JPH11292694A - Quartz crucible for pulling up silicon single crystal - Google Patents

Quartz crucible for pulling up silicon single crystal

Info

Publication number
JPH11292694A
JPH11292694A JP10307998A JP10307998A JPH11292694A JP H11292694 A JPH11292694 A JP H11292694A JP 10307998 A JP10307998 A JP 10307998A JP 10307998 A JP10307998 A JP 10307998A JP H11292694 A JPH11292694 A JP H11292694A
Authority
JP
Japan
Prior art keywords
crucible
quartz glass
roughness
silicon
quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10307998A
Other languages
Japanese (ja)
Inventor
Motonori Tamura
元紀 田村
Atsushi Ikari
敦 碇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10307998A priority Critical patent/JPH11292694A/en
Publication of JPH11292694A publication Critical patent/JPH11292694A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide the subject quartz crucible intended for standing its use for a long time by setting the surface roughness inside the crucible at least coming into contact with silicon melt within a specific range so as to uniformly produce silica glass crystal phase on the inside surface in a short time. SOLUTION: This quartz crucible is so designed that the arithmetically mean roughness (Ra) of the surface inside the crucible satisfies the relationship: 0.02 μm<=Ra<=20.0 μm; preferably, the maximum roughness (Rmax) and the minimum roughness (Rmin) satisfy the relationship: Rmax/Rmin<=10; that is, the surface inside the crucible is made uneven to afford the nucleus-forming sites for silica glass crystal phase intentionally uniformly and also in high density so as to ensure the surface to be entirely covered in a short time with silica glass crystal phase (e.g. cristobalite phase) forming on the surface on contacting it with sinicon melt; therefore, even if the crucible is used for a ling time, the surface uniformly dissolves in the silicon melt, and the resulting silicon single crystal is free from surface roughness with slight section debonding.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、チョクラルスキー
法(以下CZ法と称す)によるシリコン単結晶引上げに
用いる石英ガラスルツボに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a quartz glass crucible used for pulling a silicon single crystal by the Czochralski method (hereinafter referred to as CZ method).

【0002】[0002]

【従来の技術】従来、シリコン単結晶の製造には、いわ
ゆるCZ法と呼ばれる単結晶引上げ方法が広く工業的に
採用されている。この方法は、多結晶シリコンを容器内
で加熱溶融させ、この溶融浴内に種結晶の端部を漬けて
回転させながら引き上げるもので、種結晶上に同一の結
晶方位を持つ単結晶が成長する。この単結晶の引上げ容
器には、石英ガラスルツボが一般的に使用されている。
多結晶シリコンを入れた石英ガラスルツボはシリコンの
融点(約1414℃)以上に長時間加熱され、シリコン
融液に曝されるため、ルツボの内側表面は高温下で溶融
シリコンと徐々に化学反応を起こす。その結果、長時間
ルツボを使用した場合に溶損や失透(結晶化)が生じ、
シリコン単結晶の製造に重大な影響を及ぼすことにな
る。特に、石英ガラスルツボに不純物が多量に混入して
いると、これがシリコン融液に取り込まれシリコン単結
晶の不純物汚染の原因になったり、不純物が石英ガラス
の結晶化を促進して失透による石英ガラスルツボの特性
劣化を招く。このため、石英ガラスルツボは高純度の石
英粉を原料として製造されている。このルツボ用石英粉
として、現在主に天然石英粉が用いられているが、天然
石英以上の純度の得られる合成石英粉が用いられてお
り、不純物の混入には細心の注意が払われている。
2. Description of the Related Art Conventionally, in the production of silicon single crystals, a single crystal pulling method called a so-called CZ method has been widely and industrially employed. In this method, polycrystalline silicon is heated and melted in a container, and the end of the seed crystal is immersed in the molten bath and pulled up while rotating. A single crystal having the same crystal orientation grows on the seed crystal. . A quartz glass crucible is generally used for the single crystal pulling container.
A quartz glass crucible containing polycrystalline silicon is heated for a long time to a temperature higher than the melting point of silicon (about 1414 ° C) and is exposed to a silicon melt. Therefore, the inner surface of the crucible gradually undergoes a chemical reaction with the molten silicon at a high temperature. Wake up. As a result, when a crucible is used for a long time, erosion or devitrification (crystallization) occurs,
This will have a significant effect on the production of silicon single crystals. In particular, if a large amount of impurities are mixed in the quartz glass crucible, this is taken into the silicon melt and causes impurity contamination of the silicon single crystal, or the impurities promote the crystallization of the quartz glass and cause the quartz glass to devitrify. This causes deterioration of the characteristics of the glass crucible. For this reason, quartz glass crucibles are manufactured using high-purity quartz powder as a raw material. Currently, natural quartz powder is mainly used as the quartz powder for crucibles, but synthetic quartz powder having a purity higher than that of natural quartz is used, and great care has been taken to mix impurities. .

