JP2000012491A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JP2000012491A
JP2000012491A JP10175466A JP17546698A JP2000012491A JP 2000012491 A JP2000012491 A JP 2000012491A JP 10175466 A JP10175466 A JP 10175466A JP 17546698 A JP17546698 A JP 17546698A JP 2000012491 A JP2000012491 A JP 2000012491A
Authority
JP
Japan
Prior art keywords
film
polishing
polished
semiconductor device
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10175466A
Other languages
Japanese (ja)
Other versions
JP3147089B2 (en
Inventor
Yukishige Saito
幸重 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP17546698A priority Critical patent/JP3147089B2/en
Publication of JP2000012491A publication Critical patent/JP2000012491A/en
Application granted granted Critical
Publication of JP3147089B2 publication Critical patent/JP3147089B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To flatten the surface of a polished film body without depending on the roughness/denseness of a pattern and without over-polishing and under- polishing by pouring abrasive accelerator into the surface part of the polished film body and chemically/mechanically polishing it with a polishing pad having a specified compression elastic modulus. SOLUTION: A stretch embedded silicon oxide film 5 whose thickness is 1-10 times as much as trench depth, 1000 nm, for example, is deposited by a bias application CVD method. A large quantity of boron 6 is doped so that it is poured into the surface part of the trench embedded silicon oxide film 5, especially, the tip part 7 of a surface projecting part by 80 deg. rotation oblique ion injection, for example. Then, polishing is conducted until a polishing protection film 3 at a base is exposed by using a polishing pad whose compression elastic modulus is 80% and above, 92%, for example, from such state. At that time, slurry where neutral colloidal silica and alkali colloidal silica are dispersed is used as an abrasive material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置の製造方
法に関するものであり、特に詳しくは、半導体基板上に
形成された、表面に凹凸を有する被研磨膜体の表面を、
化学的機械的研磨(Chemical Mechani
cal Polishing、略称CMP)により略完
全に平坦化する事が可能な半導体装置の製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for polishing a surface of a film-to-be-polished having a concave and convex surface formed on a semiconductor substrate.
Chemical mechanical polishing (Chemical Mechani)
The present invention relates to a method for manufacturing a semiconductor device that can be almost completely planarized by cal polishing (abbreviated to CMP).

【0002】[0002]

【従来の技術】半導体装置の超微細化及び超高集積化に
より、CMPによる平坦化技術が用いられる様になっ
た。この技術は、従来、例えば単層配線や多層配線にお
ける各層の配線間や層間に形成される絶縁膜の表面を平
坦化する場合に用いられ、かなりの成功を収めつつあ
る。近年になって、このCMPによる平坦化技術を、所
謂トレンチ素子分離に応用する必要性が生じてきた。
2. Description of the Related Art With the miniaturization and ultra-high integration of semiconductor devices, planarization technology by CMP has come to be used. This technique is conventionally used, for example, when flattening the surface of an insulating film formed between wirings of each layer or between layers in a single-layer wiring or a multi-layer wiring, and is becoming quite successful. In recent years, it has become necessary to apply this planarization technique by CMP to so-called trench element isolation.

【0003】従来の配線間や層間に形成される絶縁膜の
平坦化の場合には、下地の配線パターンのピッチ(ルー
ル)が約0.8乃至1.0μmと比較的緩慢であり、し
かも粗なパターンと密なパターンとの密度の差も小さい
為、半導体基板の全体に亘る平坦化が容易に行えた。
In the case of the conventional flattening of an insulating film formed between wirings or between layers, the pitch (rule) of the underlying wiring pattern is relatively slow, about 0.8 to 1.0 μm, and is rough. Since the difference between the density of the simple pattern and the density of the dense pattern is small, the entire semiconductor substrate can be easily flattened.

【0004】然しながら、当該トレンチ素子分離の場合
には、例えばMOSトランジスタ等の素子領域を互いに
電気的に絶縁する目的で、例えばシリコン半導体基板に
設けられた溝(トレンチ)の内部に絶縁膜を堆積し、例
えば当該絶縁膜の上面が当該シリコン半導体基板の表面
と1つの平面を形成する様に、当該絶縁膜の上面を研磨
平坦化する事で素子分離領域を形成するが、素子領域が
0.6μm以下、素子分離領域が0.4μm以下といっ
た非常に微細なパターンを形成し、又数μmオーダーの
孤立した素子領域と、数十μmオーダーのパターンが更
に集合して形成された数百μmオーダーの擬似大面積素
子領域とが互いに隣接するなど、パターンの粗密も激し
い為、半導体基板の全域に亘って一様に平坦化する事が
極めて難しい状況であるが、当該素子分離領域の平坦化
の場合には、配線間や層間に形成される絶縁膜の平坦化
の場合よりも、素子特性への影響が大きい為、完全な平
坦化が要求される。
However, in the case of the trench element isolation, for example, an insulating film is deposited inside a trench (trench) provided in a silicon semiconductor substrate for the purpose of electrically insulating element regions such as MOS transistors from each other. Then, for example, the element isolation region is formed by polishing and flattening the upper surface of the insulating film so that the upper surface of the insulating film forms one plane with the surface of the silicon semiconductor substrate. An extremely fine pattern of 6 μm or less and an element isolation region of 0.4 μm or less is formed. An isolated element region of several μm order and a pattern of several tens of μm are further assembled to form several hundred μm order. In such a situation, it is extremely difficult to uniformly flatten the entire area of the semiconductor substrate because the pattern density is intense, for example, the pseudo large area element regions are adjacent to each other. However, in the case of flattening the element isolation region, complete flattening is required because the effect on element characteristics is greater than in the case of flattening an insulating film formed between wirings or between layers. .

【0005】当該トレンチ内絶縁膜の完全な平坦化を実
現する為に先づ考えられた事は、例えば特開平7−28
8253号公報に記載されている様に、下地の基板表面
上に、被研磨膜体よりも研磨速度の遅い物質から成る保
護膜体を形成しておく事である。これにより、研磨パッ
ドがあるパターンで研磨保護膜まで到達した場合、研磨
速度が低下する為、他のパターン部分での研磨の遅れが
回復出来、従ってパターン密度の違いによって研磨速度
にばらつきがある場合でも、完全な平坦化が可能になる
と考えられていた。ところが、近年のロジックデバイス
等の非常に粗密の差の大きなパターンにおいては、素子
領域が粗なパターンと密なパターンとでは研磨速度が最
大で1000倍程度異なる為、半導体基板全域に亘る平
坦化が困難である。
What has been considered in order to realize the complete flattening of the insulating film in the trench is disclosed in, for example, Japanese Patent Laid-Open No. 7-28.
As described in Japanese Patent No. 8253, a protective film made of a material having a lower polishing rate than the film to be polished is formed on the surface of the underlying substrate. As a result, when the polishing pad reaches the polishing protective film in a certain pattern, the polishing rate is reduced, so that the polishing delay in other pattern portions can be recovered, and thus the polishing rate varies depending on the pattern density. However, it was thought that complete planarization would be possible. However, in a pattern having a very large difference in density, such as a recent logic device, the polishing rate differs between a pattern having a coarse element region and a pattern having a high density by about 1000 times at the maximum. Have difficulty.

【0006】CMPを用いたトレンチ素子分離絶縁膜の
平坦化法として、例えば、1989年、アイ・イー・イ
ー・イー・インターナショナル・エレクトロンデバイセ
ス・ミーティング61項〜64項に示された方法、或い
は特開平7−147278号公報に開示されている方法
を、図3に模式的に示した。先づ、図3(a)に示した
様に、例えばp型のシリコン半導体基板21上に順次積
層形成されたシリコン酸化膜22及びシリコン窒化膜2
3をフォトリソグラフィ及び反応性イオンエッチング法
によりパターニング処理し、次いで、当該パターニング
処理されたシリコン酸化膜22及びシリコン窒化膜23
をマスクとして、反応性イオンエッチングにより、間隔
及び幅の異なる多数のトレンチA3を形成する。次に、
当該トレンチA3の内部を熱酸化してシリコン酸化膜2
4を形成し、更に、CVD法を用いてトレンチ埋め込み
絶縁膜25を堆積する。次に、図3(b)に示した様
に、当該トレンチA3をパターニングする際に用いたフ
ォトリソグラフィーマスクの反転マスクを用いて、フォ
トリソグラフィ工程を行い、当該トレンチA3上の当該
トレンチ埋め込み絶縁膜25の凹部分にレジストマスク
25を形成する。次に、図3(c)に示した様に、反応
性イオンエッチング法を用い、素子領域上のトレンチ埋
め込み絶縁膜25の表面が素子分離領域上のトレンチ埋
め込み絶縁膜25の表面と同程度の高さになるように、
絶縁膜25を選択的にエッチングする。次に、図3
(d)に示した様に、残った角状の部分と、素子領域上
及び素子分離領域上のトレンチ埋め込み絶縁膜25とを
CMPを用いて平坦化し、互いに分離したトレンチ埋め
込み絶縁膜25を形成する。
As a method of planarizing a trench element isolation insulating film using CMP, for example, a method described in the EE International Electron Devices Meeting, paragraphs 61 to 64 in 1989, or The method disclosed in JP-A-7-147278 is schematically shown in FIG. First, as shown in FIG. 3A, for example, a silicon oxide film 22 and a silicon nitride film 2 are sequentially formed on a p-type silicon semiconductor substrate 21.
3 by photolithography and reactive ion etching, and then the patterned silicon oxide film 22 and silicon nitride film 23
As a mask by reactive ion etching to form a number of different trench A 3 spaced and width. next,
Silicon oxide film 2 the inside of the trench A 3 is thermally oxidized
4 is formed, and a trench buried insulating film 25 is further deposited by using the CVD method. Next, as shown in FIG. 3 (b), by using the inverted mask photolithographic mask used in patterning the trench A 3, perform a photolithography process, embedding the trench on the trench A 3 A resist mask 25 is formed in the concave portion of the insulating film 25. Next, as shown in FIG. 3 (c), the surface of the trench buried insulating film 25 on the element region is substantially equal to the surface of the trench buried insulating film 25 on the element isolation region by using the reactive ion etching method. So that it is tall,
The insulating film 25 is selectively etched. Next, FIG.
As shown in (d), the remaining corner portions and the trench buried insulating film 25 on the element region and the element isolation region are flattened by CMP to form the trench buried insulating film 25 separated from each other. I do.

【0007】しかしながら、この方法においては、パタ
ーンの粗密に依存しない平坦化が可能になるが、フォト
リソグラフィ工程やエッチング工程が伴うため、マスク
設計の必要性、工程数の増加により製造コストが増大し
てしまうといった問題がある。そこで、反転マスクを用
いずにパターンの粗密に依存しない平坦化を実現するト
レンチ素子分離絶縁膜の形成方法として、特公平7−1
11962号公報に開示された平坦化技術を、図4に模
式的に示した。
However, this method enables flattening independent of pattern density, but requires a photolithography step and an etching step, which necessitates mask design and increases the number of steps, resulting in an increase in manufacturing cost. Problem. Therefore, as a method of forming a trench element isolation insulating film that realizes planarization independent of pattern density without using an inversion mask, Japanese Patent Publication No.
FIG. 4 schematically shows a flattening technique disclosed in Japanese Patent Publication No. 11962.

【0008】先づ、図4(a)に示した様に、例えばp
型のシリコン半導体基板31上に順次積層形成されたシ
リコン酸化膜32及びシリコン窒化膜33をフォトリソ
グラフィ及び反応性イオンエッチング法によりパターニ
ング処理し、次いで、当該パターニング処理されたシリ
コン酸化膜32及びシリコン窒化膜33をマスクとし
て、反応性イオンエッチングにより、間隔及び幅の異な
るトレンチA4を形成する。次に、当該トレンチA4
内部を熱酸化してシリコン酸化膜34を形成し、更に、
熱CVD法を用いてトレンチ埋め込み絶縁膜35を堆積
する。次に、トレンチ埋め込み絶縁膜35よりも研磨速
度の遅いシリコン窒化膜36を堆積する。次に、初期研
磨を行うと、図4(b)に示した様に、素子領域と素子
分離領域とが交互に形成される領域(以下これをL/S
パターンと言う)において、数μm乃至数十μmの間隔
のL/Sパターンでは、研磨時に研磨パッドに接する各
凸部面積が小さいことから、研磨速度が速いため、すぐ
に段差が低減されるが、パッドに接する凸部面積が比較
的大きい数百μmのL/Sパターンでは、数μm乃至数
十μmのL/Sパターンに比べて研磨速度が遅いため、
段差は低減され難い。然しながら、数百μmL/Sパタ
ーン部は、研磨速度が遅いため、凸部のシリコン窒化膜
36のみを選択的に研磨し、凹部のシリコン窒化膜36
を選択的に残存させる事が出来る為、引き続いて研磨を
行うと、図4(c)に示した様に、数μm乃至数十μm
のL/Sパターンでは段差が完全に平坦化され、研磨速
度が低下する一方、数百μmのL/Sパターンでは、凹
部に研磨保護膜であるシリコン窒化膜36が残っている
ため、凸部のトレンチ埋め込み絶縁膜35のみを選択的
に研磨するこが出来る。従って、パターンの粗密に依存
しない研磨が行えるため、更に研磨を行うと、図4
(d)に示した様に、互いに分離したトレンチ埋め込み
絶縁膜35を形成する。
First, for example, as shown in FIG.
The silicon oxide film 32 and the silicon nitride film 33 sequentially formed on the silicon semiconductor substrate 31 are patterned by photolithography and reactive ion etching, and then the patterned silicon oxide film 32 and silicon nitride the film 33 as a mask by reactive ion etching to form a trench a 4 having different intervals and widths. Then, the inside of the trench A 4 to form a silicon oxide film 34 by thermal oxidation, further,
A trench buried insulating film 35 is deposited by using a thermal CVD method. Next, a silicon nitride film 36 having a lower polishing rate than the trench buried insulating film 35 is deposited. Next, when initial polishing is performed, as shown in FIG. 4B, a region where element regions and element isolation regions are alternately formed (hereinafter referred to as L / S).
In the case of an L / S pattern having an interval of several μm to several tens of μm, since the area of each convex portion in contact with the polishing pad during polishing is small, the polishing speed is high, and the step is immediately reduced. Since the L / S pattern of several hundred μm having a relatively large convex area in contact with the pad has a lower polishing rate than the L / S pattern of several μm to several tens μm,
The step is difficult to reduce. However, since the polishing rate of the several hundred μmL / S pattern portion is low, only the silicon nitride film 36 in the convex portion is selectively polished and the silicon nitride film 36 in the concave portion is selectively polished.
Can be selectively left. If the polishing is subsequently performed, several μm to several tens μm are obtained as shown in FIG.
The L / S pattern completely flattens the step and lowers the polishing rate, while the L / S pattern of several hundred μm has the silicon nitride film 36 serving as a polishing protective film remaining in the concave portion, and thus the convex portion. Only the trench buried insulating film 35 can be selectively polished. Therefore, the polishing can be performed without depending on the density of the pattern.
As shown in (d), the trench-buried insulating films 35 separated from each other are formed.

【0009】然しながら、当該特公平7−111962
号公報に開示されたトレンチ素子分離絶縁膜の平坦化方
法を用いたとしても、実際的には、数μm乃至数十μm
のL/Sパターンと数百μmのL/Sパターンとが混在
する半導体装置を、パターンの粗密に依存しないように
完全に平坦化することは困難で、シリコン窒化膜32ま
で研磨を行うと、広い幅のトレンチ素子分離絶縁膜のオ
ーバーポリッシング(ディッシング)は抑制できるが、
例えば、図4と同様の工程を示した図5の(d)に見ら
れる様に、広い幅の素子領域上では研磨速度が遅いた
め、十分に研磨されないアンダーポリッシングの状態と
なってしまう。
[0009] However, the Japanese Patent Publication No. 7-111962
In practice, even when the method for planarizing a trench element isolation insulating film disclosed in
It is difficult to completely planarize a semiconductor device in which both the L / S pattern and the L / S pattern of several hundred μm are mixed without depending on the density of the pattern. If the silicon nitride film 32 is polished, Over-polishing (dishing) of a wide trench element isolation insulating film can be suppressed,
For example, as shown in FIG. 5D showing a process similar to that of FIG. 4, the polishing rate is low on the element region having a wide width, so that the polishing is not sufficiently polished, resulting in an under-polishing state.

【0010】尚、特開平9−162144号公報には、
CMPにより層間絶縁膜を平坦化する際に、当該層間絶
縁膜の凸部分にAsイオン等を注入して軟化させ、凸部
分以外との研磨選択比を高める事で、凸部分以外でのデ
ィッシングの発生を防止する事が開示されているが、本
発明に於ける様に、圧縮弾性率が80%以上の高硬質研
磨パッドの使用に際して、被研磨膜体に研磨促進剤を注
入する事で、これらの相乗的な効果を発現させて、被研
磨表面の段差が100Å又はそれ以下、ディッシング量
が100Å又はそれ以下の平坦度を得るという、意想外
の効果を発揮する技術については全く開示がない。
Japanese Patent Application Laid-Open No. 9-162144 discloses that
When planarizing an interlayer insulating film by CMP, As ions or the like are implanted into a convex portion of the interlayer insulating film to soften the film, thereby increasing a polishing selectivity with respect to a portion other than the convex portion, thereby reducing dishing in a portion other than the convex portion. Although it is disclosed to prevent the occurrence, as in the present invention, when a high-hardness polishing pad having a compression elastic modulus of 80% or more is used, a polishing accelerator is injected into a film body to be polished, There is no disclosure of a technique that exerts an unexpected effect of expressing these synergistic effects and obtaining a flatness with a step of the polished surface of 100 ° or less and a dishing amount of 100 ° or less. .

【0011】[0011]

【発明が解決しようとする課題】従って、本発明の目的
は、上記した従来技術の欠点を改良し、数μm乃至数十
μmのL/Sパターンと数百μmのL/Sパターンとが
混在する様な場合にも、この様なパターンの粗密に依存
せずに、半導体基板上に形成された、表面に凹凸を有す
る被研磨膜体の表面を、オーバーポリッシング(ディッ
シング)やアンダーポリッシングを起さずに、CMPに
より略完全に平坦化する事が出来る半導体装置の製造方
法を提供するものである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to improve the above-mentioned disadvantages of the prior art, and to mix L / S patterns of several μm to several tens μm and L / S patterns of several hundred μm. In such a case, the surface of the polished film body having irregularities on the surface formed on the semiconductor substrate may be subjected to overpolishing (dishing) or underpolishing without depending on the density of the pattern. It is another object of the present invention to provide a method for manufacturing a semiconductor device which can be almost completely planarized by CMP.

【0012】[0012]

【課題を解決するための手段】本発明は上記した目的を
達成する為、基本的には以下に記載されたような技術構
成を採用するものである。
SUMMARY OF THE INVENTION The present invention basically employs the following technical configuration to achieve the above object.

【0013】即ち、本発明に係る第1の態様としては、
半導体基板上に形成された、表面に凹凸を有する被研磨
膜体の表層部分に研磨促進剤を注入し、然る後に当該被
研磨膜体を圧縮弾性率が80%又はそれ以上の研磨パッ
ドを用いる化学的機械的研磨(CMP)法により研磨す
る半導体装置の製造方法である。
That is, as a first aspect according to the present invention,
A polishing accelerator is injected into the surface layer portion of the film body having irregularities on the surface formed on the semiconductor substrate, and then the film body is polished with a polishing pad having a compression modulus of 80% or more. This is a method for manufacturing a semiconductor device to be polished by a chemical mechanical polishing (CMP) method to be used.

【0014】又、本発明に係る第2の態様としては、半
導体基板上に形成された、表面に凹凸を有する被研磨膜
体の表層部分に研磨促進剤を注入し、その後当該被研磨
膜体上に、当該被研磨膜体よりも研磨速度の遅い物質か
ら成る保護膜体を積層形成し、然る後に当該保護膜体及
び当該被研磨膜体を圧縮弾性率が80%又はそれ以上の
研磨パッドを用いるCMP法により研磨する半導体装置
の製造方法である。
According to a second aspect of the present invention, a polishing accelerator is injected into a surface layer portion of a polished film formed on a semiconductor substrate and having irregularities on its surface. A protective film made of a material having a lower polishing rate than the film to be polished is formed thereon, and then the protective film and the film to be polished are polished with a compression modulus of 80% or more. This is a method for manufacturing a semiconductor device which is polished by a CMP method using a pad.

【0015】[0015]

【発明の実施の形態】本発明にかかる当該半導体装置の
製造方法は、上記したような構成を採用しており、その
特徴は、被研磨膜体に研磨促進剤を注入し、然る後に当
該被研磨膜体を圧縮弾性率が80%又はそれ以上の研磨
パッドを用いるCMP法により研磨する事で、オーバー
ポリッシング(ディッシング)やアンダーポリッシング
を起さずに、被研磨膜体を略完全に平坦化する事が可能
となる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The method of manufacturing a semiconductor device according to the present invention employs the above-described configuration. The feature of the method is that a polishing accelerator is injected into a film to be polished, and thereafter, the polishing accelerator is applied. The polishing target is polished by a CMP method using a polishing pad having a compression elastic modulus of 80% or more, so that the polishing target is substantially completely flat without causing overpolishing (dishing) or underpolishing. It becomes possible to be.

【0016】ここで、当該圧縮弾性率とは、図6により
説明した様に、当該研磨パッドが、研磨操作開始時に、
当該被研磨膜体から離隔して、無負荷の状態の厚みをT
1、研磨操作中に、当該被研磨膜体に当接して、圧縮変
形された状態の厚みをT2、研磨操作が終了し、当該被
研磨膜体から再び離隔して、圧縮変形が回復された状態
の厚みをT3としたときの、当該圧縮変形の量に対する
当該変形回復の量の度合いを百分率で表したものであ
り、通常は当該研磨パッドが初めて使用されたときの測
定で、当該圧縮弾性率を決定する。詳しい測定原理は、
「CMPのサイエンス」、第4章、サイエンスフォーラ
ム社発行(1997)に掲載されている。従って、圧縮
弾性率が80%又はそれ以上と高い事は、当該研磨パッ
ドが圧縮変形しにくく、高硬質である事を意味する。
尚、かかる研磨パッドとしては、当業界に於いて公知
の、例えば弾性発泡体と研磨布との2層構造のものなど
を使用する事が出来る。
Here, as described with reference to FIG. 6, the compression elastic modulus means that when the polishing pad starts polishing operation,
Separated from the film body to be polished, the thickness in an unloaded state is T
1. During the polishing operation, the thickness in the state of being compressed and deformed in contact with the film body to be polished is T2, and the polishing operation is completed, separated from the film body to be polished again, and the compression deformation is recovered. When the thickness of the state is T3, the degree of the amount of the deformation recovery with respect to the amount of the compression deformation is expressed as a percentage, and is usually measured when the polishing pad is used for the first time, and the compression elasticity is usually measured. Determine the rate. The detailed measurement principle is
"Science in CMP", Chapter 4, published by Science Forum (1997). Therefore, the fact that the compression elastic modulus is as high as 80% or more means that the polishing pad hardly undergoes compression deformation and is highly rigid.
In addition, as such a polishing pad, a pad having a two-layer structure of an elastic foam and a polishing cloth known in the art can be used.

【0017】本発明者のこれ迄の見解では、この様な高
硬質の研磨パッドを使用すると、研磨の均等化は容易と
なる可能性があるものの、下地の半導体基板に機械的応
力が加わり、例えばルールが0.5μmといった微細な
素子領域に機械的なダメージを与え、MOSトランジス
タ等素子の特性及び信頼性を大幅に悪化させる可能性が
大きい為、使用する研磨パッドの候補とはなり難いもの
であった。
According to the present inventor's opinion, the use of such a high-hardness polishing pad may facilitate the equalization of polishing. However, mechanical stress is applied to the underlying semiconductor substrate. For example, it is unlikely to be a candidate for a polishing pad to be used because a rule may cause mechanical damage to a fine element region such as 0.5 μm and greatly deteriorate characteristics and reliability of an element such as a MOS transistor. Met.

【0018】然しながら、本発明者は、当該下地の半導
体基板への機械的応力を緩和する方策について鋭意検討
し、且つ実験を重ねた結果、かかる高硬質の研磨パッド
を使用する前提条件として、半導体基板上に形成された
当該被研磨膜体の表層部分の全域、ないしは凸部分等特
定の部位に研磨促進剤を注入する事で、当該高硬質研磨
パッドを使用したときの研磨量が飛躍的に向上する事、
つまり、圧縮弾性率が低い従来の硬質研磨パッドを使用
した場合には見られない程に、格段に研磨量が増大する
事、又その上、意想外にも、パターンの粗密にばらつき
がある場合にも、これら研磨促進剤の注入と高硬質研磨
パッドの使用により、粗なパターンにおいても、密なパ
ターンにおいても段差の極めて少ない表面が得られ、し
かもオーバーポリッシング(ディッシング)やアンダー
ポリッシングも著しく低減するという知見を得て、本発
明を完成するに至った。
However, the present inventor has intensively studied measures to alleviate the mechanical stress on the underlying semiconductor substrate, and as a result of repeated experiments, as a precondition for using such a high-hardness polishing pad, it has been found that By injecting a polishing accelerator into the entire surface layer portion of the film body to be polished formed on the substrate, or into a specific portion such as a convex portion, the polishing amount when using the high-hard polishing pad is dramatically increased. To improve,
In other words, when the conventional hard polishing pad having a low compression elastic modulus is used, the polishing amount is significantly increased so as not to be seen, and moreover, unexpectedly, when the pattern density varies unevenly. In addition, the injection of these polishing accelerators and the use of a high-hardness polishing pad can provide a surface with very few steps even in a rough pattern or a dense pattern, and significantly reduce overpolishing (dishing) and underpolishing. The inventor has found that the present invention is completed.

【0019】即ち、図7には、本発明に係る例えば当該
圧縮弾性率が92%の高硬質研磨パッドを使用して、研
磨促進剤の注入をしていないシリコン酸化膜(アンドー
プSiO2 )と、TEOS・BPSG膜とを研磨した場
合の研磨量を比較して示した。図から明らかな様に、研
磨促進剤としてホウ素(B)及びリン(P)を含有する
TEOS・BPSG膜の場合には、不純物を含有しない
被研磨膜体よりも研磨量が約3倍も速い事が分った。
That is, FIG. 7 shows a silicon oxide film (undoped SiO 2 ) in which a polishing accelerator has not been injected by using a high-hard polishing pad having a compression modulus of 92% according to the present invention. , And the polishing amount when the TEOS / BPSG film was polished are shown in comparison. As is clear from the figure, in the case of the TEOS / BPSG film containing boron (B) and phosphorus (P) as the polishing accelerator, the polishing amount is about three times faster than the polishing target body containing no impurities. I understood that.

【0020】又、図8に示した様に、本発明に係る高硬
質研磨パッド及び従来の普通硬質研磨パッドを使用し
て、以下の実施例において詳述するとおり、10μmの
L/Sパターンと3mm□擬似大面積パターンの各トレ
ンチ素子分離絶縁膜を研磨したあとの、表面の段差を比
較して示しているが、圧縮弾性率80%又はそれ以上、
例えば92%の本発明に係る高硬質研磨パッドを使用す
ると、パターンの粗密に依存せずに、4分程度で段差は
100Å以下と格段に低減され、又図4及び図5に示し
た従来の方法の様に、擬似大面積パターンでアンダーポ
リッシングを生ずるという不都合も生じないことが分っ
た。この現象を利用する事により、広い素子領域におい
ても被研磨膜体の凸部分を選択的に研磨する事が可能と
なる。これに対し、圧縮弾性率が80%未満、例えば7
0%の硬質研磨パッドでは、4分の研磨を行っても、特
に擬似大面積のパターンでは段差が1000Åもあり、
これ以上の長時間の研磨を行っても段差は低減されな
い。
As shown in FIG. 8, a 10 μm L / S pattern and a high-hardness polishing pad according to the present invention and a conventional ordinary hard polishing pad are used as described in the following Examples. 3 mm square surface level difference after polishing each trench element isolation insulating film of the pseudo large area pattern is shown for comparison, and the compression modulus is 80% or more.
For example, when a high-hardness polishing pad of 92% according to the present invention is used, the step is remarkably reduced to 100 ° or less in about 4 minutes without depending on the density of the pattern, and the conventional method shown in FIGS. It has been found that there is no disadvantage that underpolishing occurs in a pseudo large area pattern as in the method. By utilizing this phenomenon, it is possible to selectively polish the convex portion of the film body to be polished even in a wide element region. On the other hand, the compression modulus is less than 80%, for example, 7%.
With a 0% hard polishing pad, even if polishing is performed for 4 minutes, there is a step difference of 1000 ° especially in a pseudo large area pattern.
Even if the polishing is performed for a longer time than this, the step is not reduced.

【0021】本発明に於いて使用する当該研磨促進剤
は、例えば当該被研磨膜体の組織や結晶構造、硬さなど
を変化させる事で、当該被研磨膜体の研磨速度を高める
能力を有するものであれば良く、例えばアルコール、ア
ルデヒド等の有機溶剤を塗布浸透させるなどしてもよい
が、当該被研磨膜体が当該半導体基板上に形成されたシ
リコン、又はシリコン酸化物、シリコン窒化物等のシリ
コン化合物から成る膜体である場合には、当該シリコン
用の不純物、即ち、当該シリコン又はシリコン化合物か
ら成る膜体の結晶組織中に侵入して、当該シリコン又は
シリコン化合物から成る膜体の硬度を低下させる事が出
来る、例えばホウ素、リン、ヒ素等から選ばれる1又は
それ以上の不純物である事が好ましい。
The polishing accelerator used in the present invention has the ability to increase the polishing rate of the film to be polished by, for example, changing the structure, crystal structure, hardness, etc. of the film to be polished. Any material may be used. For example, an organic solvent such as alcohol or aldehyde may be applied and penetrated. However, the film-to-be-polished is formed on the semiconductor substrate by silicon, silicon oxide, silicon nitride, or the like. In the case of a film made of a silicon compound, the impurity for silicon, that is, the hardness of the film made of silicon or silicon compound penetrates into the crystal structure of the film made of silicon or silicon compound. Is preferably one or more impurities selected from, for example, boron, phosphorus, arsenic and the like.

【0022】又、本発明がめざす当該被研磨膜体の平坦
化の為には、当該研磨促進剤を当該被研磨膜体の凸部分
に選択的に注入する事が好ましく、又当該選択的注入の
具体的方法としては、例えば回転斜めイオン注入法を用
いる事が好ましい。
In order to flatten the film to be polished, which is intended by the present invention, it is preferable to selectively inject the polishing accelerator into the convex portion of the film to be polished. As a specific method, for example, it is preferable to use a rotating oblique ion implantation method.

【0023】更に、本発明に於いて、当該被研磨膜体は
半導体基板上記形成された、表面に凹凸を有する膜体で
あれば何れであってもよいが、前記従来の技術の項でも
詳述した様に、トレンチ埋め込み絶縁膜である場合に一
層効果的であり、その場合、当該被研磨膜体が例えばR
Fバイアス等のバイアスを印加するCVD法等のバイア
ス印加成膜法により形成された、例えばシリコン酸化膜
等の、表面に特有の山形凸状部を有する膜体である場合
に、特に効果的である。然しながら、当該被研磨膜体と
しては、そのほか、例えば単層配線や多層配線における
各層の配線間や層間に形成される絶縁膜など他の膜体で
も、本発明を適用する事が出来る。
Further, in the present invention, the film body to be polished may be any film body having the unevenness formed on the surface of the semiconductor substrate formed as described above. As described above, it is more effective when the insulating film is a trench-buried insulating film.
This is particularly effective when the film is formed by a bias application film forming method such as a CVD method for applying a bias such as an F bias, and has a mountain-shaped convex portion unique to the surface, such as a silicon oxide film. is there. However, the present invention can be applied to other film bodies such as an insulating film formed between wirings of each layer in a single-layer wiring or a multi-layer wiring or between layers as the film body to be polished.

【0024】或いは、当該被研磨膜体は、当該被研磨膜
体の成膜中に当該不純物を注入した、例えば前述のTE
OS・BPSG膜等の膜体であってもよい。当該TEO
S・BPSG膜は、CVD法により、例えばテトラエト
キシオルトシリケート(TEOS)、ジボラン、ホスフ
ィン、及び必要に応じてオゾンを反応させる事により得
られるものである。尚、当該成膜中に当該不純物を注入
した被研磨膜体の場合には、当該成膜後に同種又は異種
の研磨促進剤を注入する事も出来るし、或いは注入しな
くともよい。
Alternatively, the film body to be polished may be formed by implanting the impurity during the formation of the film body to be polished, for example, by the above-described TE.
It may be a film such as an OS / BPSG film. The TEO
The S-BPSG film is obtained by reacting, for example, tetraethoxyorthosilicate (TEOS), diborane, phosphine and, if necessary, ozone by a CVD method. In the case of a film to be polished into which the impurity has been implanted during the film formation, the same or different polishing accelerator may or may not be injected after the film formation.

【0025】本発明により、当該被研磨膜体の研磨によ
り、当該被研磨膜体の表面を、例えば当該半導体基板の
全域に亘って略完全に平坦化する事が可能であり、例え
ば、当該被研磨膜体の上面が当該シリコン半導体基板の
表面と1つの平面を形成する様に、当該被研磨膜体の上
面を研磨平坦化して、素子分離領域を形成する、前述し
たトレンチ埋め込みシリコン酸化膜の場合などに、最終
的に表面の段差が100Å又はそれ以下、ディッシング
量が100Å又はそれ以下の平坦度を得る事が出来る。
According to the present invention, the surface of the film to be polished can be substantially completely flattened, for example, over the entire area of the semiconductor substrate by polishing the film to be polished. The upper surface of the polished film body is polished and flattened so that the upper surface of the polished film body forms one plane with the surface of the silicon semiconductor substrate to form an element isolation region. In some cases, for example, a flatness with a surface step of 100 ° or less and a dishing amount of 100 ° or less can be finally obtained.

【0026】[0026]

【実施例】次に、本発明に係る半導体装置の製造方法の
具体例について、図面を参照しながら、更に詳細に説明
する。
Next, a specific example of a method of manufacturing a semiconductor device according to the present invention will be described in more detail with reference to the drawings.

【0027】図1及び図2は、夫々本発明に係る半導体
装置の製造方法の、一具体例の工程を説明する為の断面
図である。尚、図1及び図2に示す断面図は、数十μm
オーダーのL/Sパターン部と数百μmオーダーのL/
Sパターン部が混在するマスクレイアウトについて示し
てある。
FIGS. 1 and 2 are cross-sectional views for explaining the steps of one specific example of the method for manufacturing a semiconductor device according to the present invention. The cross-sectional views shown in FIG. 1 and FIG.
L / S pattern part of order and L / S of several hundred μm order
A mask layout in which S pattern portions are mixed is shown.

【0028】先ず、図1(a)に示した様に、例えばp
型のシリコン半導体基板1上に順次、厚みが例えば50
ナノメートルのシリコン酸化膜2と、必要に応じて、厚
みが例えば100ナノメートルの、例えばシリコン窒化
膜から成る研磨保護膜3を形成する。次いで、当該シリ
コン酸化膜2及び研磨保護膜3をマスクとして、フォト
リソグラフィと反応性イオンエッチングにより、深さが
例えば300ナノメートルのトレンチA1を形成し、更
に、熱酸化法又はCVD法により当該トレンチ内に厚み
が例えば10ナノメートルのシリコン酸化膜4を形成す
る。このシリコン酸化膜4は、当該トレンチA1 の内壁
の形状を修正するものであるが、必ずしも必要ではな
い。
First, as shown in FIG.
The thickness is, for example, 50
A silicon oxide film 2 having a thickness of nanometer and a polishing protection film 3 having a thickness of, for example, 100 nanometer and made of, for example, a silicon nitride film are formed as required. Then, the the silicon oxide film 2 and the polishing protective film 3 as a mask, by photolithography and reactive ion etching to form a trench A 1 having a depth of, for example, 300 nm, further, by thermal oxidation or CVD A silicon oxide film 4 having a thickness of, for example, 10 nanometers is formed in the trench. The silicon oxide film 4 is intended to modify the shape of the inner wall of the trench A 1, it is not necessarily required.

【0029】次に、例えばバイアス印加CVD法によ
り、厚みが例えばトレンチ深さの1乃至10倍で、具体
的には例えば1000ナノメートルのトレンチ埋め込み
シリコン酸化膜5を堆積する。次に、例えば80゜回転
斜めイオン注入により、例えばホウ素6をトレンチ埋め
込みシリコン酸化膜5の表層部分、とりわけ表面凸部の
特に先端部分7に多量に注入される様に、ドーズ量を例
えば5E15cm-2としてドーピングして、図1(b)
の状態とする。この状態から、圧縮弾性率が80%又は
それ以上、具体的には例えば92%の研磨パッドを用い
て、下地の研磨保護膜3が露出する迄、研磨を行う。そ
の際、例えば中性のコロイダルシリカやアルカリ性のコ
ロイダルシリカを分散させたスラリーを研磨剤として用
いる。図1(b)に示した研磨の初期には、数百μmL
/Sのオーダーのパターン部は数十μmのオーダーのL
/Sパターン部に比べて研磨速度が遅いが、トレンチ埋
め込みシリコン酸化膜5の表層部分にホウ素6がドーピ
ングされいる事と、圧縮弾性率が80%又はそれ以上の
研磨パッドを用いて研磨を行っていることにより、凹部
のトレンチ埋め込み絶縁膜5を殆ど研磨することなく、
凸部のシリコン酸化膜5を選択的に研磨する事が出来
る。
Next, a silicon oxide film 5 with a thickness of, for example, 1 to 10 times the trench depth, specifically, for example, 1000 nanometers is deposited by, for example, a bias application CVD method. Next, the dose is set to, for example, 5E15 cm − so that, for example, boron 6 is implanted in a large amount into the surface layer portion of the trench-embedded silicon oxide film 5, in particular, the tip portion 7 of the surface convex portion, particularly by the 80 ° rotation oblique ion implantation. FIG. 1 (b) with doping as 2
State. From this state, polishing is performed using a polishing pad having a compression elastic modulus of 80% or more, specifically, for example, 92% until the underlying polishing protective film 3 is exposed. At this time, for example, a slurry in which neutral colloidal silica or alkaline colloidal silica is dispersed is used as an abrasive. In the initial stage of polishing shown in FIG.
/ S pattern part is on the order of tens of μm L
Although the polishing rate is lower than that of the / S pattern portion, polishing is performed using a polishing pad having boron 6 doped into the surface layer portion of the trench-embedded silicon oxide film 5 and having a compression elastic modulus of 80% or more. With this, the trench-filled insulating film 5 in the concave portion is hardly polished,
The convex silicon oxide film 5 can be selectively polished.

【0030】引き続いて研磨を行うと、図1(c)に示
した様に、数十μmのオーダーのL/Sパターン部は段
差が殆ど無くなってしまうため、研磨速度は低下する。
一方、数百μmのオーダーのL/Sパターン部も圧縮弾
性率が80%又はそれ以上の研磨パッドを用いて研磨を
行っていることにより、凸部のトレンチ埋め込みシリコ
ン酸化膜5を効率良く、且つ選択的に研磨する事が出
来、略平坦な形状となる。更に、研磨を行うと、図1
(d)に示した様に、素子分離領域のみにトレンチ埋め
込みシリコン酸化膜5が形成され、更に研磨を行って、
最終的には、当該シリコン酸化膜の状面が、当該半導体
基板1の表面と同一の平面を形成する様なトレンチ素子
分離シリコン酸化膜5が完成する。その際、基板1の段
差を100Å又はそれ以下、ディッシング量を100Å
又はそれ以下の略完全な平坦化を達成する事が出来た。
When the polishing is subsequently performed, as shown in FIG. 1C, the L / S pattern portion of the order of several tens of μm has almost no step, so that the polishing speed is reduced.
On the other hand, the L / S pattern portion of the order of several hundred μm is also polished by using a polishing pad having a compression elastic modulus of 80% or more, so that the silicon oxide film 5 with the trenches embedded in the convex portions can be efficiently formed. In addition, it can be selectively polished and has a substantially flat shape. Further, when polishing is performed, FIG.
As shown in (d), the trench-embedded silicon oxide film 5 is formed only in the element isolation region, and is further polished.
Eventually, a trench element isolation silicon oxide film 5 in which the surface of the silicon oxide film forms the same plane as the surface of the semiconductor substrate 1 is completed. At this time, the step of the substrate 1 is set at 100 ° or less, and the dishing amount is set at 100 °.
Almost completely flattening or less was achieved.

【0031】次に、図2に示した具体例について説明す
ると、先づ、図2(a)に示した様に、図1の例と同様
にして、例えばp型のシリコン半導体基板11上に、厚
みが例えば10ナノメートルのシリコン酸化膜12と厚
みが例えば200ナノメートルのシリコン窒化膜13を
形成する。次いで、当該シリコン酸化膜12及びシリコ
ン窒化膜13をマスクとして、フォトリソグラフィと反
応性イオンエッチングにより、深さが例えば500ナノ
メートルのトレンチ溝A2を形成し、更に当該トレンチ
2内を熱酸化して、厚みが例えば20ナノメートルの
シリコン酸化膜14を形成する。次に、例えば熱CVD
法により1000ナノメートルのトレンチ埋め込みシリ
コン酸化膜15を堆積する。次いで、例えば70゜回転
斜めイオン注入によりホウ素16を、酸化膜15の凸部
先端部17に多く含まれる様に、ドーズ量を例えば1E
16cm-2としてドーピングする。
Next, the specific example shown in FIG. 2 will be described. First, as shown in FIG. 2A, a p-type silicon semiconductor substrate 11 is formed on the p-type silicon semiconductor substrate 11 in the same manner as in the example of FIG. Then, a silicon oxide film 12 having a thickness of, for example, 10 nm and a silicon nitride film 13 having a thickness of, for example, 200 nm are formed. Next, using the silicon oxide film 12 and the silicon nitride film 13 as a mask, a trench A 2 having a depth of, for example, 500 nm is formed by photolithography and reactive ion etching, and the inside of the trench A 2 is thermally oxidized. Then, a silicon oxide film 14 having a thickness of, for example, 20 nanometers is formed. Next, for example, thermal CVD
A silicon oxide film 15 with a trench of 1000 nm is buried by the method. Then, the dose is set to, for example, 1E so that boron 16 is contained in the tip 17 of the convex portion of the oxide film 15 by oblique ion implantation at, for example, 70 °.
Doping as 16 cm -2 .

【0032】次に、当該トレンチ埋め込みシリコン酸化
膜15上に、厚みが例えば10ナノメートルのシリコン
窒化膜から成る、研磨保護膜18を形成する。次に、図
2(b)に示した様に、圧縮弾性率が80%又はそれ以
上の研磨パッドを用いて初期研磨を行う。この際、中性
のコロイダルシリカやアルカリ性のコロイダルシリカを
分散させたスラリーを研磨剤として用いる。数十μmオ
ーダーのL/Sパターン部は研磨速度が早い為、段差は
すぐに低減されるが、数百μmオーダーのL/Sパター
ン部はこれに比べて研磨速度が遅いため、段差は低減さ
れ難い。
Next, a polishing protective film 18 made of a silicon nitride film having a thickness of, for example, 10 nm is formed on the trench-embedded silicon oxide film 15. Next, as shown in FIG. 2B, initial polishing is performed using a polishing pad having a compression modulus of 80% or more. At this time, a slurry in which neutral colloidal silica or alkaline colloidal silica is dispersed is used as an abrasive. The L / S pattern portion of the order of several tens of μm has a high polishing rate, so that the step is reduced immediately. However, the L / S pattern portion of the order of several hundred μm has a lower polishing rate, so the step is reduced. Hard to do.

【0033】引き続いて研磨を行うと、図2(c)に示
した様に、数十μmL/Sオーダーのパターン部は段差
が殆ど無くなってしまうため、研磨速度は低下する。一
方、数百μmオーダーのL/Sパターン部は、凸部表面
に多くホウ素16がドーピングされている事、及び圧縮
弾性率が80%又はそれ以上の研磨パッド用いて研磨を
行っている事により、凹部のシリコン窒化膜18を殆ど
研磨する事なく、凸部のトレンチ埋め込みシリコン酸化
膜を効率良く、かつ選択的に研磨する事が出来る。
When the polishing is subsequently performed, as shown in FIG. 2C, the pattern portion of the order of several tens of μmL / S has almost no level difference, so that the polishing rate decreases. On the other hand, the L / S pattern portion of the order of several hundred μm is formed by doping a large amount of boron 16 on the surface of the convex portion and performing polishing using a polishing pad having a compression elastic modulus of 80% or more. The silicon oxide film 18 in the trench can be efficiently and selectively polished without substantially polishing the silicon nitride film 18 in the recess.

【0034】更に研磨を行うと、図2(d)に示した様
に、素子分離領域のみにトレンチ埋め込みシリコン酸化
膜15が形成される。
When further polishing is performed, as shown in FIG. 2D, a trench-buried silicon oxide film 15 is formed only in the element isolation region.

【0035】尚、上記の例では、当該被研磨膜体よりも
研磨速度の遅い物質から成る保護膜体として、シリコン
窒化膜を使用したが、本発明に於いて使用する当該保護
膜体はこれに限定されず、例えば被研磨膜体であるシリ
コン酸化膜よりも研磨速度の遅い、例えば別種製法に基
づくシリコン酸化膜を当該保護膜体として用いる事など
が可能である。又、以上の実施例に於いては、使用する
半導体基板をシリコン半導体基板としたが、他種の半導
体基板の場合でも同様の効果が得られる。
In the above example, a silicon nitride film is used as a protective film made of a material having a lower polishing rate than the film to be polished. However, the protective film used in the present invention is a silicon nitride film. However, the present invention is not limited to this. For example, it is possible to use a silicon oxide film having a polishing rate lower than that of the silicon oxide film to be polished, for example, a silicon oxide film based on another manufacturing method as the protective film. Further, in the above embodiments, the semiconductor substrate used is a silicon semiconductor substrate, but the same effect can be obtained in the case of another type of semiconductor substrate.

【0036】[0036]

【発明の効果】本発明に係る半導体装置の製造方法は、
上記したような技術構成を採用しているので、被研磨膜
体に研磨促進剤を注入し、然る後に当該被研磨膜体を圧
縮弾性率が80%又はそれ以上の研磨パッドを用いるC
MP法により研磨する事で、オーバーポリッシング(デ
ィッシング)やアンダーポリッシングを起さずに、被研
磨膜体を略完全に平坦化する事が可能となる。
According to the method of manufacturing a semiconductor device according to the present invention,
Since the technical configuration as described above is employed, a polishing accelerator is injected into the film body to be polished, and then the film body is polished using a polishing pad having a compression elastic modulus of 80% or more.
By polishing by the MP method, the film body to be polished can be almost completely flattened without causing overpolishing (dishing) or underpolishing.

【図面の簡単な説明】[Brief description of the drawings]

図1及び図2は本発明方法の工程を説明するための断面
図、図3、図4、図5は従来例を説明するたの断面図で
ある。また、図6は不純物濃度と研磨速度の関係を示す
図、図7は研磨パッドと段差低減の関係を示す図であ
る。
1 and 2 are cross-sectional views for explaining the steps of the method of the present invention, and FIGS. 3, 4, and 5 are cross-sectional views for explaining a conventional example. FIG. 6 is a diagram showing the relationship between the impurity concentration and the polishing rate, and FIG. 7 is a diagram showing the relationship between the polishing pad and the step reduction.

【図1】本発明の半導体装置の製造方法の一具体例の工
程を説明するための断面図である。
FIG. 1 is a cross-sectional view for explaining a step in a specific example of a method for manufacturing a semiconductor device according to the present invention.

【図2】本発明の半導体装置の製造方法の他の具体例の
工程を説明する為の断面図である。
FIG. 2 is a cross-sectional view for explaining steps of another specific example of the method for manufacturing a semiconductor device of the present invention.

【図3】従来の半導体装置の製造方法の工程を説明する
為の断面図である。
FIG. 3 is a cross-sectional view for describing steps of a conventional semiconductor device manufacturing method.

【図4】従来の半導体装置の製造方法の工程を説明する
為の断面図である。
FIG. 4 is a cross-sectional view for explaining steps of a conventional semiconductor device manufacturing method.

【図5】従来の半導体装置の製造方法の工程を説明する
為の断面図である。
FIG. 5 is a cross-sectional view for explaining steps of a conventional semiconductor device manufacturing method.

【図6】本発明に於いて使用する高硬質研磨パッドの圧
縮弾性率の計算方法を説明する為の模式図である。
FIG. 6 is a schematic diagram for explaining a method of calculating a compression modulus of a high-hardness polishing pad used in the present invention.

【図7】本発明に於ける被研磨膜体の研磨速度を示した
グラフであある。
FIG. 7 is a graph showing a polishing rate of a film body to be polished in the present invention.

【図8】本発明に於ける研磨による段差の消滅速度を従
来例との比較で示したグラフである。
FIG. 8 is a graph showing the rate of disappearance of a step due to polishing in the present invention in comparison with a conventional example.

【符号の説明】[Explanation of symbols]

1、11、21 半導体基板 2、12、22 シリコン酸化膜 3、13、23 研磨保護膜 A1 、A2 、A3 、A4 、A5 トレンチ 4、14、24 シリコン酸化膜 5、15、25 トレンチ溝埋め込み絶縁膜 6、16、26 回転斜めイオン注入 7、17、27 不純物がドーピングされた部分 18 保護膜体1, 11, 21 semiconductor substrate 2,12,22 silicon oxide film 3,13,23 polishing protective film A 1, A 2, A 3 , A 4, A 5 trench 4,14,24 silicon oxide film 5 and 15, 25 Trench groove buried insulating film 6, 16, 26 Rotating oblique ion implantation 7, 17, 27 Impurity doped portion 18 Protective film

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に形成された、表面に凹凸
を有する被研磨膜体の表層部分に研磨促進剤を注入し、
然る後に当該被研磨膜体を圧縮弾性率が80%又はそれ
以上の研磨パッドを用いる化学的機械的研磨法により研
磨する事を特徴とする半導体装置の製造方法。
1. A polishing accelerator is injected into a surface layer portion of a film body having irregularities on a surface formed on a semiconductor substrate,
A method of manufacturing a semiconductor device, comprising: thereafter, polishing the film to be polished by a chemical mechanical polishing method using a polishing pad having a compression elastic modulus of 80% or more.
【請求項2】 半導体基板上に形成された、表面に凹凸
を有する被研磨膜体の表層部分に研磨促進剤を注入し、
その後当該被研磨膜体上に、当該被研磨膜体よりも研磨
速度の遅い物質から成る保護膜体を積層形成し、然る後
に当該保護膜体及び当該被研磨膜体を圧縮弾性率が80
%又はそれ以上の研磨パッドを用いる化学的機械的研磨
法により研磨する事を特徴とする半導体装置の製造方
法。
2. A polishing accelerator is injected into a surface layer portion of a film-to-be-polished body formed on a semiconductor substrate and having irregularities on its surface,
Thereafter, a protective film made of a material having a lower polishing rate than that of the film to be polished is formed on the film to be polished, and then the protective film and the film to be polished have a compression elastic modulus of 80.
%. A method for manufacturing a semiconductor device, wherein the polishing is performed by a chemical mechanical polishing method using a polishing pad of% or more.
【請求項3】 当該被研磨膜体がシリコン又はシリコン
化合物から成り、且つ当該研磨促進剤がシリコン用の不
純物である事を特徴とする請求項1又は2に記載の半導
体装置の製造方法。
3. The method of manufacturing a semiconductor device according to claim 1, wherein the film body to be polished is made of silicon or a silicon compound, and the polishing accelerator is an impurity for silicon.
【請求項4】 当該不純物がホウ素、リン及びヒ素から
選ばれる1又はそれ以上の不純物である事を特徴とする
請求項3に記載の半導体装置の製造方法。
4. The method according to claim 3, wherein the impurities are one or more impurities selected from boron, phosphorus and arsenic.
【請求項5】 当該研磨促進剤を当該被研磨膜体表面の
凸部分に選択的に注入する事を特徴とする請求項1乃至
4の何れかに記載の半導体装置の製造方法。
5. The method of manufacturing a semiconductor device according to claim 1, wherein the polishing accelerator is selectively injected into a convex portion of the surface of the film body to be polished.
【請求項6】 当該被研磨膜体の表層部分への不純物の
ドーピングを、回転斜めイオン注入法により行う事を特
徴とする請求項3又は4に記載の半導体装置の製造方
法。
6. The method for manufacturing a semiconductor device according to claim 3, wherein the doping of the surface layer portion of the film body to be polished is performed by a rotating oblique ion implantation method.
【請求項7】 当該被研磨膜体が当該半導体基板の表層
部分に穿設されたトレンチ内に形成されたトレンチ埋め
込み絶縁膜である事を特徴とする請求項1乃至6の何れ
かに記載の半導体装置の製造方法。
7. The semiconductor device according to claim 1, wherein the film body to be polished is a trench-buried insulating film formed in a trench formed in a surface portion of the semiconductor substrate. A method for manufacturing a semiconductor device.
【請求項8】 当該被研磨膜体がバイアス印加成膜法に
より形成された膜体である事を特徴とする請求項1乃至
7の何れかに記載の半導体装置の製造方法。
8. The method of manufacturing a semiconductor device according to claim 1, wherein said film body to be polished is a film body formed by a bias applying film forming method.
【請求項9】 当該被研磨膜体がバイアス印加成膜法に
より形成されたシリコン酸化膜である事を特徴とする請
求項8に記載の半導体装置の製造方法。
9. The method for manufacturing a semiconductor device according to claim 8, wherein said film body to be polished is a silicon oxide film formed by a bias application film forming method.
【請求項10】 当該被研磨膜体の成膜中に当該不純物
のドーピングを行う事を特徴とする請求項3乃至9の何
れかに記載の半導体装置の製造方法。
10. The method of manufacturing a semiconductor device according to claim 3, wherein the impurity is doped during the formation of the film body to be polished.
【請求項11】 当該被研磨膜体がTEOS・BPSG
膜である事を特徴とする請求項10に記載の半導体装置
の製造方法。
11. The film object to be polished is TEOS / BPSG.
The method according to claim 10, wherein the semiconductor device is a film.
【請求項12】 当該研磨により、当該被研磨膜体表面
の段差が100Å又はそれ以下、ディッシング量が10
0Å又はそれ以下とする事を特徴とする請求項1乃至1
1に記載の半導体装置の製造方法。
12. The step of polishing the surface of the film body to be polished is 100 ° or less, and the dishing amount is 10 or less.
2. The method according to claim 1, wherein the angle is 0 ° or less.
2. The method for manufacturing a semiconductor device according to item 1.
JP17546698A 1998-06-23 1998-06-23 Method for manufacturing semiconductor device Expired - Fee Related JP3147089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17546698A JP3147089B2 (en) 1998-06-23 1998-06-23 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17546698A JP3147089B2 (en) 1998-06-23 1998-06-23 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JP2000012491A true JP2000012491A (en) 2000-01-14
JP3147089B2 JP3147089B2 (en) 2001-03-19

Family

ID=15996561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17546698A Expired - Fee Related JP3147089B2 (en) 1998-06-23 1998-06-23 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3147089B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100345064B1 (en) * 2000-06-30 2002-07-20 주식회사 하이닉스반도체 Method of fabricating shallow trench isolation for preventing dishing
KR100614773B1 (en) 2004-12-28 2006-08-22 삼성전자주식회사 Method for chemical mechanical polishing
JP2008168433A (en) * 2000-12-01 2008-07-24 Toyo Tire & Rubber Co Ltd Polishing pad and manufacture method thereof, and cushioning layer for polishing pad
US10008390B2 (en) 2014-07-25 2018-06-26 Toshiba Memory Corporation Manufacturing method of semiconductor device and semiconductor manufacturing apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100345064B1 (en) * 2000-06-30 2002-07-20 주식회사 하이닉스반도체 Method of fabricating shallow trench isolation for preventing dishing
JP2008168433A (en) * 2000-12-01 2008-07-24 Toyo Tire & Rubber Co Ltd Polishing pad and manufacture method thereof, and cushioning layer for polishing pad
KR100614773B1 (en) 2004-12-28 2006-08-22 삼성전자주식회사 Method for chemical mechanical polishing
US10008390B2 (en) 2014-07-25 2018-06-26 Toshiba Memory Corporation Manufacturing method of semiconductor device and semiconductor manufacturing apparatus

Also Published As

Publication number Publication date
JP3147089B2 (en) 2001-03-19

Similar Documents

Publication Publication Date Title
US5923993A (en) Method for fabricating dishing free shallow isolation trenches
US7160787B2 (en) Structure of trench isolation and a method of forming the same
US7531415B2 (en) Multilayered CMP stop for flat planarization
US5943590A (en) Method for improving the planarity of shallow trench isolation
US6429134B1 (en) Method of manufacturing semiconductor device
US20070264827A1 (en) Method for achieving uniform chemical mechanical polishing in integrated circuit manufacturing
JP2000058637A (en) Forming method of shallow trench insulating structure to semiconductor substrate
JPH07249626A (en) Manufacture of semiconductor device
JP3302142B2 (en) Method for manufacturing semiconductor device
JP3147089B2 (en) Method for manufacturing semiconductor device
KR100225550B1 (en) Method for polishing of electronic device
JP3161425B2 (en) Method of forming STI
US6596639B1 (en) Method for chemical/mechanical planarization of a semiconductor wafer having dissimilar metal pattern densities
US6777307B1 (en) Method of forming semiconductor structures with reduced step heights
JPS6039835A (en) Flattening of surface of substrate
US6387808B1 (en) Method of correcting topographical effects on a micro-electronic substrate
US6087262A (en) Method for manufacturing shallow trench isolation structure
JP2006202968A (en) Manufacturing method of semiconductor device
JP2000036533A (en) Manufacture of semiconductor device
JP3116879B2 (en) Method for manufacturing semiconductor device
JP3311486B2 (en) Integrated circuit planarization method
US7060573B2 (en) Extended poly buffer STI scheme
JPH10125637A (en) Manufacture of semiconductor device
JPH11284061A (en) Semiconductor device and manufacturing method thereof
JP2006005237A (en) Method of manufacturing semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees