JPH01148783A - Quartz crucible for pulling up single crystal - Google Patents

Quartz crucible for pulling up single crystal

Info

Publication number
JPH01148783A
JPH01148783A JP30462687A JP30462687A JPH01148783A JP H01148783 A JPH01148783 A JP H01148783A JP 30462687 A JP30462687 A JP 30462687A JP 30462687 A JP30462687 A JP 30462687A JP H01148783 A JPH01148783 A JP H01148783A
Authority
JP
Japan
Prior art keywords
crucible
quartz
glass layer
quartz glass
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30462687A
Other languages
Japanese (ja)
Inventor
Nobuyoshi Ogino
荻野 信義
Toshito Fukuoka
福岡 敏人
Mitsuo Matsumura
光男 松村
Hiroshi Matsui
宏 松井
Yasuhiko Sato
恭彦 佐藤
Masaaki Aoyama
青山 雅明
Hidekazu Shinomiya
篠宮 英一
Akira Fujinoki
朗 藤ノ木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd, Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP30462687A priority Critical patent/JPH01148783A/en
Priority to US07/278,591 priority patent/US4935046A/en
Priority to EP19880120166 priority patent/EP0319031B1/en
Priority to DE3888797T priority patent/DE3888797T2/en
Publication of JPH01148783A publication Critical patent/JPH01148783A/en
Priority to US07/376,136 priority patent/US4956208A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glass Melting And Manufacturing (AREA)
  • Surface Treatment Of Glass (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To provide the title quartz crucible for pulling up a single crystal having excellent heat resistance and capable of stably maintaining a high degree of crystallization by providing a transparent quartz glass layer having a smooth surface and free of bubbles on the inner surface of a translucent quartz glass layer contg. many bubbles and contg. a crystalline quartz component. CONSTITUTION:The quartz crucible 1 having a translucent quartz glass layer 2 contg. many bubbles 4 and a crystalline quartz component is prepared. The transparent glass layer 3 having a smooth surface and free of bubbles is formed on the whole inner surface of the crucible 1 and fused to the inner surface. As a result, since the crystalline quartz component is contained in the translucent quartz glass layer 2, the heat resistance of the crucible 1 can be increased, and the local deformation of the crucible 1 generated when a single crystal is pulled up is reduced. In addition, the generation of ruggednesses on the inner surface of the crucible 1 due to the local erosion is reduced, and a stable and high degree of crystallization can be maintained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、シリコン単結晶等の単結晶引き上げ用石英ル
ツボに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a quartz crucible for pulling single crystals such as silicon single crystals.

〔従来の技術〕[Conventional technology]

従来、シリコン半導体単結晶の製造は、容器中で多結晶
シリコンを溶融し、高純度の単結晶シリコン(種結晶)
先端を浸して、回転させながら引き上げ、種結晶と同じ
方位を持つ単結晶を成長させる、いわゆるチョクラルス
キー法が広く行われている。
Conventionally, silicon semiconductor single crystals are manufactured by melting polycrystalline silicon in a container and producing high-purity single crystal silicon (seed crystal).
The so-called Czochralski method, in which the tip is immersed and pulled up while rotating to grow a single crystal with the same orientation as the seed crystal, is widely used.

この単結晶引き上げに使用される容器としては、通常、
石英ルツボが使用されているが、これについては製法上
の理由による外観上の違いから、透明石英ルツボと、生
地内に微小な気泡を多量に含有している為不透明もしく
は半透明な外観を有する石英ルツボがある(以下、半透
明石英ルツボと呼ぶ)。
The containers used for this single crystal pulling are usually
A quartz crucible is used, but because of the difference in appearance due to the manufacturing method, it is different from a transparent quartz crucible, which has an opaque or translucent appearance due to the large amount of microscopic air bubbles contained within the fabric. There is a quartz crucible (hereinafter referred to as a translucent quartz crucible).

半透明石英ルツボは、粉体を原料として使用する事によ
り透明石英ルツボよりも高強度な物が容易に製造でき、
また大口径の物が比歓的低コストで製造できること、更
に含有する微小気泡により透明石英ルツボよりも均一な
熱分布が得られる事から、工業的に広く利用されている
Translucent quartz crucibles can be manufactured with higher strength than transparent quartz crucibles by using powder as raw material.
In addition, large-diameter crucibles can be manufactured at relatively low cost, and the microbubbles contained in crucibles provide a more uniform heat distribution than transparent quartz crucibles, so they are widely used industrially.

しかし、従来の半透明石英ルツボには単結晶の製造時に
、(1)シばしば単結晶化が不安定になって欠陥が生じ
て、単結晶の収率を低下させる。
However, in the conventional translucent quartz crucible, during the production of single crystals, (1) single crystallization often becomes unstable and defects occur, reducing the yield of single crystals;

(2)引き上げ時の高温に対する形状の安定性が不十分
で、例えばこの石英ルツボを支えているカーボンサセグ
ターの形状に沿って変形を起こす等の問題が有る。
(2) The stability of the shape against high temperatures during pulling is insufficient, leading to problems such as deformation along the shape of the carbon sussegrator supporting the quartz crucible.

引き上げ時の単結晶化が不安定になる原因としては、引
き上げ設備・条件の他にも種々の要因が考えられている
0本発明者の検討によれば、以下の3点が石英ルツボに
起因している主な事項であると言える。
Various factors are thought to be responsible for the instability of single crystallization during pulling, in addition to the pulling equipment and conditions. According to the inventor's study, the following three points are caused by the quartz crucible. This is the main thing that we are doing.

第一は、石英ルツボが引き上げ時の高温に長時間さらさ
れることにより、部分的な変形を起こしたりした場合に
、シリコン融液の対流が乱れて単結晶化が阻害されるこ
と。
First, if the quartz crucible becomes partially deformed due to prolonged exposure to high temperatures during pulling, the convection of the silicon melt will be disrupted and single crystallization will be inhibited.

第二には、高温時に於けるシリコン融液と石英ガラスの
反応により、内表面が侵食されて表面が荒れたり、更に
侵食が進んで内部の微小気泡が露出した場合等にも単結
晶化が不安定になること。
Second, the reaction between silicon melt and quartz glass at high temperatures can cause the inner surface to erode and become rough, or even if the erosion progresses further and exposes internal microbubbles, single crystal formation may occur. To become unstable.

即ち、シリコン融液の液面に当たる部分のルツボの表面
が荒れている事によって、原料の減少による液面の降下
がスムースに行われず、液面が振動することにより結晶
成長を阻害すること。
That is, because the surface of the crucible in the part that comes into contact with the silicon melt surface is rough, the liquid level does not fall smoothly due to the reduction of raw materials, and the liquid level vibrates, inhibiting crystal growth.

第三は、従来の半透明石英ルツボは、その含有する気泡
の大きさや存在密度が必ずしも均一でなく、特に円筒部
に於いてバラツキが見られ、この気泡の存在密度のバラ
ツキが外部ヒーターからの熱の伝達をかえって不均一に
して、シリコン融液の対流を乱し、単結晶化を阻害して
いること。更に、石英ガラスの表面の微細な突起、傷等
が高温の加熱により結晶化反応の核となってクリストバ
ライトの斑点を生じ、この結晶がシリコン融液中に落下
する現象が起こり結晶成長を阻害することがあるが、侵
食により内表面が荒れた場合には、この結晶化反応の核
となる点が数多く発生することも問題である。
Thirdly, in conventional translucent quartz crucibles, the size and density of the bubbles they contain are not necessarily uniform, and there are variations, especially in the cylindrical part. This actually makes heat transfer uneven, disrupts the convection of the silicon melt, and impedes single crystallization. Furthermore, minute protrusions, scratches, etc. on the surface of the quartz glass become nuclei for crystallization reactions due to high-temperature heating, producing spots of cristobalite, which cause the crystals to fall into the silicon melt, inhibiting crystal growth. However, when the inner surface becomes rough due to erosion, it is also a problem that many points that become nuclei for this crystallization reaction are generated.

発明者の検討によれば、上記の様な侵食は石英ガラスの
組織的な不均一性により助長されることが推定された。
According to the inventor's study, it was estimated that the above-mentioned erosion is promoted by the structural non-uniformity of the quartz glass.

石英ルツボについては従来幾つかの発明が為されている
0例えば、特開昭59−213697号にはルツボを内
面から長時間加熱、若しくは透明石英管を溶融して円筒
部の一部を透明管と為し、少なくとも原料融液と接する
部分を1市以上の厚さの透明石英ガラス層とすることが
記載されている。また、米国特許4,528,163号
には、天然石英粒子で外側を形成し、内側を合成石英粒
子でライニングし、このライニング層の表面に平滑な薄
い非晶IJf層を形成した石英ルツボが記載されている
Several inventions have been made regarding quartz crucibles. For example, in Japanese Patent Application Laid-open No. 59-213697, a crucible is heated from the inside for a long time, or a transparent quartz tube is melted to form a part of the cylindrical part into a transparent tube. Accordingly, it is described that at least the portion in contact with the raw material melt is made of a transparent quartz glass layer with a thickness of one layer or more. Furthermore, US Pat. No. 4,528,163 discloses a quartz crucible in which the outside is formed of natural quartz particles, the inside is lined with synthetic quartz particles, and a smooth thin amorphous IJf layer is formed on the surface of this lining layer. Are listed.

更に、米国特許4,416,680号および4.632
,686号には石英ルツボ中の気泡を減少させる方法と
して、外側を減圧にして溶融する製造方法が記載されて
いる。
Additionally, U.S. Pat. Nos. 4,416,680 and 4.632
, No. 686 describes a method for reducing air bubbles in a quartz crucible, in which the outside pressure is reduced and melting is performed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、これら先行文献には、単結晶引き上げ時の高
温に対してルツボの変形を防ぐこと、およびルツボ内面
の表面状態に要求される特性等の多数あ技術的課題を同
時に解決する具体策に関し、何ら開示がなされていない
However, these prior documents contain specific measures to simultaneously solve a number of technical problems, such as preventing crucible deformation due to high temperatures during single crystal pulling, and characteristics required for the surface condition of the inner surface of the crucible. No disclosure has been made.

すなわち、特開昭59−213697号には、ルツボ内
面の表面状態に要求される特性のうち、原料融液と接す
る部分の侵食防止について半透明石英ガラス層の内面を
更に加熱して透明層を得る方法と透明管を溶融して透明
なリング状の部分を挟み込むことが示されている、とこ
ろが、前者の方法は石英ガラス層の内部の未溶融部分を
更に溶融し、場合によってはルツボ内表面近傍に限定し
て気泡を加熱膨張させて破裂させて、内部の気泡を開放
していく方法であるが、この方法では気泡の除去はほと
んど不可能であり、又、透明石英ガラス層に多量の気泡
の痕跡が残る為、半導体引き上げにおいて特に減圧にさ
らされた場合に多量の気泡が再び膨張を起こす。また、
後者の透明管を溶融する方法は、作業が煩雑でその継目
がルツボ内面を完全な滑らかな面にするのを阻害し、ま
た接合面の溶着を完全に行うことが雛しく、さらに接合
面の両側の熱膨張係数の差により加熱冷却時に破壊が起
こり生産性が低下する。
Specifically, Japanese Patent Application Laid-Open No. 59-213697 discloses that, among the characteristics required for the surface condition of the inner surface of the crucible, the inner surface of the translucent quartz glass layer is further heated to prevent corrosion of the portion in contact with the raw material melt. However, in the former method, the unmelted portion inside the quartz glass layer is further melted, and in some cases, the inner surface of the crucible may be melted. This method heats and expands the bubbles in the vicinity and ruptures them to release the bubbles inside, but with this method, it is almost impossible to remove the bubbles, and a large amount of the bubbles are removed from the transparent quartz glass layer. Since traces of air bubbles remain, a large amount of air bubbles will expand again during semiconductor pulling, especially when exposed to reduced pressure. Also,
The latter method, in which transparent tubes are melted, is complicated and the joints prevent the inner surface of the crucible from becoming a perfectly smooth surface.Also, it is difficult to completely weld the joint surfaces, and the joints are difficult to weld. Due to the difference in thermal expansion coefficients on both sides, destruction occurs during heating and cooling, reducing productivity.

また、米国特許4,528,163号においてら高温引
上げ時の変形防止については何ら記載されておらず、た
たその内外層を同時に溶融することが記載されている。
Further, US Pat. No. 4,528,163 does not mention anything about preventing deformation during high-temperature lifting, but describes simultaneously melting the inner and outer layers of the kata.

この場合、内側部に合成石英を使用したことによるルツ
ボ内面の特性の向上はみられるが、その内側部に多数の
気泡、空隙が残存することが避けられず、単結晶引上げ
時に溶融物が気泡、空隙の孔に捕捉され、引上げ操作が
著しく妨げられる。
In this case, although the characteristics of the crucible inner surface are improved by using synthetic quartz for the inner part, it is inevitable that a large number of bubbles and voids remain in the inner part, and the molten material becomes bubbles when pulling the single crystal. , become trapped in the pores of the air gap and significantly impede the lifting operation.

更に、米国特許4,416,680号および4.632
,686号には石英ルツボ中の気泡を真空引きして減少
させることが記載されているのみでルツボの高温加熱時
における変形については考慮されていない。
Additionally, U.S. Pat. Nos. 4,416,680 and 4.632
, No. 686 only describes that air bubbles in a quartz crucible are reduced by evacuation, but does not consider the deformation of the crucible during high temperature heating.

本発明は、単結晶引き上げ時の高温に対してすぐれた耐
熱性を示し、その内表面が滑らかで凹凸が少なく、気泡
が溶融シリコン中に露出したりしてクリストバライトの
発生原因となることがなく、単結晶引き上げがきわめて
安定して行われるような石英ルツボを提供することを目
的とする。
The present invention exhibits excellent heat resistance against high temperatures during single crystal pulling, and its inner surface is smooth and has few irregularities, so that air bubbles are not exposed in molten silicon and do not cause cristobalite generation. An object of the present invention is to provide a quartz crucible in which single crystal pulling can be performed extremely stably.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明は多数の気泡を含む半透明石英ガラス層
の内表面に実質的に無気泡でかつ表面が平滑な透明石英
ガラス層を一体融合的に形成し、該半透明石英ガラス層
中に結晶質石英成分を混在させる構成としな。
Therefore, the present invention integrally forms a transparent quartz glass layer that is substantially bubble-free and has a smooth surface on the inner surface of a translucent quartz glass layer containing a large number of bubbles. The structure should include a mixture of crystalline quartz components.

〔作用〕[Effect]

多数の気泡を含む半透明石英ガラス層上に、これと一体
融合させた無気泡で表面平滑な透明石英ガラス層を形成
し、この半透明石英ガラス層中に結晶質石英成分を存在
させる。
A transparent quartz glass layer with no bubbles and a smooth surface is formed on a translucent quartz glass layer containing a large number of bubbles, and a crystalline quartz component is present in this translucent quartz glass layer.

前記結晶質石英成分はルツボの耐熱強度を苦しく増大さ
せ、単結晶引き上げ時のルツボの変形をきわめて小さな
ものとし、シリコン融液の対流の乱れを生じさせず、し
かも前記透明石英ガラス層はクリストバライトを生じさ
せないばかりでなく、シリコン融液表面の振動を生じさ
せない。
The crystalline quartz component significantly increases the heat resistance strength of the crucible, minimizes the deformation of the crucible during single crystal pulling, and prevents disturbance of convection of the silicon melt. Not only does it not cause vibrations, but it also does not cause vibrations on the surface of the silicon melt.

〔実施例〕〔Example〕

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

第1図において、本発明の石英ルツボ1は、外側の半透
明石英ガラス層2と、この層の内表面に完全溶融層を連
続的に成長せしめ一体融合的に形成された薄い実質的に
無気泡の透明石英ガラス層3とからなり、前記不透明石
英ガラス層2中には結晶質石英成分(図示せず)が混在
し、好ましくは、この結晶質石英成分が半透明石英ガラ
ス層2中の外表面近傍に同夜する。
In FIG. 1, the quartz crucible 1 of the present invention comprises an outer semi-transparent quartz glass layer 2 and a thin, substantially free layer formed integrally by continuously growing a completely molten layer on the inner surface of this layer. A crystalline quartz component (not shown) is mixed in the opaque quartz glass layer 2, and preferably, this crystalline quartz component is included in the translucent quartz glass layer 2. The same night near the outer surface.

上記の結晶質石英成分は、半透明石英ガラス層2中に粒
子状に分散して存在し、これによってルツボの使用時、
例えばシリコンの融点である1450’C近辺での耐変
形性が大幅に向上する。
The above-mentioned crystalline quartz component is dispersed in the semi-transparent quartz glass layer 2 in the form of particles, so that when the crucible is used,
For example, the deformation resistance near 1450'C, which is the melting point of silicon, is greatly improved.

もし、ルツボとこれを支えるカーボンサセプターとの間
に隙間が有った場合でも、ルツボ内に装入された原料シ
リコンの荷重によってルツボが変形するということがな
くなる。
Even if there is a gap between the crucible and the carbon susceptor that supports it, the crucible will not be deformed by the load of the raw material silicon charged into the crucible.

すなわち、1450°Cのような高温でルツボを長時間
使用しているとき、ルツボに局部的な変形やゆがみがも
たらされると、その変形部分でルツボ内面への熱エネル
ギーの伝達が、他の部分と異なってくる。そのため、原
料融液はルツボ内面の部分部分で異なった熱履歴を受け
ることとなり、その結果融液の対流に乱れを生じ、単結
晶引き上げが不安定になる。また、ルツボの変形自体単
結晶引き上げにトラブルを与える。
In other words, when a crucible is used for a long time at a high temperature such as 1450°C, if the crucible is locally deformed or distorted, the transfer of thermal energy to the inner surface of the crucible at the deformed part is reduced to other parts. It will be different. Therefore, the raw material melt undergoes different thermal histories in different parts of the inner surface of the crucible, which causes disturbances in the convection of the melt, making single crystal pulling unstable. Further, the deformation of the crucible itself causes trouble in pulling the single crystal.

前記透明石英ガラス層3における実質的に無気泡である
という基準は、通常の半導体用透明石英ガラスに比べて
その含有する気泡が極めて少ないということである。通
常の半導体用石英ガラスは、肉眼で観察しうる程度の大
きさの100μm〜1止程度の気泡、及び光を当てて気
泡による散乱によって観察が可能な程度の微小な気泡を
大量に含んでいる。本発明における無気泡の具体的な例
としては、倍率30倍の麗微鏡の視野的8 n+n+2
の範囲で、6個の未使用の石英ルツボを各ルツボにつき
側壁内表面4ケ所、底部1ケ所の計5ケ所で総計30ケ
所について観察した結果、直径20μm以上の気泡が2
〜3ケ所でわずかに認めらられる程度である。その1例
として、前記30ケ所の測定点で直径20μm以上の気
泡が2個見られたのは1ケ所、1個見られたのは2ケ所
であり、気泡の存在密度は0,13個/811”(1−
に換算すると約1.6個/−)であり、極めて均質性の
高い層となっている。この透明石英ガラス層としては、
上記の通りガラスの組織的にも極めて均質な物が使用さ
れている。この透明石英ガラス層の存在によりシリコン
融液との接触界面において、ルツボ内表面が反応によっ
て侵食された場合にも、透明層自体が活性中心や反応を
促進しうるm造的な要因を持っていない為、均一かつ遅
い反応しか起こらず、クリストバライトが僅かしか生じ
ないで、新たに生成する表面の平滑性を維持しており、
常に安定したシリコン融液とルツボの界面を得ることが
可能である。この為、長時間に亙る引き上げでも安定し
た品質を保証することができる。尚この透明石英ガラス
層はルツボの使用が完全に終了するまで必要であり、こ
のなめには少なくとも0.3關、実際には0.8〜1間
以上であることが望ましい。又、ルツボの各部分におい
てはシリコン融液と接触する時間が異なるので、例えは
、円筒部の上の方は薄く底へ向かって厚さが増す等これ
に合わせた透明石英ガラス層の厚さの分布を設けること
も可能である。
The criteria for the transparent quartz glass layer 3 to be substantially bubble-free is that it contains extremely few bubbles compared to ordinary transparent quartz glass for semiconductors. Ordinary quartz glass for semiconductors contains a large amount of bubbles that are 100 μm to 1 block in size and can be observed with the naked eye, as well as microbubbles that can be observed by light scattering by the bubbles. . A specific example of no bubbles in the present invention is a visual field of 8 n+n+2 of a microscopic microscope with a magnification of 30 times.
As a result of observing 6 unused quartz crucibles at 30 locations in total (4 locations on the inner surface of the side wall and 1 location on the bottom of each crucible), two bubbles with a diameter of 20 μm or more were observed.
It is only slightly observed in ~3 locations. As an example, out of the 30 measurement points mentioned above, two bubbles with a diameter of 20 μm or more were observed at one point, and two bubbles were observed at one point, and the density of bubbles was 0.13 bubbles/bubble. 811” (1-
This is approximately 1.6 pieces/-), making the layer extremely homogeneous. As this transparent quartz glass layer,
As mentioned above, glass that is extremely homogeneous in terms of structure is used. Due to the presence of this transparent quartz glass layer, even if the inner surface of the crucible is eroded by a reaction at the contact interface with the silicon melt, the transparent layer itself has active centers and structural factors that can promote the reaction. Because there is no cristobalite, only a uniform and slow reaction occurs, and only a small amount of cristobalite is produced, maintaining the smoothness of the newly formed surface.
It is possible to always obtain a stable interface between the silicon melt and the crucible. Therefore, stable quality can be guaranteed even during long-term pulling. This transparent quartz glass layer is necessary until the use of the crucible is completely completed, and it is desirable that the thickness be at least 0.3 degrees, in fact, 0.8 to 1 degrees or more. Also, since each part of the crucible has different contact times with the silicon melt, the thickness of the transparent quartz glass layer should be adjusted accordingly, for example, the top of the cylindrical part is thin and the thickness increases towards the bottom. It is also possible to provide a distribution of

前記半透明石英ガラス層2内には、直径10〜250μ
mの多数の気泡4が存在し、好ましくは、ICl3当た
り20,000個以上、より好ましくは、その円筒部の
半透明石英ガラス層2の厚さ方向の60%以上の部分で
ICl3当 た リ40.000〜70,000個の存
在密度で分布している。
The translucent quartz glass layer 2 has a diameter of 10 to 250 μm.
m bubbles 4 exist, preferably 20,000 or more per ICl3, more preferably 60% or more of the translucent quartz glass layer 2 in the cylindrical portion in the thickness direction. It is distributed at an abundance density of 40,000 to 70,000.

このような半透明石英ガラスN2における多数の気泡4
の存在により、外部ヒーターからのルツボ内面への熱エ
ネルギーの伝達が均一となり、熱源のムラ、あるいは、
ルツボの肉厚のバラツキによる温度ムラも低減される。
A large number of bubbles 4 in such a translucent quartz glass N2
Due to the presence of
Temperature unevenness due to variations in the wall thickness of the crucible is also reduced.

この結果、単結晶引き上げ時において、原料多結晶融液
がルツボの内面全域において一定した熱履歴を受け、単
結晶引き上げが極めて安定して行われる。
As a result, during single crystal pulling, the raw polycrystalline melt undergoes a constant thermal history over the entire inner surface of the crucible, and single crystal pulling is performed extremely stably.

次に本発明の石英ルツボを製造する一例を以下に説明す
る。まず、使用する原料粉としては天然水晶等の精製さ
れた粉体が使用される。この粉体を回転しているルツボ
製造用型内に供給し、遠心力によって所定の厚さに層を
形成した後、内側からアーク放電等の手段によって溶融
を開始する。
Next, an example of manufacturing the quartz crucible of the present invention will be described below. First, as the raw material powder used, purified powder such as natural crystal is used. This powder is fed into a rotating crucible manufacturing mold, and after a layer is formed to a predetermined thickness by centrifugal force, melting is started from the inside by means such as arc discharge.

この段階で、半透明石英ガラスN2が形成されるが、こ
の時溶融条件を制御して形成した粉体層全体をガラス化
することなく、ス、必要に応じて型の外部を冷却するこ
とによって余分な熱を奪い、゛前記半透明石英ガラス層
2の外表面近傍に結晶質石英成分を残留させることが可
能である。
At this stage, translucent quartz glass N2 is formed. At this time, the melting conditions are controlled so that the entire formed powder layer is not vitrified. By cooling the outside of the mold as necessary, It is possible to remove excess heat and leave the crystalline quartz component in the vicinity of the outer surface of the translucent quartz glass layer 2.

本発明に於いては、気泡の大きさが前記範囲、即ち直径
10〜250μmであることか好ましく、この気泡の存
在密度は好ましくは20,000個/C113以上、よ
り好ましくは、半透明石英ガラス層の厚さ方向の60%
以上の部分で40,000〜70.000個/CI3で
ある。これは原料粉として結晶水を含まない結晶質石英
の粉体を使用し、その粒度分布を300〜100μmの
範囲に制御して、加熱溶融条件をコントロールすること
によって達成できる。
In the present invention, the size of the bubbles is preferably within the above range, that is, 10 to 250 μm in diameter, and the density of the bubbles is preferably 20,000 bubbles/C113 or more, more preferably translucent quartz glass. 60% of layer thickness
In the above portion, it is 40,000 to 70,000 pieces/CI3. This can be achieved by using crystalline quartz powder containing no crystal water as the raw material powder, controlling its particle size distribution within the range of 300 to 100 μm, and controlling the heating and melting conditions.

本発明における透明石英ガラス層は、成形された粉体層
にUましい高品質な石英ガラス層を内装して溶融し一体
化するか、粉体の追加溶融によって一体融合的に形成す
ることができる。この様にして形成された透明層は、気
泡のg跡も存在しない為減圧下で膨張することも無い、
特に、水晶粉末を回転金型内に供給して遠心力によって
型の壁に外壁石英粉末層の予備成形体を作り、次いで石
英粉末をアーク放電等の高温ガス雰囲気中を通過させて
、半溶融状態の粉末を放電エネルギーによって外壁石英
粉末層の内面に連続的に付着せしめ実質的に無気泡の完
全溶融層を設層すれば、外壁石英粉末層とその内面の透
明石英ガラス層とが同時溶融により付着し合うので、所
望の厚さを有する無気泡の透明石英ガラス層がしっがつ
と半透明石英ガラス層上に形成される。
The transparent quartz glass layer in the present invention can be formed by incorporating a desirable high-quality quartz glass layer into a molded powder layer and melting it into one, or by additionally melting the powder. can. The transparent layer formed in this way does not have any traces of air bubbles, so it does not expand under reduced pressure.
In particular, quartz powder is fed into a rotating mold to create a preform of an outer quartz powder layer on the wall of the mold by centrifugal force, and then the quartz powder is passed through a high-temperature gas atmosphere such as an arc discharge to make it semi-molten. If the powder is continuously adhered to the inner surface of the outer wall quartz powder layer using discharge energy to form a substantially bubble-free completely melted layer, the outer wall quartz powder layer and the transparent quartz glass layer on the inner surface will melt simultaneously. As a result, a bubble-free transparent quartz glass layer having a desired thickness is firmly formed on the translucent quartz glass layer.

