JP2000014399A - 細胞傷害活性測定法 - Google Patents

細胞傷害活性測定法

Info

Publication number
JP2000014399A
JP2000014399A JP10221007A JP22100798A JP2000014399A JP 2000014399 A JP2000014399 A JP 2000014399A JP 10221007 A JP10221007 A JP 10221007A JP 22100798 A JP22100798 A JP 22100798A JP 2000014399 A JP2000014399 A JP 2000014399A
Authority
JP
Japan
Prior art keywords
cells
cytotoxic
labeled
measuring
cytotoxic activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10221007A
Other languages
English (en)
Inventor
Shizuko Muraoka
静子 村岡
Chizuru Ochi
千鶴 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujimoto Brothers Co Ltd
Original Assignee
Fujimoto Brothers Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujimoto Brothers Co Ltd filed Critical Fujimoto Brothers Co Ltd
Priority to JP10221007A priority Critical patent/JP2000014399A/ja
Publication of JP2000014399A publication Critical patent/JP2000014399A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

(57)【要約】 【目的】 放射性物質不用の細胞傷害活性を測定する方
法を提供する。 【構成】 標的細胞に蛍光色素ローダミン−123を取
り込ませて標識し、このローダミン−123標識標的細
胞と、細胞傷害活性を有するキラー細胞あるいは細胞傷
害活性物質とを培養することにより、傷害を受けた標的
細胞から蛍光色素ローダミン−123が遊離する。この
遊離したローダミン−123の蛍光強度を測定すること
により、キラー細胞あるいは細胞傷害性物質の標的細胞
に対する細胞傷害度を決定することができる。 【効果】 細胞傷害活性測定に通常使用される放射性同
位体51Crで標識した標的細胞を使用した場合と同等
以上の感度および精度を有し、且つ放射性同位体を使用
しないため、安全性が高く簡便かつ安価であり、環境汚
染の問題も生じることがない。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、放射性同位体を使用す
ることなく、放射性同位体を使用した場合と同等以上の
感度および精度を有する、蛍光色素ローダミン−123
(Rh−123)を使用した細胞傷害活性の測定法を提
供するものである。
【0002】
【従来の技術】ヒトを含む哺乳動物に元来備わった免疫
学的防御機構の一つとして、ナチュラルキラー細胞(N
K細胞)と称せられる細胞傷害活性を有する細胞集団
が、リンパ組織や末梢血単核細胞・白血球の中に存在す
る。NK細胞が細胞を傷害又は破壊する作用を、NK細
胞媒介性細胞傷害活性(NK活性)といい、特異抗原認
識レセプターを介して標的細胞を傷害する細胞傷害性T
リンパ球とは異なり、特異抗原認識レセプターを介する
ことなく、ある種の細胞を標的として傷害する活性であ
り、ある程度の細胞選択性があり、腫瘍細胞又はウイル
ス関連抗原等を膜表面に提示する細胞を標的細胞とし、
高い傷害活性を示す。また、リンパ球がインビトロ(i
n vitro)あるいはインビボ(in vivo)
でインターロイキン−2などのリンホカインで活性化さ
れて生じる、リンホカイン活性化キラー細胞(LAK細
胞)もNK細胞と類似の活性を有し、強力な腫瘍細胞傷
害作用を有することから、ガン治療に利用されている。
【0003】従って、NK細胞の細胞傷害活性は、患者
個々の概括的な免疫学的状態を良く反映していると考え
られており(トリンシェリ(Trincheri)、ペ
ルジア(Perussia)ら,ラボラトリー インベ
スティゲエション 1984年第50巻第489頁(L
aboratory Investigation
,489,1984)、種々の治療の有効性評価のた
めに、治療開始前や治療後又は治療継続中の患者におい
て、NK細胞傷害活性を測定することは有用である。
【0004】
【発明が解決しようとする課題】細胞傷害活性測定は、
キラー細胞の場合だけではなく、腫瘍壊死因子−α(T
NF−α)または腫瘍壊死因子−β(TNF−β)など
の細胞傷害性サイトカイン、リシンなどの細胞毒あるい
は抗ガン剤などの細胞傷害活性評価の際にも行われる。
現在、NK活性等の細胞傷害活性の測定は、一般に標的
細胞の標識に51Crのような放射性同位体を使用する
測定法が使用されている。しかし、放射性同位体を使用
する場合、放射性同位体取扱訓練を受けた職員や、放射
性同位体特有の個別施設や設備が必要で、費用的にも嵩
む。そのため、放射性同位体の取り扱いが禁止されてい
る、若しくは許可されていない病院や小さな研究所では
その実施が困難である。またそれ以外にも、放射性物質
や重金属の使用は、当然その廃棄にも種々の規制を伴う
上、環境汚染の問題も非常に大きく、最近では世界的に
放射性同位体の使用を避ける努力がなされている。
【0005】そこで、放射性同位体を用いない細胞傷害
活性測定法が過去にも検討され、いくつか報告されてい
る。例えば、細胞内酵素であるアルカリホスファターゼ
や乳酸脱水素酵素の遊離を測定する方法や、フローサイ
トメーターを用いて、キラー細胞あるいは細胞傷害性物
質との共培養後の、標的細胞中の死細胞の比率を算出す
る方法である。
【0006】しかし、細胞内酵素の遊離を測定する方法
は、標的細胞の種類によって含有酵素量に差があり、ヒ
トNK活性測定の標的細胞として最も汎用されているK
−562赤芽球系白血病細胞株(K−562細胞)など
では、遊離酵素量が低すぎて利用不可能であったり、培
養中に死んだキラー細胞を含む細胞群からも無視できな
い量の酵素の遊離が生じるため、標的細胞による酵素遊
離のみを測定することは不可能な場合が多い。特に、キ
ラー細胞が標的細胞数の10倍以上の比率で細胞傷害活
性を測定する場合などには、これらの細胞内酵素遊離を
測定する方法では、正確に細胞傷害活性を測定すること
が出来ない。又、フローサイトメーターは非常に高価な
電子機器であるため一般の施設には普及していない上、
解析に細胞が多数必要なことなどの欠点があるため、細
胞傷害活性測定に広く使用されるには至っていない。
【0007】我々は、先にキラー細胞と培養器付着性の
標的細胞との共培養後に、キラー細胞を除去して、標的
生細胞によるニュートラルレッド色素の取り込み量を測
定する方法で、マウス抗同種細胞傷害活性測定法を確立
した(未発表データ)。しかし、ヒトNK活性測定に一
般に用いられる標的細胞であるK−562細胞が非付着
性であり、標的細胞とキラー細胞とを分離することが困
難なために、この試験方法は適用できなかった。
【0008】
【課題を解決するための手段】この様な経験を踏まえ、
細胞傷害活性が標的細胞総数に対する傷害された細胞数
の比率として算出されるという基本に基づいて、正確な
分析を行うためには、特異的プローブで標的細胞を標識
するのがより適当であると判断した。我々は先ず、放射
性物質不用の細胞傷害活性測定法を確立するため、種々
のプローブでのK−562細胞標識を研究した。
【0009】通常の場合、キラー細胞による細胞傷害活
性は、一定数の標識された標的細胞に、その数倍から1
00倍のキラー細胞を含む細胞懸濁液を加え、一定時間
培養し、標的細胞から培地中に遊離された標識物質を検
出することにより測定される。従って、キラー細胞を加
えないときに生じる標識物質自然遊離量の、標識細胞の
総てからの遊離量(総遊離量)に対する比率、即ち自然
遊離率が小さいこと、及び細胞が傷害を受けた場合、そ
の標識物質の遊離が容易であることが重要である。これ
らの点は、K−562細胞を標識細胞として用いて、細
胞傷害性物質であるTNF−αなどの細胞傷害性サイト
カインの活性を測定する場合でも同様である。
【0010】鋭意研究した結果、蛍光色素であるRh−
123が、K−562生細胞中に能率的に取り込まれ、
生細胞中のミトコンドリア膜に結合するミトコンドリア
プローブとなって保持され、自然遊離が少ないこと、標
識された細胞が傷害を受けた場合には容易に細胞外へ遊
離され、細胞傷害活性測定において優れた標識となり得
ること、細胞傷害活性のない細胞との接触では遊離され
ないこと、また遊離されたRh−123の蛍光強度を測
定することから、測定感度も良好であることを知見し、
本発明を完成した。
【0011】即ち、本発明は、Rh−123を標的細胞
に取り込ませて標識し、Rh−123標識標的細胞と
し、これとキラー細胞あるいは細胞傷害性物質とを共培
養して、培地中に遊離されるRh−123の蛍光強度を
