JP2000016896A - Quartz crucible for pulling silicon single crystal - Google Patents

Quartz crucible for pulling silicon single crystal

Info

Publication number
JP2000016896A
JP2000016896A JP10188365A JP18836598A JP2000016896A JP 2000016896 A JP2000016896 A JP 2000016896A JP 10188365 A JP10188365 A JP 10188365A JP 18836598 A JP18836598 A JP 18836598A JP 2000016896 A JP2000016896 A JP 2000016896A
Authority
JP
Japan
Prior art keywords
quartz glass
crucible
oxygen
layer
quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10188365A
Other languages
Japanese (ja)
Inventor
Kazuhiko Kusunoki
一彦 楠
Yoshiaki Yamade
善章 山出
Tadahisa Arahori
忠久 荒堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP10188365A priority Critical patent/JP2000016896A/en
Publication of JP2000016896A publication Critical patent/JP2000016896A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/09Other methods of shaping glass by fusing powdered glass in a shaping mould
    • C03B19/095Other methods of shaping glass by fusing powdered glass in a shaping mould by centrifuging, e.g. arc discharge in rotating mould

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable the thickness of a synthetic quartz layer to be measured simply without breaking a crucible by forming an oxygen-deficient type quartz glass at the interface part of an inner layer part composed of a synthetic quartz glass, and an outer layer composed of a molten quartz glass. SOLUTION: An oxygen-deficient type quartz glass is allowed to be present at the interface of an inner layer part and an outer layer of a quartz crucible for pulling a single crystal, having a double layered structure so that the position of the interface of the inner layer part and the outer layer part may be clearly detected. The inner layer part contacting a silicon molten liquid is composed of a synthetic quartz glass having small impurity content. The outer layer part is composed of a cheap molten quartz glass excellent in thermal stability. The oxygen-deficient type quartz glass can be obtained by mixing a small amount of Si with a raw material of the quartz glass, and is opaque and colored brown even if the thickness is very thin. The oxygen- deficient type quartz can clearly show the interface of the inner and outer layers, and the thickness of the synthetic quartz glass layer of the inner layer can be measured by an optical micrometer without destroying the crucible. The objective crucible can be molded by using three kinds of glass raw materials by a rotating melting method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体の基板材料
に使用されるシリコン単結晶の製造において、融液から
単結晶を凝固引き上げ成長させる際に用いられる石英る
つぼに関する。
The present invention relates to a quartz crucible used for solidifying and growing a single crystal from a melt in the production of a silicon single crystal used for a substrate material of a semiconductor.

【0002】[0002]

【従来の技術】半導体の基板材料としてのシリコン単結
晶は、ほとんどがチョクラルスキー法(CZ法)によっ
て製造される。この方法は、減圧下で雰囲気を管理され
たチャンバー内にて、原料の多結晶高純度シリコンを石
英るつぼ内で加熱溶融し、このシリコンの融液面に種結
晶を浸した後、徐々に引き上げ種結晶を元に固化して単
結晶を育成製造するものである。
2. Description of the Related Art A silicon single crystal as a semiconductor substrate material is mostly manufactured by the Czochralski method (CZ method). In this method, polycrystalline high-purity silicon as a raw material is heated and melted in a quartz crucible in an atmosphere-controlled chamber under reduced pressure, and a seed crystal is immersed in the melt surface of the silicon, and then gradually pulled up. It grows and produces a single crystal by solidifying based on a seed crystal.

【0003】単結晶の引き上げ育成中、石英るつぼは、
徐々に侵食されシリコン融液中に溶け込んでゆく。石英
の溶け込みによりシリコン融液中の酸素分が増加する
が、その多くはSiOとなって融液表面から気化し排除
される。しかし、るつぼの石英中に含まれる不純物は、
融液中に混入し取り込まれると単結晶欠陥の原因とな
り、その単結晶から採取される基板材料としてのシリコ
ンウェーハの品質を低下させる。
During pulling and growing of a single crystal, a quartz crucible
It gradually erodes and dissolves into the silicon melt. Oxygen content in the silicon melt increases due to the incorporation of quartz, but most of it becomes SiO and is vaporized and eliminated from the melt surface. However, impurities contained in the quartz of the crucible
When mixed and taken into the melt, it causes a single crystal defect, and deteriorates the quality of a silicon wafer as a substrate material collected from the single crystal.