【0003】近年、シリコンウエーハの大口径化に伴
い、単結晶引上げ用石英ガラスルツボの口径も大型化
し、その口径は18インチ(457.2mm)から22
〜24インチ(558.8〜609.6mm)となり、
さらに大口径のルツボも要望されている。ところで、こ
の石英ルツボ内側表面は融液を保持すると共に、ルツボ
の外側に設置されているカーボンヒータからの熱をシリ
コン融液に伝達する機能を有している。石英ルツボの大
口径化に伴い、溶解するシリコン量も増え、ルツボ内壁
へのヒーターからの熱負荷が大きくなる。さらに、多量
の融液を保持して単結晶引上げを行うため、融液とルツ
ボ内側表面との接触時間が長くなっている。このため、
不純物混入を抑制した石英ルツボであっても、ルツボ内
側表面から融液への溶損量が増え、ルツボ表面の石英ガ
ラスの結晶化が促進され、ルツボ内側表面に斑点状の石
英ガラスの結晶相(クリストバライトあるいはトリディ
マイト)が形成、成長し易くなる。石英ガラスの結晶相
の生成場所は、必ずしも一定ではなく、特定箇所に集中
したり、不均一な場合が多くみられる。シリコン融液へ
の溶解速度は、結晶化していない石英ガラスのほうが、
石英ガラスの結晶相より速く、長時間シリコン融液と接
触した石英ガラスルツボ内側表面は不均一な溶解が進
み、表面粗度が大きくなる。石英ガラスルツボの内側に
気泡があり、これが石英ガラスの溶解が進むことでシリ
コン融液中に解放されて、表面粗度を大きくする場合も
ある。このようにして表面の凹凸が局所的に大きくなっ
た部分は、ルツボ表面から離脱し易く、離脱した切片は
融液に浮遊する。これが、引き上げられる単結晶に付着
し、多結晶化等の重大な品質欠陥を引き起こし、シリコ
ン単結晶の生産性を大きく阻害していた。すなわち、大
口径石英ルツボの長期使用は困難となり、シリコン単結
晶製造コストの上昇を招いていた。
In recent years, as the diameter of silicon wafers has increased, the diameter of quartz glass crucibles for pulling single crystals has also increased, and the diameter has increased from 18 inches (457.2 mm) to 22 inches.
~ 24 inches (558.8-609.6mm)
There is also a demand for large diameter crucibles. The quartz crucible inner surface has a function of holding the melt and transmitting heat from a carbon heater provided outside the crucible to the silicon melt. As the diameter of the quartz crucible increases, the amount of dissolved silicon also increases, and the heat load from the heater to the crucible inner wall increases. Furthermore, since a single crystal is pulled while holding a large amount of melt, the contact time between the melt and the crucible inner surface is prolonged. For this reason,
Even with a quartz crucible with reduced impurity contamination, the amount of erosion from the inner surface of the crucible into the melt increases, the crystallization of the quartz glass on the crucible surface is promoted, and the crystal phase of the spotted quartz glass on the inner surface of the crucible is increased. (Cristobalite or tridymite) is easily formed and grown. The location where the crystal phase of quartz glass is generated is not always constant, and is often concentrated at a specific location or uneven. The dissolution rate in silicon melt is higher for quartz glass that is not crystallized.
The inner surface of the quartz glass crucible, which is faster than the crystal phase of the quartz glass and has been in contact with the silicon melt for a long time, undergoes non-uniform melting, and the surface roughness increases. In some cases, bubbles are present inside the quartz glass crucible and are released into the silicon melt as the quartz glass dissolves, thereby increasing the surface roughness. The portion where the surface irregularities are locally large in this way is easily detached from the crucible surface, and the detached section floats in the melt. This attaches to the single crystal to be pulled, causing serious quality defects such as polycrystallization, and greatly hinders the productivity of the silicon single crystal. In other words, long-term use of a large-diameter quartz crucible becomes difficult, which has led to an increase in silicon single crystal production costs.

【0004】こうした問題を解決するため、石英ガラス
中のOH濃度やアルカリ濃度を下げて高純化し、結晶化
しにくくする方法が特開平3−208880号公報、特
開平8−133719号公報、特開平5−301731
号公報等で提案されている。しかしながら、石英ガラス
ルツボの不純物含有量を減らしても、シリコンの融点以
上で長時間使用されるため、石英ガラスの結晶化は若干
抑制されるが、結晶化そのものは部分的に起こり、不均
一な結晶化と溶解による石英ガラス内側表面の荒れは避
けられなかった。
[0004] In order to solve such a problem, methods for lowering the OH concentration or alkali concentration in the quartz glass to make the quartz glass highly purified and difficult to crystallize are disclosed in JP-A-3-208880, JP-A-8-133719, and JP-A-8-133719. 5-301731
It is proposed in Japanese Patent Publication No. However, even if the content of impurities in the quartz glass crucible is reduced, the crystallization of the quartz glass is slightly suppressed because the quartz glass crucible is used for a long time at a temperature equal to or higher than the melting point of silicon. Roughening of the inner surface of quartz glass due to crystallization and melting was inevitable.

【0005】逆に、石英ガラスルツボ内側表面にマグネ
シウム、ストロンチウム、カルシウム、バリウム、アル
ミニウム等の2a族元素または3b族元素を塗布または
固溶し、石英ガラスの結晶層を形成しやすくする方法が
特開平8−2932号公報、特開平9−110590号
公報等で提案されている。しかしながら、石英ガラスの
結晶化温度を下げる、あるいは、結晶成長速度を上げる
のが主たる効果であり、石英ガラスの内側表面がたとえ
ば清浄度が悪く結晶成長の核となるべきものが多数存在
する場合には、結晶層をガラス表面に生成させるのに効
果が期待できるが、洗浄がいきとどいて核となるべきも
のが少ない場合には、結晶化促進効果はあまり期待でき
ない。さらに、通常、塗布膜と石英ガラス表面の付着力
は弱く、溶解すべきシリコンをセットする時に塗布膜が
剥離しやすいという点や塗布膜の厚さや分布の制御が難
しい点、工業的に実用化するには作業工程が多くコスト
増を招く等の欠点があった。
On the other hand, a method of applying or solid-solving a Group 2a element or a Group 3b element such as magnesium, strontium, calcium, barium, or aluminum on the inner surface of a quartz glass crucible to form a quartz glass crystal layer easily is particularly featured. It has been proposed in Japanese Unexamined Patent Publication No. Hei 8-2932, Japanese Unexamined Patent Publication No. Hei 9-110590 and the like. However, the main effect is to lower the crystallization temperature of quartz glass, or to increase the crystal growth rate, and when the inner surface of quartz glass is poor in cleanliness, for example, when there are many things that should be the cores of crystal growth. Can be expected to produce a crystal layer on the glass surface, but when cleaning is rapid and there are few nuclei to be formed, the crystallization promoting effect cannot be expected much. Furthermore, the adhesion between the coating film and the quartz glass surface is usually weak, and the coating film is easy to peel off when setting the silicon to be dissolved, and it is difficult to control the thickness and distribution of the coating film. However, there are drawbacks such as that the number of work steps is large and the cost is increased.

【0006】ルツボ内側表面での石英ガラスの結晶相の
生成、成長を本質的に制御し、結晶層を一定にしかも均
一に生成させるのにさらなる改善が求められている。
[0006] There is a need for further improvements to essentially control the formation and growth of the quartz glass crystal phase on the inner surface of the crucible so that the crystal layer is formed uniformly and uniformly.

