JP2000018498A - Pressure control device for cryogenic container - Google Patents

Pressure control device for cryogenic container

Info

Publication number
JP2000018498A
JP2000018498A JP10186178A JP18617898A JP2000018498A JP 2000018498 A JP2000018498 A JP 2000018498A JP 10186178 A JP10186178 A JP 10186178A JP 18617898 A JP18617898 A JP 18617898A JP 2000018498 A JP2000018498 A JP 2000018498A
Authority
JP
Japan
Prior art keywords
discharge port
pressure
ridge
cryogenic
seal member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10186178A
Other languages
Japanese (ja)
Inventor
Haruhiro Oda
晴弘 織田
Taiji Fujimoto
泰司 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10186178A priority Critical patent/JP2000018498A/en
Publication of JP2000018498A publication Critical patent/JP2000018498A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Safety Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To bring airtightness into full play even after cryogenic gas has blown off. SOLUTION: In this pressure control device for a cryogenic container 13, which opens a valve element 29 closing a discharge port 26a at the side of a valve seat 26 and makes the gas of a cryogenic fluid so as to be discharged out of the discharge port 26a when pressure in the cryogenic container 13 wherein this cryogenic fluid is stored, has exceeded the setting pressure, each ridge line part, whose section is quadrilateral and existing in a diagonal line, is made so as to become the axial direction, for example, a ring seal member 33 is made up with high polymer resin having flexibility at a temperature of, e.g. 200 deg.C, and the ridge line part at the axial one end side of the seal member 33 is made to come into contact with the valve seat 26 around the discharge port 26a, and another ridge line part at the other end side is made so as to be contacted with the valve element 29.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、液体ヘリウムや
液体窒素等を貯蔵する低温容器内の圧力を調整する低温
容器の圧力調整装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure control device for a cryogenic container for adjusting the pressure in a cryogenic container for storing liquid helium, liquid nitrogen or the like.

【0002】[0002]

【従来の技術】図7は従来の低温容器の圧力調整装置を
示す断面図である。図7において、液体ヘリウムや液体
窒素等が貯蔵された低温容器1と本体2との間がパイプ
3で接続されている。そして、本体2に螺合された弁座
4により貫通穴5aを有するばね受座5を固定すると共
に、本体2と弁座4との間をシール部材6で気密封止す
る。さらに、ばね受座5とばねシート7とで所定の圧力
になるように圧縮されたばね8により弁体9を弁座4に
押圧する。そして、弁座4と弁体9との間に配置された
断面がドーナツ状のシール部材10が変形されることに
より気密封止が行われている。上記構成において、ばね
8のばね定数とばねの圧縮量とで決まるばね力FSと
し、低温容器1内のガス圧と弁体9の受圧面積とで決ま
るガス圧力FGとしたとき、低温容器1内の圧力が上昇
してFS<FGになると、ばね力FSに抗して弁体9が
移動して弁体9とシール部材10との気密性がなくな
り、低温容器1内のガスが吹き出してガス圧力FGが低
下する。そして、FS>FGになるとばね力FSによ
り、再び弁体9とシール部材10との間で気密性が発揮
されるので、低温容器1内のガス圧力を所定の値に維持
することができる。
2. Description of the Related Art FIG. 7 is a sectional view showing a conventional pressure adjusting device for a cryogenic container. In FIG. 7, a pipe 3 connects between a low-temperature container 1 in which liquid helium, liquid nitrogen and the like are stored and a main body 2. Then, the spring seat 5 having the through hole 5 a is fixed by the valve seat 4 screwed to the main body 2, and the space between the main body 2 and the valve seat 4 is hermetically sealed by the seal member 6. Further, the valve body 9 is pressed against the valve seat 4 by the spring 8 compressed to a predetermined pressure between the spring seat 5 and the spring seat 7. The hermetic sealing is performed by deforming the sealing member 10 having a doughnut-shaped cross section disposed between the valve seat 4 and the valve element 9. In the above configuration, when the spring force FS is determined by the spring constant of the spring 8 and the compression amount of the spring, and the gas pressure FG is determined by the gas pressure in the low-temperature container 1 and the pressure receiving area of the valve element 9, the inside of the low-temperature container 1 When the pressure rises and FS <FG, the valve body 9 moves against the spring force FS, and the airtightness between the valve body 9 and the seal member 10 is lost. The pressure FG decreases. When FS> FG, the airtightness is again exerted between the valve body 9 and the seal member 10 by the spring force FS, so that the gas pressure in the low-temperature container 1 can be maintained at a predetermined value.

【0003】[0003]

【発明が解決しようとする課題】従来の低温容器の圧力
調整装置は以上のように構成されているので、弁体9が
作動して低温容器1内のガスが吹き出したときに−10
0°C以下にもなるため、ガスの吹き出し量が大量にな
るとか、頻繁にガスが吹き出すようなことが発生する
と、シール部材10が冷却されて凍り付くことがある。
したがって、低温容器1内のガス圧力が低下したとき、
再び弁体9がシール部材10を押圧してもシール部材1
0が凍り付いて変形しないので、十分な気密性を発揮さ
せることが困難であるという問題点があった。この発明
は、以上のような問題点を解消するためになされたもの
で、低温流体が吹き出した後でも気密性を発揮させるこ
とができる低温容器の圧力調整装置を提供することを目
的とするものである。
Since the conventional pressure adjusting device for a cryogenic container is constructed as described above, when the valve element 9 is actuated and gas in the cryogenic container 1 is blown out, the pressure is reduced by -10.
Since the temperature is 0 ° C. or less, if the amount of gas blowout becomes large or the gas blows out frequently, the seal member 10 may be cooled and freeze.
Therefore, when the gas pressure in the low temperature vessel 1 decreases,
Even if the valve body 9 presses the sealing member 10 again, the sealing member 1
Since 0 freezes and does not deform, there is a problem that it is difficult to exhibit sufficient airtightness. The present invention has been made in order to solve the above problems, and an object of the present invention is to provide a pressure adjusting device for a low-temperature container that can exhibit airtightness even after a low-temperature fluid is blown out. It is.

【0004】[0004]

【課題を解決するための手段】この発明に係わる低温容
器の圧力調整装置は、低温流体を貯蔵する低温容器の圧
力が設定圧力を越えたとき、弁座側の放出口を閉塞して
いる弁体を開放して低温流体のガスを放出口から放出す
るようにした低温容器の圧力調整装置において、断面が
四辺形で対角線上に存在する各稜線部が軸方向になるよ
うに、低温流体の温度域でも柔軟性を有する高分子系の
樹脂で環状のシール部材を形成し、シール部材の軸方向
の一端側の稜線部を放出口の周囲で弁座と当接させ、他
端側の稜線部を弁体と当接させるようにしたものであ
る。また、断面が四辺形で対角線上に存在する各稜線部
が軸方向になるように、低温流体の温度域でも柔軟性を
有する高分子系の樹脂により環状に形成された一対のシ
ール体を軸方向に対向させ、対向した各稜線部を一体化
させてシール部材を形成し、シール部材の軸方向の一端
側の稜線部を放出口の周囲で弁座と当接させ、他端側の
稜線部を弁体と当接させるようにしたものである。ま
た、断面が四辺形で対角線上に存在する各稜線部が軸方
向になるように、低温流体の温度域でも柔軟性を有する
高分子系の樹脂により環状に形成された一対のシール体
を同心円状に対向させ、対向した各稜線部を一体化させ
てシール部材を形成し、シール部材の軸方向の一端側の
各稜線部を放出口の周囲で弁座と当接させ、他端側の各
稜線部を弁体と当接させるようにしたものである。さら
に、断面が四辺形で対角線上に存在する各稜線部が軸方
向になるように、低温流体の温度域でも柔軟性を有する
高分子系の樹脂により環状に形成された一対のシール体
を軸方向に対向させ、対向した各稜線部を一体化させて
一対のシール体群を形成し、シール体群を同心状に配置
して一方のシール体群の内周側に存在する稜線部と、他
方のシール体群の外周側に存在する稜線部とを一体化さ
せてシール部材を形成し、シール部材の軸方向の一端側
の各稜線部を放出口の周囲で弁座と当接させ、他端側の
各稜線部を弁体と当接させるようにしたものである。
According to the present invention, there is provided a pressure adjusting device for a cryogenic container, wherein a valve closing a discharge port on a valve seat side when a pressure of a cryogenic container storing a cryogenic fluid exceeds a set pressure. In a pressure adjusting device for a cryogenic container in which the body is opened to release the gas of the cryogenic fluid from the discharge port, the cryogenic fluid is controlled so that each of the diagonal ridges having a cross-section is in the axial direction. An annular seal member is formed of a polymer resin having flexibility even in a temperature range, and the ridge portion at one end in the axial direction of the seal member is brought into contact with the valve seat around the discharge port, and the ridge at the other end is formed. The part is brought into contact with the valve body. Also, a pair of seals formed in a ring shape from a polymer resin having flexibility even in the temperature range of the low-temperature fluid is formed by a pair of seals so that each ridge portion present on a diagonal line having a cross section in a diagonal line is in the axial direction. The sealing member is formed by integrating the facing ridge portions with each other in the direction, and the ridge portion at one end in the axial direction of the sealing member is brought into contact with the valve seat around the discharge port, and the ridge at the other end is formed. The part is brought into contact with the valve body. In addition, a pair of seals formed concentrically with a polymer resin having flexibility even in the temperature range of the low-temperature fluid are concentrically arranged so that each of the ridges present on a diagonal line having a cross section of a quadrangle is in the axial direction. The sealing member is formed by integrating the opposed ridge portions, and each ridge portion on one end side in the axial direction of the sealing member is brought into contact with the valve seat around the discharge port, and the other end portion is formed. Each ridge portion is brought into contact with the valve body. Furthermore, a pair of seals formed in a ring shape from a polymer resin having flexibility even in the temperature range of the low-temperature fluid, so that each of the ridges present on a diagonal line having a cross-section in a quadrilateral form is in the axial direction. In the direction, and form a pair of sealing body groups by integrating the facing ridge parts, and a ridge part present on the inner peripheral side of one of the sealing body groups by arranging the sealing body groups concentrically, A sealing member is formed by integrating the ridges existing on the outer peripheral side of the other seal body group, and each ridge at one axial end of the sealing member is brought into contact with the valve seat around the discharge port, The ridges on the other end are brought into contact with the valve body.

【0005】[0005]