【0004】近年の半導体デバイスの小型化や高集積度
化にともない、その素材であるシリコンウェーハの品質
に対する要求はますます厳しくなってきている。このた
め、シリコン単結晶の引き上げに用いられる石英るつぼ
は、より高純度のものが求められる。
[0004] With the recent miniaturization and high integration of semiconductor devices, the demands on the quality of silicon wafers, which are the raw materials thereof, have become more and more severe. For this reason, a higher purity quartz crucible used for pulling a silicon single crystal is required.

【0005】従来の天然石英を原料とする溶融石英ガラ
スは、不純物除去のための精製に限界があり、このよう
な高純度化には対応できなくなっている。これに対し、
ゾルゲル法や気相法などにより人工的に合成された合成
石英ガラスは、溶融石英ガラスよりもはるかに高純度の
ものとすることができる。しかしながら、この合成石英
ガラスは、一般に溶融石英に比べて高温での粘性が低く
変形を起こしやすい。そこで、るつぼの構成として、例
えば特開昭56-17996号公報に開示された発明のように、
溶融石英ガラスにて作られたるつぼの内壁に合成石英を
ライニングするもの、あるいは特開平1-261293号公報の
発明や、内層部の形状を工夫した特開平6-279167号公報
の発明のように、るつぼを内層部が合成石英ガラス、外
層部が溶融石英ガラスの2層構造とするものが用いられ
るようになっている。
[0005] Conventional fused quartz glass made from natural quartz has a limit in purification for removing impurities, and cannot respond to such high purity. In contrast,
Synthetic silica glass artificially synthesized by a sol-gel method, a gas phase method, or the like can have much higher purity than fused silica glass. However, this synthetic quartz glass generally has a low viscosity at high temperatures compared to fused quartz, and is likely to be deformed. Therefore, as the configuration of the crucible, for example, as in the invention disclosed in JP-A-56-17996,
Synthetic quartz lining on the inner wall of a crucible made of fused silica glass, or the invention of Japanese Patent Application Laid-Open No. 1-261293, and the invention of Japanese Patent Application Laid-Open No. 6-279167 in which the shape of the inner layer portion is devised A crucible having a two-layer structure in which the inner layer portion is made of synthetic quartz glass and the outer layer portion is made of fused quartz glass has been used.

【0006】このように2層構造とし、るつぼの形状維
持や強度を保持するための外層は従来用いられている溶
融石英ガラス、シリコン融液に接する内層の部分は合成
石英ガラスとすれば、るつぼの形状や強度を維持しつつ
不純物の混入を抑えることができる。しかし、近年のシ
リコンウェーハの直径増大の要求により、単結晶の径が
大きくなってくると、一度に使用するシリコン融液の液
量が増大し、るつぼが大型化してるつぼ壁がシリコン融
液に接する時間も長くなってくる。そうなると合成石英
ガラスの層の侵食が増加し、シリコン融液が直接溶融石
英ガラスと接するようになり、不純物汚染を十分に抑え
れられなくなる。これに対して合成石英ガラスの層を厚
くすればよいと考えられるが、合成石英ガラス層の比率
が増せば、るつぼの使用中の変形が増してくる。その上
合成石英ガラスは高価であり、石英るつぼは通常1回の
使用で破棄されるので、必要以上の厚さの合成石英ガラ
ス層を付加することは、コスト上昇のため好ましくな
い。
If the outer layer for maintaining the shape and strength of the crucible is made of fused silica glass which is conventionally used and the inner layer in contact with the silicon melt is made of synthetic quartz glass as described above, the crucible is made to have a two-layer structure. Of the impurities can be suppressed while maintaining the shape and strength of the substrate. However, as the diameter of a single crystal increases due to the recent demand for an increase in the diameter of a silicon wafer, the amount of silicon melt used at a time increases, and the crucible wall becomes larger due to the crucible wall becoming larger. The contact time is getting longer. As a result, the erosion of the layer of the synthetic quartz glass increases, and the silicon melt comes into direct contact with the fused quartz glass, so that impurity contamination cannot be sufficiently suppressed. On the other hand, it is considered that the thickness of the synthetic quartz glass layer should be increased. However, if the ratio of the synthetic quartz glass layer increases, the deformation of the crucible during use increases. In addition, synthetic quartz glass is expensive, and quartz crucibles are usually discarded after a single use. Therefore, it is not preferable to add a synthetic quartz glass layer having an unnecessarily thick thickness due to an increase in cost.

【0007】2層構造の石英るつぼとしては、合成石英
ガラス層を必要最小限の厚さとし、その上で、合成石英
ガラス層の厚さを予め十分に把握しておくことが極めて
重要である。2層構造の石英るつぼは、通常回転溶融法
で製造される。すなわち、溶融石英ガラス原料粉末を、
回転する中空型内にて遠心力でるつぼ形状に堆積させ、
次いで合成石英ガラスの原料粉末を導入し、その内側に
堆積させる。その後、堆積した原料の型面側から排気を
おこないながら、内側よりアーク放電により加熱溶融し
てるつぼを形成させる。
In a quartz crucible having a two-layer structure, it is extremely important that the synthetic quartz glass layer has a minimum necessary thickness and that the thickness of the synthetic quartz glass layer is sufficiently understood in advance. Quartz crucibles having a two-layer structure are usually manufactured by a rotary melting method. That is, fused silica glass raw material powder,
Deposited in a crucible shape by centrifugal force in a rotating hollow mold,
Next, a raw material powder of synthetic quartz glass is introduced and deposited inside. Thereafter, the exhausted material is heated and melted by arc discharge from the inside while discharging the material from the mold surface side to form a crucible.

【0008】このようにして得られたるつぼの溶融石英
ガラス層と合成石英ガラス層との界面部は、肉眼や光学
顕微鏡等では見分けることができない。しかしながら、
合成石英ガラスの層は、安定して一定の厚さに制御する
ことは困難であり、またるつぼ壁全面にわたって必ずし
も均一ではなく、製造されたるつぼの合成石英ガラス層
の厚さが不十分であれば、溶融石英ガラスの不純物の混
入が早期に起こり、シリコン単結晶の良品歩留まりを低
下させるおそれがある。
[0008] The interface between the fused silica glass layer and the synthetic silica glass layer of the crucible thus obtained cannot be discerned with the naked eye or an optical microscope. However,
The synthetic quartz glass layer is difficult to control stably to a constant thickness, and is not always uniform over the entire crucible wall, and the thickness of the synthetic quartz glass layer of the manufactured crucible is insufficient. In this case, impurities in the fused silica glass may be mixed at an early stage, which may lower the yield of non-defective silicon single crystals.

【0009】現状用いられている、るつぼの合成石英ガ
ラス層の厚さ測定は、表面より深さ方向に化学的にエッ
チングして、そこに含まれる不純物量を分析し、その含
有量が変化した位置からその厚さを知るという方法によ
っている。このためにはできあがったるつぼを破壊せざ
るを得ず、製品の検査として生産の場で用いるには不適
当である。
In the measurement of the thickness of a synthetic quartz glass layer of a crucible, which is currently used, chemical etching is performed in the depth direction from the surface, the amount of impurities contained therein is analyzed, and the content changes. It depends on the method of knowing the thickness from the position. For this purpose, the completed crucible must be destroyed, and is unsuitable for use in production as a product inspection.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、内層
部が合成石英ガラス、外層部が溶融石英ガラスの2層構
成のシリコン単結晶引き上げ用石英るつぼに関し、合成
石英層の厚さをるつぼを破壊することなく簡便に測定で
きる石英るつぼの提供にある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a silicon single crystal pulling quartz crucible having a two-layer structure in which an inner layer is made of synthetic quartz glass and an outer layer is made of fused silica glass. Another object of the present invention is to provide a quartz crucible that can easily measure without destroying the quartz crucible.

【0011】[0011]

【課題を解決するための手段】本発明者らは、2層構造
の石英るつぼについて、製造後の内層の合成石英ガラス
層の厚さを、るつぼを破壊することなく確認できる方法
の必要に迫られた。溶融石英ガラスも合成石英ガラス
も、化学的物理的性質はほぼ同一であり通常の手段では
区分できない。半導体基板用シリコン単結晶の製造用と
いう立場では、溶融石英ガラスは不純物が多いかもしれ
ないが、一般の工業用材料の見地からは極めて高純度の
材料なのである。
Means for Solving the Problems The inventors of the present invention have pressed for a quartz crucible having a two-layer structure, and need for a method capable of confirming the thickness of a synthetic quartz glass layer as an inner layer after production without breaking the crucible. Was done. Both fused quartz glass and synthetic quartz glass have almost the same chemical and physical properties and cannot be distinguished by ordinary means. From the standpoint of manufacturing silicon single crystals for semiconductor substrates, fused silica glass may contain many impurities, but is of extremely high purity from the viewpoint of general industrial materials.

【0012】一つの方法として、何らかのマーカーを入
れることを考えたが、その部分まで浸食が進むと、シリ
コン融液中にマーカーの多大の不純物が混入するおそれ
がある。そこで、酸素欠損型石英ガラスをマーカーとし
て使用することを検討した。石英は化学記号としてSi
2で表せるが、石英原料に少量のSiを混ぜ加熱溶融
すると、黒色で不透明な酸素欠損型石英ガラスSiO
2-x(ここでxは1以下の小さな数)が得られる。2層構
造るつぼ製造の際に、外層となる溶融石英ガラス粉末を
中空型内に堆積後、この酸素欠損型石英ガラスの粉末を
少量導入し、次いで内層となる合成石英ガラスを充填す
るのである。この方法により、溶融石英ガラスと合成石
英ガラスとの界面部が着色された石英るつぼが得られ、
しかも従来の2層構造石英るつぼと、何ら変わることの
ない性能を有していることがわかった。
As one method, it is considered to insert a certain marker. However, if the erosion proceeds to that part, a large amount of impurities of the marker may be mixed into the silicon melt. Thus, the use of oxygen-deficient quartz glass as a marker was studied. Quartz is Si as a chemical symbol
It can be represented by O 2 , but when a small amount of Si is mixed into a quartz raw material and heated and melted, a black and opaque oxygen-deficient quartz glass SiO
2-x (where x is a small number less than or equal to 1) is obtained. When a two-layer crucible is manufactured, a fused silica glass powder to be an outer layer is deposited in a hollow mold, a small amount of the oxygen-deficient quartz glass powder is introduced, and then a synthetic quartz glass to be an inner layer is filled. By this method, a quartz crucible in which the interface between the fused quartz glass and the synthetic quartz glass is colored,
In addition, it was found that it had the same performance as the conventional two-layer quartz crucible.

【0013】酸素欠損型石英ガラスは、溶融石英ガラス
または合成石英ガラスとは不透明である以外その性質が
ほとんど同じであり、界面部に存在していたとしても、
従来の2層構造石英るつぼとしての性能には全く影響を
およぼさない。また、合成石英ガラスに単結晶製造用の
高純度シリコンを混ぜて、酸素欠損型石英ガラスをつく
れば、シリコン融液中に混入したとしても不純物汚染の
おそれはない。そして例えば、るつぼの内表面から光学
顕微鏡等を用いて、着色面の存在深さを測定すれば、る
つぼを破壊することなく合成石英ガラス層の厚さを測定
することができる。
Oxygen-deficient quartz glass has almost the same properties as fused quartz glass or synthetic quartz glass except that it is opaque.
It has no effect on the performance as a conventional two-layer quartz crucible. Further, if oxygen-deficient quartz glass is prepared by mixing high-purity silicon for producing a single crystal with synthetic quartz glass, there is no risk of impurity contamination even if it is mixed in the silicon melt. For example, by measuring the depth of the colored surface from the inner surface of the crucible using an optical microscope or the like, the thickness of the synthetic quartz glass layer can be measured without breaking the crucible.

【0014】すなわち、本発明の要旨とするところは、
内層部が合成石英ガラス、外層部が溶融石英ガラスの2
層構成であって、内層部と外層部の界面部に酸素欠損型
石英ガラスが存在することを特徴とするシリコン単結晶
引き上げ用石英るつぼ、である。
That is, the gist of the present invention is as follows.
Synthetic quartz glass for the inner layer and fused silica glass for the outer layer
A quartz crucible for pulling a silicon single crystal, wherein the quartz crucible has a layer structure, and has oxygen-deficient quartz glass at an interface between an inner layer portion and an outer layer portion.

【0015】[0015]

【発明の実施の形態】本発明は、内層と外層とが異なる
石英ガラスを用いた2層構造の石英るつぼに適用される
ものであり、その内層部と外層部の石英ガラスの種類に
ついて、特に限定はしない。しかし、このような石英る
つぼは、主としてCZ法のシリコン単結晶の引き上げに
用いるものであり、その場合は、シリコン融液に接する
内層はできるだけ不純物含有量の低い合成石英ガラスと
し、外層は耐熱性にすぐれ、安価な溶融石英ガラスとす
べきである。また、内層と外層との種類の異なる石英ガ
ラスの界面部、ないしは境界面の位置を明瞭に検知でき
るようにしたものであって、それらの層のそれぞれの厚
さについては、特に限定するものではない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is applied to a quartz crucible having a two-layer structure using quartz glass in which an inner layer and an outer layer are different from each other. No limitation. However, such a quartz crucible is mainly used for pulling a silicon single crystal by the CZ method. In this case, the inner layer in contact with the silicon melt is made of synthetic quartz glass having as low an impurity content as possible, and the outer layer is made of a heat resistant material. It should be excellent and inexpensive fused silica glass. In addition, the interface between the different types of silica glass of the inner layer and the outer layer, or the position of the boundary surface is made to be clearly detectable, and the thickness of each of those layers is not particularly limited. Absent.

【0016】内層と外層との界面部には酸素欠損型石英
ガラスを存在させる。この酸素欠損型石英ガラスは不透
明であり、その界面部の厚さが極めて薄くなっても、茶
色に着色して内外層の境界を明瞭に示すことができる。
例えば、るつぼの合成石英ガラス内層の厚さを測定する
場合、鏡筒の移動距離を計測できる光学顕微鏡を用い、
まずるつぼ表面に焦点を合わせ、次に鏡筒を表面に垂直
方向に移動させて界面の着色部に焦点を合わせる。この
ときの移動距離aを求めれば、石英ガラスの屈折率は1.
43なので、合成石英ガラス層の厚さbは、 b=a/1.43 により求めることができる。
Oxygen-deficient quartz glass is present at the interface between the inner layer and the outer layer. This oxygen-deficient quartz glass is opaque, and can be colored brown to clearly show the boundary between the inner and outer layers even when the thickness of the interface is extremely thin.
For example, when measuring the thickness of the synthetic silica glass inner layer of the crucible, using an optical microscope that can measure the moving distance of the lens barrel,
First, focus on the crucible surface, and then move the lens barrel in a direction perpendicular to the surface to focus on the colored portion of the interface. If the moving distance a at this time is obtained, the refractive index of the quartz glass is 1.
Since it is 43, the thickness b of the synthetic quartz glass layer can be obtained by b = a / 1.43.

【0017】酸素欠損型石英ガラスは、石英ガラス原料
に少量のSiを混ぜ加熱溶融して得られるもので、不透
明であり、かつ石英ガラスとしての性質が失われない範
囲であれば、そのSi添加量は限定しない。ただし、こ
の酸素欠損型石英ガラスがシリコン融液中に混入しても
不純物汚染の原因とならぬよう、石英ガラス原料は高純
度の合成石英ガラス、Siは単結晶製造用原料の高純度
Siを用いることが望ましい。また、るつぼの製造過程
で、内外層の界面部にSiを供給し、その後の加熱溶融
の際、Siが周囲の石英と反応して酸素欠損型石英ガラ
スを生成するようにしてもよい。
Oxygen-deficient quartz glass is obtained by mixing a small amount of Si with a quartz glass raw material and heating and melting the material. The amount is not limited. However, the quartz glass raw material should be high-purity synthetic quartz glass, and Si should be high-purity Si, a raw material for single crystal production, so that even if this oxygen-deficient quartz glass is mixed into the silicon melt, it will not cause impurity contamination. It is desirable to use. Further, in the process of manufacturing the crucible, Si may be supplied to the interface between the inner and outer layers, and at the time of subsequent heating and melting, Si may react with surrounding quartz to generate oxygen-deficient quartz glass.

【0018】本発明のるつぼの製造方法は、内層部と外
層部との間に酸素欠損型石英ガラスを存在させることが
できるものであれば、特には限定しない。例えば、通常
の回転溶融法を用いるとすれば、回転している中空型に
まず溶融石英ガラスの原料粉末を充填し、次にSi粉
末、または予め作製しておいた酸素欠損型溶融石英ガラ
ス粉末を導入した後、内層となる合成石英ガラス粉末を
充填し、アーク放電等で加熱溶融してるつぼを形成させ
る。
The crucible manufacturing method of the present invention is not particularly limited as long as oxygen-deficient quartz glass can be present between the inner layer and the outer layer. For example, if a normal rotary melting method is used, a rotating hollow mold is first filled with a raw material powder of fused silica glass, and then Si powder or an oxygen-deficient fused silica glass powder prepared in advance. Is introduced, a synthetic quartz glass powder to be an inner layer is filled, and heated and melted by arc discharge or the like to form a crucible.

【0019】[0019]

【実施例】〔実施例1〕石英るつぼの製造に通常用いら
れている回転溶融法により、2層構造のるつぼを作製し
た。完成後のるつぼ寸法は図1(a)に示すものとし、ま
ず、所定形状のモールドを回転させておき、そこへ平均
粒径200μmの溶融石英ガラス粉末を、厚さ約40mmのるつ
ぼ形状となるよう充填した。そこへ合計0.5gの顆粒状の
Si(粒径約3.5mm)を、るつぼの底部や側壁部に均等
に行きわたるように投入し、次いで平均粒径200μmの合
成石英ガラス粉末を、厚さ約8mmとなるようその上に充
填した。それから通常の操作方法にしたがって内面のア
ーク放電加熱、内面側から外面側へ向けての脱気、等を
おこなって溶融し石英るつぼとした。
EXAMPLES Example 1 A two-layer crucible was manufactured by a rotary melting method generally used for manufacturing a quartz crucible. The dimensions of the crucible after completion are shown in Fig. 1 (a). First, a mold having a predetermined shape is rotated, and fused silica glass powder having an average particle size of 200 µm is formed into a crucible having a thickness of about 40 mm. Filled. A total of 0.5 g of granular Si (particle diameter: about 3.5 mm) is poured evenly over the bottom and side walls of the crucible, and then a synthetic quartz glass powder having an average particle diameter of 200 μm is added to a thickness of about 0.5 μm. It was filled on it to be 8 mm. Then, according to a normal operation method, the inner surface was subjected to arc discharge heating, degassing from the inner surface side to the outer surface side, and the like, followed by melting to obtain a quartz crucible.

【0020】得られたるつぼは、内層部1と外層部2と
の界面部3に黒色に見える酸素欠損型石英6が点在して
いた。るつぼ壁の断面を拡大すると図1(b)のようにな
っていて、外層部の外面側には不透明層5が残るが、境
界と思われる部位は完全な透明層4となっており、マー
カーとしての黒色酸素欠損型石英ガラス粒6が無けれ
ば、界面部3の位置は全く検知できない。
In the obtained crucible, oxygen-deficient quartz 6, which appears black, was scattered at the interface 3 between the inner layer 1 and the outer layer 2. The cross section of the crucible wall is enlarged as shown in FIG. 1 (b), and the opaque layer 5 remains on the outer surface side of the outer layer portion. If there is no black oxygen-deficient quartz glass grain 6 as the above, the position of the interface 3 cannot be detected at all.

