JP2000015066A - Humidification membrane - Google Patents

Humidification membrane

Info

Publication number
JP2000015066A
JP2000015066A JP10190756A JP19075698A JP2000015066A JP 2000015066 A JP2000015066 A JP 2000015066A JP 10190756 A JP10190756 A JP 10190756A JP 19075698 A JP19075698 A JP 19075698A JP 2000015066 A JP2000015066 A JP 2000015066A
Authority
JP
Japan
Prior art keywords
membrane
humidifier
humidification
water
vinylidene fluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10190756A
Other languages
Japanese (ja)
Other versions
JP4358324B2 (en
Inventor
Takayoshi Koseki
貴義 小関
Yuzuru Ishibashi
譲 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP19075698A priority Critical patent/JP4358324B2/en
Publication of JP2000015066A publication Critical patent/JP2000015066A/en
Application granted granted Critical
Publication of JP4358324B2 publication Critical patent/JP4358324B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a humidification membrane for a humidifier, particularly the one capable of being used for a humidifier for a solid polymer fuel cell. SOLUTION: This humidification membrane is made of a vinylidene fluoride resin or of a porous film having a mean flow rate micropore diameter of 0.1-1 μm, a maximum pore diameter of 0.1-3 μm, a porosity of 40-90% and a film thickness of 50-1000 μm. This humidification membrane does not permit water to bleed to a gas side as droplets and has an excellent humidification performance and allows to reduce size of the humidifier. Thus, this humidification membrane can be used in humidifier applications wherein reduction in size is desired such as a humidifier for a solid polymer fuel cell and the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、加湿器用の膜、特
に、固体高分子型燃料電池用の加湿器に使用し得る膜に
関する。
The present invention relates to a membrane for a humidifier, and more particularly to a membrane that can be used in a humidifier for a polymer electrolyte fuel cell.

【0002】[0002]

【従来の技術】従来、エアコン等に用いることができる
加湿器として、水と空気とを膜を介して隔絶し、膜中を
水蒸気を透過させることによって空気を加湿する方法が
知られている。このための加湿用膜として、高分子材料
あるいはセラミック材料からなる疎水性多孔質膜を用い
ることが、特開昭61−27434号公報や特開昭61
−240045号公報などに開示されている。特に、特
開昭61−240045号公報では、平均孔径が0.1
〜10μmである疎水性高分子多孔膜が好ましいことが
開示されている。しかしながら、この場合には、継続的
に使用していると水が空気側面に滲み出してきてしまう
問題があった。
2. Description of the Related Art Conventionally, as a humidifier that can be used for an air conditioner or the like, a method of isolating water and air through a membrane and permeating water vapor through the membrane to humidify the air is known. As a humidifying film for this purpose, use of a hydrophobic porous film made of a polymer material or a ceramic material is disclosed in Japanese Patent Application Laid-Open No. 61-27434 and Japanese Patent Application Laid-Open No. 61-27434.
No. -240045 and the like. In particular, JP-A-61-240045 discloses that the average pore size is 0.1%.
It is disclosed that a hydrophobic polymer porous membrane having a thickness of 10 to 10 μm is preferable. However, in this case, there has been a problem that water oozes out to the side of the air when used continuously.

【0003】この問題を解決する方法として、特開平7
−174373号公報には、疎水性高分子多孔膜と無孔
質高分子多孔膜とを張り合わせた膜を用いることが開示
されている。また、特開平9−156007号公報で
は、多孔性高分子基材膜の骨格がテトラフルオロエチレ
ン系共重合体で被覆され、平均孔径が0.1〜1μm、
空孔率が60〜90%である連続気孔型多孔膜を用いる
ことが提案されている。
As a method for solving this problem, Japanese Patent Application Laid-Open
Japanese Patent No. 174373 discloses the use of a membrane in which a hydrophobic polymer porous membrane and a non-porous polymer porous membrane are laminated. In JP-A-9-156007, the skeleton of a porous polymer substrate film is coated with a tetrafluoroethylene-based copolymer, and has an average pore size of 0.1 to 1 μm,
It has been proposed to use a continuous pore type porous membrane having a porosity of 60 to 90%.

【0004】一方、固体高分子型燃料電池は、一般的に
水素イオン伝導性の固体高分子を白金触媒を担持したカ
ーボン電極で挟み込んで構成される発電素子、すなわち
固体高分子電解質膜−電極接合体及び各電極面にそれぞ
れの発電素子を両側から支持するガス分離膜部材とを積
層した構造を有する。その固体高分子電解質膜が乾燥す
ると、イオン電導度が低下するとともに、膜と電極との
接合不良を起こして出力の急激な低下を来すため、供給
ガスの加湿を行うことが必要とされる。この電池は、電
気自動車等移動体用としての用途が期待されており、装
置の小型化が望まれており、より加湿性能が高く小型化
できる加湿器の開発が望まれていた。この加湿器用の膜
として、テトラフルオロエチレン樹脂からなる多孔膜を
用いることが特開平3−269958号公報に開示され
ている。また、中空糸状多孔膜を用いることによって単
位体積あたりの透過面積を大きくし、加湿性能を高める
ことが、特開平8−273687号公報や特開平8−3
15838号公報に開示されている。
On the other hand, a polymer electrolyte fuel cell is a power generating element generally composed of a hydrogen ion conductive solid polymer sandwiched between carbon electrodes carrying a platinum catalyst, ie, a polymer electrolyte membrane-electrode junction. It has a structure in which a gas separation membrane member that supports each power generation element from both sides is laminated on the body and each electrode surface. When the solid polymer electrolyte membrane is dried, the ionic conductivity is reduced, and a poor connection between the membrane and the electrode is caused to cause a sharp decrease in output. Therefore, it is necessary to humidify the supply gas. . This battery is expected to be used for mobile objects such as electric vehicles, and it is desired to reduce the size of the device, and to develop a humidifier that has higher humidification performance and can be reduced in size. The use of a porous film made of a tetrafluoroethylene resin as a film for the humidifier is disclosed in JP-A-3-269958. Further, the use of a hollow fiber-like porous membrane to increase the permeable area per unit volume and enhance the humidification performance is disclosed in JP-A-8-273687 and JP-A-8-3.
No. 15838.

