JP2000012070A - Secondary battery and its manufacture - Google Patents

Secondary battery and its manufacture

Info

Publication number
JP2000012070A
JP2000012070A JP10209433A JP20943398A JP2000012070A JP 2000012070 A JP2000012070 A JP 2000012070A JP 10209433 A JP10209433 A JP 10209433A JP 20943398 A JP20943398 A JP 20943398A JP 2000012070 A JP2000012070 A JP 2000012070A
Authority
JP
Japan
Prior art keywords
battery
drying
secondary battery
electrode
electrode element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10209433A
Other languages
Japanese (ja)
Inventor
Yosuke Kita
洋輔 北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP10209433A priority Critical patent/JP2000012070A/en
Publication of JP2000012070A publication Critical patent/JP2000012070A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To remove the moisture adhered to a battery component during the manufacturing process of a battery to improve the performance of the battery. SOLUTION: A negative electrode and a positive electrode are vacuum dried independently (process 41: first vacuum drying). The drying conditions at this time are 200 deg.C, 0.1 Torr and 3 hours. The negative electrode and positive electrode dried under this condition are layered through a separator, and the layered product is wound on a core (process 42) to form an electrode element. The electrode element is inserted into a battery can and assembled by performing electric connection and the like (process 43), and then vacuum dried again (process 44: second vacuum drying). The drying condition at this time is 70 deg.C, 1 Torr, and 3 hours. After drying under this condition, a nonaqueous electrolyte is injected, and the battery can is sealed to a battery lid through a gasket, whereby the manufacture is ended (process 45).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は二次電池の製造にお
ける電池の乾燥工程と、この製造方法により作製された
二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery drying step in the manufacture of a secondary battery and a secondary battery manufactured by this manufacturing method.

【0002】[0002]

【従来の技術】近年、充電を繰り返し行い使用する二次
電池が各分野で盛んに用いられるようになってきてい
る。この中に例えばリチウムイオン二次電池があり、エ
ネルギー密度、サイクル特性に優れているものである。
2. Description of the Related Art In recent years, secondary batteries that are repeatedly charged and used have been actively used in various fields. Among these, for example, a lithium ion secondary battery has excellent energy density and cycle characteristics.

【0003】さて、前記リチウムイオン二次電池とし
て、正極活物質と負極活物質とをセパレータを介して積
層し、これを巻き芯に巻き取って電極素子を形成し、こ
の電極素子を電池缶に挿入して電池缶と電池蓋とをガス
ケットを介して封止し、電解液を注入して作製されるも
のがある。
As the lithium ion secondary battery, a positive electrode active material and a negative electrode active material are laminated with a separator interposed therebetween, wound around a winding core to form an electrode element, and this electrode element is mounted on a battery can. Some are manufactured by inserting and sealing the battery can and the battery lid via a gasket, and injecting an electrolytic solution.

【0004】図5は上述したリチウムイオン二次電池の
製造方法を示す図であって、まず、所定の方法で作製さ
れた負極電極と正極電極は真空乾燥される(工程5
1)。この時の乾燥条件は200℃、0.1Torrで3時
間行う。この条件で乾燥させた負極電極と正極電極とを
セパレータを介して積層し、この積層体を巻き芯に巻き
取り(工程52)、電極素子を形成する。この電極素子
を電池缶に挿入し電気的接続を取る等して組み立てた後
(工程53)、レーザ溶接等により、電池缶と電池蓋と
をガスケットを介して溶接し封口する(工程54)。そ
の後、非水電解液を注入口から注入し、その注入口を密
封して製造が終了する。
FIG. 5 is a view showing a method of manufacturing the above-described lithium ion secondary battery. First, a negative electrode and a positive electrode manufactured by a predetermined method are vacuum-dried (step 5).
1). The drying is performed at 200 ° C. and 0.1 Torr for 3 hours. The negative electrode and the positive electrode dried under these conditions are laminated via a separator, and the laminate is wound around a winding core (step 52) to form an electrode element. After the electrode element is inserted into the battery can to assemble it by electrical connection or the like (Step 53), the battery can and the battery lid are welded through a gasket and sealed by laser welding or the like (Step 54). Thereafter, a non-aqueous electrolyte is injected from the injection port, and the injection port is sealed to complete the production.