【発明の実施の形態】実施の形態1.図1は実施の形態
1の低温容器の圧力調整装置を使用した低温流体の貯蔵
装置を示す構成図、図2は実施の形態1の低温流体の圧
力調整装置を示す断面図、及び図3は図2の要部を示す
断面図である。図1〜図3において、11は内槽タンク
で、後述の低温流体14が収容される。12は内槽タン
ク11を覆った外槽タンクで、内槽タンク11との間が
真空になるように構成されている。なお、内槽タンク1
1、外槽タンク12で低温容器13が構成されている。
14は内槽タンク11に貯蔵された低温流体で、液体ヘ
リウムや液体窒素等である。15は低温流体14を充填
する注入口で、開閉弁16が設けられている。17は低
温流体14の取出口で、開閉弁18が設けられている。
19はガス開放弁で、内槽タンク11内のガスを放出す
る。20はヒータで、内槽タンク11内のガスを加熱し
て、ガスの加圧力により低温流体14を取り出す。21
は保圧弁で、内槽タンク11内のガス圧力を所定の値に
保持するように動作する。22は内槽タンク11内のガ
ス圧力が異常上昇したときに動作する安全弁で、以下の
23、26〜33で構成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. 1 is a configuration diagram showing a low-temperature fluid storage device using the low-temperature container pressure adjusting device of the first embodiment, FIG. 2 is a cross-sectional view showing the low-temperature fluid pressure adjusting device of the first embodiment, and FIG. FIG. 3 is a sectional view illustrating a main part of FIG. 2. 1 to 3, reference numeral 11 denotes an inner tank, which stores a low-temperature fluid 14 described later. Reference numeral 12 denotes an outer tank that covers the inner tank 11 and is configured so that the space between the outer tank and the inner tank 11 is evacuated. In addition, inner tank 1
1. The low temperature container 13 is constituted by the outer tank 12.
Reference numeral 14 denotes a low-temperature fluid stored in the inner tank 11, such as liquid helium or liquid nitrogen. An injection port 15 for filling the low-temperature fluid 14 is provided with an on-off valve 16. Reference numeral 17 denotes an outlet for the low-temperature fluid 14, which is provided with an on-off valve 18.
Reference numeral 19 denotes a gas release valve for discharging gas in the inner tank 11. A heater 20 heats the gas in the inner tank 11 and takes out the low-temperature fluid 14 by the pressure of the gas. 21
Is a pressure holding valve, which operates so as to maintain the gas pressure in the inner tank 11 at a predetermined value. Reference numeral 22 denotes a safety valve that operates when the gas pressure in the inner tank 11 rises abnormally, and includes the following 23, 26 to 33.

【0006】23は低温容器13に固着された筒形状の
本体で、取付座24及びパイプ25を介して内槽タンク
11に連通されている。26は筒形状の弁座で、一端が
本体23に螺合され他端に放出口26aが形成されてい
る。27は弁座26に当接するように配置されたばね受
座で、複数個の貫通穴27aが形成されている。28は
本体23と弁座26との間に配置されたシール部材で、
本体23内の気密封止をしている。29はばね受座27
を摺動自在に貫通したばね支持部29aを有する弁体
で、弁座26の放出口26aを閉塞可能である。30は
支持部29aに螺合されたナット、31はばねシート、
32は支持部29aに嵌合された圧縮ばねで、ばね受座
27とばねシート31とに支持されて弁体29を弁座2
6に押圧している。33は弁座26と弁体29との間に
配置されたシール部材で、断面が四辺形で対角線上に存
在する稜線部33a、33bが軸方向になるように形成
されている。なお、シール部材33は低温流体14が吹
き出したときに冷却される、例えば−200゜C近辺の
温度まで柔軟性を有する4フッ化エチレン等の高分子系
の樹脂で形成されている。そして、シール部材33の一
方の稜線部33aが放出口26aの周囲で弁座26と当
接され、他方の稜線部33bが弁体29と当接されてい
る。なお、各稜線部33a、33bは例えば半径が0.
5mm程度の円弧状の面取りがされている。保圧弁21
も安全弁22と同様の構成である。
Reference numeral 23 denotes a cylindrical main body fixed to the low-temperature container 13, which is connected to the inner tank 11 via a mounting seat 24 and a pipe 25. Reference numeral 26 denotes a cylindrical valve seat, one end of which is screwed into the main body 23 and the other end of which is formed with a discharge port 26a. Reference numeral 27 denotes a spring receiving seat arranged to be in contact with the valve seat 26, and has a plurality of through holes 27a formed therein. 28 is a seal member arranged between the main body 23 and the valve seat 26,
The inside of the main body 23 is hermetically sealed. 29 is a spring seat 27
The opening 26a of the valve seat 26 can be closed by a valve body having a spring support portion 29a which slidably penetrates through the opening. Numeral 30 is a nut screwed to the support portion 29a, numeral 31 is a spring seat,
Reference numeral 32 denotes a compression spring fitted to the support portion 29a. The compression spring 32 is supported by the spring seat 27 and the spring seat 31 to move the valve body 29 to the valve seat 2.
6 is pressed. Reference numeral 33 denotes a seal member disposed between the valve seat 26 and the valve body 29, and is formed so that ridges 33a and 33b having a quadrangular cross section and existing diagonally are in the axial direction. The seal member 33 is formed of a polymer resin, such as ethylene tetrafluoride, which is cooled when the low-temperature fluid 14 blows out and has flexibility up to a temperature around -200 ° C. One ridge 33a of the seal member 33 is in contact with the valve seat 26 around the discharge port 26a, and the other ridge 33b is in contact with the valve body 29. The ridges 33a and 33b have a radius of, for example, 0.5 mm.
An arc-shaped chamfer of about 5 mm is formed. Holding pressure valve 21
Has the same configuration as the safety valve 22.