(実験例) 次に本発明の実験例について説明する。(Experiment example) Next, an experimental example of the present invention will be explained.

先ず、前述の方法により、原料粉体を調整して、直径1
4インチの本発明の石英ルツボ(本発明試料1.2)を
作製した。
First, by the method described above, the raw material powder is adjusted to have a diameter of 1
A 4-inch quartz crucible of the present invention (sample 1.2 of the present invention) was produced.

また、比較のため直径14インチの石英ルツボ(比救試
f11.2>を作製した。
In addition, for comparison, a quartz crucible with a diameter of 14 inches (F11.2) was prepared.

これらの石英ルツボの半透明石英ガラス層中の結晶質石
英成分の有無、気泡直径および気泡存在密度を表1に示
す。
Table 1 shows the presence or absence of crystalline quartz components in the translucent quartz glass layer of these quartz crucibles, the bubble diameter, and the bubble density.

また、石英ルツボの外表面および厚さ方向に1繭研削し
た箇所のX線回折の結果を第2図に示す。
In addition, FIG. 2 shows the results of X-ray diffraction of the outer surface of the quartz crucible and the portion where one cocoon was ground in the thickness direction.

上記の試料について以下の実験を行なった。The following experiment was conducted on the above sample.

(実験例1) 半透明石英ガラス層中の結晶質石英成分の効果  り。(Experiment example 1) Effect of crystalline quartz components in the translucent quartz glass layer.

を調べるため、本発明試料1.2および比較試料  1
1.2について耐熱性の比較を行った。すなわち、ルツ
ボを円筒部と底部の変曲部分で10關の隙間が空くカー
ボンサセプターに入れ、ルツボ内に  ア10ksrの
多結晶シリコンを入れ1450℃で溶融  1し20時
間保持した。               4その結
果、本発明試料1および2は変形が小さ  」く、前記
隙間は、それぞれ8關および7市になっただけであるが
、比較試料1および2は底部の変  1形が大きく、前
記隙間が2 m+nおよび1關となり、  i大きく変
形した。                 うまな、
本発明試料1,2、比較試料1.2について、ルツボ外
径を150mmとなるように作製し、  ヅこれらを輪
切りにして長さ2anの管状とし、電気炉内に壁面を下
にして立て、1300℃で18時  6間加熱して、管
の直径の変化を調べた結果、比較  を試料1および2
はつぶれて直径が約30fflII+および35關変化
したが、本発明試料1では約7mn、本川明試料2では
約8間だけそれぞれ直径が小さく2つたのみであり、結
晶質石英成分はルツボの強定を著しく増大させることが
判る。
In order to investigate this, inventive sample 1.2 and comparative sample 1 were prepared.
1.2 was compared in terms of heat resistance. That is, the crucible was placed in a carbon susceptor with a gap of 10 degrees between the cylindrical part and the curved part of the bottom, and 10 ksr of polycrystalline silicon was placed in the crucible and melted at 1450° C. and held for 20 hours. 4. As a result, inventive samples 1 and 2 had small deformations, with the gaps being only 8 and 7, respectively, whereas comparative samples 1 and 2 had large deformations at the bottom, and The gap became 2m+n and 1m, resulting in large deformation. Delicious,
Samples 1 and 2 of the present invention and comparative samples 1 and 2 were prepared so that the outer diameter of the crucible was 150 mm, and these were cut into rings with a length of 2 mm, and placed in an electric furnace with the wall facing down. After heating at 1300℃ for 18 hours and 6 hours, we investigated the change in the diameter of the tube.
The diameter changed by about 30fflII+ and 35 degrees due to collapse, but the diameter was smaller by about 7 mm in sample 1 of the present invention and by about 8 mm in Akira Motokawa sample 2, and the crystalline quartz component was due to the strength of the crucible. It can be seen that this significantly increases the

(実験例2) 本発明に係る透明石英ガラス層の効果を調べるセめ、単
結晶引き上げによるルツボ内表面の表面用さめ変化を測
定した。すなわち、本発明試atBよび比較試料1を使
用して50時間の単結晶成隆を行った後のルツボの内表
面の粗さを測定した。
(Experimental Example 2) To investigate the effect of the transparent quartz glass layer according to the present invention, changes in surface roughness of the inner surface of the crucible due to single crystal pulling were measured. That is, the roughness of the inner surface of the crucible was measured after single crystal growth was performed for 50 hours using Sample atB of the present invention and Comparative Sample 1.

測定は触針式表面粗さ計(vIJ小坂小板所製)で1つ
な。第3図には、使用前の本発明試料1の表酊粗さ、第
4図には、単結晶成長を行った後の本川明試料1の表面
粗さ、第5図には、単結晶成長腎性った後の比較試料1
の表面■さの測定結果をトす。
Measurements were made using a stylus type surface roughness meter (manufactured by vIJ Kosaka Koitasho). Figure 3 shows the surface roughness of sample 1 of the present invention before use, Figure 4 shows the surface roughness of Akira Motokawa sample 1 after single crystal growth, and Figure 5 shows the surface roughness of sample 1 of the present invention before use. Comparison sample 1 after crystal growth
Check the surface thickness measurement results.

各図から明らかなように、本発明の石英ルツボ士使用後
においてら最大粗さ29μmとかなり平けな内表面を維
持しているが、従来のルツボではその■さが本発明ルツ
ボの約3倍になり、これによって本発明のルツボにおい
てはシリコンの溶融面の乱れが生じにくくなることが判
る。
As is clear from each figure, after using the quartz crucible of the present invention, it maintains a fairly flat inner surface with a maximum roughness of 29 μm, whereas in the conventional crucible, It can be seen that this makes it difficult for the melting surface of silicon to be disturbed in the crucible of the present invention.

また、結晶成長終了後のルツボ内表面の点失透の状態を
第6A図および第6B図に写真で示す。
Furthermore, the state of point devitrification on the inner surface of the crucible after the completion of crystal growth is shown in photographs in FIGS. 6A and 6B.

第6A図は本発明試料1の内表面、第6B図は比較試料
lの内表面を示すものである。これによれば、本発明の
ルツボの内表面には、クリストバライトの発生が従来の
ものに比較して著しく少なくなることが判る。
FIG. 6A shows the inner surface of inventive sample 1, and FIG. 6B shows the inner surface of comparative sample 1. According to this, it can be seen that the occurrence of cristobalite on the inner surface of the crucible of the present invention is significantly less than that of the conventional crucible.

すなわち、本発明の石英ルツボの内面は極めて均質であ
り、結晶化反応の核となる突起等が少ないため、クリス
トバライトによる点失透の発生が少ない。
That is, the inner surface of the quartz crucible of the present invention is extremely homogeneous and has few protrusions that serve as nuclei for crystallization reactions, so that point devitrification due to cristobalite is less likely to occur.

(実験例3) 気泡の存在の効果を調べるため、通常の単結晶引き上げ
装置に本発明試料1.2および、比較試料1.2の各ル
ツボをセットし、空焼きを行ってルツボ内面の温度のバ
ラツキを調べた。
(Experimental Example 3) In order to investigate the effect of the presence of air bubbles, crucibles of the present invention sample 1.2 and comparative sample 1.2 were set in a normal single crystal pulling apparatus, and the crucibles were baked to determine the temperature of the inner surface of the crucible. We investigated the variation in

その結果、設定温度に対して、本発明試料1では±3℃
、本発明試料2では±5℃の範囲に入つていたのに対し
、比較試料1では±12℃、比較試料2では±13℃と
バラツキが大きい。これにより、本発明のルツボは全体
に均一に加熱され、すなわち均一な熱伝達が行なわれて
いることが判る。
As a result, with respect to the set temperature, sample 1 of the present invention had a temperature of ±3°C.
, was within the range of ±5°C for Inventive Sample 2, whereas there was a large variation of ±12°C for Comparative Sample 1 and ±13°C for Comparative Sample 2. This shows that the crucible of the present invention is heated uniformly throughout, that is, uniform heat transfer is performed.

一方、比較試料1では、気泡直径か逆に小さずぎるため
、熱の均一拡散に寄与しえないため、また、比較試料2
は気泡直径が大きすぎ、高温下での気泡同士の融着によ
る巨大気泡の発生があるため、各々上記のように温度の
バラツキが大となったものである。
On the other hand, in Comparative Sample 1, the bubble diameter is too small and cannot contribute to uniform heat diffusion.
The bubble diameter was too large, and giant bubbles were generated due to the fusion of bubbles at high temperatures, resulting in large temperature variations as described above.

(実験例4) 次に本発明の石英ルツボを使用した場合のシリコン単結
晶製造の成績を示す。
(Experimental Example 4) Next, the results of silicon single crystal production using the quartz crucible of the present invention will be shown.

製造条件は、アルゴン雰囲気下で減圧(10mb)で直
径150馴、長さ70■の単結晶インゴットを各ルツボ
で2本ずつ連続して製造した。
The production conditions were such that two single crystal ingots each having a diameter of 150 mm and a length of 70 cm were continuously produced in each crucible under reduced pressure (10 mb) under an argon atmosphere.

製造した単結晶インゴットについて、その単結晶化率の
平均値を求めた。その結果を表2に示す。
The average value of the single crystallization rate was determined for the manufactured single crystal ingots. The results are shown in Table 2.

表2 単結晶インゴットの単結晶化率 表2に示される結果より、本発明のルツボは常に安定し
た単結晶製造をもたらすことが明らかである。
Table 2 Single crystallization rate of single crystal ingot From the results shown in Table 2, it is clear that the crucible of the present invention always produces stable single crystals.

次に上記のシリコン単結晶の引き上げに用いた、本発明
の石英ルツボおよび従来の石英ルツボの透明石英カラス
層中の直径20μm以上の気泡数を表3に示し、また、
直胴部と底部の縦断面の状態を第7図および第8図に示
す。
Next, Table 3 shows the number of bubbles with a diameter of 20 μm or more in the transparent quartz glass layer of the quartz crucible of the present invention and the conventional quartz crucible used for pulling the silicon single crystal, and
7 and 8 show longitudinal cross-sections of the body and bottom.

表3 単結晶引き上げ後の石英ルツボの物性*上記の気
泡数は6個の石英ルツボを倍率30倍の顕微鏡の視野的
8 In”の範囲で、1個のルツボにつき内壁部4ケ所
、底部1ケ所の計5ケ所で総計30ケ所にて測定した。
Table 3 Physical properties of quartz crucible after single crystal pulling Measurements were taken at a total of 5 locations (30 locations in total).

ここで注意を要するのは、石英ルツボは約1450°C
の高温で長時間、しかも減圧状態で加熱されているため
、たとえその使用前に無気泡とみなされても、この個々
の気泡が石英ガラスの軟化のために膨張し、観察が容易
になることである。
It is important to note that the temperature of the quartz crucible is approximately 1450°C.
Because it is heated at high temperatures for long periods of time and under reduced pressure, even if it is considered bubble-free before its use, these individual bubbles expand due to the softening of the quartz glass, making it easier to observe. It is.

すなわち、石英ルツボ製造時に石英ガラス層に溶封され
ている気泡は、大気圧下の雰囲気ガス(石英ルツボ製造
が空気中で行われる場合には空気)で充填されており、
高温度減圧下では当然ながら膨張する。しかしながら、
表3および第7A図、第7B図に示されるように本発明
による石英ルツボは、使用後においてもその内表面に明
瞭な無気泡の透明石英ガラス層を有している。一方、従
来法による石英ルツボは、シリコン単結晶の引き上げ前
には内表面に、ある程度無気泡の薄い透明石英ガラス層
を有しているがシリコン単結晶の引き上げ時に気泡が膨
張し、これらが相互に融合して粗大化し、このため、シ
リコン単結晶の引き上げ後の石英ルツボ内表面に明瞭な
気泡の密集状態かみられる。(表3および第8A図、第
8B図)。
In other words, the bubbles that are melt-sealed in the quartz glass layer during quartz crucible manufacturing are filled with atmospheric gas under atmospheric pressure (air if quartz crucible manufacturing is performed in air).
Naturally, it expands under high temperature and reduced pressure. however,
As shown in Table 3 and FIGS. 7A and 7B, the quartz crucible according to the present invention has a clearly bubble-free transparent quartz glass layer on its inner surface even after use. On the other hand, a quartz crucible made using the conventional method has a thin transparent quartz glass layer on its inner surface that is bubble-free to some extent before pulling the silicon single crystal, but when the silicon single crystal is pulled, the bubbles expand and these bubbles interact with each other. As a result, a clearly dense state of bubbles can be seen on the inner surface of the quartz crucible after pulling the silicon single crystal. (Table 3 and Figures 8A and 8B).

〔発明の効果〕〔Effect of the invention〕

本発明の石英ルツボによれば、ルツボの耐熱強度が著し
く大きいため、単結晶引き上げ時に生じるルツボの部分
的変形がきわめて小さくなり、また、ルツボ内表面の部
分的な侵食による表面粗さの発生がきわめて小さくなる
According to the quartz crucible of the present invention, the heat resistance strength of the crucible is extremely high, so that the local deformation of the crucible that occurs during single crystal pulling is extremely small, and the occurrence of surface roughness due to partial erosion of the inner surface of the crucible is minimized. becomes extremely small.

このため、複数回の単結晶引き上げを行なっても、従来
のルツボに比べ、高い単結晶率を維持できる。
Therefore, even if the single crystal is pulled multiple times, a higher single crystal ratio can be maintained than in conventional crucibles.

さらに、大気圧下の単結晶引き上げはもちろんのこと、
減圧下での単結晶引き上げでも安定した高い単結晶化率
を維持することができる。
In addition to single crystal pulling under atmospheric pressure,
Even when single crystals are pulled under reduced pressure, a stable and high single crystallization rate can be maintained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の石英ルツボの断面図、第2図は単結晶
成長前の石英ルツボのX線回折の結果を示す図面であり
、第2A図は本発明のルツボの外表面、第2B図は本発
明のルツボの外表をIIW+研削した而、第2C図は従
来のルツボの外表面、第2D図は従来のルツボの外表を
IIW+研削した面のそれぞれのX線回折の結果を示し
、第3図は本発明の石英ルツボ単結晶成長前の内表面に
粗さを示すグラフ、第4図は本発明の石英ルツボの単結
晶成長後の内表面の租さを示すグラフ、第5図は従来の
石英ルツボの単結晶成長後の内表面の粗さを示すグラフ
、第6A図および第6B図は単結晶成長後のルツボ内表
面の点失透の状態を示す図面であり、第6A図は本発明
のルツボの内表面を、第6B図は従来のルツボの内表面
をそれぞれ示し、第7A図および第7B図は本発明のル
ツボの壁の縦断面の状態を示す図面、第8A図および第
8B図は従来のルツボの壁の縦断面の状態を示す図面で
ある。 1・・・石英ルツボ、2・・・半透明石英ガラス層、3
・・・透明石英ガラス層、4・・・気泡。 出願人代理人  石  川  泰  男第1図 2θ〔°〕 第 2A 図 本発明の石英ルツボのX線回折(外表面
)第 2B 図 本発明の石英ルツボのX線回折(外表
面1間研削)2θ〔°〕 第 2C図 従来の石英ルツボのXi回折(外表面)第
 2D 図 従来の石英ルツボのX線回折ひト表面II
II+I+研削)mm I’−”1 本発明の石英ルツボの内表面の粗さ(単結晶成長前)m
m 測定長(rnm 〕 第  4  図 本発明の石英ルツボの内表面の粗さ(単結晶成長後)m
m i 従来の石英ルツボの内表面の徂さ(単結晶成長後)第6
A図 本発明の石英ルツボのi1結晶成長後の内表面第6B図 従来の石英ルノホの単結晶成長後の内表面第7A図 外柔ロリ 第7B図 第8A図 外側 第8B図
FIG. 1 is a cross-sectional view of the quartz crucible of the present invention, FIG. 2 is a drawing showing the results of X-ray diffraction of the quartz crucible before single crystal growth, FIG. 2A is an outer surface of the crucible of the present invention, and FIG. The figure shows the results of X-ray diffraction of the outer surface of the crucible of the present invention after IIW+ grinding, FIG. 2C shows the outer surface of a conventional crucible, and FIG. 2D shows the results of X-ray diffraction of the outer surface of the conventional crucible after IIW+ grinding. FIG. 3 is a graph showing the roughness of the inner surface of the quartz crucible of the present invention before single crystal growth, FIG. 4 is a graph showing the roughness of the inner surface of the quartz crucible of the present invention after single crystal growth, and FIG. 5 6A and 6B are graphs showing the roughness of the inner surface of a conventional quartz crucible after single crystal growth; FIGS. 6A and 6B are drawings showing the state of point devitrification on the inner surface of the crucible after single crystal growth; Figure 6B shows the inner surface of the crucible of the present invention, Figure 6B shows the inner surface of a conventional crucible, Figures 7A and 7B are drawings showing longitudinal sections of the walls of the crucible of the present invention, and Figure 8A shows the inner surface of the crucible of the present invention. Fig. 8B and Fig. 8B are drawings showing a longitudinal section of a wall of a conventional crucible. 1... Quartz crucible, 2... Translucent quartz glass layer, 3
... Transparent quartz glass layer, 4... Air bubbles. Applicant Yasushi Ishikawa Figure 1 2θ [°] Figure 2A Figure 2B X-ray diffraction of the quartz crucible of the present invention (outer surface) Figure 2B 2θ [°] Fig. 2C Xi diffraction (outer surface) of a conventional quartz crucible Fig. 2D X-ray diffraction of a conventional quartz crucible Human surface II
II+I+Grinding) mm I'-"1 Roughness of the inner surface of the quartz crucible of the present invention (before single crystal growth) m
m Measurement length (rnm) Figure 4 Roughness of the inner surface of the quartz crucible of the present invention (after single crystal growth) m
m i Height of the inner surface of a conventional quartz crucible (after single crystal growth) 6th
Figure A Inner surface after i1 crystal growth of the quartz crucible of the present invention Figure 6B Inner surface of conventional quartz crucible after single crystal growth Figure 7A External softness Figure 7B Figure 8A Outside Figure 8B

Claims (1)

【特許請求の範囲】 1、多数の気泡を含む半透明石英ガラス層と、この層の
内表面に一体融合的に形成された実質的に無気泡でかつ
表面が平滑な透明石英ガラス層とからなり、該半透明石
英ガラス層中に結晶質石英成分が存在することを特徴と
する単結晶引き上げ用石英ルツボ。 2、前記透明石英ガラス層は、半透明石英ガラス層の予
備成形体上に石英粉末を高温ガス雰囲気中を通して付着
せしめ、予備成形体と同時溶融により形成されているこ
とを特徴とする特許請求の範囲第1項記載の単結晶引き
上げ用石英ルツボ。 3、前記半透明石英ガラス層中の外表面近傍に結晶質石
英成分が偏在することを特徴とする特許請求の範囲第1
項乃至第2項のいずれかに記載の単結晶引き上げ用石英
ルツボ。 4、前記半透明石英ガラス層中の気泡はその直径が10
〜250μmであることを特徴とする特許請求の範囲第
1項乃至第3項のいずれかに記載の単結晶引き上げ用石
英ルツボ。
[Claims] 1. A translucent quartz glass layer containing a large number of bubbles, and a substantially bubble-free transparent quartz glass layer with a smooth surface integrally formed on the inner surface of this layer. A quartz crucible for pulling a single crystal, characterized in that a crystalline quartz component is present in the translucent quartz glass layer. 2. The transparent quartz glass layer is formed by depositing quartz powder on a preform of the translucent quartz glass layer through a high-temperature gas atmosphere and melting the same with the preform. A quartz crucible for pulling single crystals as described in scope 1. 3. Claim 1, characterized in that crystalline quartz components are unevenly distributed near the outer surface of the translucent quartz glass layer.
A quartz crucible for pulling a single crystal according to any one of items 1 to 2. 4. The bubbles in the translucent quartz glass layer have a diameter of 10
A quartz crucible for pulling a single crystal according to any one of claims 1 to 3, characterized in that the diameter is 250 μm.
JP30462687A 1987-12-03 1987-12-03 Quartz crucible for pulling up single crystal Pending JPH01148783A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP30462687A JPH01148783A (en) 1987-12-03 1987-12-03 Quartz crucible for pulling up single crystal
US07/278,591 US4935046A (en) 1987-12-03 1988-12-01 Manufacture of a quartz glass vessel for the growth of single crystal semiconductor
EP19880120166 EP0319031B1 (en) 1987-12-03 1988-12-02 Manufacture of a quartz glass vessel for the growth of single crystal semiconductor
DE3888797T DE3888797T2 (en) 1987-12-03 1988-12-02 Process for the production of a quartz glass vessel for semiconductor single crystal growth.
US07/376,136 US4956208A (en) 1987-12-03 1989-07-06 Manufacture of a quartz glass vessel for the growth of single crystal semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30462687A JPH01148783A (en) 1987-12-03 1987-12-03 Quartz crucible for pulling up single crystal

Publications (1)

Publication Number Publication Date
JPH01148783A true JPH01148783A (en) 1989-06-12

Family

ID=17935292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30462687A Pending JPH01148783A (en) 1987-12-03 1987-12-03 Quartz crucible for pulling up single crystal

Country Status (1)

Country Link
JP (1) JPH01148783A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01197382A (en) * 1988-02-03 1989-08-09 Mitsubishi Metal Corp Quartz crucible for pulling-up silicon single crystal
JPH01197381A (en) * 1988-02-03 1989-08-09 Mitsubishi Metal Corp Quartz crucible for pulling-up silicon single crystal
JPH02175686A (en) * 1988-12-28 1990-07-06 Mitsubishi Metal Corp Quartz crucible for pulling silicon single crystal
JPH0388793A (en) * 1989-08-30 1991-04-15 Mitsubishi Materials Corp Quartz crucible for pulling up silicon single crystal
JPH05105577A (en) * 1990-06-25 1993-04-27 Shinetsu Quartz Prod Co Ltd Quartz glass crucible for pulling up silicon single crystal and its production
JPH08169798A (en) * 1995-04-04 1996-07-02 Shinetsu Quartz Prod Co Ltd Quartz-glass crucible for pulling up silicon single crystal
WO2007000864A1 (en) * 2005-06-29 2007-01-04 Shin-Etsu Handotai Co., Ltd. Quartz glass crucible for pulling up of silicon single crystal and process for producing the quartz glass crucible
WO2009122936A1 (en) * 2008-03-31 2009-10-08 ジャパンスーパークォーツ株式会社 Quartz glass crucible and process for producing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01197382A (en) * 1988-02-03 1989-08-09 Mitsubishi Metal Corp Quartz crucible for pulling-up silicon single crystal
JPH01197381A (en) * 1988-02-03 1989-08-09 Mitsubishi Metal Corp Quartz crucible for pulling-up silicon single crystal
JPH02175686A (en) * 1988-12-28 1990-07-06 Mitsubishi Metal Corp Quartz crucible for pulling silicon single crystal
JPH0388793A (en) * 1989-08-30 1991-04-15 Mitsubishi Materials Corp Quartz crucible for pulling up silicon single crystal
JPH05105577A (en) * 1990-06-25 1993-04-27 Shinetsu Quartz Prod Co Ltd Quartz glass crucible for pulling up silicon single crystal and its production
JPH08169798A (en) * 1995-04-04 1996-07-02 Shinetsu Quartz Prod Co Ltd Quartz-glass crucible for pulling up silicon single crystal
WO2007000864A1 (en) * 2005-06-29 2007-01-04 Shin-Etsu Handotai Co., Ltd. Quartz glass crucible for pulling up of silicon single crystal and process for producing the quartz glass crucible
JP2007008746A (en) * 2005-06-29 2007-01-18 Shin Etsu Handotai Co Ltd Quartz glass crucible for pulling silicon single crystal and method for manufacturing the same
WO2009122936A1 (en) * 2008-03-31 2009-10-08 ジャパンスーパークォーツ株式会社 Quartz glass crucible and process for producing the same
JP5121923B2 (en) * 2008-03-31 2013-01-16 ジャパンスーパークォーツ株式会社 Quartz glass crucible and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JPH01148782A (en) Quartz crucible for pulling up single crystal
US4956208A (en) Manufacture of a quartz glass vessel for the growth of single crystal semiconductor
US3608050A (en) Production of single crystal sapphire by carefully controlled cooling from a melt of alumina
JPH01148718A (en) Quartz crucible and its formation
EP1094039B1 (en) Method for manufacturing quartz glass crucible
JP5947389B2 (en) Crucible for growing sapphire single crystal and method for producing crucible for growing sapphire single crystal
WO2007063996A1 (en) Quartz glass crucible, process for producing the same, and use
JP2004531449A (en) Constituent material of quartz glass and method of manufacturing the same
EP0229322A2 (en) Method and apparatus for Czochralski single crystal growing
JP4975012B2 (en) Silica glass crucible for pulling silicon single crystal and manufacturing method thereof
US8163083B2 (en) Silica glass crucible and method for pulling up silicon single crystal using the same
TW201128002A (en) Method for pulling a single crystal of silicon from a melt contained in a crucible and thus producing a single crystal
JPH01148783A (en) Quartz crucible for pulling up single crystal
JP2007008746A (en) Quartz glass crucible for pulling silicon single crystal and method for manufacturing the same
JP5213356B2 (en) Silica glass crucible for pulling silicon single crystal and method for producing the same
JP6759020B2 (en) Silicon single crystal manufacturing method and quartz crucible for silicon single crystal manufacturing after modification treatment
JP2020100515A (en) Quartz glass crucible
US4957712A (en) Apparatus for manufacturing single silicon crystal
JPH0742193B2 (en) Quartz crucible for pulling single crystals
JP4726138B2 (en) Quartz glass crucible
WO2002014587A1 (en) Quartz crucible and method for producing single crystal using the same
JP5741163B2 (en) Quartz glass crucible, method for producing the same, and method for producing silicon single crystal
JP4004783B2 (en) Quartz crucible for single crystal growth
JP2016033093A (en) Quartz glass crucible for lifting single crystal silicon, and method of manufacturing the same
JP3154916B2 (en) Quartz glass crucible