【0005】従来より、上述した工程を経てリチウムイ
オン二次電池が製造されていたが、負極電極、正極電極
はもとより、セパレータや他の電池構成部品に吸着した
水分は電池の性能を悪化させることが知られていた。こ
のため、負極電極、正極電極は集電体に塗布された後、
巻き取り前に十分に乾燥され、また、他の電池構成部品
も入念に乾燥した後、低湿度の環境下でこれら構成部品
を組み立てて電池を作製していた。
Conventionally, a lithium ion secondary battery has been manufactured through the above-described steps. However, moisture adsorbed on the separator and other battery components as well as the negative electrode and the positive electrode may deteriorate the performance of the battery. Was known. For this reason, after the negative electrode and the positive electrode are applied to the current collector,
After being sufficiently dried before winding and other battery components were carefully dried, these components were assembled in a low humidity environment to produce a battery.

【0006】しかしながら、電極表面や部品類に吸着し
た水分は乾燥機に投入して乾燥させることにより、一旦
は除去されるが、乾燥機から取り出された後、それが放
置される環境に応じて水分が再度吸着することになり、
この吸着した水分が初期の電池容量を低下させていた。
[0006] However, the moisture adsorbed on the electrode surface and components is once removed by being put into a drier and dried, but after being taken out of the drier, depending on the environment where it is left. Water will be adsorbed again,
This adsorbed moisture reduced the initial battery capacity.

【0007】[0007]

【発明が解決しようとする課題】従って本発明の課題
は、電池製造工程中に電池構成部品に付着する水分を除
去し、電池の性能を向上する製造方法と、この製造方法
により作製された初期の電池容量の大きな二次電池を提
供しようとするものである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a manufacturing method for removing water adhering to battery components during a battery manufacturing process to improve the performance of a battery, and an initial method for manufacturing the battery. It is intended to provide a secondary battery having a large battery capacity.

【0008】[0008]

【課題を解決するための手段】本発明は上記課題に鑑み
なされたものであり、正極活物質と負極活物質とをセパ
レータを介して積層し、この積層体を巻き芯に巻き取っ
て電極素子を形成し、該電極素子を電池缶に挿入し、電
池缶と電池蓋とをガスケットを介し封止する二次電池の
製造方法において、前記電極素子を電池缶に挿入した
後、電池缶と電池蓋とを封止する前に、前記電極素子を
乾燥させる乾燥工程を有する二次電池の製造方法と、こ
の製造方法により作製された二次電池を提供する。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and a positive electrode active material and a negative electrode active material are laminated with a separator interposed therebetween. And forming the electrode element in a battery can, and sealing the battery can and the battery lid with a gasket. In the method for manufacturing a secondary battery, after inserting the electrode element in the battery can, A method of manufacturing a secondary battery having a drying step of drying the electrode element before sealing the lid, and a secondary battery manufactured by the manufacturing method.

【0009】また、正極活物質と負極活物質とをセパレ
ータを介して積層し、この積層体を巻き芯に巻き取って
電極素子を形成し、該電極素子を電池缶に挿入し、電池
缶と電池蓋とをガスケットを介し封止する二次電池の製
造方法において、前記正極活物質と前記負極活物質とを
巻き取る前に乾燥させる第1の乾燥工程と、前記電極素
子を電池缶に挿入した後、電池缶と電池蓋とを封止する
前に、前記電極素子を乾燥させる第2の乾燥工程を有す
る二次電池の製造方法と、この製造方法により作製され
た二次電池を提供して、上記課題を解決する。
Further, a positive electrode active material and a negative electrode active material are laminated with a separator interposed therebetween, and the laminate is wound around a winding core to form an electrode element, and the electrode element is inserted into a battery can. In a method for manufacturing a secondary battery in which a battery lid is sealed via a gasket, a first drying step of drying the positive electrode active material and the negative electrode active material before winding them up, and inserting the electrode element into a battery can Then, before sealing the battery can and the battery lid, a method of manufacturing a secondary battery having a second drying step of drying the electrode element, and a secondary battery manufactured by this manufacturing method are provided. Thus, the above problem is solved.

【0010】本発明の製造方法では電極素子の乾燥が十
分に行われ、初期電池容量の大きな二次電池が作製され
る。
In the manufacturing method of the present invention, the electrode element is sufficiently dried, and a secondary battery having a large initial battery capacity is manufactured.

【0011】[0011]

【発明の実施の形態】本発明の実施形態について図1〜
図4を参照して説明する。ここで図1は本発明に用いる
電極素子を示す図であり、図2は図1に示す電極素子を
用いた電池の断面図である。また、図3は本発明の二次
電池の第1の製造工程を示す図であり、図4は第2の製
造工程を示す図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention are shown in FIGS.
This will be described with reference to FIG. Here, FIG. 1 is a view showing an electrode element used in the present invention, and FIG. 2 is a sectional view of a battery using the electrode element shown in FIG. FIG. 3 is a diagram showing a first manufacturing process of the secondary battery of the present invention, and FIG. 4 is a diagram showing a second manufacturing process.

【0012】まず、非水電解液二次電池の電極素子につ
いて図1を参照して説明する。負極電極1は次のように
して作製する。不活性ガス気流中で焼成した炭素質材料
を粉砕し、平均粒径が20μmの炭素粒子を得、この炭
素粒子を90重量部と、結着材としてフッ化ビニリデン
樹脂を10重量部とをN−メチルピロリドンに分散させ
てスラリーを形成する。このスラリーを厚さ10μmの
銅箔の両面に塗布して厚さ180μmの電極原板を作製
する。この電極原板の1部に負極リード2となる未塗布
部を残してカットし、負極電極1を得る。
First, an electrode element of a non-aqueous electrolyte secondary battery will be described with reference to FIG. The negative electrode 1 is manufactured as follows. The carbonaceous material fired in an inert gas stream is pulverized to obtain carbon particles having an average particle diameter of 20 μm, and 90 parts by weight of the carbon particles and 10 parts by weight of vinylidene fluoride resin as a binder are mixed with N. Dispersed in methylpyrrolidone to form a slurry. This slurry is applied to both sides of a copper foil having a thickness of 10 μm to produce an electrode plate having a thickness of 180 μm. The negative electrode 1 is obtained by cutting a part of the electrode base plate while leaving an uncoated portion serving as the negative electrode lead 2.

【0013】正極電極3は次のようにして作製する。平
均粒径が15μmのLiCoO2 粉末を91重量部と、
導電材としてグラファイトを6重量部と、結着材として
フッ化ビニリデン樹脂を3重量部とをN−メチルピロリ
ドンに分散させてスラリーを形成し、このスラリーをア
ルミ箔の両面に塗布して厚さ150μmの電極原板を作
製する。この電極原板の1部に正極リード4となる未塗
布部を残してカットし、正極電極3を得る。
The positive electrode 3 is manufactured as follows. 91 parts by weight of LiCoO 2 powder having an average particle size of 15 μm,
6 parts by weight of graphite as a conductive material and 3 parts by weight of vinylidene fluoride resin as a binder are dispersed in N-methylpyrrolidone to form a slurry, and the slurry is applied to both sides of an aluminum foil to form a slurry. An electrode plate of 150 μm is prepared. A part of this electrode plate is cut to leave a non-coated part to be the positive electrode lead 4 to obtain a positive electrode 3.

【0014】上述したようにして作製された負極電極1
と正極電極3とはセパレータ5を挟んで順次積層し、円
筒状の、例えばPP(ポリプロピレン)、PE(ポリエ
チレン)等からなる巻き芯6に矢印Rで示される方向に
多数回巻かれる。負極電極1と正極電極3の未塗布部
は、予め短冊状に切断されていて、巻回後、巻き芯6の
一方の側に負極リード2が、他方の側に正極リード4が
各々集合して電極素子を形成する。
The negative electrode 1 produced as described above
The positive electrode 3 and the positive electrode 3 are sequentially laminated with the separator 5 interposed therebetween, and are wound many times in the direction indicated by the arrow R around a cylindrical core 6 made of, for example, PP (polypropylene), PE (polyethylene), or the like. The uncoated portions of the negative electrode 1 and the positive electrode 3 are cut into strips in advance, and after winding, the negative electrode lead 2 is assembled on one side of the winding core 6 and the positive electrode lead 4 is assembled on the other side. To form an electrode element.

【0015】図2は上述したようにして形成された電極
素子7を用いた非水電解液二次電池の断面図であり、電
極素子7の負極リード2から集電リード8aが引き出さ
れてまとめられ、押さえ金具9aと集電部10aとで挟
んでレーザ溶接される。一方、電極素子7の正極リード
4からは集電リード8bが引き出されてまとめられ、押
さえ金具9bと集電部10bとで挟んでレーザ溶接され
る。その後ステンレス製の電池缶11に収納され、集電
部10aと電池缶11の底部11aで電気的接続がとら
れて負極を形成し、また、集電部10bからリード12
により電池蓋13に電気的接続がとられ、正極を形成す
る。
FIG. 2 is a cross-sectional view of a non-aqueous electrolyte secondary battery using the electrode element 7 formed as described above. The current collecting lead 8a is drawn out of the negative electrode lead 2 of the electrode element 7 and is summarized. Then, it is laser-welded by being sandwiched between the holding metal 9a and the current collector 10a. On the other hand, the current collecting lead 8b is pulled out from the positive electrode lead 4 of the electrode element 7 and put together, and is laser-welded by being sandwiched between the holding metal 9b and the current collecting portion 10b. Thereafter, the battery is housed in a battery can 11 made of stainless steel, and the current collector 10a and the bottom 11a of the battery can 11 are electrically connected to each other to form a negative electrode.
As a result, the battery lid 13 is electrically connected to form a positive electrode.

【0016】その後、電池缶11と電池蓋13とをガス
ケット14を介して封止し、電池缶11の内部には電解
液として、例えばプロピレンカーボネートとジエチルカ
ーボネートの混合溶媒中にLiBF4 を1モル/リット
ルの割合で溶解したものを注入口(図示せず)から注入
して非水電解液二次電池を形成する。
Thereafter, the battery can 11 and the battery lid 13 are sealed with a gasket 14 inside the battery can 11, and for example, 1 mol of LiBF 4 is contained as an electrolytic solution in a mixed solvent of propylene carbonate and diethyl carbonate. A non-aqueous electrolyte secondary battery is formed by injecting the solution dissolved at a rate of 1 / liter from an inlet (not shown).

【0017】つぎに上述した非水電解液二次電池につい
て、本発明の特徴を成すその製造方法について説明す
る。
Next, a method of manufacturing the above-described nonaqueous electrolyte secondary battery, which is a feature of the present invention, will be described.

【0018】図3はその第1の製造方法であって、負極
電極と正極電極とをセパレータを介して積層し、この積
層体を巻き芯に巻き取り(工程31)、電極素子を形成
する。この電極素子を電池缶に挿入し電気的接続を取る
等して組み立てた後(工程32)、真空乾燥される(工
程33)。この時の乾燥条件は70℃、1Torrで3時間
行う。この条件で乾燥させた後、非水電解液を注入し、
電池缶と電池蓋とをガスケットを介して封口して製造が
終了する(工程34)。
FIG. 3 shows a first manufacturing method, in which a negative electrode and a positive electrode are laminated via a separator, and the laminate is wound around a core (step 31) to form an electrode element. After assembling such an electrode element by inserting it into a battery can and establishing electrical connection (step 32), it is vacuum dried (step 33). Drying conditions at this time are 70 ° C. and 1 Torr for 3 hours. After drying under these conditions, inject a non-aqueous electrolyte,
The battery can and the battery lid are sealed via a gasket, and the production is completed (step 34).

【0019】上述した第1の製造方法によると電池缶と
電池蓋とをガスケットを介して封口する直前に乾燥させ
るため、電池内部に存在する水分を低い量に限定するこ
とが可能となり、初期の電池容量の大きな二次電池の作
製が可能となる。
According to the above-described first manufacturing method, since the battery can and the battery lid are dried immediately before sealing them with a gasket, it is possible to limit the amount of water present inside the battery to a small amount. A secondary battery having a large battery capacity can be manufactured.

【0020】つぎに図4に示す第2の製造方法について
説明する。まず、負極電極と正極電極とを個別に真空乾
燥させる(工程41:第1の真空乾燥)。この時の乾燥
条件は200℃、0.1Torrで3時間行う。この条件で
乾燥させた負極電極と正極電極とをセパレータを介して
積層し、この積層体を巻き芯に巻き取り(工程42)、
電極素子を形成する。この電極素子を電池缶に挿入し電
気的接続を取る等して組み立てた後(工程43)、再
度、真空乾燥される(工程44:第2の真空乾燥)。こ
の時の乾燥条件は70℃、1Torrで3時間行う。この条
件で乾燥させた後、非水電解液を注入し、電池缶と電池
蓋とをガスケットを介して封口して製造が終了する(工
程45)。
Next, a second manufacturing method shown in FIG. 4 will be described. First, the negative electrode and the positive electrode are individually vacuum dried (step 41: first vacuum drying). The drying is performed at 200 ° C. and 0.1 Torr for 3 hours. The negative electrode and the positive electrode dried under these conditions are laminated via a separator, and the laminate is wound around a winding core (step 42).
An electrode element is formed. After assembling the electrode element by inserting it into a battery can and establishing electrical connection (step 43), the electrode element is vacuum dried again (step 44: second vacuum drying). Drying conditions at this time are 70 ° C. and 1 Torr for 3 hours. After drying under these conditions, a non-aqueous electrolyte is injected, and the battery can and the battery lid are sealed via a gasket to complete the production (step 45).

【0021】上述した第2の製造方法によると、負極電
極と正極電極とを巻き取る前に個別に乾燥させると共
に、さらに、電池缶と電池蓋とをガスケットを介して封
口する直前に乾燥させるため、電池内部に存在する水分
を極めて低い量に限定することが可能となり、さらに初
期の電池容量の大きな二次電池の作製が可能となる。
According to the second manufacturing method described above, the negative electrode and the positive electrode are individually dried before winding, and further, immediately before the battery can and the battery lid are closed with a gasket. In addition, the amount of water present inside the battery can be limited to an extremely low amount, and a secondary battery having a large initial battery capacity can be manufactured.

【0022】つぎに、比較例として図5に示す従来の製
造方法で作製した二次電池の初期の電池容量と、実施例
として図4に示す本発明による第2の製造方法により作
製した二次電池の初期の電池容量を、下記の方法で測定
し、その結果を表1に示す。
Next, as a comparative example, the initial battery capacity of the secondary battery manufactured by the conventional manufacturing method shown in FIG. 5 and the secondary battery manufactured by the second manufacturing method according to the present invention shown in FIG. The initial battery capacity of the battery was measured by the following method, and the results are shown in Table 1.

【0023】電池容量測定方法 作製した電池を充電電圧4.2V、充電電流17A、充
電時間9.5時間の条件で初充電を行った後、25±3
℃の環境下で20日間エージングを行う。エージングの
後、放電電流30A、終止電圧2.5Vで放電を行う。
放電後、再度充電電圧4.2V、充電電流45A、充電
時間4で充電し、その後、上述した条件で放電を行い放
電容量を測定し、電池容量とした。
Battery Capacity Measurement Method The battery thus prepared was initially charged under the conditions of a charging voltage of 4.2 V, a charging current of 17 A, and a charging time of 9.5 hours.
Aging is performed for 20 days in an environment of ° C. After aging, discharge is performed at a discharge current of 30 A and a final voltage of 2.5 V.
After discharging, the battery was charged again at a charging voltage of 4.2 V, a charging current of 45 A, and a charging time of 4, and then discharged under the above-described conditions to measure the discharge capacity, which was taken as the battery capacity.

【0024】[0024]

【表1】 [Table 1]

【0025】表1に示す測定結果からも明らかなよう
に、本発明の製造方法により作製された二次電池は、そ
の初期の電気容量が大きなことがわかる。
As is clear from the measurement results shown in Table 1, it can be seen that the secondary battery manufactured by the manufacturing method of the present invention has a large initial electric capacity.

【0026】尚、本発明は上述した二次電池に限ること
なく、本発明の技術的思想が適用できる他の構造の電池
に用いてもよいことは当然である。
It should be noted that the present invention is not limited to the above-described secondary battery, but may be applied to a battery having another structure to which the technical idea of the present invention can be applied.

【0027】[0027]

【発明の効果】以上の説明からも明らかなように本発明
によると、電池製造工程中に電池構成部品に付着する水
分を効果的に除去することが可能であり、初期容量の大
きな二次電池を作製することが可能となる。
As is apparent from the above description, according to the present invention, it is possible to effectively remove moisture adhering to battery components during the battery manufacturing process, and to provide a secondary battery having a large initial capacity. Can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 二次電池の電極素子を示す図である。FIG. 1 is a view showing an electrode element of a secondary battery.

【図2】 図1に示す電極素子を用いた電池の断面図で
ある。
FIG. 2 is a sectional view of a battery using the electrode element shown in FIG.

【図3】 本発明の二次電池の第1の製造工程を示す図
である。
FIG. 3 is a view showing a first manufacturing process of the secondary battery of the present invention.

【図4】 本発明の二次電池の第2の製造工程を示す図
である。
FIG. 4 is a view showing a second manufacturing process of the secondary battery of the present invention.

【図5】 従来の二次電池の製造工程を示す図である。FIG. 5 is a view showing a manufacturing process of a conventional secondary battery.

【符号の説明】[Explanation of symbols]

1…負極電極、2…負極リード、3…正極電極、4…正
極リード、5…セパレータ、6…巻き芯、7…電極素
子、8a,8b…集電リード、9a,9b…押さえ金
具、10a,10b…集電部、11…電池缶、12…リ
ード、13…電池蓋、14…ガスケット
DESCRIPTION OF SYMBOLS 1 ... Negative electrode, 2 ... Negative electrode lead, 3 ... Positive electrode, 4 ... Positive electrode lead, 5 ... Separator, 6 ... Core, 7 ... Electrode element, 8a, 8b ... Current collecting lead, 9a, 9b ... Hold down fitting, 10a , 10b: current collector, 11: battery can, 12: lead, 13: battery lid, 14: gasket

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 正極活物質と負極活物質とをセパレータ
を介して積層し、この積層体を巻き芯に巻き取って電極
素子を形成し、該電極素子を電池缶に挿入し、電池缶と
電池蓋とをガスケットを介し封止する二次電池の製造方
法において、 前記電極素子を電池缶に挿入した後、電池缶と電池蓋と
を封止する前に、前記電極素子を乾燥させる乾燥工程を
有することを特徴とする二次電池の製造方法。
1. A positive electrode active material and a negative electrode active material are laminated via a separator, and the laminate is wound around a winding core to form an electrode element, and the electrode element is inserted into a battery can. In a method for manufacturing a secondary battery in which a battery lid is sealed via a gasket, a drying step of drying the electrode element after inserting the electrode element into a battery can and before sealing the battery can and the battery lid. A method for manufacturing a secondary battery, comprising:
【請求項2】 正極活物質と負極活物質とをセパレータ
を介して積層し、この積層体を巻き芯に巻き取って電極
素子を形成し、該電極素子を電池缶に挿入し、電池缶と
電池蓋とをガスケットを介し封止する二次電池の製造方
法において、 前記正極活物質と前記負極活物質とを巻き取る前に乾燥
させる第1の乾燥工程と、 前記電極素子を電池缶に挿入した後、電池缶と電池蓋と
を封止する前に、前記電極素子を乾燥させる第2の乾燥
工程とを有することを特徴とする二次電池の製造方法。
2. A positive electrode active material and a negative electrode active material are laminated via a separator, and the laminate is wound around a winding core to form an electrode element, and the electrode element is inserted into a battery can. In a method for manufacturing a secondary battery in which a battery lid is sealed via a gasket, a first drying step of drying the positive electrode active material and the negative electrode active material before winding them up, and inserting the electrode element into a battery can And a second drying step of drying the electrode element before sealing the battery can and the battery lid.
【請求項3】 請求項1に記載の製造方法で作製された
ことを特徴とする二次電池。
3. A secondary battery manufactured by the manufacturing method according to claim 1.
【請求項4】 請求項2に記載の製造方法で作製された
ことを特徴とする二次電池。
4. A secondary battery manufactured by the manufacturing method according to claim 2.
JP10209433A 1998-04-24 1998-07-24 Secondary battery and its manufacture Pending JP2000012070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10209433A JP2000012070A (en) 1998-04-24 1998-07-24 Secondary battery and its manufacture

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11572898 1998-04-24
JP10-115728 1998-04-24
JP10209433A JP2000012070A (en) 1998-04-24 1998-07-24 Secondary battery and its manufacture

Publications (1)

Publication Number Publication Date
JP2000012070A true JP2000012070A (en) 2000-01-14

Family

ID=26454190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10209433A Pending JP2000012070A (en) 1998-04-24 1998-07-24 Secondary battery and its manufacture

Country Status (1)

Country Link
JP (1) JP2000012070A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1311019A2 (en) * 2001-11-08 2003-05-14 Ngk Insulators, Ltd. Lithium secondary battery
JP2010210177A (en) * 2009-03-11 2010-09-24 Nissan Motor Co Ltd Drying device and drying method
JP2014006981A (en) * 2012-06-21 2014-01-16 Toyota Motor Corp Nonaqueous electrolyte secondary battery manufacturing method and inspection method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1311019A2 (en) * 2001-11-08 2003-05-14 Ngk Insulators, Ltd. Lithium secondary battery
JP2010210177A (en) * 2009-03-11 2010-09-24 Nissan Motor Co Ltd Drying device and drying method
JP2014006981A (en) * 2012-06-21 2014-01-16 Toyota Motor Corp Nonaqueous electrolyte secondary battery manufacturing method and inspection method

Similar Documents

Publication Publication Date Title
US20050233218A1 (en) Lithium-ion secondary battery and method of charging lithium-ion secondary battery
US9859534B2 (en) Secondary battery
JPH11307076A (en) Secondary battery
JP4204231B2 (en) Lithium secondary battery
CN110970669A (en) Nonaqueous electrolyte secondary battery
JP2015011969A (en) Nonaqueous electrolyte secondary battery, and method for manufacturing the same
JP3589021B2 (en) Lithium ion secondary battery
JP5224083B2 (en) Secondary battery and manufacturing method thereof
CN110970653A (en) Nonaqueous electrolyte secondary battery
JP5843107B2 (en) Method for producing non-aqueous electrolyte secondary battery
RU2644590C1 (en) Auxiliary battery with non-aqueous electrolyte and method of manufacturing the auxiliary battery with non-aqueous electrolyte
JP7142585B2 (en) SECONDARY BATTERY AND METHOD FOR MANUFACTURING SECONDARY BATTERY
JP7145092B2 (en) Method for manufacturing secondary battery
JP6457272B2 (en) Method for reducing uneven charging of secondary battery and method for manufacturing secondary battery
JP2008243704A (en) Cylindrical type nonaqueous electrolyte battery
KR101342696B1 (en) Lithium ion battery and fabrication method thereof
WO2021100272A1 (en) Secondary battery and method for producing same
JP2000012070A (en) Secondary battery and its manufacture
WO2000062358A1 (en) Rechargeable battery using nonaqueous electrolyte
JPH09199136A (en) Nonaqueous electrolyte secondary battery
JP4736380B2 (en) Secondary battery and secondary battery aging treatment method
JP7054479B2 (en) Power storage element
JPH11260417A (en) Polymer electrolyte lithium secondary battery
JP2003217671A (en) Manufacturing method for gastight battery and sealing evaluation method for gastight battery
US12015141B2 (en) Non-aqueous electrolyte secondary battery