【0007】次に動作について説明する。図1〜図3に
おいて、低温流体14を低温容器13に貯蔵する場合
は、外部設備(図示せず)に接続された注入口15から
注入される。そして、低温流体14を低温容器13から
取り出す場合は、ガス化した低温流体14のガスをヒー
タ20により加熱して、ガスの加圧力により取出口17
から取り出す。また、何らかの原因により低温容器13
内の圧力が上昇した場合には、保圧弁21から低温流体
14のガスが吹き出して低温容器13内のガス圧力を所
定の圧力に保持する。さらに、低温容器13内のガス圧
力が異常上昇した場合には、安全弁22が動作して低温
容器13内のガス圧力を下げる。そして、保圧弁21及
び安全弁22とも低温容器13内のガス圧力が設定され
た所定値になると、再びシール部材33の各稜線部33
a、33bがそれぞれ弁座26及び弁体29と当接し
て、ガスの吹き出しを停止させるように動作する。
Next, the operation will be described. 1 to 3, when the low-temperature fluid 14 is stored in the low-temperature container 13, the low-temperature fluid 14 is injected from an injection port 15 connected to external equipment (not shown). When removing the low-temperature fluid 14 from the low-temperature container 13, the gas of the gasified low-temperature fluid 14 is heated by the heater 20, and the pressure of the gas is applied to the outlet 17.
Remove from In addition, the cryogenic container 13
When the internal pressure increases, the gas of the low-temperature fluid 14 blows out from the pressure holding valve 21 to maintain the gas pressure in the low-temperature container 13 at a predetermined pressure. Further, when the gas pressure in the low temperature container 13 rises abnormally, the safety valve 22 operates to lower the gas pressure in the low temperature container 13. When the gas pressure in the low-temperature container 13 reaches a set predetermined value for both the pressure holding valve 21 and the safety valve 22, each ridge 33 of the seal member 33 is again turned on.
The a and 33b are in contact with the valve seat 26 and the valve body 29, respectively, and operate to stop blowing of gas.

【0008】以上のように、シール部材33を例えば−
200゜C近辺の温度まで柔軟性を有する高分子系の樹
脂で形成したことにより、低温流体14が吹き出したと
きに凍り付くのを防止できるので、再び気密封止をする
ときにも十分な気密封止を行うことができる。さらに、
シール部材33を四辺形として、シール部材33の一方
の稜線部33aを放出口26aの周囲で弁座26と当接
させ、他方の稜線部33bを弁体29と当接させること
により、気密封止を行うシール部材33の当たり面の面
積を小さくして面圧を高くしたので、気密封止の効果を
向上させることができる。
As described above, the seal member 33 is
Since the low-temperature fluid 14 can be prevented from freezing when blown out by being formed of a polymer resin having flexibility up to a temperature around 200 ° C., sufficient airtightness can be achieved even when airtight sealing is performed again. Can be stopped. further,
The sealing member 33 is formed in a quadrilateral shape, and one ridge 33a of the sealing member 33 is brought into contact with the valve seat 26 around the discharge port 26a, and the other ridge 33b is brought into contact with the valve body 29, thereby achieving airtightness. Since the area of the contact surface of the sealing member 33 for stopping is reduced and the surface pressure is increased, the effect of hermetic sealing can be improved.

【0009】実施の形態2.図4は実施の形態2の要部
を示す断面図である。なお、実施の形態2は、実施の形
態1の図2において、シール部材33を後述のシール部
材34としたものである。34は弁座26と弁体29と
の間に配置されたシール部材で、断面が四辺形で対角線
上に存在する稜線部35a、35bと稜線部36a、3
6bとが軸方向になるように形成されたシール体35、
36で構成されている。なお、シール体35、36は低
温流体14が吹き出したときに冷却される、例えば−2
00゜C近辺の温度まで柔軟性を有する4フッ化エチレ
ン等の高分子系の樹脂で形成されている。環状に形成さ
れた一対のシール体35、36を軸方向に対向させ、対
向した各稜線部35b、36bが一体化されている。そ
して、シール部材34の軸方向の一端側の稜線部35a
が放出口26aの周囲で弁座26と当接され、他端側の
稜線部36aが弁体29と当接されている。なお、各稜
線部35a、36aは例えば半径が0.5mm程度の円
弧状の面取りがされている。
Embodiment 2 FIG. 4 is a sectional view showing a main part of the second embodiment. In the second embodiment, the seal member 33 in FIG. 2 of the first embodiment is replaced with a seal member 34 described later. Reference numeral 34 denotes a sealing member disposed between the valve seat 26 and the valve element 29, and has ridges 35a, 35b and ridges 36a, 36a,
6b is formed so as to be in the axial direction.
36. The seals 35 and 36 are cooled when the low-temperature fluid 14 blows out, for example, -2.
It is formed of a polymer resin such as ethylene tetrafluoride having flexibility up to a temperature around 00 ° C. A pair of annular seal bodies 35 and 36 are axially opposed to each other, and the opposed ridge portions 35b and 36b are integrated. Then, the ridge 35a at one end in the axial direction of the seal member 34
Is in contact with the valve seat 26 around the discharge port 26a, and the ridge 36a on the other end is in contact with the valve body 29. The ridges 35a and 36a are chamfered in an arc shape having a radius of, for example, about 0.5 mm.

【0010】以上のように、シール部材34を例えば−
200゜C近辺の温度まで柔軟性を有する高分子系の樹
脂で形成したことにより、低温流体14が吹き出したと
きに凍り付くのを防止できるので、再び気密封止をする
ときにも十分な気密封止を行うことができる。さらに、
一体化された稜線部35b、36bの対角線上にある稜
線部35aを放出口26aの周囲で弁座26と当接させ
ると共に、稜線部36aを弁体29と当接させることに
より、シール部材34の柔軟性がよくなり気密封止の効
果をより向上させることができる。
As described above, the sealing member 34 is, for example,
Since the low-temperature fluid 14 can be prevented from freezing when blown out by being formed of a polymer resin having flexibility up to a temperature around 200 ° C., sufficient airtightness can be achieved even when airtight sealing is performed again. Can be stopped. further,
The ridge 35a on the diagonal line of the integrated ridges 35b, 36b is brought into contact with the valve seat 26 around the discharge port 26a, and the ridge 36a is brought into contact with the valve body 29, so that the sealing member 34 is formed. And the effect of hermetic sealing can be further improved.

【0011】実施の形態3.図5は実施の形態3の要部
を示す断面図である。なお、実施の形態3は、実施の形
態1の図2において、シール部材33を後述のシール部
材37としたものである。37は弁座26と弁体29と
の間に配置されたシール部材で、断面が四辺形で対角線
上に存在する稜線部38a、38bと稜線部39a、3
9bとが軸方向になるように環状に形成されたシール体
38、39で構成されている。なお、シール体38、3
9は低温流体14が吹き出したときに冷却される、例え
ば−200゜C近辺の温度まで柔軟性を有する4フッ化
エチレン等の高分子系の樹脂で形成されている。環状に
形成された一対のシール体38、39を同心円状に対向
させ、対向した各稜線部38c、39cを一体化させて
いる。そして、シール部材37の軸方向の一端側の各稜
線部38a、39aが放出口26aの周囲で弁座26と
当接され、他端側の稜線部38b、39bが弁体29と
当接されている。なお、各稜線部38a、38b、39
a、39bは例えば半径が0.5mm程度の円弧状の面
取りがされている。
Embodiment 3 FIG. 5 is a sectional view showing a main part of the third embodiment. In the third embodiment, the seal member 33 in FIG. 2 of the first embodiment is replaced with a seal member 37 described later. Reference numeral 37 denotes a seal member disposed between the valve seat 26 and the valve body 29. The seal member 37 has ridges 38a, 38b and ridges 39a, 39a,
9b is formed of seal bodies 38 and 39 formed in an annular shape so as to be in the axial direction. The seals 38, 3
Numeral 9 is formed of a polymer resin such as ethylene tetrafluoride, which is cooled when the low-temperature fluid 14 blows out and has a flexibility up to a temperature around -200 ° C. A pair of seal bodies 38 and 39 formed in an annular shape are concentrically opposed to each other, and the opposed ridge portions 38c and 39c are integrated. The ridges 38a, 39a on one end in the axial direction of the seal member 37 are in contact with the valve seat 26 around the discharge port 26a, and the ridges 38b, 39b on the other end are in contact with the valve body 29. ing. In addition, each ridgeline part 38a, 38b, 39
For example, a and 39b are chamfered in an arc shape having a radius of about 0.5 mm.

【0012】以上のように、シール部材37を例えば−
200゜C近辺の温度まで柔軟性を有する高分子系の樹
脂で形成したことにより、低温流体14が吹き出したと
きに凍り付くのを防止できるので、再び気密封止をする
ときにも十分な気密封止を行うことができる。さらに、
稜線部38c、39cを一体化して、軸方向の一端側の
稜線部38a、39aを弁座26と当接させ、他端側の
稜線部38b、39bを弁体29と当接させることによ
り、ガス漏れの方向に対して各稜線部38a、39a及
び稜線部38b、39bがそれぞれ2重に封止を行うの
で、気密封止の効果をより向上させることができる。
As described above, the sealing member 37 is
Since the low-temperature fluid 14 can be prevented from freezing when blown out by being formed of a polymer resin having flexibility up to a temperature around 200 ° C., sufficient airtightness can be achieved even when airtight sealing is performed again. Can be stopped. further,
By integrating the ridges 38c and 39c, the ridges 38a and 39a at one end in the axial direction are brought into contact with the valve seat 26, and the ridges 38b and 39b at the other end are brought into contact with the valve body 29. The ridges 38a, 39a and the ridges 38b, 39b respectively perform double sealing with respect to the direction of gas leakage, so that the effect of hermetic sealing can be further improved.

【0013】実施の形態4.図6は実施の形態4の要部
を示す断面図である。なお、実施の形態4は、実施の形
態1の図2において、シール部材33を後述のシール部
材40としたものである。40は弁座26と弁体29と
の間に配置されたシール部材で、以下の41〜46で構
成されている。まず、断面が四辺形で対角線上に存在す
る稜線部41aと41b、42aと42bとがそれぞれ
軸方向になるように、柔軟性を有する高分子系の樹脂に
より環状に形成された一対のシール体41、42を軸方
向に対向させ、対向した各稜線部41b、42bを一体
化させてシール体群43を形成する。さらに、断面が四
辺形で対角線上の稜線部44aと44b、45aと45
bとがそれぞれ軸方向になるように、高分子系の樹脂に
より環状に形成された一対のシール体44、45を軸方
向に対向させ、対向した各稜線部44b、45bを一体
化させてシール体群46を形成する。なお、各シール体
41、42、44、45は低温流体14が吹き出したと
きに冷却される、例えば−200゜C近辺の温度まで柔
軟性を有する4フッ化エチレン等の高分子系の樹脂であ
る。そして、各シール体群43、46を同心円状に配置
してシール体群43の内周側に存在する稜線部41c、
42cと、シール体群46の外周側に存在する稜線部4
4c、45cとを一体化させる。そして、シール部材4
0の軸方向の一端側に存在する各稜線部41a、44a
を弁座26と当接させ、他端側に存在する各稜線部42
a、44aを弁体29と当接させる。なお、各稜線部4
1a、42a、43a、45aは例えば半径が0.5m
m程度の円弧状の面取りがされている。
Embodiment 4 FIG. 6 is a sectional view showing a main part of the fourth embodiment. In the fourth embodiment, the seal member 33 is replaced with a seal member 40 described later in FIG. 2 of the first embodiment. Reference numeral 40 denotes a seal member disposed between the valve seat 26 and the valve body 29, and is constituted by the following 41 to 46. First, a pair of seal bodies formed of a flexible polymer resin in a ring shape such that ridges 41a and 41b and 42a and 42b each having a quadrangular cross section and present on a diagonal line are in the axial direction. 41 and 42 are opposed in the axial direction, and the opposed ridge portions 41b and 42b are integrated to form a seal body group 43. Further, diagonal ridges 44a and 44b, 45a and 45 are cross-sections having a quadrangular shape.
b, a pair of sealing bodies 44, 45 formed in an annular shape with a polymer resin are axially opposed to each other so that each of them is in the axial direction, and the opposed ridge portions 44b, 45b are integrated to form a seal. A body group 46 is formed. Each of the seals 41, 42, 44, and 45 is cooled when the low-temperature fluid 14 blows out, and is made of, for example, a polymer resin such as ethylene tetrafluoride having flexibility up to a temperature around -200 ° C. is there. Then, the sealing member groups 43 and 46 are arranged concentrically, and a ridge line portion 41c present on the inner peripheral side of the sealing member group 43,
42c and a ridge line portion 4 existing on the outer peripheral side of the seal body group 46.
4c and 45c are integrated. And the sealing member 4
Each ridge line portion 41a, 44a existing on one end side in the axial direction of 0
Is brought into contact with the valve seat 26, and each ridge 42 existing on the other end side is
a and 44a are brought into contact with the valve body 29. Each ridge 4
1a, 42a, 43a, and 45a have, for example, a radius of 0.5 m.
An arc-shaped chamfer of about m is formed.