測定することにより、そのキラー細胞または細胞傷害性
物質の標的細胞に対する細胞傷害活性を測定するもので
ある。
【0012】Rh−123は、陽荷電の蛍光色素であ
り、生細胞中の陰性に荷電するミトコンドリア膜上に選
択的に集積することが、ジョンソンらに報告された(プ
ロシーディング オブ ザ ナショナル アカデミィ
オブ サイエンシス オブ ザユー・エス・エー198
0年第77巻第990頁(Proceedingsof
the National Academy of
Sciencesof the U.S.A.77,9
90,1980)。その後、抗ガン剤などの細胞への影
響、特にミトコンドリアへの影響を解析する方法とし
て、薬物影響下あるいは薬物処理後の細胞へのRh−1
23の取り込み量を指標として、ミトコンドリアに対す
る傷害活性を観察する報告も出ている。しかしながら、
本発明に述べる様に、正常もしくは何らの薬物影響下に
ない細胞に、まずRh−123を取り込ませて標識され
た細胞とし、キラー細胞あるいは細胞傷害性物質ととも
に培養後、傷害を受けた標識細胞より遊離されるRh−
123の蛍光強度を測定することにより、キラー細胞あ
るいは細胞傷害性物質の細胞傷害活性を決定する方法
は、未だ報告されていない。従って、本発明においてR
h−123を標的細胞標識のためのプローブとして応用
し、細胞傷害活性測定法として確立したことは新規であ
る。
【0013】本発明の測定法は、放射性同位体を用い
ず、安全かつ安価に実施可能であり、測定感度および精
度も放射性同位体を用いる測定の場合とほぼ同等であ
る。乳酸脱水素酵素等の標的細胞からの酵素遊離を測定
する方法とは異なり、キラー細胞からのRh−123の
遊離はあり得ないため、標的細胞数に対するキラー細胞
数の比率が低いものから、比較的高い、例えば、キラー
細胞の標的細胞に対する比(キラー細胞/標的細胞)が
5:1〜100:1の実験系においても細胞傷害率の測
定が可能である。又、キラー細胞の細胞傷害活性を促進
する作用(インターフェロン等と類似の作用)を有する
物質のインビトロでのスクリーニングにも使用すること
が出来、さらにはキラー細胞とは無関係の、細胞傷害性
物質の細胞傷害活性測定および細胞傷害性Tリンパ球等
の特異抗原認識レセプターを介して標的細胞を傷害させ
る特異的な傷害活性の測定にも標的細胞をRh−123
で標識することにより応用できる。
【0014】本発明でいうキラー細胞とは、抗原非特異
的細胞傷害活性を有する細胞を意味し、代表的なものと
してヒトNK細胞やヒトLAK細胞等が挙げられるが、
それら細胞を含有するリンパ組織、末梢血単核球や末梢
血リンパ球等の細胞群も含まれる。
【0015】次に細胞傷害活性測定の実施例を挙げて、
本発明の細胞傷害活性測定法を具体的に説明するが、本
発明はその要旨を満たす限り以下の実施例に制約される
ものではない。
【0016】使用した主な試薬類は以下のものである。 ・培養液:RPMI−1640培養液(ギブコ(GIB
CO))に、L−グルタミン300μg/ml、ペニシ
リン10U/ml、ストレプトマイシン10μg/ml
及びファンギゾン250ng/ml添加し、更に非働化
ウシ胎児血清を10%添加して培養に供した。 ・標的細胞:K−562細胞(大日本製薬株式会社から
購入)を上記培養液を用いて継代培養し、標的細胞とし
て使用する前日に所定の細胞濃度で培養を開始し、20
時間後に採取して使用した。 ・ヒトNK細胞懸濁液:Ca2+、Mg2+不含リン酸
緩衝生理食塩液で希釈したヘパリン添加ヒト末梢血を、
白血球分離液(リンフォサイト セパレーションメディ
ウム(Lymphocyte Separation
Medium)):フィコール(Ficoll)6.2
g、ソディウム ジアトリゾェート(Sodium d
iatrizoate)9.4g/100ml、密度
1.077〜1.080(オルガノン テクニカ、ダル
ハム、ノースカロライナ(Organon Tekni
ka,Durham,NC))に上層し、密度勾配遠心
によりヒト末梢血中の白血球を分離した。細胞をリン酸
緩衝生理食塩液で洗浄後、培養液に再懸濁し、NK細胞
含有細胞懸濁液として使用した。 ・Rh−123保存液:Rh−123(モルキュラ プ
ローブ社、ユージン、オレゴン(Molecular
Probes,Inc.、Eugene、Orego
n))を3.33g/mlとなるようにエンドトキシン
不含滅菌精製水に溶解した。遮光下4℃で1週間保存可
能な液として使用した。 ・Rh−123標識溶液:Rh−123保存液を使用直
前に室温で強く攪拌した後、培養液で50倍に希釈し、
フィルターろ過滅菌して使用した。 ・ヒト白血球由来インターフェロンーα:5×10
際単位(IU)/ml、(インターフェロン サイエン
ス社、ニュー ブランズウィック、ニュージャージー
(Interferon Science Inc.,
New Brunswick,NJ))の原液を培養液
にて必要濃度に希釈して使用した。 ・Na 51CrO(アイシーエヌ、アービン、カリ
フォルニア(ICN,Irvine,CA)):Rh−
123を用いた細胞傷害活性測定法が、従来の放射性同
位体51Crを用いる細胞傷害活性測定法と同等の結果
を示すか否かを明らかにするために、標的細胞を51
rで標識した。ウシ胎児血清不含RPMI−1640培
地で洗浄したK−562細胞1×10個を200μl
のNa 51CrO液(80μCi)に再懸濁し、3
7℃、5%炭酸ガス下で2時間培養後、ウシ胎児血清含
有RPMI−1640培養液で3回洗浄し、5×10
個/mlの細胞濃度となるように培養液で調製して、
51Cr標識標的細胞懸濁液として用いた。
【0017】
【実施例1】まず、K−562細胞のミトコンドリアに
対するRh−123の親和性を観察するため、本細胞に
よるRh−123の取り込み程度、及び細胞よりのRh
−123の自然遊離程度について検討した。Rh−12
3標識溶液中に、K−562細胞を1×10個/ml
の濃度に懸濁し、37℃、5%炭酸ガス下で15分〜5
時間培養した。一定時間毎に細胞液をサンプリングし、
細胞を洗浄後、96ウエル丸底培養プレートの各ウエル
に100μlの培養液に懸濁した5×10個の細胞を
添加し、100μlの0.1%トリトン−X100溶液
を加えて、細胞を完全に破壊してRh−123を遊離さ
せ、プレートを800rpmで5分間遠心後、上清中の
Rh−123の蛍光強度を測定した。蛍光強度は、各サ
ンプル液100μlを、蛍光測定用96ウエルプレート
であるルミノコンビプレート8(Luminocomb
iplate8 )、ラボシステム、フィンランド(L
absystem,Finland))の各ウエルに移
し、培養液のみを添加したウエルをブランクとして、励
起波長490nm、測定波長530nmで測定した。図
1に示すように、Rh−123の取り込み量は時間とと
もに、ほぼ直線的に増加することが明らかとなった。
【0018】次にRh−123の自然遊離程度について
検討するため、上記条件で2時間Rh−123で標識さ
れたK−562細胞を培養液で3回洗浄後、さらに6時
間培養した。30分毎にサンプリングし、5×10
の細胞内に残存するRh−123の蛍光強度を測定し
た。図1に示すように、Rh−123標識K−562細
胞は、非常に緩慢にRh−123を遊離し、培養3時間
内の、総遊離Rh−123の蛍光強度に対する細胞内に
保持されたRh−123蛍光強度の比率は約85%と高
く、それ以後保持率は減少する傾向を見せ、4時間で7
0%、6時間で55%であった。
【0019】
【図1】
【0020】
【実施例2】上記試験結果より、Rh−123標識K−
562細胞は細胞傷害活性測定に標的細胞として応用可
能であることが明らかとなったので、細胞傷害活性測定
における標的細胞として用いるための最適条件を見出す
ために、K−562細胞の培養条件およびRh−123
による標識条件について検討を行った。標的細胞として
採取する前日に、K−562細胞を種々の細胞濃度で2
0時間培養し、細胞採取洗浄後、上記の方法で細胞をR
h−123で2時間標識し洗浄後、5×10個/ウエ
ルの濃度で96ウエル丸底培養プレートに分配し、さら
に3時間培養して、プレートを遠心後、培養上清中のR
h−123の蛍光強度を、Rh−123自然遊離量とし
て測定した。Rh−123の総遊離による蛍光強度に対
する、自然遊離による蛍光強度の比率を、自然遊離率
(%)とした。細胞採取前日に高い細胞濃度(60×1
個/ml)で培養したK−562細胞を標識した場
合の3時間培養後の自然遊離率は14%で、低い細胞濃
度(1.5×10個/ml)で培養した場合の自然遊
離率19%より、低いことが明らかとなった。
【0021】次にRh−123の濃度の影響について検
討するため、4.2〜66.6μg/mlの異なる濃度
の標識液中でK−562細胞を2時間培養後洗浄し、上
記方法で3時間後のRh−123自然遊離率を測定し
た。自然遊離率はRh−123の濃度によっては余り変
化せず、常に19%以下であった。しかしながらRh−
123の標識細胞よりの総遊離蛍光強度は、高濃度のR
h−123で標識した細胞で最も高く、総遊離蛍光強度
と自然遊離蛍光強度との差が大きくなることから、6
6.6μg/mlの濃度のRh−123で、K−562
細胞を標識するのが最適であることが示された。
【0022】またRh−123による標識培養中のK−
562細胞の濃度の影響について検討したところ、細胞
濃度が1×10個/mlよりも低くても、1×10
個/mlより高くても、自然遊離率が20%より高くな
る傾向が観察され、5〜10×10個/mlの範囲の
細胞濃度で標識した場合は、20%以下であった。以上
の結果より、K−562細胞の最適標識条件として、
1)K−562細胞を前日から培養して、飽和細胞濃度
よりやや低い濃度の時点で、標識細胞として採取する、
2)Rh−123標識液は、66.6μg/mlの濃度
で用いる、3)標識培養中のK−562細胞濃度は、1
×10個/mlとする。
【0023】
【実施例3】細胞傷害活性測定条件の確立 上記条件で標識したK−562細胞を、細胞傷害活性測
定の標的細胞として用いるため、標的細胞濃度および細
胞傷害培養時間の条件について検討した。標識したK−
562細胞を3回培養液で洗浄後、96ウエル丸底培養
プレートの各ウエルに、0.3×10、0.6×10
、1.25×10、2.5×10及び5×10
個の細胞を含む100μlの細胞懸濁液を添加し、2〜
5時間培養した。培養2時間以後、毎時間プレートを取
り出し、Rh−123総遊離蛍光強度および自然遊離蛍
光強度を測定した。
【0024】図2aに示すように、Rh−123総遊離
蛍光強度は、各ウエル中の標識細胞数に対し直線的に増
加すること、自然遊離蛍光強度は培養4時間目までは大
差はなく、5時間以上になると上昇傾向を示した。ま
た、各ウエル中の標的細胞濃度が高い程自然遊離率は低
いこと、また5×10個/ウエルの標的細胞濃度では
培養時間が3時間で、自然遊離率は20%以下となるこ
とが明らかとなった(図2bおよび図2c)。また自然
遊離率が、単に細胞との接触に依っても上昇するか否か
を検討するため、Rh−123標識K−562細胞を、
全く細胞傷害活性のないヒト白血病細胞と共培養した後
に、自然遊離率を測定したが、細胞接触によるRh−1
23の自然遊離率上昇は認められなかった。以上の結果
より、細胞傷害活性測定は、5×10個/ウエルの細
胞濃度のRh−123標識K−562細胞を標的細胞と
して、培養時間3時間で行うのが最適であると結論し
た。
【0025】
【図2a】
【0026】
【図2b】
【0027】
【図2c】
【0028】
【実施例3】Rh−123遊離測定による細胞傷害活性
試験法と放射線同位体51Cr遊離測定による試験法の
比較 本発明による細胞傷害活性測定結果が、従来から一般的
に用いられている51Cr遊離測定結果と同一性がある
か否かを確認するため、細胞傷害活性測定の代表とし
て、ヒト末梢血白血球のNK活性測定を両測定法で並行
して行い、その測定結果を比較した。各々の測定法の標
的細胞としてRh−123標識K−562細胞およびN
51CrO標識K−562細胞を作成した。Rh
−123による標識は上記記載どおり行い、Na 51
CrOによる標識は以下の通り行った。即ち、200
μlのウシ胎児血清不含培養液中にK−562細胞が1
×10個となるように懸濁し、80μCiのNa
51CrOを添加して、37℃、5%炭酸ガス下で2
時間培養した。ウシ胎児血清含有培養液で3回洗浄後、
標識細胞5×10個を含む100μlの細胞懸濁液
を、培養プレートの各ウエルに分配した。
【0029】NK細胞としてヒト末梢血より分離した白
血球の細胞濃度を調整して、Rh−123標識あるいは
51Cr標識標的細胞を5×10個分配された各ウエ
ルに、標的細胞に対する比率が5、10、20、40、
60倍となるように添加した。37℃、5%炭酸ガス下
3時間培養後プレートを800rpm5分間遠心し、各
ウエルより回収した100μlの培養上清中のRh−1
23の蛍光強度あるいは51Cr放射活性を測定した。
各標識物質の自然遊離量を測定するためのウエルには、
NK細胞懸濁液の代わりに培養液100μlのみを、ま
た総遊離量測定用ウエルには0.1%トリトンX−10
0溶液100μlを添加した。各測定値として、3ウエ
ルの測定値の平均値を算出した。NK細胞を細胞傷害性
物質として、NK細胞により傷害された標的細胞から遊
離したRh−123あるいは51Crの量の総遊離量に
対する百分率を、各標識物質の特異遊離率(%)とし
て、以下の式により算出した。この特異遊離率(%)
が、NK細胞などの細胞傷害性物質の特異細胞特異傷害
率に相当する。
【0030】
【数1】
【0031】まず、一人の健常者の血液より白血球を分
離し、両測定法を並行して行い、細胞傷害活性を測定し
た。図3aに示すように、NK細胞/標的細胞の各比率
で、Rh−123特異遊離率と51Cr特異遊離率は非
常に良く一致し、また測定値のバラつきに関しても同程
度であった。さらに、本結果の再現性を確認するため、
他の健常者の血液より白血球を分離し、同様の試験を行
った。その結果を図3bに示す。やはりRh−123特
異遊離率と51Cr特異遊離率は非常に良く一致し、良
好な再現性が認められた。また測定値のバラつきに関し
ては、この実験ではRh−123による試験の方がバラ
つきが少なかったのに対して、51Cr特異遊離測定に
おける測定値のバラつきが、特に低いNK細胞/標的細
胞の比率で観察された。
【0032】
【図3a】
【0033】
【図3b】
【0034】また両測定法による結果が、真に相関する
か否かを統計学的に解析した。NK細胞/標的細胞の各
比率におけるRh−123特異遊離率と51Cr特異遊
離率をY軸とX軸にそれぞれプロットし、これらの点に
ついて直線回帰分析を行った(図4)。回帰直線の傾き
は1.034±0.0244、rは0.976の値が
得られ、両測定法の非常に高い相関性が確認された。
【0035】
【図4】
【0036】
【実施例4】さらに本発明におけるRh−123を用い
る細胞傷害活性測定法が、インターフェロン−α(IN
F−α)のような細胞傷害活性促進あるいは修飾物質の
生物活性測定にも応用できるか否かを検討した。ヒト末
梢血白血球を分離洗浄後、10、100、または1,0
00国際単位(IU)/mlのINF−α存在下に、3
7℃、5%炭酸ガスの環境で2時間培養した。対照群の
白血球は培養液のみで培養した。細胞を培養液で洗浄
後、Rh−123標識K−562細胞5×10個を分
配された各ウエルに、NK細胞/標的細胞の比率が、1
0:1または20:1となるように添加し、3時間培養
後、Rh−123特異遊離率を求めて、各濃度のINF
−αの白血球中のNK細胞傷害活性への影響を調べた。
図5に示すように、白血球をINF−αで2時間前処理
することにより、細胞傷害活性は未処理の白血球の細胞
傷害活性と比較して、著しく促進されていた。また白血
球洗浄後残存する微量のINF−αが、直接Rh−12
3標識K−562細胞に作用して、Rh−123の遊離
を起こす可能性を検討するため、1,000IU/ml
のINF−αをRh−123標識K−562細胞に3時
間直接作用させて、Rh−123の自然遊離率を測定し
たが、INF−αが直接的に標的細胞からのRh−12
3遊離を促進することは、全く無いことが確認された。
従って、本発明のRh−123標識標的細胞を用いる細
胞傷害活性測定法は、一般的細胞傷害活性測定法として
ばかりでなく、INF−αのような細胞傷害活性を促進
する細胞傷害修飾性物質の生物活性にも応用できること
が明らかである。
【0037】
【図5】
【0038】
【発明の効果】Rh−123によって標識されたK−5
62標的細胞は、細胞傷害活性のない細胞との接触では
全くRh−123特異遊離を起こさず、NK細胞やLA
K細胞あるいは細胞傷害性物質等によって細胞傷害を受
けた場合にのみ、Rh−123を特異的に遊離する。ま
た、放射性同位体51Cr標識標的細胞を用いる従来の
細胞傷害活性測定法と比較した結果、両測定法による測
定値の相関性は非常に高く、Rh−123遊離測定法の
測定感度も精度も、51Crを用いる細胞傷害活性測定
法の感度と精度とほぼ同等、あるいはそれ以上であっ
た。従って、本発明のRh−123を用いる細胞傷害活
性測定法は、51Cr等の放射性同位体を用いず、安全
かつ安価に実施可能であり、信頼性の高い結果が得ら
れ、且つ環境汚染などの問題も無い測定法である。
【図面の簡単な説明】
【図1】実施例1における、K−562細胞によるRh
−123の取り込みと細胞内保持の時間的経過を示すグ
ラフである。
【図2a】実施例2における、96ウエル培養プレート
各ウエル内のRh−123標識K−562細胞濃度と、
Rh−123総遊離蛍光強度および自然遊離蛍光強度と
の関係を示すグラフである。
【図2b】実施例2における、Rh−123標識K−5
62細胞の96ウエル培養プレート内での培養時間とR
h−123自然遊離率との関係を示すグラフである。
【図2c】実施例2における、Rh−123標識K−5
62細胞の濃度と、Rh−123自然遊離率との関係を
示すグラフである。
【図3a】実施例3におけるヒト末梢血白血球のNK活
性測定において、本発明測定法により得られた特異遊離
率と、51Cr標識標的細胞を使用した測定法により得
られた特異遊離率とを比較したグラフである。
【図3b】実施例3におけるヒト末梢血白血球のNK活
性測定の再現性試験において、本発明測定法により得ら
れた特異遊離率と、51Cr標識標的細胞を使用した測
定法により得られた特異遊離率とを比較したグラフであ
る。
【図4】実施例3におけるヒト末梢血白血球のNK活性
測定において、本発明の測定法と51Cr標識標的細胞
を使用した測定法による特異遊離率(%)測定結果の相
関性を示すグラフである。
【図5】実施例4における、INF−αによるヒト末梢
血白血球のNK活性促進作用を、本発明の測定法で測定
し得ることを示すグラフである。

Claims (4)

    【特許請求の範囲】
  1. 【請求項1】 細胞傷害活性測定において、ローダミン
    −123標識標的細胞とキラー細胞あるいは細胞傷害性
    物質とを共培養し、遊離されるローダミン−123の量
    を測定することによって、該キラー細胞または細胞傷害
    性物質の標的細胞に対する細胞傷害活性を決定すること
    を特徴とする細胞傷害活性測定法
  2. 【請求項2】 遊離されるローダミン−123の量を測
    定することが、ローダミン−123の蛍光強度を測定す
    ることである請求項1記載の細胞傷害活性測定法
  3. 【請求項3】 キラー細胞がナチュラルキラー細胞また
    はリンホカイン活性化キラー細胞である請求項1〜2記
    載の細胞傷害活性測定法
  4. 【請求項4】 細胞傷害性物質が、細胞傷害性サイトカ
    イン、細胞毒リシンまたは抗ガン剤のいずれかである請
    求項1〜2記載の細胞傷害活性測定法
JP10221007A 1998-06-29 1998-06-29 細胞傷害活性測定法 Pending JP2000014399A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10221007A JP2000014399A (ja) 1998-06-29 1998-06-29 細胞傷害活性測定法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10221007A JP2000014399A (ja) 1998-06-29 1998-06-29 細胞傷害活性測定法

Publications (1)

Publication Number Publication Date
JP2000014399A true JP2000014399A (ja) 2000-01-18

Family

ID=16760024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10221007A Pending JP2000014399A (ja) 1998-06-29 1998-06-29 細胞傷害活性測定法

Country Status (1)

Country Link
JP (1) JP2000014399A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170012343A (ko) 2014-07-07 2017-02-02 다이킨 고교 가부시키가이샤 퍼플루오로(폴리)에테르 변성 아미드 실란 화합물을 포함하는 조성물
KR20180132845A (ko) 2016-09-08 2018-12-12 다이킨 고교 가부시키가이샤 퍼플루오로(폴리)에테르 변성 아미드실란 화합물을 포함하는 조성물

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170012343A (ko) 2014-07-07 2017-02-02 다이킨 고교 가부시키가이샤 퍼플루오로(폴리)에테르 변성 아미드 실란 화합물을 포함하는 조성물
KR20180132845A (ko) 2016-09-08 2018-12-12 다이킨 고교 가부시키가이샤 퍼플루오로(폴리)에테르 변성 아미드실란 화합물을 포함하는 조성물

Similar Documents

Publication Publication Date Title
Corash et al. Heterogeneity of human whole blood platelet subpopulations. I. Relationship between buoyant density, cell volume, and ultrastructure
Code Histamine in blood
EP0912085B1 (en) Precise efficacy assay methods for active agents including chemotherapeutic agents
JP4151986B2 (ja) リンパ球機能の測定方法
AU2005218769B8 (en) Pharmacodynamic assays using flow cytometry
JPH08506421A (ja) 細胞関連分子を検出し、その量を測定するための方法および器具
Chittur et al. Shear stress effects on human T cell function
CA2440733C (en) Diagnosis of metal allergy through cytokine release by t-cells in vitro
PT603107E (pt) Processo para a quantificacao simultanea numa unica medicao dos principais tipos de linfocitos humanos e dos seus subconjuntos
Reisner et al. Allogeneic hemopoietic stem cell transplantation using mouse spleen cells fractionated by lectins: in vitro study of cell fractions.
JP2000014399A (ja) 細胞傷害活性測定法
JP3190350B2 (ja) Nk細胞の活性を測定するための試験方法
Duerst et al. A sensitive assay of cytotoxicity applicable to mixed cell populations
Matsson et al. Evaluation of flow cytometry and fluorescence microscopy for the estimation of bovine mononuclear phagocytes
US20040197836A1 (en) Measurement of F-actin in whole blood cellular subsets
Shivers et al. Freeze-fracture analysis of intramembrane particles of erythrocytes from normal, dystrophic, and carrier mice. A possible diagnostic tool for detection of carriers of human muscular dystrophy.
Lowenhaupt et al. A quantitative method to measure human platelet chemotaxis using indium-111-oxine-labeled gel-filtered platelets
Loftenius et al. No evidence for specific in vitro lymphocyte reactivity to HgCl2 in patients with dental amalgam‐related contact lesions
Nanni-Costa et al. Flow cytometry evaluation of urinary sediment in renal transplantation
EP1170589A1 (en) Method for histocompatibility testing
Whitcomb et al. Abnormal lymphocyte protein synthesis in bronchogenic carcinoma
US20070243576A1 (en) Method to confirm immunosuppression in human patients by measuring lymphocyte activation
Al-Omary et al. Lymphocyte Apoptosis in Third Trimester of Pregnancy.
SE467498B (sv) Foerfarande foer in vitro analys av kvicksilverallergier
US7300763B2 (en) Method of testing myelotoxicity with the use of flow cytometer