【0007】[0007]

【発明が解決しようとする課題】本発明は、従来の石英
ガラスルツボにおける上記の問題点を解決して、石英ガ
ラスルツボ内側表面で石英ガラスの結晶相を短時間で均
一に生成させ、長時間の使用に耐える石英ガラスルツボ
を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems in the conventional quartz glass crucible, and forms a quartz glass crystal phase uniformly on the inner surface of the quartz glass crucible in a short time. It is an object of the present invention to provide a quartz glass crucible that can withstand use.

【0008】[0008]

【課題を解決するための手段】本発明者らは、研究実験
を重ね鋭意検討を加えた結果、石英ガラスの結晶相の核
生成密度を著しく上げることで一時期に石英ガラス表面
に石英ガラスの結晶相を均一に生成させ、これによりシ
リコン融液と長時間接触しても平滑なルツボ表面が得ら
れることを見出し、本発明を完成したものである。
Means for Solving the Problems The present inventors have made extensive studies and conducted extensive studies, and as a result, have found that the nucleation density of the crystal phase of quartz glass can be remarkably increased so that quartz crystal The inventors have found that a uniform crucible surface can be obtained even by long-term contact with a silicon melt, thereby completing the present invention.

【0009】本発明は、少なくともシリコン融液と接す
る石英ルツボ内側表面において、算術平均粗さ(Ra)
が、0.02μm≦Ra≦20.0μmの関係を満足す
ることを特徴とする石英ルツボである。さらに最大粗さ
(Rmax)、最小粗さ(Rmin)がRmax/Rm
in≦10の関係を満足する表面粗さを有することが望
ましい。
According to the present invention, the arithmetic mean roughness (Ra) is measured at least on the inner surface of a quartz crucible in contact with a silicon melt.
Is a quartz crucible characterized by satisfying a relationship of 0.02 μm ≦ Ra ≦ 20.0 μm. Further, the maximum roughness (Rmax) and the minimum roughness (Rmin) are Rmax / Rm.
It is desirable to have a surface roughness that satisfies the relationship of in ≦ 10.

【0010】[0010]

【発明の実施の形態】以下に本発明を詳細に説明する。
シリコン単結晶を長時間引上げるためには、溶融シリコ
ンとの接触による石英ガラスルツボの内側表面の溶解を
一定にして、均質な内側表面に保持することが重要であ
る。しかしながら、石英ガラスは、シリコン単結晶を引
き上げる温度領域では、本来ガラス相としては安定では
なく、熱力学的にはクリストバライト相またはトリディ
マイト相が安定である。したがって、石英ガラス中の不
純物を皆無にしても、石英ガラス表面の結晶化は本質的
に避けられない。石英ガラスの結晶化は、ガラス内部よ
りも、界面エネルギーが大きく、物質拡散が頻繁な、融
液との界面で起こりやすい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
In order to pull a silicon single crystal for a long time, it is important to keep the melting of the inner surface of the quartz glass crucible by contact with the molten silicon and to keep the inner surface of the quartz glass crucible uniform. However, quartz glass is not inherently stable as a glass phase in a temperature range in which a silicon single crystal is pulled, and a cristobalite phase or a tridymite phase is thermodynamically stable. Therefore, even if there is no impurity in the quartz glass, crystallization of the quartz glass surface is essentially unavoidable. Crystallization of quartz glass is more likely to occur at the interface with the melt where interfacial energy is greater and material diffusion is more frequent than inside the glass.

【0011】石英ガラスの結晶相は、石英ガラス表面で
斑点状に形成されるが、その形成は、核生成と結晶成長
に分けて考えることができる。即ち、石英ガラス表面の
斑点の個数が核発生量に、斑点の大きさの変化が核成長
速度に相当する。そして、各種表面状態の石英ガラスの
シリコン融液への浸漬実験から、融液に浸漬した石英ガ
ラス表面には、浸漬前あるいは浸漬直後の一時期に石英
ガラスの結晶相の核が生成し、その後、浸漬時間に比例
して成長すること、石英ガラス表面に形成した石英ガラ
スの結晶相の斑点は浸漬時間に応じた大きさを示し、同
一組成の石英ガラスでは結晶成長速度は一定であること
から判明した。これは、石英ガラス表面で一時期に核生
成が起こった後は、新たな核生成は起こらず、結晶成長
のみで石英ガラスの結晶相の総量が増加する機構である
ことを示している。そして、石英ガラスの表面状態によ
り、石英ガラスの結晶相の核生成は大きく影響を受け
る。つまり、石英ガラス表面での核生成量を制御すれ
ば、単結晶引き上げ操作中のルツボに形成される石英ガ
ラスの結晶相の総量を増減させることができる。
The crystal phase of quartz glass is formed in spots on the surface of quartz glass, and its formation can be considered as nucleation and crystal growth. That is, the number of spots on the quartz glass surface corresponds to the amount of nuclei generated, and the change in the size of the spots corresponds to the nucleus growth rate. Then, from the immersion experiment of quartz glass of various surface states in silicon melt, nuclei of the quartz glass crystal phase were generated on the surface of quartz glass immersed in the melt before or just after immersion, It grows in proportion to the immersion time, and the spots of the crystal phase of quartz glass formed on the quartz glass surface show the size according to the immersion time, and it is clear from the fact that the crystal growth rate is constant with quartz glass of the same composition did. This indicates that after nucleation occurs on the quartz glass surface at one time, new nucleation does not occur, and the total amount of the crystal phase of the quartz glass increases only by crystal growth. The nucleation of the crystal phase of the quartz glass is greatly affected by the surface state of the quartz glass. That is, by controlling the amount of nuclei generated on the quartz glass surface, the total amount of the quartz glass crystal phase formed in the crucible during the single crystal pulling operation can be increased or decreased.