【0014】以上のように、シール部材40を例えば−
200゜C近辺の温度まで柔軟性を有する高分子系の樹
脂で形成したことにより、低温流体14が吹き出したと
きに凍り付くのを防止できるので、再び気密封止をする
ときにも十分な気密封止を行うことができる。さらに、
各シール体群43、46の各稜線部41cと44c、4
2cと45cとをそれぞれ一体化し、各稜線部41a、
44aを弁座26と当接させ、各稜線部42a、45a
を弁体29と当接させることにより、シール部材40の
押圧方向の柔軟性が増大し、ガス漏れの方向に対して稜
線部41a、44a及び稜線部42a、45aがそれぞ
れ2重に封止を行うので、気密封止の効果をより向上さ
せることができる。上記構成において、各シール体群4
3、46で囲まれた中空部に、樹脂を充填しても同様の
効果を期待することができる。
As described above, the sealing member 40 is
Since the low-temperature fluid 14 can be prevented from freezing when blown out by being formed of a polymer resin having flexibility up to a temperature around 200 ° C., sufficient airtightness can be achieved even when airtight sealing is performed again. Can be stopped. further,
Each ridge line portion 41c and 44c of each seal body group 43, 46, 4
2c and 45c are integrated, respectively, and each ridge 41a,
44a is brought into contact with the valve seat 26, and each ridge 42a, 45a
Is brought into contact with the valve body 29, the flexibility in the pressing direction of the seal member 40 is increased, and the ridge portions 41a, 44a and the ridge portions 42a, 45a respectively double seal against the direction of gas leakage. As a result, the effect of hermetic sealing can be further improved. In the above configuration, each of the seal body groups 4
The same effect can be expected even if resin is filled in the hollow portion surrounded by 3, 46.

【0015】[0015]

【発明の効果】この発明によれば、シール部材を低温流
体の温度域においても柔軟性を有する高分子系の樹脂で
形成したことにより、低温流体が吹き出したときに凍り
付くのを防止できるので、再び気密封止をするときにも
十分な気密封止を行うことができる。また、シール部材
の断面を四辺形として、シール部材の対角線上の一方の
稜線部を放出口の周囲で弁座と当接させ、他方の稜線部
を弁体と当接させることにより、気密封止を行うシール
部材の当たり面の面積を小さくして面圧を高くしたの
で、気密封止の効果を向上させることができる。また、
断面が四辺形のシール体を軸方向に一体化したシール部
材の一端側の稜線部を放出口の周囲で弁座と当接させ、
シール部材の他端側を弁体と当接させることにより、シ
ール部材の柔軟性がよくなり気密封止の効果をより向上
させることができる。
According to the present invention, since the sealing member is formed of a polymer resin having flexibility even in the temperature range of the low-temperature fluid, it is possible to prevent the low-temperature fluid from freezing when it blows out. When airtight sealing is performed again, sufficient airtight sealing can be performed. In addition, the seal member has a quadrilateral cross section, and one ridge on the diagonal line of the seal member is brought into contact with the valve seat around the discharge port, and the other ridge is brought into contact with the valve body, thereby providing air-tight sealing. Since the area of the contact surface of the sealing member for stopping is reduced and the surface pressure is increased, the effect of hermetic sealing can be improved. Also,
The ridge on one end side of the seal member in which the seal member having a quadrangular cross section is integrated in the axial direction is brought into contact with the valve seat around the discharge port,
By bringing the other end of the seal member into contact with the valve body, the flexibility of the seal member is improved, and the effect of hermetic sealing can be further improved.

【0016】また、一対のシール体を同心円状に対向さ
せ、対向した各稜線部を一体化させてシール部材を形成
し、シール部材の軸方向の一端側の各稜線部を放出口の
周囲で弁座と当接させ、他端側の各稜線部を弁体と当接
させるようにしたことにより、ガス漏れの方向に対して
各稜線部が2重に封止を行うので、気密封止の効果をよ
り向上させることができる。さらに、一対のシール体群
をを同心状に配置して一方のシール体群の内周側に存在
する稜線部と、他方のシール体群の外周側に存在する稜
線部とを一体化させてシール部材を形成し、シール部材
の軸方向の一端側の各稜線部を放出口の周囲で弁座と当
接させ、他端側の各稜線部を弁体と当接させるようにし
たことにより、シール部材の押圧方向の柔軟性が増大
し、ガス漏れの方向に対して各稜線部が2重に封止を行
うので、気密封止の効果をより向上させることができ
る。
Also, a pair of seals are concentrically opposed to each other, and the opposed ridges are integrated to form a seal member. Each ridge at one axial end of the seal is formed around the discharge port. Airtight sealing because each ridge line is double-sealed in the direction of gas leakage by making contact with the valve seat and each ridge line on the other end side with the valve body Can be further improved. Further, a pair of seal members are arranged concentrically, and a ridge portion present on the inner peripheral side of one seal member group and a ridge portion present on the outer peripheral side of the other seal member group are integrated. By forming a seal member, each ridge at one axial end of the seal member is brought into contact with the valve seat around the discharge port, and each ridge at the other end is brought into contact with the valve body. Since the flexibility in the pressing direction of the seal member is increased, and each ridge portion is double-sealed in the direction of gas leakage, the effect of hermetic sealing can be further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施の形態1の低温容器の圧力調整装置を使
用した低温流体の貯蔵装置を示す構成図である。
FIG. 1 is a configuration diagram illustrating a low-temperature fluid storage device using a low-temperature container pressure adjusting device according to a first embodiment.