【0021】50倍の光学顕微鏡を用い、るつぼ内表面か
ら内部の有色部ないしは黒色粒までの距離を測定し、内
層部の厚さを求めた。また、この光学顕微鏡で厚さを測
定した部分から試片を切り出し、るつぼの内表面側から
弗酸にて少しづつ溶解して、厚さ方向の位置におけるA
l(アルミニウム)の含有量を化学分析した。溶融石英
ガラスと合成石英ガラスとは、Alの濃度からその違い
を容易に検出できる。るつぼ内面からの深さに対するA
lの分析結果の一例を図2に示す。この場合、Alの分
析値が溶融石英の濃度と合成石英濃度の丁度中間の値に
なる位置を、表面からの深さ、すなわち合成石英層の厚
さとした。
Using a 50 × optical microscope, the distance from the inner surface of the crucible to the inner colored portion or black particles was measured, and the thickness of the inner layer portion was determined. Further, a specimen was cut out from the portion where the thickness was measured with this optical microscope, and was gradually dissolved with hydrofluoric acid from the inner surface side of the crucible, and A at the position in the thickness direction was removed.
The l (aluminum) content was chemically analyzed. The difference between fused silica glass and synthetic quartz glass can be easily detected from the concentration of Al. A for the depth from the crucible inner surface
FIG. 2 shows an example of the analysis result of l. In this case, the position where the analysis value of Al was exactly the middle value between the fused quartz concentration and the synthetic quartz concentration was defined as the depth from the surface, that is, the thickness of the synthetic quartz layer.

【0022】表1にるつぼの測定場所と、その部分にお
ける合成石英ガラス層の厚さについて、光学顕微鏡によ
る測定値、および化学分析による測定値を対比して示
す。これから、本発明の内層部と外層部の界面部に酸素
欠損型石英を存在させたるつぼでは、るつぼを破壊する
ことなく内層の合成石英ガラス層の厚さを正確に測定で
きることがわかる。
Table 1 shows the measurement locations of the crucible and the thickness of the synthetic quartz glass layer at those locations in comparison with those measured by an optical microscope and those measured by chemical analysis. From this, it can be seen that in the crucible of the present invention in which oxygen-deficient quartz is present at the interface between the inner layer and the outer layer, the thickness of the inner synthetic quartz glass layer can be accurately measured without breaking the crucible.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【発明の効果】本発明の内層部が合成石英ガラス、外層
部が溶融石英ガラスの2層構成の石英るつぼは、内層部
と外層部の界面部にマーカーが存在しいるので、るつぼ
を破壊することなく内層部の厚さを容易に知ることがで
きる。それによって製品の良否を判定でき、さらに最適
な内層厚さの選定や、不純物汚染のないるつぼの使用条
件設定ができ、すぐれたシリコン単結晶をより合理的に
製造することが可能になる。
The quartz crucible of the present invention having a two-layer structure of synthetic quartz glass as the inner layer and fused silica glass as the outer layer breaks the crucible because the marker exists at the interface between the inner layer and the outer layer. The thickness of the inner layer portion can be easily known without any need. As a result, the quality of the product can be determined, the optimum inner layer thickness can be selected, and the use condition of the crucible free from impurity contamination can be set, so that an excellent silicon single crystal can be more rationally manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例にて作製した2層構成の石英るつぼを模
式的に示した図であり、(a)は断面形状および寸法、(b)
は壁部断面の拡大をそれぞれ示す。
FIG. 1 is a diagram schematically showing a two-layer quartz crucible manufactured in an example, in which (a) is a sectional shape and dimensions, and (b) is a diagram.
Indicates the enlargement of the wall section.

【図2】2層構成の石英るつぼ壁の、内表面から断面方
向の深さ位置におけるAlの分析値変化の例を示す図で
ある。
FIG. 2 is a diagram showing an example of a change in an analytical value of Al at a depth position in a cross-sectional direction from an inner surface of a quartz crucible wall having a two-layer structure.

