 10. A combustion control device for an incinerator according to Item 8.
【請求項10】 焼却物に向けて一次空気を送風する一
次空気送風手段と、当該一次空気の量を調節する一次空
気調節手段と、前記焼却物上空の未燃焼ガスを含む空間
に二次空気を送風する二次空気送風手段と、当該二次空
気の量を調節する二次空気調節手段と、前記未燃焼ガス
を含む空間に音波を入射する音波発振器と、前記音波を
受信する音波受信器と、前記音波の未燃焼ガスを含む空
間での伝播時間を検出する演算手段と、前記演算手段か
らの情報に基づいて前記一次空気調節手段または二次空
気調節手段を制御する制御手段を備えてなることを特徴
とする焼却炉。
10. A primary air blowing means for blowing primary air toward an incinerated material, a primary air adjusting means for adjusting an amount of the primary air, and a secondary air in a space above the incinerated material containing unburned gas. Air blowing means for blowing air, secondary air adjusting means for adjusting the amount of the secondary air, a sound wave oscillator for emitting a sound wave into a space containing the unburned gas, and a sound wave receiver for receiving the sound wave Computing means for detecting the propagation time of the sound wave in the space containing the unburned gas, and control means for controlling the primary air regulating means or the secondary air regulating means based on information from the computing means. An incinerator characterized by becoming.
JP19130098A 1998-07-07 1998-07-07 Incinerator combustion amount detection method, detection device, combustion control method, control device, and incinerator Expired - Lifetime JP3723829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19130098A JP3723829B2 (en) 1998-07-07 1998-07-07 Incinerator combustion amount detection method, detection device, combustion control method, control device, and incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19130098A JP3723829B2 (en) 1998-07-07 1998-07-07 Incinerator combustion amount detection method, detection device, combustion control method, control device, and incinerator

Publications (2)

Publication Number Publication Date
JP2000018546A true JP2000018546A (en) 2000-01-18
JP3723829B2 JP3723829B2 (en) 2005-12-07

Family

ID=16272278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19130098A Expired - Lifetime JP3723829B2 (en) 1998-07-07 1998-07-07 Incinerator combustion amount detection method, detection device, combustion control method, control device, and incinerator

Country Status (1)

Country Link
JP (1) JP3723829B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019007702A (en) * 2017-06-27 2019-01-17 川崎重工業株式会社 Secondary combustion gas mixed state estimation method, combustion state estimation method, automatic combustion control method and waste incinerator
JP2019007703A (en) * 2017-06-27 2019-01-17 川崎重工業株式会社 Flame terminal position detection method, automatic combustion control method and waste incinerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019007702A (en) * 2017-06-27 2019-01-17 川崎重工業株式会社 Secondary combustion gas mixed state estimation method, combustion state estimation method, automatic combustion control method and waste incinerator
JP2019007703A (en) * 2017-06-27 2019-01-17 川崎重工業株式会社 Flame terminal position detection method, automatic combustion control method and waste incinerator

Also Published As

Publication number Publication date
JP3723829B2 (en) 2005-12-07

Similar Documents

Publication Publication Date Title
US6461144B1 (en) Method of controlling thermoacoustic vibrations in a combustion system, and combustion system
JP2000018546A (en) Method and device for detecting amount of combustion in incinerator, method and device for controlling combustion in incinerator and incinerator
US4538979A (en) Method of controlling a combustion flame
JPH08233242A (en) Method and equimpment for incinerating garbage
JP2019178844A (en) Waste moisture percentage measuring apparatus, stoker-type waste incinerator, waste moisture percentage measuring method, and waste incineration method
JPH05209828A (en) Smoke detector
JPH11325427A (en) Combustion control method in combustion furnace and the combustion furnace
JP2989367B2 (en) Combustion control method for waste incinerator
JP6543300B2 (en) Gas mixture state estimation method for secondary combustion, combustion state estimation method, automatic combustion control method, and waste incinerator
US5775895A (en) Combustion-state detecting circuit of combustion apparatus
JPH10111187A (en) Fluidized bed combustor
JPH0375402A (en) Combustion control for fluidized bed furnace
JP2988960B2 (en) Boiler air supply device
JP2004279015A (en) Fluidized bed type waste disposal device
JP3151946B2 (en) Water heater
JP2880398B2 (en) Combustion control device
JP2019178847A (en) Waste moisture percentage measuring apparatus, stoker-type waste incinerator, waste moisture percentage measuring method, and waste incineration method
JPS60213725A (en) Air-fuel ratio detecting device
JP2003302025A (en) Refuse gasification melting system
WO1991014914A1 (en) Method of measuring feed rate of waste to be burnt
JPH1114027A (en) Method of controlling combustion of incinerator
JPS59180216A (en) Controlling method of combustion device
JP2000018545A (en) Method for controlling incinerator and incinerator
JP2597733B2 (en) Combustion control method and apparatus for incinerator
JP3928709B2 (en) Combustion control device for waste incinerator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050818

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130930

Year of fee payment: 8

EXPY Cancellation because of completion of term