【図2】 実施の形態1を示す低温流体の圧力調整装置
の断面図である。
FIG. 2 is a cross-sectional view of the low-temperature fluid pressure adjusting device according to the first embodiment.

【図3】 図2の要部を示す断面図である。FIG. 3 is a sectional view showing a main part of FIG. 2;

【図4】 実施の形態2の要部を示す断面図である。FIG. 4 is a sectional view showing a main part of the second embodiment.

【図5】 実施の形態3の要部を示す断面図である。FIG. 5 is a sectional view showing a main part of a third embodiment.

【図6】 実施の形態4の要部を示す断面図である。FIG. 6 is a sectional view showing a main part of a fourth embodiment.

【図7】 従来の低温容器の圧力調整装置を示す断面図
である。
FIG. 7 is a sectional view showing a conventional pressure adjusting device for a cryogenic container.

【符号の説明】[Explanation of symbols]

13 低温容器、14 低温流体、26 弁座、26a
放出口、29 弁体、33、34、37、40 シー
ル部材、33a、33b、35a、35b、36a、3
6b、38a、38b、38c、39a、39b、39
c、41a、41b、41c、42a、42b、42
c、44a、44b、44c、45a、45b、45c
稜線部、35、36、38、39、41、42、4
4、45 シール体、43、46 シール体群。
13 low temperature container, 14 low temperature fluid, 26 valve seat, 26a
Discharge port, 29 valve body, 33, 34, 37, 40 Sealing member, 33a, 33b, 35a, 35b, 36a, 3
6b, 38a, 38b, 38c, 39a, 39b, 39
c, 41a, 41b, 41c, 42a, 42b, 42
c, 44a, 44b, 44c, 45a, 45b, 45c
Ridge part, 35, 36, 38, 39, 41, 42, 4
4, 45 Seal body, 43, 46 Seal body group.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 低温流体を貯蔵する低温容器の圧力が設
定圧力を越えたとき、弁座側の放出口を閉塞している弁
体を開放して上記低温流体のガスを上記放出口から放出
するようにした低温容器の圧力調整装置において、断面
が四辺形で対角線上に存在する各稜線部が軸方向になる
ように、上記低温流体の温度域でも柔軟性を有する高分
子系の樹脂で環状のシール部材を形成し、上記シール部
材の軸方向の一端側の上記稜線部を上記放出口の周囲で
上記弁座と当接させ、他端側の上記稜線部を上記弁体と
当接させるようにしたことを特徴とする低温容器の圧力
調整装置。
When the pressure of a low-temperature container storing a low-temperature fluid exceeds a set pressure, a valve element closing a discharge port on a valve seat side is opened to discharge gas of the low-temperature fluid from the discharge port. In the pressure adjusting device for a cryogenic container, a polymer resin having flexibility even in the temperature range of the cryogenic fluid so that each ridge portion present on a diagonal line in a cross section is in a quadrangular shape in the axial direction. An annular seal member is formed, and the ridge at one axial end of the seal member is brought into contact with the valve seat around the discharge port, and the ridge at the other end is brought into contact with the valve body. A pressure adjusting device for a cryogenic container, wherein the pressure is adjusted.
【請求項2】 低温流体を貯蔵する低温容器の圧力が設
定圧力を越えたとき、弁座側の放出口を閉塞している弁
体を開放して上記低温流体のガスを上記放出口から放出
するようにした低温容器の圧力調整装置において、断面
が四辺形で対角線上に存在する各稜線部が軸方向になる
ように、上記低温流体の温度域でも柔軟性を有する高分
子系の樹脂により環状に形成された一対のシール体を軸
方向に対向させ、対向した上記各稜線部を一体化させて
シール部材を形成し、上記シール部材の軸方向の一端側
の上記稜線部を上記放出口の周囲で上記弁座と当接さ
せ、他端側の上記稜線部を上記弁体と当接させるように
したことを特徴とする低温容器の圧力調整装置。
2. When the pressure of the cryogenic container storing the cryogenic fluid exceeds a set pressure, the valve element closing the discharge port on the valve seat side is opened to discharge the gas of the cryogenic fluid from the discharge port. In the pressure adjusting device of the cryogenic container, the cross section is a quadrilateral so that each ridge portion present on a diagonal line is in the axial direction, so that the polymer resin having flexibility even in the temperature range of the cryogenic fluid is used. A pair of seal bodies formed in an annular shape are axially opposed to each other, and the opposed ridges are integrated to form a seal member, and the ridge at one axial end of the seal member is connected to the discharge port. A pressure adjusting device for a low-temperature container, wherein the pressure-adjusting device is configured to contact the valve seat around the valve member and to contact the ridge portion at the other end with the valve body.
【請求項3】 低温流体を貯蔵する低温容器の圧力が設
定圧力を越えたとき、弁座側の放出口を閉塞している弁
体を開放して上記低温流体のガスを上記放出口から放出
するようにした低温容器の圧力調整装置において、断面
が四辺形で対角線上に存在する各稜線部が軸方向になる
ように、上記低温流体の温度域でも柔軟性を有する高分
子系の樹脂により環状に形成された一対のシール体を同
心円状に対向させ、対向した各稜線部を一体化させてシ
ール部材を形成し、上記シール部材の軸方向の一端側の
上記各稜線部を上記放出口の周囲で上記弁座と当接さ
せ、他端側の上記各稜線部を上記弁体と当接させるよう
にしたことを特徴とする低温容器の圧力調整装置。
3. When the pressure of the low-temperature container storing the low-temperature fluid exceeds a set pressure, the valve element closing the discharge port on the valve seat side is opened to discharge the low-temperature fluid gas from the discharge port. In the pressure adjusting device of the cryogenic container, the cross section is a quadrilateral so that each ridge portion present on a diagonal line is in the axial direction, so that the polymer resin having flexibility even in the temperature range of the cryogenic fluid is used. A pair of annularly formed seals are concentrically opposed to each other, and the opposed ridges are integrated to form a seal member.The ridges at one axial end of the seal member are connected to the discharge port. A pressure adjusting device for a cryogenic container, wherein the ridge portion at the other end is brought into contact with the valve body.
【請求項4】 低温流体を貯蔵する低温容器の圧力が設
定圧力を越えたとき、弁座側の放出口を閉塞している弁
体を開放して上記低温流体のガスを上記放出口から放出
するようにした低温容器の圧力調整装置において、断面
が四辺形で対角線上に存在する各稜線部が軸方向になる
ように、上記低温流体の温度域でも柔軟性を有する高分
子系の樹脂により環状に形成された一対のシール体を軸
方向に対向させ、対向した上記各稜線部を一体化させて
一対のシール体群を形成し、上記シール体群を同心状に
配置して一方の上記シール体群の内周側に存在する稜線
部と、他方の上記シール体群の外周側に存在する稜線部
とを一体化させてシール部材を形成し、上記シール部材
の軸方向の一端側の上記各稜線部を上記放出口の周囲で
上記弁座と当接させ、他端側の上記各稜線部を上記弁体
と当接させるようにしたことを特徴とする低温容器の圧
力調整装置。
4. When the pressure of the cryogenic container storing the cryogenic fluid exceeds a set pressure, the valve element closing the discharge port on the valve seat side is opened to discharge the gas of the cryogenic fluid from the discharge port. In the pressure adjusting device of the cryogenic container, the cross section is a quadrilateral so that each ridge portion present on a diagonal line is in the axial direction, so that the polymer resin having flexibility even in the temperature range of the cryogenic fluid is used. A pair of seals formed in an annular shape are axially opposed to each other, the opposed ridges are integrated to form a pair of seals, and the seals are arranged concentrically to one of the seals. A ridge line present on the inner peripheral side of the seal body group and a ridge line present on the outer peripheral side of the other seal body group are integrated to form a seal member, and one end in the axial direction of the seal member is formed. Each ridge portion is brought into contact with the valve seat around the discharge port. A pressure adjusting device for a cryogenic container, wherein the ridge portions on the other end side are brought into contact with the valve body.
JP10186178A 1998-07-01 1998-07-01 Pressure control device for cryogenic container Pending JP2000018498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10186178A JP2000018498A (en) 1998-07-01 1998-07-01 Pressure control device for cryogenic container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10186178A JP2000018498A (en) 1998-07-01 1998-07-01 Pressure control device for cryogenic container

Publications (1)

Publication Number Publication Date
JP2000018498A true JP2000018498A (en) 2000-01-18

Family

ID=16183766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10186178A Pending JP2000018498A (en) 1998-07-01 1998-07-01 Pressure control device for cryogenic container

Country Status (1)

Country Link
JP (1) JP2000018498A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006027561A1 (en) * 2006-06-14 2007-12-20 Messer France S.A.S Device for metering in a cryogenic medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006027561A1 (en) * 2006-06-14 2007-12-20 Messer France S.A.S Device for metering in a cryogenic medium

Similar Documents

Publication Publication Date Title
JP3665740B2 (en) Opening device for gas pressure vessel of airbag
JPS60110652A (en) Stopper for vessel
US6521024B1 (en) Seal plate and pressure adjusting mechanism for the seal plate
US4804593A (en) Enclosed cell having safety valve mechanism and fabricating method of the same
JP3054988B2 (en) accumulator
JP2000018498A (en) Pressure control device for cryogenic container
JPH10284037A (en) Sealed type storage battery provided with safety valve
EP0246590B1 (en) Enclosed cell having safety valve mechanism and fabricating method of the same
JPS6363761B2 (en)
US6568194B1 (en) Evacuation port and closure for dewars
JPH02180217A (en) Pressure adjustment device for microwave oven container
GB2371835A (en) Gas permeable pressure accumulator
US7383964B2 (en) Container with at least one vacuum chamber with an access opening especially a beverage container, such as a beer barrel on the like
JPH11267558A (en) Gas jetting valve
JP4131063B2 (en) Liquid filling method for pressure vessel
JP4084534B2 (en) Resin valve and assembly structure
JPH08180850A (en) Sealed storage battery
JP2005077275A (en) Storage container for storing waste
KR102274526B1 (en) Vacuum case
JP4214228B2 (en) Composite high-pressure processing apparatus and high-pressure valve used therefor
JP3457156B2 (en) valve
JPH0438085Y2 (en)
JP4502095B2 (en) Forming method of sealing plate
US20230136985A1 (en) Anti freeze valve apparatus and semiconductor processing device including the same and manufacturing method thereof
JPH11159696A (en) Exhaust air closing method for vacuum container