【0012】石英ガラスの結晶相の核形成は、石英ガラ
ス表面での表面エネルギーまたは界面エネルギーの変化
が大きい部位で起こりやすい。具体的には、不純物粒子
が吸着した部分や構造欠陥のある部分などである。この
表面エネルギーの変化を意識的に作るには、表面に均一
で微細な凹凸をつけることが効果的であり、簡便であ
る。
The nucleation of the crystal phase of quartz glass is likely to occur at a portion where the surface energy or interface energy on the quartz glass surface changes greatly. Specifically, it is a portion where impurity particles are adsorbed or a portion having a structural defect. In order to consciously make this change in surface energy, it is effective and simple to provide uniform and fine irregularities on the surface.

【0013】本発明は、石英ガラスルツボ内側表面に凹
凸をつけ石英ガラスの結晶相の核生成部位を意識的に均
一にしかも密度高く作ることで、シリコン融液と接触し
たときの石英ガラス表面で形成する石英ガラスの結晶相
が短時間で表面を覆いつくすようにし、長時間使用して
もシリコンへの石英ガラスルツボ表面の溶解速度の違い
による表面荒れがなく、切片の剥離が少ないシリコン単
結晶引き上げ用石英ルツボである。
According to the present invention, the inner surface of a quartz glass crucible is made uneven and the density of nucleation sites of the crystal phase of the quartz glass is intentionally made uniform and at a high density. A silicon single crystal in which the crystal phase of the quartz glass to be formed covers the surface in a short time, and even when used for a long time, there is no surface roughness due to the difference in the dissolution rate of the quartz glass crucible surface in silicon, and there is little peeling of slices. It is a quartz crucible for lifting.

【0014】上記核生成を促進させる粗面の表面の凹凸
は、算術平均粗さ0.02〜20.0μmの表面粗さで
なければならない。好ましくは、0.04〜0.1μm
の範囲となるように表面粗さを制御する。算術平均粗さ
は、Raと表示され、各種工業製品の表面粗さを表すパ
ラメーターとして知られている。その定義および表示に
ついては、JIS B−0601に詳しく記載がある。
国際規格では、ISO468、ISO 3274、IS
O 4287、ISO 4288等に対応している。R
aは、粗さ曲線からその平均線の方向に基準長さだけ抜
き取り、この抜き取り部分の平均線の方向にX軸を、縦
倍率の方向にY軸を取り、粗さ曲線を中心線に対して積
分した値をマイクロメートル(μm)で表したものであ
る。表面粗さの測定は、光、レーザー等による非接触法
や、ダイヤモンド等の安定な材料の針を使って試料表面
に接触させて測定する接触法が知られている。
The rough surface of the rough surface for promoting the nucleation must have an arithmetic mean roughness of 0.02 to 20.0 μm. Preferably, 0.04 to 0.1 μm
The surface roughness is controlled so as to fall within the range described above. The arithmetic average roughness is expressed as Ra and is known as a parameter representing the surface roughness of various industrial products. The definition and indication are described in detail in JIS B-0601.
International standards include ISO468, ISO3274, IS
O 4287, ISO 4288, etc. R
a is extracted from the roughness curve by the reference length in the direction of the average line, the X axis is taken in the direction of the average line of the extracted portion, the Y axis is taken in the direction of the vertical magnification, and the roughness curve is taken with respect to the center line. The integrated value is expressed in micrometers (μm). For the measurement of the surface roughness, a non-contact method using light, laser, or the like, or a contact method in which measurement is performed by bringing the surface of the sample into contact with a needle using a stable material such as diamond are known.

【0015】従来の石英ガラスルツボの内側表面は、算
術平均粗さが、0.002〜0.01μmRa程度の平
滑な表面である。これは、シリカ粉を回転する型内に供
給しシリカ粉充填層を形成し、それを雰囲気制御したア
ーク加熱で溶融・固溶させルツボ内面を形成するため不
可避的に平滑になるものであり、表面粗さの制御はこの
方法のみではできない。表面に意識的に凹凸をつけた面
を粗面とここでは呼ぶことにする。粗面の算術平均粗さ
は、0.02μmより小さいと核生成促進効果が少な
く、20.0μmより大きいと核生成の均一性が損なわ
れ、いずれも石英ガラス表面に結晶相を不均一に形成し
てしまうため、ルツボの不均一な溶解を引き起こす。
The inner surface of a conventional quartz glass crucible is a smooth surface having an arithmetic average roughness of about 0.002 to 0.01 μmRa. This is to supply silica powder into a rotating mold to form a silica powder filling layer, which is melted and solid-dissolved by arc heating with atmosphere control to form a crucible inner surface, which is inevitably smooth, The surface roughness cannot be controlled by this method alone. Here, a surface having a surface that is intentionally roughened is referred to as a rough surface. If the arithmetic mean roughness of the rough surface is less than 0.02 μm, the effect of promoting nucleation is small, and if it is more than 20.0 μm, the uniformity of nucleation is impaired, and in each case, a crystal phase is formed unevenly on the quartz glass surface. This causes uneven dissolution of the crucible.

【0016】粗面の粗さは、同一ルツボ内で大きく値が
異ならないことが必要である。これは、表面の凹凸によ
って石英ガラスの結晶相の核生成密度が影響を受けるの
で、同一ルツボ内での均一な石英ガラスの結晶相形成の
ために重要である。このため、粗面の粗さの最小値に対
する最大値の比は10以下であることが望ましい。この
比が10をこえると、大きな粗さの部分に形成した結晶
相が離脱しやすくなるため好ましくない。
It is necessary that the roughness of the rough surface does not greatly differ within the same crucible. This is important for forming a uniform quartz glass crystal phase in the same crucible, since the nucleation density of the quartz glass crystal phase is affected by surface irregularities. Therefore, it is desirable that the ratio of the maximum value to the minimum value of the roughness of the rough surface is 10 or less. If the ratio exceeds 10, the crystal phase formed in the portion having a large roughness tends to be easily separated, which is not preferable.