【0005】しかしながら、特開平7−174373号
公報や特開平9−156007号公報に開示された加湿
用膜では加湿性能が十分でないという問題点を有してい
た。また、特開平3−269958号公報や特開平8−
273687号公報、及び、特開平8−315838号
公報に記載された加湿用膜では、長時間水と膜が接触し
ていると気体側の膜面に水が滲み出て液滴が生成すると
いう不都合があった。
However, the humidifying films disclosed in JP-A-7-174373 and JP-A-9-156007 have a problem that the humidifying performance is not sufficient. Further, Japanese Patent Application Laid-Open Nos. Hei 3-269958 and Hei 8-
In the humidifying membrane described in Japanese Patent No. 273687 and Japanese Unexamined Patent Publication No. H8-315838, if water is in contact with water for a long time, water oozes out on the gas-side film surface to generate droplets. There was an inconvenience.

【0006】[0006]

【発明が解決しようとする課題】本発明は、水が気体側
に液滴として滲み出すことがなく、かつ、加湿性能が優
れた加湿用膜を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a humidifying film which does not exude water to the gas side as droplets and has excellent humidifying performance.

【0007】[0007]

【課題を解決するための手段】本発明者らは上記の従来
技術の問題点に鑑み、組成や構造の異なる有機高分子製
の多孔膜を検討したところ、特定の組成及び構造の多孔
膜が、水の滲み出しがなく優れた加湿性能を有すること
を見出し、本発明に至った。すなわち、本発明は、
(1)フッ化ビニリデン系樹脂からなり、平均流量細孔
径が0.1〜1μm、最大孔径が0.1〜3μmであ
り、空孔率が40〜90%、膜厚が50〜1000μm
である多孔膜からなることを特徴とする加湿用膜、
(2)少なくとも98wt%がフッ化ビニリデン単位で
構成されているフッ化ビニリデン系樹脂からなる上記
(1)記載の加湿用膜、(3)最大孔径に対する平均流
量細孔径の比が1.0〜3.0である上記(1)記載の
加湿用膜、(4)多孔膜が中空糸膜状である上記(1)
記載の加湿用膜、(5)多孔膜が内径0.3〜5.0m
mの中空糸膜である上記(4)記載の加湿用膜、(6)
固体高分子型燃料電池用の加湿器に上記(1)の膜を使
用すること、に関する。
Means for Solving the Problems In view of the above-mentioned problems of the prior art, the present inventors have studied a porous film made of an organic polymer having a different composition and structure. The present invention was found to have excellent humidification performance without oozing out of water, leading to the present invention. That is, the present invention
(1) It is made of a vinylidene fluoride resin, has an average flow pore diameter of 0.1 to 1 μm, a maximum pore diameter of 0.1 to 3 μm, a porosity of 40 to 90%, and a film thickness of 50 to 1000 μm.
A humidifying membrane, comprising a porous membrane,
(2) The humidifying membrane according to the above (1), comprising a vinylidene fluoride-based resin in which at least 98 wt% is composed of vinylidene fluoride units, and (3) the ratio of the average flow pore diameter to the maximum pore diameter is 1.0 to 1.0. (1) the humidifying membrane according to (1), wherein the porous membrane is in the form of a hollow fiber membrane;
The membrane for humidification as described in (5), wherein the porous membrane has an inner diameter of 0.3 to 5.0 m.
(6) the humidifying membrane according to the above (4), which is a hollow fiber membrane of
Use of the membrane of (1) above in a humidifier for a polymer electrolyte fuel cell.

【0008】以下、本発明を詳細に説明する。本発明の
加湿用膜を構成するフッ化ビニリデン系樹脂としては、
フッ化ビニリデンの単独重合体のほか、フッ化ビニリデ
ン−ヘキサフルオロプロピレン共重合体、フッ化ビニリ
デン−トリフルオロプロピレン共重合体、フッ化ビニリ
デン−テトラフルオロエチレン共重合体、フッ化ビニリ
デン−トリフルオロエチレン共重合体、フッ化ビニリデ
ン−フルオロエチレン共重合体、フッ化ビニリデン−プ
ロピレン共重合体、フッ化ビニリデン−エチレン共重合
体、フッ化ビニリデン−ヘキサフルオロアセトン共重合
体、フッ化ビニリデン−パーフルオロビニルエーテル共
重合体、フッ化ビニリデン−エチレン−テトラフルオロ
エチレン共重合体、フッ化ビニリデン−テトラフルオロ
エチレン−ヘキサフルオロプロピレン共重合体が挙げら
れる。これら単独、あるいはこれらの重合体の混合物を
用いることもできる。中でも、少なくとも98wt%が
フッ化ビニリデン単位からなる重合体は、耐熱性が高い
ため、比較的高温の熱水及びガス体と接触させることが
できるので、特に好ましい。
Hereinafter, the present invention will be described in detail. As the vinylidene fluoride resin constituting the humidifying membrane of the present invention,
In addition to vinylidene fluoride homopolymer, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-trifluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene Copolymer, vinylidene fluoride-fluoroethylene copolymer, vinylidene fluoride-propylene copolymer, vinylidene fluoride-ethylene copolymer, vinylidene fluoride-hexafluoroacetone copolymer, vinylidene fluoride-perfluorovinyl ether Copolymers, vinylidene fluoride-ethylene-tetrafluoroethylene copolymers, and vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene copolymers are exemplified. These may be used alone, or a mixture of these polymers may be used. Above all, a polymer comprising at least 98% by weight of vinylidene fluoride units is particularly preferable since it has high heat resistance and can be brought into contact with hot water and gas at a relatively high temperature.

【0009】本発明における多孔膜の平均流量細孔径
は、0.1〜1μmの範囲にある。平均流量細孔径が
0.1μm未満の場合では、水分の透過速度が低下する
ため加湿性能が劣る。一方、平均流量細孔径が1μmを
超える場合には、水が気体側に液滴として滲み出す傾向
がある。好ましくは、0.1〜0.7μm、より好まし
くは0.2〜0.5μmである。
[0009] The average flow pore diameter of the porous membrane in the present invention is in the range of 0.1 to 1 µm. When the average flow pore size is less than 0.1 μm, the humidifying performance is inferior because the moisture transmission rate is reduced. On the other hand, when the average flow pore diameter exceeds 1 μm, water tends to seep into the gas side as droplets. Preferably, it is 0.1 to 0.7 μm, more preferably 0.2 to 0.5 μm.

【0010】本発明における多孔膜の最大孔径は、0.
1〜3μmの範囲にある。最大孔径が0.1μm未満の
場合、水分の透過速度が低下するため加湿性能が劣る。
最大孔径が3μmを超える場合には、孔が大きすぎて水
が気体側に液滴として滲み出す傾向がある。好ましく
は、0.15〜2μm、より好ましくは、0.2〜1μ
mである。
In the present invention, the maximum pore size of the porous membrane is 0.1.
It is in the range of 1-3 μm. If the maximum pore size is less than 0.1 μm, the humidifying performance is inferior because the moisture transmission rate is reduced.
If the maximum pore diameter exceeds 3 μm, the pores are too large and water tends to seep into the gas side as droplets. Preferably, 0.15 to 2 μm, more preferably 0.2 to 1 μm
m.

【0011】なお、本発明における平均流量細孔径、最
大孔径とは、ASTM F316−86の記載に基づ
き、含浸液として、表面張力22.3dynes/c
m.at25℃の変性エタノールを用いて測定した値で
ある。本発明においては、最大孔径に対する平均流量細
孔径の比が、1.0〜3.0であることが好ましい。こ
の比が3.0を超える場合には、気体側の膜面に液滴が
滲みだす傾向が出てくる。特に好ましくは、1.0〜
2.0である。
The average flow pore diameter and the maximum pore diameter in the present invention are defined as the impregnation liquid having a surface tension of 22.3 dynes / c based on the description of ASTM F316-86.
m. It is a value measured using denatured ethanol at 25 ° C. In the present invention, the ratio of the average flow pore diameter to the maximum pore diameter is preferably from 1.0 to 3.0. When this ratio exceeds 3.0, the liquid droplets tend to seep onto the gas-side film surface. Particularly preferably, 1.0 to
2.0.

【0012】また、本発明の多孔膜の空孔率は、40〜
90%である必要がある。空孔率が40%未満では、水
分の透過経路が少なくなり加湿性能が低下する。一方、
90%を越えると加湿量の制御が困難になり、かつ、操
作圧力に耐え得る機械的強度が得難くなる。さらに、本
発明の多孔膜の膜厚は、50〜1000μmの範囲にあ
る。50μm未満では、膜の機械的強度が充分でなく、
1000μmを越えると加湿性能が低下する。好ましく
は70〜500μmであり、100〜300μmが特に
好ましい。
Further, the porosity of the porous membrane of the present invention is 40 to 40%.
It needs to be 90%. If the porosity is less than 40%, the number of moisture permeation paths is reduced, and the humidification performance is reduced. on the other hand,
If it exceeds 90%, it becomes difficult to control the amount of humidification, and it is difficult to obtain mechanical strength that can withstand the operating pressure. Further, the thickness of the porous membrane of the present invention is in the range of 50 to 1000 μm. If it is less than 50 μm, the mechanical strength of the film is not sufficient,
If it exceeds 1000 μm, the humidification performance will decrease. Preferably it is 70-500 micrometers, and 100-300 micrometers is especially preferable.

【0013】従来のテトラフルオロエチレン樹脂を用い
た方法では、多孔膜中を水蒸気が拡散することによって
気体を加湿し、該多孔膜の孔径を特定の範囲内に設定す
ることによって、膜内部への液状の水が浸入することを
抑制して水の気体側への滲み出しを防止していた。この
方法では、加湿を水蒸気の拡散にのみ依存するために加
湿性能が不十分であったと考えられる。
In the conventional method using a tetrafluoroethylene resin, the gas is humidified by diffusing water vapor in the porous membrane, and the pore size of the porous membrane is set within a specific range, so that the inside of the porous membrane can be immersed. Liquid water is prevented from entering and water is prevented from seeping out to the gas side. This method is considered to have insufficient humidification performance because humidification depends only on the diffusion of water vapor.

【0014】これに対して本発明では、フッ化ビニリデ
ン系樹脂から構成された特定の孔構造の多孔膜を用いる
ことによって、水の滲み出しの抑制と加湿性能の向上を
可能にしている。即ち、本発明においては、テトラフル
オロエチレン樹脂に比べて水との親和性が高い性質を有
するフッ化ビニリデン系樹脂で多孔膜を構成し、特定の
孔構造に制御している。これによって、その表面張力に
基づく保持力により、膜内部の孔に水が浸入した状態で
も気体側に水が滲み出てくることを抑制でき、かつ、水
蒸気の拡散のみに依存することなく水分の透過が可能に
なるため、優れた加湿性能を発現しているものと推定さ
れる。
On the other hand, in the present invention, the use of a porous membrane having a specific pore structure made of a vinylidene fluoride resin enables suppression of seepage of water and improvement of humidification performance. That is, in the present invention, the porous membrane is made of a vinylidene fluoride-based resin having a higher affinity for water than the tetrafluoroethylene resin, and a specific pore structure is controlled. Thereby, by the holding force based on the surface tension, it is possible to suppress the water from seeping out to the gas side even when the water enters the pores inside the membrane, and to control the moisture without depending only on the diffusion of water vapor. It is presumed that excellent permeation performance is exhibited because permeation is possible.

【0015】本発明において、膜の形態は中空糸膜状や
平膜状等任意の形態をとり得るが、膜モジュールとした
場合に単位体積当たりの膜面積が大きい点で、中空糸膜
状であることが特に好ましい。中空糸膜状である場合、
その内径は、0.3〜5mmであることが好ましく、
0.5〜4mmであることが特に好ましい。0.3mm
未満では、中空糸内部を流れる流体に圧力損失が生じる
ため操作圧力が著しく上昇し、それに対応するために加
湿器が大型化する。また、5mmを超えると膜モジュー
ルとした時に単位体積当たりの膜面積が低下するため、
加湿性能が低くなる。
In the present invention, the membrane may take any form such as a hollow fiber membrane or a flat membrane. However, when a membrane module is used, the membrane area per unit volume is large. It is particularly preferred that there is. In the case of a hollow fiber membrane,
Its inner diameter is preferably 0.3-5 mm,
It is particularly preferred that it is 0.5 to 4 mm. 0.3mm
If it is less than 1, the operating pressure rises remarkably due to pressure loss in the fluid flowing inside the hollow fiber, and the humidifier becomes large in order to cope with it. Further, when the thickness exceeds 5 mm, the membrane area per unit volume decreases when the membrane module is formed.
Humidification performance is reduced.

【0016】本発明の多孔膜は、例えば、フッ化ビニリ
デン系樹脂と有機液状体及び無機粉体を混合した後、溶
融成形し、次いでかかる成形物より有機液状体及び無機
粉体を抽出する方法において、該有機液状体及び無機粉
体の種類やその配合比を調整することによって得ること
ができる。無機粉体としては、平均一次粒子径が0.0
05〜0.5μm、比表面積50〜300m2 /gの範
囲にあり、粉体が完全に濡れているメタノールの容積%
(MW値)が40%以上である疎水性シリカを用いるこ
とが特に好ましい。また、有機液状体としては、溶解パ
ラメータ(SP値)が8.5〜9.5の範囲にある有機
液状体を用いることが特に好ましい。さらに配合組成と
しては、フッ化ビニリデン系樹脂が、25〜45容量
%、有機液状体が、45〜70容量%、及び無機粉体
が、10〜20容量%の範囲に適宜調整することによっ
て、本願の平均孔径及び最大孔径の特徴を有する多孔膜
を得ることができる。
The porous membrane of the present invention is prepared by, for example, mixing a vinylidene fluoride resin with an organic liquid and an inorganic powder, followed by melt molding, and then extracting the organic liquid and the inorganic powder from the molded product. In the above, the organic liquid and the inorganic powder can be obtained by adjusting the types and the mixing ratio thereof. As the inorganic powder, the average primary particle diameter is 0.0
0.5 to 0.5 μm, specific surface area in the range of 50 to 300 m 2 / g, and the volume% of methanol in which the powder is completely wetted
It is particularly preferable to use a hydrophobic silica having a (MW value) of 40% or more. As the organic liquid, it is particularly preferable to use an organic liquid having a solubility parameter (SP value) in the range of 8.5 to 9.5. Further, as the composition, by appropriately adjusting the vinylidene fluoride resin to a range of 25 to 45% by volume, the organic liquid material to a volume of 45 to 70% by volume, and the inorganic powder to a range of 10 to 20% by volume, A porous membrane having the characteristics of the average pore diameter and the maximum pore diameter of the present application can be obtained.

【0017】また、多孔膜を加湿器に組み込む場合に
は、膜モジュールの形にして使用することによって、単
位体積当たりの膜面積を増やし、充分な加湿性能を引き
出すことができる。例えば、図1に中空糸状膜のモジュ
ール例を示すが、多数の中空糸膜を束ねた膜束5をハウ
ジング6内に入れ、膜束5の両端が仕切り板1および2
の外側に開口するようにして封止し、ハウジング6には
少なくとも2ヶ所の開口部3と4を設ける。中空糸内部
に気体を流し、ハウジングの一方の開口部3から他方の
開口部4に水を流すことによって、中空糸膜を介して気
体を加湿することが可能になる。膜モジュールの形態
は、特に限定されず、公知の形態をとることができる。
When the porous membrane is incorporated in a humidifier, the membrane area per unit volume can be increased and sufficient humidification performance can be obtained by using it in the form of a membrane module. For example, FIG. 1 shows an example of a hollow fiber membrane module. A membrane bundle 5 in which a number of hollow fiber membranes are bundled is placed in a housing 6, and both ends of the membrane bundle 5 are partitioned by partition plates 1 and 2.
The housing 6 is provided with at least two openings 3 and 4 in the housing 6. By flowing gas into the hollow fiber and flowing water from one opening 3 to the other opening 4 of the housing, it becomes possible to humidify the gas through the hollow fiber membrane. The form of the membrane module is not particularly limited, and can take a known form.

【0018】[0018]

【発明の実施の形態】以下、実施例によって本発明をさ
らに詳細に説明する。なお、本例に示される諸物性は、
次の測定方法によった。 1.重量平均分子量(Mw) GPCによるポリスチレン換算分子量 GPC測定装置:東洋ソーダ製 LS−8000、カラ
ム:GMHXL、溶媒:DMF、カラム温度:40℃。 2.組成比(容量%) 各組成の添加重量を真比重によって除した値から算出し
た。 3.空孔率 空孔率(%)=(空孔容積/多孔膜容積)×100 ここで、空孔容積=含水重量―絶乾重量 4.比表面積(m2 /g) BET吸着法により測定。 5.平均流量細孔径(μm)(ハーフドライ法) ASTM F316―86により測定。 6.最大孔径(μm)(バブルポイント法) ASTM F316―86により測定。 7.破断伸度(kg/cm2 )破断強度(%) インストロン型引っ張り試験機により、ASTMD88
2に準じて測定(歪速度2.0(mm/mm・mi
n)) 8.溶解パラメータ(SP値) 次式のより算出(Smallの式) SP値=dΣG/M d:比重、G:モル索引定数 9.粉体が完全に濡れるメタノールの容量%(MW値) シリカ0.2gをビーカーに採取し、純水50mlを加
える。電磁攪拌しながら液面下へメタノールを加え、液
面上にシリカが認められなかった点を終点とし、要した
メタノール量から次式を算出する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail by way of examples. The physical properties shown in this example are as follows:
The following measurement method was used. 1. Weight average molecular weight (Mw) Molecular weight in terms of polystyrene by GPC GPC measuring apparatus: LS-8000 manufactured by Toyo Soda, column: GMHXL, solvent: DMF, column temperature: 40 ° C. 2. Composition ratio (% by volume) It was calculated from the value obtained by dividing the added weight of each composition by the true specific gravity. 3. 3. Porosity Porosity (%) = (pore volume / porous membrane volume) × 100 where pore volume = water-containing weight−absolute dry weight Specific surface area (m 2 / g) Measured by BET adsorption method. 5. Average flow pore diameter (μm) (half-dry method) Measured by ASTM F316-86. 6. Maximum pore size (μm) (bubble point method) Measured according to ASTM F316-86. 7. Breaking elongation (kg / cm 2 ) Breaking strength (%) ASTM D88 using an Instron type tensile tester
2 (Strain rate 2.0 (mm / mm · mi)
n)) 8. 8. Dissolution parameter (SP value) Calculated from the following formula (Small's formula) SP value = dΣG / M d: specific gravity, G: molar index constant 0.2% by volume of methanol (MW value) at which the powder is completely wetted Silica is collected in a beaker, and 50 ml of pure water is added. Methanol is added below the liquid surface with electromagnetic stirring, and the point where no silica is observed on the liquid surface is defined as the end point, and the following equation is calculated from the required amount of methanol.

【0019】MW値={X/(50+X)}×100 X:メタノール使用量(ml) 「メタノールの容量%」という値は、「要したメタノー
ル量(ml)」の「純水50mlと要したメタノール量
(ml)の和」に対する割合である。
MW value = {X / (50 + X)} × 100 X: amount of methanol used (ml) The value of “volume% of methanol” required “pure water 50 ml” of “required amount of methanol (ml)”. The ratio is based on the sum of the amount of methanol (ml).

【0020】[0020]

【実施例1】加湿用膜は次の製法によって製造した。M
W値50%平均一次粒子径16nm、比表面積110m
2 /gの疎水性シリカ(アエロジルR−972(商品
名))14.2容量%、フタル酸ジエチルヘキシル(S
P値:8.9)48.5容量%、フタル酸ジブチル(S
P値:9.4)4.4容量%をヘンシェルミキサーで混
合し、これにMw=242,000のフッ化ビニリデン
ホモポリマー(呉羽化学工業KFポリマー#1000
(商品名))32.4容量%を添加し、再度ヘンシェル
ミキサーで混合した。
Example 1 A humidifying membrane was manufactured by the following method. M
W value 50% average primary particle diameter 16 nm, specific surface area 110 m
2 / g hydrophobic silica (Aerosil R-972 (trade name)) 14.2% by volume, diethylhexyl phthalate (S
P value: 8.9) 48.5% by volume, dibutyl phthalate (S
P value: 9.4) 4.4% by volume was mixed with a Henschel mixer, and vinylidene fluoride homopolymer (Mw = 242,000) (Kuha Chemical Industry KF polymer # 1000) was added thereto.
(Trade name)) 32.4% by volume was added and mixed again with a Henschel mixer.

【0021】該混合物を30mmφ二軸押し出し機で混
合し、ペレットにした。このペレットを30mmφ二軸
押し出し機に中空糸状紡口を取り付けた中空糸製造装置
にて中空糸状に成形した。成形された中空糸状物を1,
1,1,−トリクロロエタン中に1時間浸漬して、フタ
ル酸ジエチルヘキシル及びフタル酸ジブチルを抽出した
後、乾燥させた。
The mixture was mixed with a 30 mmφ twin screw extruder to form pellets. The pellets were formed into a hollow fiber shape by a hollow fiber manufacturing apparatus equipped with a 30 mmφ biaxial extruder and a hollow fiber spout. The formed hollow fiber material is
It was immersed in 1,1, -trichloroethane for 1 hour to extract diethylhexyl phthalate and dibutyl phthalate, and then dried.

【0022】次いで、50%エチルアルコール水溶液に
30分間浸漬し、更に水中に移して30分浸漬して、中
空糸状物を親水化した。更に70℃、20%苛性ソーダ
水溶液中に1時間浸漬して疎水性シリカを抽出した後、
水洗し、乾燥した。得られたポリフッ化ビニリデン多孔
膜の性能は、平均流量細孔径:0.4μm、最大孔径:
0.7μm、最大孔径に対する平均流量細孔径の比が
1.75であり、外径2.00mm、内径1.10mm
で空孔率66.0%であった。
Next, the hollow fiber was immersed in a 50% ethyl alcohol aqueous solution for 30 minutes, transferred to water and immersed for 30 minutes to hydrophilize the hollow fiber. After further immersing in 70% aqueous solution of 20% caustic soda for 1 hour to extract hydrophobic silica,
Washed with water and dried. The performance of the obtained polyvinylidene fluoride porous membrane was as follows: average flow pore size: 0.4 μm, maximum pore size:
0.7 μm, the ratio of the average flow pore diameter to the maximum pore diameter is 1.75, the outer diameter is 2.00 mm, and the inner diameter is 1.10 mm
And the porosity was 66.0%.

【0023】該多孔膜を用いて図1に示すモジュールを
構成した。膜モジュール内での有効糸長は、約60cm
であり、膜面積が内径基準で0.2m2 になるように糸
本数を設定した。該モジュールの中空糸膜内部に70℃
の乾燥空気を10m/secの流速で流し、中空糸膜外
側から空気の流れと逆方向に70℃温水を流した。この
時の入り口及び出口での空気中水分量を測定して、その
差分から加湿量を求めた。
The module shown in FIG. 1 was constructed using the porous membrane. The effective yarn length in the membrane module is about 60cm
The number of yarns was set such that the membrane area was 0.2 m 2 based on the inner diameter. 70 ° C inside the hollow fiber membrane of the module
Was flowed at a flow rate of 10 m / sec, and hot water of 70 ° C. was flowed from the outside of the hollow fiber membrane in a direction opposite to the flow of the air. At this time, the amount of moisture in the air at the entrance and the exit was measured, and the humidification amount was determined from the difference.

【0024】その結果、加湿量は150g/min・m
2 であった。また、この時に膜外表面側からの水圧は、
0.2kg/cm2 かかっていたが、膜内表面に水滴の
滲みだしはなかった。
As a result, the humidification amount was 150 g / min · m
Was 2 . At this time, the water pressure from the outer surface of the membrane is
Although 0.2 kg / cm 2 was applied, no water droplets bleed out on the inner surface of the film.

【0025】[0025]

【実施例2】フッ化ビニリデンホモポリマー32.2容
量%、疎水性シリカ14.3容量%、フタル酸ジエチル
ヘキシル44.5容量%、フタル酸ジブチル9.0容量
%と混合割合を変えた以外は、実施例1と同様の方法で
ポリフッ化ビニリデン多孔膜を得た。得られたポリフッ
化ビニリデン多孔膜の性能は、平均流量細孔径:0.2
μm、最大孔径:0.4μm、最大孔径に対する平均流
量細孔径の比が2.0であり、中空糸膜内径:0.7m
m、中空糸膜外径:1.2mm、膜厚:0.25mm、
空孔率が70%であった。
Example 2 Except that the mixing ratio was changed with 32.2% by volume of vinylidene fluoride homopolymer, 14.3% by volume of hydrophobic silica, 44.5% by volume of diethylhexyl phthalate, and 9.0% by volume of dibutyl phthalate. A polyvinylidene fluoride porous membrane was obtained in the same manner as in Example 1. The performance of the obtained polyvinylidene fluoride porous membrane was as follows: average flow pore diameter: 0.2
μm, maximum pore diameter: 0.4 μm, ratio of average flow pore diameter to maximum pore diameter is 2.0, and hollow fiber membrane inner diameter: 0.7 m
m, hollow fiber membrane outer diameter: 1.2 mm, film thickness: 0.25 mm,
The porosity was 70%.

【0026】次いで、実施例1と同様にして膜モジュー
ルを構成し、加湿量を測定した。その結果、加湿量は1
00g/min・m2 であった。また、この時に膜外表
面側からの水圧は、0.3kg/cm2 かかっていた
が、膜内表面に水滴の滲みだしはなかった。
Next, a membrane module was constructed in the same manner as in Example 1, and the amount of humidification was measured. As a result, the humidification amount is 1
It was 00 g / min · m 2 . At this time, the water pressure from the outer surface of the film was 0.3 kg / cm 2, but no water droplets bleed out on the inner surface of the film.