【符号の説明】[Explanation of symbols]

1 石英るつぼの内層部 2 石英るつぼ
の外層部 3 酸素欠損型石英が存在する界面部 4 透明層 5 不透明層 6 黒色の酸素
欠損型石英粒
1 inner layer of quartz crucible 2 outer layer of quartz crucible 3 interface where oxygen-deficient quartz exists 4 transparent layer 5 opaque layer 6 black oxygen-deficient quartz grains

フロントページの続き (72)発明者 荒堀 忠久 兵庫県尼崎市扶桑町1番8号住友金属工業 株式会社エレクトロニクス技術研究所内 Fターム(参考) 4G014 AH08 4G050 FD01 FD05 4G077 AA02 BA04 CF00 EG02 Continuation of the front page (72) Inventor Tadahisa Arahori 1-8 Fuso-cho, Amagasaki-shi, Hyogo Sumitomo Metal Industries, Ltd. Electronics Technology Research Laboratory F term (reference) 4G014 AH08 4G050 FD01 FD05 4G077 AA02 BA04 CF00 EG02

Claims (1)

【特許請求の範囲】[Claims] 内層部が合成石英ガラス、外層部が溶融石英ガラスの2
層構成であって、内層部と外層部の界面部に酸素欠損型
石英ガラスが存在することを特徴とするシリコン単結晶
引き上げ用石英るつぼ。
Synthetic quartz glass for the inner layer and fused silica glass for the outer layer
A quartz crucible for pulling a silicon single crystal, wherein the quartz crucible has a layered structure and oxygen-deficient quartz glass is present at an interface between an inner layer portion and an outer layer portion.
JP10188365A 1998-07-03 1998-07-03 Quartz crucible for pulling silicon single crystal Pending JP2000016896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10188365A JP2000016896A (en) 1998-07-03 1998-07-03 Quartz crucible for pulling silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10188365A JP2000016896A (en) 1998-07-03 1998-07-03 Quartz crucible for pulling silicon single crystal

Publications (1)

Publication Number Publication Date
JP2000016896A true JP2000016896A (en) 2000-01-18

Family

ID=16222352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10188365A Pending JP2000016896A (en) 1998-07-03 1998-07-03 Quartz crucible for pulling silicon single crystal

Country Status (1)

Country Link
JP (1) JP2000016896A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001092609A3 (en) * 2000-05-31 2002-04-04 Heraeus Quarzglas Multilayered quartz glass crucible and method of its production
CN115432930A (en) * 2022-09-02 2022-12-06 徐州融鑫新材料有限公司 High-purity superfine fused quartz stone and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001092609A3 (en) * 2000-05-31 2002-04-04 Heraeus Quarzglas Multilayered quartz glass crucible and method of its production
CN115432930A (en) * 2022-09-02 2022-12-06 徐州融鑫新材料有限公司 High-purity superfine fused quartz stone and preparation method thereof
CN115432930B (en) * 2022-09-02 2024-02-06 徐州融鑫新材料有限公司 High-purity superfine fused quartz stone and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5072933B2 (en) Silica glass crucible for pulling silicon single crystal, method for producing the same, and method for producing silicon single crystal
US8915097B2 (en) Silica container and method for producing the same
EP1319736A1 (en) Silica crucible with inner layer crystallizer and method for its manufacturing
EP2476786B1 (en) Silica glass crucible for pulling silicon single crystal and method for producing same
KR101165703B1 (en) Silica glass crucible for pulling up silicon single crystal and method for manufacturing thereof
EP2385157B1 (en) Silica glass crucible
KR101234109B1 (en) Silica glass crucible for pulling up silicon single crystal and method for manufacturing thereof
JP5058138B2 (en) Silica glass crucible for pulling silicon single crystals
JP2000016896A (en) Quartz crucible for pulling silicon single crystal
JP4716374B2 (en) Silica glass crucible and method for producing silica glass crucible
JPH0742193B2 (en) Quartz crucible for pulling single crystals
JPH11292694A (en) Quartz crucible for pulling up silicon single crystal
JP2973057B2 (en) Quartz crucible for pulling silicon single crystal and its manufacturing method
US6447601B1 (en) Crystal puller and method for growing monocrystalline silicon ingots
US20030024467A1 (en) Method of eliminating near-surface bubbles in quartz crucibles
JP2000109391A (en) Quartz crucible
Su Improving Quality of Material by Reducing Its Interaction with Fused Silica Container During Processing
JP7349779B2 (en) quartz glass crucible
CN111936678B (en) Quartz glass crucible and method for producing same
KR20090068926A (en) Quartz crucible for single crystal grower and fabrication method thereof
JP2000103694A (en) Quartz glass crucible and its production
JPH02128437A (en) Liquid phase epitaxial growth