【0017】また、粗面は、ルツボ内の均一に結晶化さ
せたい部位に限って施してもかまわないが、少なくとも
シリコン融液と接する部位は粗面とする。特に、ルツボ
の底部内側表面は、必ずシリコン融液と接触し、接触時
間も他のルツボ内の内側表面より長くなるので、底部内
側表面は粗面とすることが必要である。石英ルツボの開
口部に近い部分で、シリコン融液とも接触しない場所
は、表面に凹凸を施す必要もなく、余分に加工費や手間
がかかるのであれば粗面としなくても良い。
The rough surface may be applied only to a portion of the crucible that is desired to be crystallized uniformly, but at least a portion in contact with the silicon melt is rough. In particular, since the bottom inner surface of the crucible always comes into contact with the silicon melt and the contact time is longer than that of the inner surface in another crucible, the bottom inner surface needs to be roughened. In a portion close to the opening of the quartz crucible and not in contact with the silicon melt, it is not necessary to make the surface uneven, and the surface may not be roughened if extra processing cost and labor are required.

【0018】このようなシリコン単結晶引き上げ用石英
ルツボは、石英ルツボ内側表面を、石英ガラスより表面
硬度の高い粒子または材料を該石英ルツボ内側表面に一
定の応力で接触させ、表面に凹凸をつけることで製造で
きる。この際、粒径が0.01μm〜40μmの硬質粒
子を使うことで、石英ルツボのRaが0.02μm〜2
0.0μmの粗面が得られる。あるいは、算術平均粗さ
が0.01μm〜40μmの硬質材料を使用しても良
い。粗面の形成は、単一ルツボ内での算術平均粗さのば
らつきがRmax/Rmin≦10となるように、一定
の応力で行うことが必要であり、このためには、例え
ば、紙やすりを使って手で表面を粗くする方法より、電
動モーターを使ったベルトサンダーや研削砥石が好まし
い。粗面の形成は、乾燥雰囲気中でおこなっても良い
し、溶液中でおこなってもかまわない。また、石英ガラ
スと化学反応する溶液中で、上記硬質粒子や硬質材料と
接触させ、化学機械研磨作用を利用して表面に凹凸をつ
けてもよい。
In such a quartz crucible for pulling a silicon single crystal, particles or materials having a surface hardness higher than that of quartz glass are brought into contact with the quartz crucible inner surface with a constant stress to make the quartz crucible inner surface uneven. Can be manufactured. At this time, by using hard particles having a particle size of 0.01 μm to 40 μm, Ra of the quartz crucible is set to 0.02 μm to 2 μm.
A 0.0 μm rough surface is obtained. Alternatively, a hard material having an arithmetic average roughness of 0.01 μm to 40 μm may be used. The formation of the rough surface needs to be performed with a constant stress so that the variation of the arithmetic average roughness within a single crucible satisfies Rmax / Rmin ≦ 10. For this purpose, for example, sandpaper is used. A belt sander or a grinding wheel using an electric motor is preferable to a method of roughening the surface by hand using the method. The formation of the rough surface may be performed in a dry atmosphere or in a solution. Further, in a solution which chemically reacts with quartz glass, the hard particles and the hard material may be brought into contact with each other to make the surface uneven by utilizing a chemical mechanical polishing action.

【0019】石英ガラスより表面硬度の高い材料として
は、珪素やチタンの炭化物、窒化物、炭窒化物や、アル
ミナ、ダイヤモンド、窒化ボロン、高純度石英等が工業
的には使用できる。これらは、単体でも、粒子状でも、
被覆された状態であってもよい。また、機械的に凹凸を
付ける方法は、例えば、研削機を石英ルツボ内に設置
し、石英ルツボを回転させ、上記石英ガラスより表面硬
度の高い材料よりなる研削工具を使用して製造できる。
あるいは、上記硬質粒子を石英ガラスルツボ内面に高圧
のガスとともに吹き付け、表面に凹凸を付ける方法も可
能である。また、溶液中に上記硬質粒子を分散させ、超
音波洗浄機を使って、粒子を石英ガラスルツボ内面に衝
突させ凹凸をつけることも可能である。
As a material having a higher surface hardness than quartz glass, carbides, nitrides, carbonitrides of silicon and titanium, alumina, diamond, boron nitride, high-purity quartz, and the like can be used industrially. These can be simple or particulate
It may be in a coated state. In addition, as a method of mechanically forming irregularities, for example, a grinding machine can be installed in a quartz crucible, the quartz crucible can be rotated, and a grinding tool made of a material having a higher surface hardness than the quartz glass can be used.
Alternatively, a method is also possible in which the hard particles are sprayed together with a high-pressure gas onto the inner surface of the quartz glass crucible to make the surface uneven. It is also possible to disperse the hard particles in a solution and use an ultrasonic cleaner to cause the particles to collide with the inner surface of the quartz glass crucible to form irregularities.

【0020】これらの、ルツボ内面の表面を粗くする方
法で、上記硬質材料またはその一部が石英ルツボ内面に
付着した場合、付着物がシリコン単結晶引き上げに悪影
響を与えないように配慮する必要がある。たとえば、炭
化珪素が付着していて、引き上げ中にシリコン融液中に
溶解し、シリコン単結晶中の炭素濃度を上げ、品質を劣
化させるような場合には、付着量を少なくする、洗浄を
する、あるいは他の硬質材料を使用する等のプロセスお
よび使用材料の工夫が必要である。逆に、シリコン単結
晶の品質への影響はなく、付着物によって、クリストバ
ライトの核生成や成長が促進されるような場合には、積
極的に付着物を利用しても良い。化学的な作用を利用し
て表面に凹凸を付ける場合には、石英ガラスと化学反応
し、溶解または浸食する溶液を利用すると効果的であ
る。このような溶液として、フッ酸を含んだ溶液が適当
である。フッ酸の濃度や温度は、表面粗さや処理時間に
応じて決める。この溶液中に、前記硬質物質を含ませ、
化学的および機械的作用を併用して、表面の凹凸をつけ
ても良い。
In the method of roughening the inner surface of the crucible, when the hard material or a part thereof adheres to the inner surface of the quartz crucible, it is necessary to take care that the adhered material does not adversely affect the pulling of the silicon single crystal. is there. For example, if silicon carbide adheres and dissolves in the silicon melt during the pulling, raises the carbon concentration in the silicon single crystal and degrades the quality, reduce the amount of adhesion and perform cleaning. In addition, it is necessary to devise processes and materials to be used, such as using other hard materials. Conversely, there is no effect on the quality of the silicon single crystal, and when the nucleation or growth of cristobalite is promoted by the deposit, the deposit may be actively used. In the case where the surface is made uneven by using a chemical action, it is effective to use a solution that chemically reacts with quartz glass and dissolves or erodes. As such a solution, a solution containing hydrofluoric acid is suitable. The concentration and temperature of hydrofluoric acid are determined according to the surface roughness and the processing time. In this solution, the hard substance is included,
The surface may be made uneven by using both chemical and mechanical actions.

【0021】[0021]

【実施例】以下に、本発明の実施例及び比較例を示す。
使用した石英ガラスルツボは、高純度合成石英粉から製
造した口径558.8mmのルツボであり、ルツボ内側
表面の石英ガラスの組成は、表面から200μmの厚み
の範囲において、Al、Ca、Cu、Fe、Na、K、
Li、Mg、Mn、Tiの各元素の含有率が何れも0.
01wt%以下で、OH濃度が50ppmであった。ル
ツボ内側表面の表面粗さは、0.003〜0.007μ
mRaの範囲であった。表1の比較例で、粗面加工して
いないルツボの使用前の表面粗さをカッコ内に示した。
EXAMPLES Examples of the present invention and comparative examples are shown below.
The quartz glass crucible used was a crucible having a diameter of 558.8 mm manufactured from high-purity synthetic quartz powder, and the composition of the quartz glass on the inner surface of the crucible was Al, Ca, Cu, Fe in a thickness range of 200 μm from the surface. , Na, K,
The content of each element of Li, Mg, Mn, and Ti is 0.1.
At less than 01 wt%, the OH concentration was 50 ppm. Surface roughness of crucible inner surface is 0.003-0.007μ
mRa range. In Comparative Examples in Table 1, the surface roughness before use of a crucible that has not been roughened is shown in parentheses.

【0022】そして、このルツボの内側表面に対して、
表1に示すような各種の粗面加工処理を施した。粗面加
工の範囲は、研削砥石及び超音波処理の場合はシリコン
融液と接触する部分であり、ブラスト処理の場合はルツ
ボ内側表面全面である。処理前後のルツボ内側表面の洗
浄方法として、5%フッ酸溶液および純水による洗浄を
適宜組み合わせて行った。研削砥石での処理は、ルツボ
を回転させ、ルツボ内に砥石を入れ、#1000の砥石
で研削し粗面を形成した。超音波処理は、1%HF溶液
1リットルに対し、φ1μm〜30μmのダイヤモンド
粒子を100g含有させ超音波をかけた。ブラスト処理
は、炭化珪素の粉を使用してノズルからアルゴンガスと
ともに高圧で吹き付ける方法である。
Then, with respect to the inner surface of the crucible,
Various rough surface treatments as shown in Table 1 were performed. The range of the rough surface processing is a portion in contact with the silicon melt in the case of the grinding wheel and the ultrasonic treatment, and is the entire inner surface of the crucible in the case of the blast treatment. As a method of cleaning the inner surface of the crucible before and after the treatment, cleaning with a 5% hydrofluoric acid solution and pure water was appropriately combined. In the treatment with the grinding wheel, the crucible was rotated, the grinding wheel was put in the crucible, and ground with a # 1000 grinding wheel to form a rough surface. In the ultrasonic treatment, 1 g of a 1% HF solution contained 100 g of diamond particles having a diameter of 1 μm to 30 μm and was subjected to ultrasonic waves. Blasting is a method in which silicon carbide powder is sprayed at high pressure from a nozzle together with argon gas.

【0023】これらのルツボに粒状多結晶シリコンを充
填し、加熱溶解させた時の石英ガラスルツボの内側表面
に形成される石英ガラスの結晶相(斑点状クリストバラ
イト)の経時変化を調べた。クリストバライトは、融液
との接触時間に比例してその径が大きくなっていた。
These crucibles were filled with granular polycrystalline silicon and heated and melted, and the temporal change of the crystal phase (spotted cristobalite) of the quartz glass formed on the inner surface of the quartz glass crucible was examined. Cristobalite had a larger diameter in proportion to the contact time with the melt.

【0024】表1は、シリコン融液がルツボ内側表面に
接触してから4時間後および10時間後のクリストバラ
イトの形成状態を解析した結果である。生成した結晶の
核の数は、結晶化が進むと斑点状のクリストバライトが
交差し、必ずしも正確な測定ができなくなるので、ここ
では面積占有率を比較した。核の生成量が増えると面積
占有率も増加する。ここで、面積占有率とは、1cm
の石英ガラス表面に占める結晶(クリストバライト)の
割合であり、光学顕微鏡で観察し、解析することで比較
できる。結晶化した部分は、茶色〜白色を呈し、光学顕
微鏡下では光の反射がみられるので容易に区別できる。
使用後ルツボの内側表面Raと面積占有率の評価は、シ
リコン融液と接触し、一定時間後、シリコン単結晶引き
上げを行って、シリコン融液と接触しなくなった部分を
冷却後解析したものである。
Table 1 shows the results of analysis of the cristobalite formation state 4 hours and 10 hours after the silicon melt came into contact with the crucible inner surface. As the number of nuclei of the generated crystals, cristobalite spots intersect as crystallization progresses, and accurate measurement is not always possible. Therefore, the area occupancy was compared here. As the amount of generated nuclei increases, the area occupancy also increases. Here, the area occupancy is 1 cm 2
Is the ratio of crystals (cristobalite) occupying the surface of quartz glass, and can be compared by observing and analyzing with an optical microscope. The crystallized portion has a brown to white color, and can be easily distinguished by light reflection under an optical microscope.
The evaluation of the inner surface Ra and the area occupancy of the crucible after use is based on the analysis of a portion that has come into contact with the silicon melt, pulled out of the silicon single crystal after a certain period of time, and no longer contacts the silicon melt, and cooled. is there.

【0025】表1に示したように、本発明の実施例であ
る算術平均粗さ0.02〜20.0μmRaの表面粗さ
を有するルツボでは、形成されたクリストバライトの4
時間後の面積占有率は何れも90%以上となり、比較例
に比べて核生成が著しく促進されていることが判る。こ
のため、早期にクリストバライトで内側表面が覆い尽く
されたルツボでは、10時間後の表面粗さRa値の変化
が少なく、長時間シリコン融液と接触しても不均一な溶
損が起こっていないことを示している。シリコン融液と
接触している石英ルツボ内側表面の表面粗さは、現状で
は使用中に直接測定することがむずかしいが、シリコン
単結晶を引き上げ、シリコン融液が少なくなって接触し
なくなった部分を、冷却後観測比較することで、本発明
の効果が上記のように確認できる。
As shown in Table 1, in the crucible having an arithmetic average roughness of 0.02 to 20.0 μm Ra, which is an embodiment of the present invention, the formed cristobalite has
The area occupancy after time was 90% or more in each case, and it can be seen that nucleation was significantly promoted as compared with the comparative example. For this reason, in the crucible whose inner surface has been covered with cristobalite at an early stage, the change in the surface roughness Ra value after 10 hours is small, and uneven melting does not occur even when the crucible is in contact with the silicon melt for a long time. It is shown that. The surface roughness of the inner surface of the quartz crucible that is in contact with the silicon melt is currently difficult to measure directly during use, but the silicon single crystal is pulled up and the part that no longer contacts the silicon melt is reduced. By observing and comparing after cooling, the effect of the present invention can be confirmed as described above.

【0026】また、石英ガラスの原料として全て同一の
合成石英粉を用いているため、クリストバライトの径
は、実施例、比較例共差が無く、クリストバライトの結
晶成長速度は150〜200μm/hrと見積もられ
た。本発明のルツボでは核生成が促進されているため、
形成されたクリストバライトの総量(生成した結晶の面
積占有率)としては、比較例の従来のルツボに比べ、短
時間で2〜3倍程度に増加し、このため表面粗さの変化
が極端に少なくなった。
Further, since the same synthetic quartz powder is used as a raw material for the quartz glass, the diameter of cristobalite does not differ between the examples and the comparative examples, and the crystal growth rate of cristobalite is estimated to be 150 to 200 μm / hr. I got it. Since nucleation is promoted in the crucible of the present invention,
The total amount of formed cristobalite (the area occupation ratio of the generated crystal) increases to about 2 to 3 times in a short time as compared with the conventional crucible of the comparative example, so that the change in surface roughness is extremely small. became.

【0027】また、これらのルツボを用いて、実際に8
インチ径のシリコン単結晶の引上げを行ったところ、実
施例のルツボでは、シリコン単結晶の引上げ完了までク
リストバライトのルツボからの脱離は観察されず、全て
良好な単結晶インゴットとして引上げられた。しかしな
がら、比較例のルツボでは、引上げ操作中ににクリスト
バライトの部分的な脱離が観察され、この脱離したクリ
ストバライトが融液上を浮遊してシリコン単結晶に付着
して、多結晶化が生じ、良好なシリコン単結晶として引
上げられないものが頻発した。
Further, by using these crucibles, 8
When the silicon single crystal having an inch diameter was pulled, in the crucible of the example, desorption of cristobalite from the crucible was not observed until the pulling of the silicon single crystal was completed, and all were pulled as good single crystal ingots. However, in the crucible of the comparative example, partial detachment of cristobalite was observed during the pulling operation, and the detached cristobalite floated on the melt and adhered to the silicon single crystal, causing polycrystallization. Of these, those which were not pulled up as good silicon single crystals frequently occurred.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【発明の効果】本発明によれば、シリコン融液との接触
による石英ガラスの結晶相の形成を促進し、ルツボ内側
表面の均一な溶解により、従来のルツボよりも長時間の
使用に耐えるシリコン単結晶引上げ用石英ルツボが提供
できる。その結果、引上げに時間のかかる大口径長尺の
シリコン単結晶をも歩留り良く引上げることが可能とな
り、従来に比べ安価な製造コストでシリコン単結晶を製
造できるという工業的に有利な効果を有する。
According to the present invention, the formation of a crystal phase of quartz glass by contact with a silicon melt is promoted, and the uniform melting of the inner surface of the crucible allows the silicon to withstand a longer use than conventional crucibles. A quartz crucible for pulling a single crystal can be provided. As a result, a large-diameter long silicon single crystal that requires a long time to be pulled can be pulled with good yield, and has an industrially advantageous effect that a silicon single crystal can be manufactured at a lower manufacturing cost than before. .

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくともシリコン融液と接する石英ル
ツボ内側表面において、算術平均粗さ(Ra)が以下の
関係を満足する表面粗さを有することを特徴とするシリ
コン単結晶引き上げ用石英ルツボ。 0.02μm≦Ra≦20.0μm
1. A quartz crucible for pulling a silicon single crystal, wherein at least an inner surface of the quartz crucible in contact with the silicon melt has a surface roughness whose arithmetic average roughness (Ra) satisfies the following relationship. 0.02 μm ≦ Ra ≦ 20.0 μm
【請求項2】 少なくともシリコン融液と接する石英ル
ツボ内側表面において、最大粗さ(Rmax)、最小粗
さ(Rmin)が以下の関係を満足する表面粗さを有す
ることを特徴とする請求項1記載のシリコン単結晶引き
上げ用石英ルツボ。 Rmax/Rmin≦10
2. The method according to claim 1, wherein at least the inner surface of the quartz crucible in contact with the silicon melt has a surface roughness whose maximum roughness (Rmax) and minimum roughness (Rmin) satisfy the following relationship. The described quartz crucible for pulling a silicon single crystal. Rmax / Rmin ≦ 10
JP10307998A 1998-04-14 1998-04-14 Quartz crucible for pulling up silicon single crystal Pending JPH11292694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10307998A JPH11292694A (en) 1998-04-14 1998-04-14 Quartz crucible for pulling up silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10307998A JPH11292694A (en) 1998-04-14 1998-04-14 Quartz crucible for pulling up silicon single crystal

Publications (1)

Publication Number Publication Date
JPH11292694A true JPH11292694A (en) 1999-10-26

Family

ID=14344644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10307998A Pending JPH11292694A (en) 1998-04-14 1998-04-14 Quartz crucible for pulling up silicon single crystal

Country Status (1)

Country Link
JP (1) JPH11292694A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000327478A (en) * 1999-04-16 2000-11-28 Shinetsu Quartz Prod Co Ltd Quartz glass crucible and production of the crucible
JP2009221062A (en) * 2008-03-18 2009-10-01 Sumco Corp Method for producing carbon-doped single crystal
EP2251460A1 (en) * 2008-02-29 2010-11-17 Japan Super Quartz Corporation Quartz crucible for pulling silicon single crystal and method for manufacturing the quartz crucible
JP2011037708A (en) * 2010-10-08 2011-02-24 Shinetsu Quartz Prod Co Ltd Method for producing large diameter quartz glass crucible for pulling silicon single crystal
WO2011158712A1 (en) * 2010-06-16 2011-12-22 信越石英株式会社 Quartz glass crucible for pulling silicon single crystals, and manufacturing method thereof
US8128055B2 (en) * 2008-10-31 2012-03-06 Japan Super Quartz Corporation Mold for producing a silica crucible
WO2013094318A1 (en) 2011-12-22 2013-06-27 ジャパンスーパークォーツ株式会社 Method for evaluating silica glass crucible, method for producing silicon single crystals
JP2015163588A (en) * 2015-05-13 2015-09-10 株式会社Sumco Determination method of three-dimensional distribution of surface roughness of silica glass crucible, manufacturing method of silicon single crystal
JP2016179940A (en) * 2016-05-31 2016-10-13 株式会社Sumco Evaluation method of silica glass crucible and manufacturing method of silicon single crystal
JP2017186213A (en) * 2016-04-08 2017-10-12 クアーズテック株式会社 Quartz glass crucible and method for manufacturing the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000327478A (en) * 1999-04-16 2000-11-28 Shinetsu Quartz Prod Co Ltd Quartz glass crucible and production of the crucible
EP2251460A4 (en) * 2008-02-29 2015-04-01 Japan Super Quartz Corp Quartz crucible for pulling silicon single crystal and method for manufacturing the quartz crucible
EP2251460A1 (en) * 2008-02-29 2010-11-17 Japan Super Quartz Corporation Quartz crucible for pulling silicon single crystal and method for manufacturing the quartz crucible
JP2009221062A (en) * 2008-03-18 2009-10-01 Sumco Corp Method for producing carbon-doped single crystal
US8128055B2 (en) * 2008-10-31 2012-03-06 Japan Super Quartz Corporation Mold for producing a silica crucible
WO2011158712A1 (en) * 2010-06-16 2011-12-22 信越石英株式会社 Quartz glass crucible for pulling silicon single crystals, and manufacturing method thereof
JP5901072B2 (en) * 2010-06-16 2016-04-06 信越石英株式会社 Method for producing quartz glass crucible for pulling silicon single crystal
JPWO2011158712A1 (en) * 2010-06-16 2013-08-19 信越石英株式会社 Silica glass crucible for pulling silicon single crystal and method for producing the same
JP2011037708A (en) * 2010-10-08 2011-02-24 Shinetsu Quartz Prod Co Ltd Method for producing large diameter quartz glass crucible for pulling silicon single crystal
KR20140104500A (en) 2011-12-22 2014-08-28 가부시키가이샤 섬코 Method for evaluating silica glass crucible, method for producing silicon single crystals
WO2013094318A1 (en) 2011-12-22 2013-06-27 ジャパンスーパークォーツ株式会社 Method for evaluating silica glass crucible, method for producing silicon single crystals
US9809902B2 (en) 2011-12-22 2017-11-07 Sumco Corporation Method for evaluating silica glass crucible, method for producing silicon single crystals
JP2015163588A (en) * 2015-05-13 2015-09-10 株式会社Sumco Determination method of three-dimensional distribution of surface roughness of silica glass crucible, manufacturing method of silicon single crystal
JP2017186213A (en) * 2016-04-08 2017-10-12 クアーズテック株式会社 Quartz glass crucible and method for manufacturing the same
JP2016179940A (en) * 2016-05-31 2016-10-13 株式会社Sumco Evaluation method of silica glass crucible and manufacturing method of silicon single crystal

Similar Documents

Publication Publication Date Title
US6641663B2 (en) Silica crucible with inner layer crystallizer and method
JP4948504B2 (en) Silicon single crystal pulling method
JP3621282B2 (en) Quartz glass crucible and method for producing the same
EP1985593B1 (en) Reinforced silica glass crucible
EP2251460B1 (en) Silica crucible for pulling silicon single crystal
EP1375702B1 (en) Doped silica glass crucible for making a silicon ingot
JPH01148718A (en) Quartz crucible and its formation
JPH0729871B2 (en) Quartz crucible for pulling single crystals
JPH11292694A (en) Quartz crucible for pulling up silicon single crystal
JP4230035B2 (en) Silicon carbide single crystal and method for producing the same
JP4975012B2 (en) Silica glass crucible for pulling silicon single crystal and manufacturing method thereof
US4515755A (en) Apparatus for producing a silicon single crystal from a silicon melt
WO2000006811A1 (en) Quartz glass crucible for pulling up silicon single crystal and process for producing the same
JP2001114590A (en) Quartz glass crucible for pulling silicon single crystal
JP2005231986A (en) Quartz glass crucible for pulling up silicon single crystal and method for manufacturing the same
JP2009038220A (en) Dummy wafer
KR100500657B1 (en) Seed crystal for production of silicon single crystal and method for production of silicon single crystal
JPH02188489A (en) Method for regenerating quartz crucible for pulling up silicon single crystal
JPH0585879A (en) Pull system for single crystal
JP2002029890A (en) Quartz glass crucible for pulling up silicon single crystal
JPH0742193B2 (en) Quartz crucible for pulling single crystals
CN111320393B (en) Quartz glass crucible and method for producing same
JP2014189425A (en) Crucible for raising sapphire single crystal
JPH01148783A (en) Quartz crucible for pulling up single crystal
JP4138959B2 (en) Large diameter quartz glass crucible for pulling silicon single crystal and method for producing the same