【0027】[0027]

【実施例3】フッ化ビニリデンポリマー32.5容量
%、疎水性シリカ14.3容量%、フタル酸ジエチルヘ
キシル45容量%、フタル酸ジブチル8.2容量%と混
合割合を変えた以外は、実施例1と同様の方法によりポ
リフッ化ビニリデン多孔膜を得た。得られたポリフッ化
ビニリデン多孔膜の性能は、平均流量細孔径:0.3μ
m、最大孔径:0.54μm、最大孔径に対する平均流
量細孔径の比が1.8であり、中空糸膜内径:2.5m
m、中空糸膜外径:4.0mm、膜厚:0.75μm、
空孔率が70%であった。
Example 3 Except that the mixing ratio was changed to 32.5% by volume of vinylidene fluoride polymer, 14.3% by volume of hydrophobic silica, 45% by volume of diethylhexyl phthalate and 8.2% by volume of dibutyl phthalate. A polyvinylidene fluoride porous membrane was obtained in the same manner as in Example 1. The performance of the obtained polyvinylidene fluoride porous membrane was as follows: average flow pore diameter: 0.3 μm.
m, maximum pore diameter: 0.54 μm, the ratio of the average flow pore diameter to the maximum pore diameter is 1.8, and the hollow fiber membrane inner diameter: 2.5 m
m, hollow fiber membrane outer diameter: 4.0 mm, film thickness: 0.75 μm,
The porosity was 70%.

【0028】次いで、実施例1と同様にして膜モジュー
ルを構成し、加湿量を測定した。その結果、加湿量は7
0g/min・m2 であった。また、この時に膜外表面
側からの水圧は、0.3kg/cm2 かかっていたが、
膜内表面に水滴の滲みだしはなかった。
Next, a membrane module was constructed in the same manner as in Example 1, and the amount of humidification was measured. As a result, the humidification amount was 7
It was 0 g / min · m 2 . At this time, the water pressure from the outer surface of the membrane was 0.3 kg / cm 2 ,
There was no seepage of water droplets on the inner surface of the film.

【0029】[0029]

【比較例1】テトラフルオロエチレン樹脂から構成され
た中空糸膜状の多孔膜を用い、実施例1と同様な図1に
示す膜モジュールを構成した。該多孔膜は、平均流量細
孔径が0.4μm、最大孔径が1.4μm、最大孔径に
対する平均流量細孔径の比が3.5であり、糸内径が
0.7mm、糸外径が1.2mm、膜厚が0.25m
m、空孔率が70%であった。
Comparative Example 1 A membrane module similar to that of Example 1 and shown in FIG. 1 was constructed using a hollow fiber membrane-like porous membrane made of tetrafluoroethylene resin. The porous membrane has an average flow pore diameter of 0.4 μm, a maximum pore diameter of 1.4 μm, a ratio of the average flow pore diameter to the maximum pore diameter of 3.5, a yarn inner diameter of 0.7 mm, and a yarn outer diameter of 1. 2mm, film thickness 0.25m
m, the porosity was 70%.

【0030】加湿量を測定した結果、加湿量は25g/
min・m2 であった。また、この時に膜外表面側から
の水圧が、0.2kg/cm2 かかっていたが、膜内表
面に水滴の滲みだしはなかった。
As a result of measuring the humidification amount, the humidification amount was 25 g /
min · m 2 . At this time, the water pressure from the outer surface of the film was 0.2 kg / cm 2, but no water droplets bleed out on the inner surface of the film.

【0031】[0031]

【比較例2】フッ化ビニリデンホモポリマー(呉羽化学
工業KFポリマー#1000(商品名))を用い、平均
流量細孔径:1.0μm、最大孔径が4.0μm、最大
孔径に対する平均流量細孔径の比が4.0であり、中空
糸膜内径:0.7mm、中空糸膜外径:1.5mm、膜
厚が0.4mm、空孔率:85%である中空糸状多孔膜
を得た。
Comparative Example 2 Using vinylidene fluoride homopolymer (Kureha Chemical KF Polymer # 1000 (trade name)), average flow pore size: 1.0 μm, maximum pore size 4.0 μm, average flow pore size with respect to maximum pore size A ratio was 4.0, and a hollow fiber membrane having a hollow fiber membrane inner diameter of 0.7 mm, a hollow fiber membrane outer diameter of 1.5 mm, a film thickness of 0.4 mm, and a porosity of 85% was obtained.

【0032】該多孔膜を用いた他は実施例1と同様な膜
モジュールを構成した。次いで、実施例1と同様にして
加湿量の測定を行うために膜外表面側からの水圧をかけ
た瞬間、膜内表面に水滴の滲みだしがあった。したがっ
て、適切な加湿もできなかった。
A membrane module similar to that of Example 1 was constructed except that the porous membrane was used. Next, at the moment when water pressure was applied from the outer surface of the film to measure the humidification amount in the same manner as in Example 1, water droplets bleed out on the inner surface of the film. Therefore, appropriate humidification was not possible.

【0033】[0033]

【発明の効果】本発明の加湿用膜は、気体側に水が液滴
として滲み出すことがなく、かつ、加湿性能に優れてい
る。したがって、加湿装置を小型化することができ、特
に、固体高分子型燃料電池用の加湿器等、小型化が望ま
れる加湿器用途において好適に使用し得る。
The film for humidification of the present invention has excellent humidification performance without water oozing as droplets on the gas side. Therefore, the humidifier can be miniaturized, and particularly, can be suitably used in humidifier applications where miniaturization is desired, such as a humidifier for a polymer electrolyte fuel cell.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の膜を実用的なモジュールの形態とした
場合の一例を示す説明図である。
FIG. 1 is an explanatory diagram showing an example of a case where the film of the present invention is in the form of a practical module.

【符号の説明】[Explanation of symbols]

1 仕切板 2 仕切板 3 開口部 4 開口部 5 ポリフッ化ビニリデン製中空糸膜束 6 ハウジング DESCRIPTION OF SYMBOLS 1 Partition plate 2 Partition plate 3 Opening 4 Opening 5 Hollow fiber membrane bundle made of polyvinylidene fluoride 6 Housing

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 フッ化ビニリデン系樹脂からなり、平均
流量細孔径が0.1〜1μm、最大孔径が0.1〜3μ
mであり、空孔率が40〜90%、膜厚が50〜100
0μmである多孔膜からなることを特徴とする加湿用
膜。
An average flow pore size of 0.1 to 1 μm, and a maximum pore size of 0.1 to 3 μm, comprising a vinylidene fluoride resin.
m, the porosity is 40 to 90%, and the film thickness is 50 to 100.
A humidifying membrane comprising a porous membrane having a thickness of 0 μm.
JP19075698A 1998-07-06 1998-07-06 Humidifying membrane Expired - Fee Related JP4358324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19075698A JP4358324B2 (en) 1998-07-06 1998-07-06 Humidifying membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19075698A JP4358324B2 (en) 1998-07-06 1998-07-06 Humidifying membrane

Publications (2)

Publication Number Publication Date
JP2000015066A true JP2000015066A (en) 2000-01-18
JP4358324B2 JP4358324B2 (en) 2009-11-04

Family

ID=16263219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19075698A Expired - Fee Related JP4358324B2 (en) 1998-07-06 1998-07-06 Humidifying membrane

Country Status (1)

Country Link
JP (1) JP4358324B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001028667A1 (en) * 1999-10-22 2001-04-26 Asahi Kasei Kabushiki Kaisha Heat-resistant microporous film
WO2001067533A2 (en) * 2000-03-08 2001-09-13 Ballard Power Systems Inc. Membrane exchange humidifier
JP2002147802A (en) * 2000-11-06 2002-05-22 Nok Corp Humidifier
JP2002216814A (en) * 2001-01-22 2002-08-02 Honda Motor Co Ltd Fuel cell system equipped with humidifying part and humidifying method using same
JP2002216815A (en) * 2001-01-22 2002-08-02 Honda Motor Co Ltd Humidifying system for fuel cell
JP2002373686A (en) * 2001-06-14 2002-12-26 Mitsubishi Electric Corp Temperature and humidity regulating device and temperature and humidity regulating method for fuel cell reactant gas
US6864005B2 (en) 2000-03-08 2005-03-08 Ballard Power Systems Inc. Membrane exchange humidifier for a fuel cell
JP2005243327A (en) * 2004-02-25 2005-09-08 Nichias Corp Gasket for fuel cell
JP2005259453A (en) * 2004-03-10 2005-09-22 Casio Comput Co Ltd Power generation device and fuel storage module
US7140496B2 (en) 2001-08-01 2006-11-28 Asahi Kasei Medical Co., Ltd. Multilayer microporous membrane
WO2007110941A1 (en) * 2006-03-29 2007-10-04 Fujitsu Limited Fuel cell
JP2008247738A (en) * 2008-06-16 2008-10-16 Casio Comput Co Ltd Vaporization apparatus and liquid suction unit
US7459085B2 (en) 2002-10-18 2008-12-02 Asahi Kasei Medical Co., Ltd. Microporous hydrophilic membrane
WO2012026472A1 (en) * 2010-08-24 2012-03-01 旭化成ケミカルズ株式会社 Method for reducing nitrogen oxides in internal combustion engine and apparatus therefor
JP2016523698A (en) * 2013-05-29 2016-08-12 スリーエム イノベイティブ プロパティズ カンパニー Microporous polyvinylidene fluoride membrane
JP2021523827A (en) * 2018-06-12 2021-09-09 コーロン インダストリーズ インク Composite hollow fiber membrane, its manufacturing method, hollow fiber membrane cartridge including this, and fuel cell membrane humidifier
CN114430056A (en) * 2022-01-20 2022-05-03 上海恒劲动力科技有限公司 Humidity control method for proton exchange membrane fuel cell system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6127434A (en) * 1984-07-18 1986-02-06 P S Kankyo Giken Kk Humidifier
JPS61240045A (en) * 1985-04-15 1986-10-25 Mitsubishi Electric Corp Membrane module for humidifier
JPS6314930U (en) * 1986-07-10 1988-01-30
JPH01318830A (en) * 1988-06-17 1989-12-25 Mitsubishi Electric Corp Humidifier
JPH0225645A (en) * 1988-07-14 1990-01-29 Mitsubishi Electric Corp Humidifier
JPH03269958A (en) * 1990-03-19 1991-12-02 Mitsubishi Electric Corp Humidifying method for solid macromolecular electrolyte type fuel cell
JPH07174373A (en) * 1993-12-16 1995-07-14 Nitto Denko Corp Humidifier and polymerized composite film employed for humidifier
JPH08273687A (en) * 1995-03-30 1996-10-18 Mazda Motor Corp Supply gas humidifier of fuel cell
JPH08315838A (en) * 1995-05-23 1996-11-29 Honda Motor Co Ltd Gas humidifier for fuel cell and fuel cell
JPH09156007A (en) * 1995-12-08 1997-06-17 Japan Gore Tex Inc Moistening film and its manufacture
JPH10168218A (en) * 1996-12-10 1998-06-23 Asahi Chem Ind Co Ltd Porous vinylidene fluoride resin film

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6127434A (en) * 1984-07-18 1986-02-06 P S Kankyo Giken Kk Humidifier
JPS61240045A (en) * 1985-04-15 1986-10-25 Mitsubishi Electric Corp Membrane module for humidifier
JPS6314930U (en) * 1986-07-10 1988-01-30
JPH01318830A (en) * 1988-06-17 1989-12-25 Mitsubishi Electric Corp Humidifier
JPH0225645A (en) * 1988-07-14 1990-01-29 Mitsubishi Electric Corp Humidifier
JPH03269958A (en) * 1990-03-19 1991-12-02 Mitsubishi Electric Corp Humidifying method for solid macromolecular electrolyte type fuel cell
JPH07174373A (en) * 1993-12-16 1995-07-14 Nitto Denko Corp Humidifier and polymerized composite film employed for humidifier
JPH08273687A (en) * 1995-03-30 1996-10-18 Mazda Motor Corp Supply gas humidifier of fuel cell
JPH08315838A (en) * 1995-05-23 1996-11-29 Honda Motor Co Ltd Gas humidifier for fuel cell and fuel cell
JPH09156007A (en) * 1995-12-08 1997-06-17 Japan Gore Tex Inc Moistening film and its manufacture
JPH10168218A (en) * 1996-12-10 1998-06-23 Asahi Chem Ind Co Ltd Porous vinylidene fluoride resin film

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001028667A1 (en) * 1999-10-22 2001-04-26 Asahi Kasei Kabushiki Kaisha Heat-resistant microporous film
US7635513B1 (en) 1999-10-22 2009-12-22 Asahi Kasei Medical Co., Ltd. Heat resistant microporous film
US7784770B2 (en) 2000-03-08 2010-08-31 Bdf Ip Holdings Ltd. Method for humidifying a reactant stream for a fuel cell
WO2001067533A2 (en) * 2000-03-08 2001-09-13 Ballard Power Systems Inc. Membrane exchange humidifier
WO2001067533A3 (en) * 2000-03-08 2002-10-03 Ballard Power Systems Membrane exchange humidifier
US7078117B2 (en) 2000-03-08 2006-07-18 Ballard Power Systems Inc. Method for humidifying a reactant stream for a fuel cell
US6864005B2 (en) 2000-03-08 2005-03-08 Ballard Power Systems Inc. Membrane exchange humidifier for a fuel cell
JP2002147802A (en) * 2000-11-06 2002-05-22 Nok Corp Humidifier
JP4610715B2 (en) * 2000-11-06 2011-01-12 Nok株式会社 Humidifier
JP2002216814A (en) * 2001-01-22 2002-08-02 Honda Motor Co Ltd Fuel cell system equipped with humidifying part and humidifying method using same
JP2002216815A (en) * 2001-01-22 2002-08-02 Honda Motor Co Ltd Humidifying system for fuel cell
JP2002373686A (en) * 2001-06-14 2002-12-26 Mitsubishi Electric Corp Temperature and humidity regulating device and temperature and humidity regulating method for fuel cell reactant gas
US7140496B2 (en) 2001-08-01 2006-11-28 Asahi Kasei Medical Co., Ltd. Multilayer microporous membrane
US7459085B2 (en) 2002-10-18 2008-12-02 Asahi Kasei Medical Co., Ltd. Microporous hydrophilic membrane
JP2005243327A (en) * 2004-02-25 2005-09-08 Nichias Corp Gasket for fuel cell
JP2005259453A (en) * 2004-03-10 2005-09-22 Casio Comput Co Ltd Power generation device and fuel storage module
JP4682522B2 (en) * 2004-03-10 2011-05-11 カシオ計算機株式会社 Power generator
JP5071378B2 (en) * 2006-03-29 2012-11-14 富士通株式会社 Fuel cell
WO2007110941A1 (en) * 2006-03-29 2007-10-04 Fujitsu Limited Fuel cell
JP2008247738A (en) * 2008-06-16 2008-10-16 Casio Comput Co Ltd Vaporization apparatus and liquid suction unit
JPWO2012026472A1 (en) * 2010-08-24 2013-10-28 旭化成ケミカルズ株式会社 Method and apparatus for reducing nitrogen oxides in internal combustion engines
CN103080526A (en) * 2010-08-24 2013-05-01 旭化成化学株式会社 Method for reducing nitrogen oxides in internal combustion engine and apparatus therefor
WO2012026472A1 (en) * 2010-08-24 2012-03-01 旭化成ケミカルズ株式会社 Method for reducing nitrogen oxides in internal combustion engine and apparatus therefor
JP2015158207A (en) * 2010-08-24 2015-09-03 旭化成ケミカルズ株式会社 Method and device for reducing nitrogen oxide internal combustion engine
JP5778679B2 (en) * 2010-08-24 2015-09-16 旭化成ケミカルズ株式会社 Method and apparatus for reducing nitrogen oxides in internal combustion engines
JP2017115890A (en) * 2010-08-24 2017-06-29 旭化成株式会社 Reduction method for nitrogen oxide in internal combustion engine and device thereof
JP2016523698A (en) * 2013-05-29 2016-08-12 スリーエム イノベイティブ プロパティズ カンパニー Microporous polyvinylidene fluoride membrane
JP2021523827A (en) * 2018-06-12 2021-09-09 コーロン インダストリーズ インク Composite hollow fiber membrane, its manufacturing method, hollow fiber membrane cartridge including this, and fuel cell membrane humidifier
JP7224372B2 (en) 2018-06-12 2023-02-17 コーロン インダストリーズ インク Composite hollow fiber membrane, manufacturing method thereof, hollow fiber membrane cartridge containing the same, and fuel cell membrane humidifier
US11876259B2 (en) 2018-06-12 2024-01-16 Kolon Industries, Inc. Composite hollow fiber membrane, manufacturing method therefor, hollow fiber membrane cartridge including same, and fuel cell membrane humidifier
CN114430056A (en) * 2022-01-20 2022-05-03 上海恒劲动力科技有限公司 Humidity control method for proton exchange membrane fuel cell system

Also Published As

Publication number Publication date
JP4358324B2 (en) 2009-11-04

Similar Documents

Publication Publication Date Title
JP4358324B2 (en) Humidifying membrane
CN110869538B (en) Reinforced diaphragm for alkaline hydrolysis
US5989300A (en) Process of producing electrochemical products or energy from a fiberous electrochemical cell
KR102466595B1 (en) Highly reinforced ionomer membranes for high selectivity and high strength
JP2004217921A (en) Ion exchange membrane and its producing method
JP2010506365A (en) Humidifier membrane
EP1118371A1 (en) Gas separation membrane and its use
CN109273647B (en) Porous single-ion conductive polymer electrolyte diaphragm and preparation method and application thereof
JP5331122B2 (en) Reinforcing electrolyte membrane for fuel cell, membrane-electrode assembly for fuel cell, and polymer electrolyte fuel cell including the same
CA2487850C (en) Fuel cell-use humidifier
JP4719796B2 (en) Diaphragm for direct liquid fuel cell
JP3891820B2 (en) Ion exchange resin membrane
JP4858160B2 (en) Gas separation membrane and method of using the same
JP3967581B2 (en) Ion exchange resin membrane and method for producing the same
CN113522052A (en) Composite hollow fiber membrane and preparation method and application thereof
CN113195079A (en) Power generation system
JP4671493B2 (en) Gas separation membrane and method of using the same
JPH0753748A (en) Covered microporous film
US6010628A (en) Porous membrane with low steam permeability
JPH04212265A (en) Polyethylene poromeric film for cell separator
CN113164876A (en) Power generation system
JP4186708B2 (en) Humidifier for fuel cell
KR20150037103A (en) Fluid exchange membrane, method for preparation thereof and fluid exchange membrane module comprising the fluid exchange membrane
CA3148862C (en) Fuel cell stack and operation method for fuel cell stack
JP2006160966A (en) Water vapor-permeable membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080501

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees