IT202000030740A1 - SEQUENZA NUCLEOTIDICA ESPRIMENTE UNA PROTEINA ANCORANTE VESCICOLE EXTRACELLULARI FUSA AD ANTIGENI DI SARS-CoV-2 E RELATIVA PROTEINA DI FUSIONE PER L’USO COME VACCINO - Google Patents

SEQUENZA NUCLEOTIDICA ESPRIMENTE UNA PROTEINA ANCORANTE VESCICOLE EXTRACELLULARI FUSA AD ANTIGENI DI SARS-CoV-2 E RELATIVA PROTEINA DI FUSIONE PER L’USO COME VACCINO Download PDF

Info

Publication number
IT202000030740A1
IT202000030740A1 IT102020000030740A IT202000030740A IT202000030740A1 IT 202000030740 A1 IT202000030740 A1 IT 202000030740A1 IT 102020000030740 A IT102020000030740 A IT 102020000030740A IT 202000030740 A IT202000030740 A IT 202000030740A IT 202000030740 A1 IT202000030740 A1 IT 202000030740A1
Authority
IT
Italy
Prior art keywords
seq
nucleotide sequence
nef
mut
cov
Prior art date
Application number
IT102020000030740A
Other languages
English (en)
Inventor
Maurizio Paolo Maria Federico
Original Assignee
St Superiore Di Sanita
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by St Superiore Di Sanita filed Critical St Superiore Di Sanita
Priority to IT102020000030740A priority Critical patent/IT202000030740A1/it
Priority to EP21830524.1A priority patent/EP4259191A1/en
Priority to PCT/IT2021/050405 priority patent/WO2022130432A1/en
Publication of IT202000030740A1 publication Critical patent/IT202000030740A1/it

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/385Haptens or antigens, bound to carriers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • A61K2039/572Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 cytotoxic response
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/60Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
    • A61K2039/6031Proteins
    • A61K2039/6075Viral proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • Oncology (AREA)
  • Molecular Biology (AREA)
  • Communicable Diseases (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Description

SEQUENZA NUCLEOTIDICA ESPRIMENTE UNA PROTEINA ANCORANTE VESCICOLE EXTRACELLULARI FUSA AD ANTIGENI DI SARS-CoV-2 E RELATIVA PROTEINA DI FUSIONE PER L?USO COME VACCINO
La presente invenzione riguarda una sequenza nucleotidica esprimente una proteina ancorante vescicole extracellulari fusa ad antigeni di SARS-CoV-2 e la relativa proteina di fusione per l?uso come vaccino.
In particolare, la presente invenzione riguarda una sequenza nucleotidica esprimente una proteina di ancorante vescicole extracellulari fusa ad antigeni di SARS-CoV-2 e la relativa proteina di fusione per l?uso come vaccino, in cui detta proteina ancorante vescicole extracellulari ? Nef<mut >o una forma troncata di Nef<mut>.
? ben noto che il coronavirus 2 della sindrome respiratoria acuta grave (SARS-CoV-2) si sta rapidamente diffondendo in assenza di strumenti convalidati per controllare la crescente epidemia oltre al distanziamento sociale. SARS-CoV-2 si ? manifestato per la prima volta alla fine del 2019 in Cina [1-3]. A livello mondiale, da allora il virus ha infettato oltre 22 milioni di individui e ha causato pi? di 800.000 morti [4]. Data la gravit? della malattia, sono urgentemente necessari vaccini e terapici per contrastare questo nuovo virus.
Lo sviluppo di vaccini contro SARS-CoV-2 ? ancora a uno stadio precoce, tuttavia sussiste la pressante necessit? di sviluppare interventi efficaci per controllare e prevenire la diffusione di SARS-CoV-2.
La maggior parte dei vaccini contro SARS-CoV-2 attualmente in fase di sviluppo mira a indurre anticorpi neutralizzanti contro la proteina spike (S) del virus. Tuttavia, studi di follow-up da pazienti che sono guariti da SARS suggeriscono che le risposte anticorpali specifiche di SARS-CoV sono di breve durata [5-12] e bersagliano il ceppo omologo primario. In particolare, in questi pazienti, le risposte di IgM e IgA specifiche per SARS-CoV sono durate meno di 6 mesi, mentre i titoli di IgG specifiche del virus hanno raggiunto un picco 4 mesi dopo l?infezione e sono notevolmente calati dopo 1 anno [5-11]. Il rischio di perdere questa forma di protezione nel tempo ? stato ulteriormente riportato da uno studio di follow-up di 6 anni che mostra l?assenza di risposte delle cellule B di memoria periferiche nei pazienti guariti da SARS [12].
Un altro potenziale e grave ostacolo allo sviluppo di un vaccino per SARS-CoV-2 ? il rischio di innescare un potenziamento anticorpo-dipendente (ADE, Antibody-Dependent Enhancement) dell?infezione virale e/o immunopatologia, poich? ADE indotto da vaccino per SARS-CoV ? stato documentato [66-68] e, molto recentemente, ? stato suggerito anche per SARS-CoV-2 [69]. Quindi, in assenza di una comprensione completa dei meccanismi alla base dell?immunit? protettiva, molti temono che alcuni vaccini possano aggravare la malattia invece di impedirla, ripetendo i disastrosi effetti del vaccino tetravalente Dengvaxia producente anticorpi per febbre gialla-dengue [70].
Varie evidenze sostengono l?idea di un ruolo importante dei CTL come parte di un meccanismo protettivo indotto dalla vaccinazione contro proteine virali, inclusi SARS-CoV, Ebola, West Nile, e influenza [46-62]. Per esempio, ? stato osservato che l?immunit? indotta dal vaccino all?infezione da virus Ebola in primati non umani ? contrassegnata da potenti risposte immunitarie cellulari specifiche dell?antigene, l?effetto protettivo essendo in gran parte mediato da cellule CD8+ T [64]. Altri studi dimostrano chiaramente un ruolo delle cellule CD8+ T nella protezione indotta da vaccino contro il virus West Nile e suggeriscono che la generazione di una robusta risposta delle cellule T sarebbe un componente importante dei futuri vaccini antivirali [65].
Nel caso delle infezioni nell?uomo da SARS-CoV, ? stato confermato che l?immunit? delle cellule T ricopre un ruolo importante nella guarigione dell?infezione da SARS-CoV [46] e che le cellule T di memoria contro SARS-CoV persistono anche 11 anni dopo l?infezione e hanno il potenziale di indurre una immunit? a reattivit? crociata [13-17]. Con un approccio di immunizzazione prime-boost, Channappanavar et al. hanno mostrato che le cellule CD8+ T hanno protetto topi da una provocazione con dose altrimenti fatale di SARS-CoV in assenza di anticorpi neutralizzanti [71]. Il medesimo studio non ha mostrato alcuna indicazione di immunopatologia mediata da cellule CD8+ T della memoria, suggerendo che l?induzione di queste cellule come unico mediatore immunitario potrebbe essere sia efficace sia sicura per vaccini contro SARS-CoV [71].
Le attuali evidenze hanno fortemente indicato che la risposta delle cellule Th-1 e le cellule CD8+ T sono la chiave per riuscire a controllare le infezioni da SARS-CoV e MERS-CoV, e probabilmente questo pu? essere vero anche per la risposta delle cellule CD8+ T contro SARS-CoV-2. In effetti, un crescente numero di studi mostra che pazienti convalescenti sviluppano anche robuste risposte delle cellule T [18-21]. Grifoni et al. hanno riportato robuste risposte delle cellule T contro le proteine S, M, e N in 20 pazienti convalescenti da COVID-19 [18]. Cellule CD8+ e CD4+ T specifiche di SARS-CoV-2 circolanti sono state trovate rispettivamente nel 70% e nel 100% dei pazienti [18]. In aggiunta, ? stato trovato che, oltre alla proteina S, anche la proteina di membrana (M) di SARS-CoV-2 suscita forti risposte delle cellule CD8<+ >T, e una significativa reattivit? ? stata riportata anche per la proteina del nucleocapside (N) [18]. Le cellule T forniscono benefici terapeutici inducendo direttamente una lisi cellulare delle cellule infettate dal virus e modellando la risposta immunitaria attraverso il rilascio di citochine determinanti per intervenire nelle infezioni virali.
Considerate insieme, queste evidenze suggeriscono che una formulazione vaccinale ampia e di lunga durata contro SARS-CoV-2 potrebbe e dovrebbe indurre forti risposte dei linfociti T di memoria, in particolare una risposta di CTL, contro molteplici antigeni virali. Bench? non siano noti correlati di protezione contro SARS-CoV-2, la sua somiglianza con SARS-CoV suggerisce che la ricerca precedente, focalizzata sui meccanismi alla base dell?immunit? protettiva contro SARS-CoV, possa essere sfruttata per aiutare lo sviluppo di un vaccino contro SARS-CoV-2.
Alla luce di quanto precede, risulta evidente la necessit? di fornire nuovi composti per la prevenzione e il trattamento di una infezione da coronavirus, in particolare di infezioni da SARS-CoV-2, e della malattia correlata, che siano in grado di superare gli svantaggi delle terapie note.
? ben noto che le vescicole extracellulari (EV, Extracellular vesicle) sono una popolazione eterogenea di nanovescicole di membrana, delle quali le pi? studiate sono gli esosomi [22]. Le EV sono rilasciate dalla maggior parte dei tipi di cellule, tra cui i miociti [23], e hanno ruoli determinanti nella comunicazione da cellula a cellula e nella regolazione delle risposte immunitarie [24-27].
In questo contesto, ? nota la capacit? di Nef di HIV-1 di incorporarsi nelle EV rilasciate da pi? tipi di cellule, tra cui i linfociti T CD4+ e le cellule dendritiche [28], con una incorporazione nelle EV che aumenta di circa 100 volte quando si usa il mutante Nef G3C-V153L-E177G (Nef<mut>) grazie alla promozione della stabilizzazione delle interazioni di Nef<mut >con la membrana cellulare [29, 30]. Inoltre, e di estremo beneficio per un vaccino, le mutazioni V153L-E177G rendono Nef<mut >difettivo fondamentalmente di tutte le funzioni dannose di Nef, tra cui la regolazione verso il basso di CD4 e MHC di Classe I, aumentata infettivit? di HIV-1, e attivazione di chinasi 2 p21-attivate (PAK-2) [31, 32].
Il brevetto EP3389701 B1 descrive un approccio per indurre una immunit? basata sui linfociti citotossici CD8<+ >T (CTL) fondata sull?ingegnerizzazione in vivo di vescicole extracellulari (EV) impiegando un vettore di espressione di DNA codificante una proteina di fusione comprendente una proteina Nef di HIV-1 mutata di lunghezza intera (Nef<mut>), che ha perduto tutte le sue funzioni correlate all?HIV, e un antigene immunogeno fuso al suo C-terminale.
? noto che l'efficienza di incorporazione di Nef<mut >in EV ? mantenuta anche quando una proteina estranea ? fusa al suo C-terminale [29, 30, 33-36]. Quando vettori di DNA esprimenti proteine di fusione a base di Nef<mut >sono iniettate per via intramuscolare (i.m.) in topi, quantit? significative di antigeni desiderati sono impaccate nelle EV al contempo senza alterare il loro rilascio spontaneo dal tessuto muscolare. Queste EV ingegnerizzate in vivo fungono da efficace vaccino suscitando potenti risposte di CTL antigene-specifiche [29, 30, 35]. Antigeni fusi a Nef<mut >sono rilasciati all'interno di EV derivate da muscolo e internalizzati dalle cellule presentanti l'antigene (APC, antigenpresenting cell) che presentano in modo crociato il contenuto delle EV per attivare cellule T antigenespecifiche. L?efficacia e la flessibilit? di questa piattaforma vaccinale per l?attivazione di risposte di CTL antigene-specifiche ? stata dimostrata con un array di prodotti virali di diverse origini e dimensioni, che include ma non ? limitata a: E6 e E7 di HPV 16; VP24, VP40 e NP del virus Ebola; virus dell?epatite C NS3; NS3 del virus West Nile; e NP della febbre emorragica della Crimea-Congo [29-34].
Tuttavia, sebbene sia stato ampiamente documentato che Nef<mut >? un mutante mancante di tutte le attivit? biologiche della controparte di tipo selvatico, va considerato che la sua difettosit? si fonda sulla coesistenza di due sole mutazioni. Potrebbero avvenire eventi non predicibili, rari, tuttavia teoricamente possibili, di mutazioni di ritorno, specialmente quando si prevede che il DNA immunogeno sia prodotto ed erogato su larga scala. Quindi, l?identificazione di condizioni che rendano inefficaci - in termini di reversione al fenotipo wt di Nef - le eventuali mutazioni di ritorno ? sembrata essere un punto chiave relativamente alla sicurezza.
Secondo la presente invenzione ? stato ora trovato che vettori di DNA esprimenti i prodotti di fusione tra Nef<mut >e quattro antigeni virali di SARS-CoV-2, in particolare le frazioni N- e C-terminali di S (definite S1 e S2), M, e N, sono caricati efficientemente in EV e sono in grado di indurre una forte immunit? delle cellule CD8+ T antigene-specifiche. Sulla base dei risultati ottenuti in termini di immunogenicit?, i quali sono riportati nel seguito, vettori di DNA esprimenti proteine di fusione di antigeni di Nef<mut>-SARS-CoV-2 possono essere vantaggiosamente usati come nuova strategia vaccinale volta a indurre una efficace risposta di CTL anti-SARS-CoV-2.
In aggiunta, secondo la presente invenzione, ? stato sorprendentemente trovato che una delezione Cterminale di Nef<mut >fino a 29 amminoacidi non ha influito sulla capacit? di Nef<mut >di associarsi alle EV, anche quando fusa con una proteina estranea. Di fatto, secondo la presente invenzione, ? stato dimostrato che Nef<mut >troncata (Nef<mut>PL) mantiene intatte le propriet? di caricamento in EV della isoforma intera. Questo risultato era inaspettato, poich? era noto che la regione C-terminale di Nef<mut >include domini che sono importanti per le funzioni sia di segnalazione sia di traffico di Nef [72, 73]. In particolare, il C-terminale di Nef comprende un motivo di riconoscimento del colesterolo (CRM, cholesterol recognizing motif) ben conservato, gi? caratterizzato come dominio importante per l'associazione di Nef a particelle virali [74] e, a causa della convergenza di biogenesi di HIV-1 e delle EV [75], a tutte le nanovesicole rilasciate da cellule esprimenti Nef. Secondo la presente invenzione, ? stato sorprendentemente trovato che, anche in assenza di CRM, Nef<mut >? in grado di associarsi alle EV. ? plausibile che gli effetti di miristoilazione e palmitoilazione N-terminali nonch? gli effetti di un tratto conservato di amminoacidi basici situati nell?alfa elica 1 siano prevalenti rispetto agli effetti indotti da CRM in termini di interazione stabile con la zattera lipidica in corrispondenza delle membrane cellulari e di associazione alle vescicole.
Nef<mut>PL rappresenta un candidato pi? forte per un utilizzo su larga scala come vaccino anti-SARS-CoV-2 quando la sua cornice di lettura aperta (ORF, openreading frame) ? fusa a quelle degli antigeni virali.
Infatti, usando la minima parte di Nef<mut >che mantiene la propriet? di proteina ancorante le EV, la sicurezza intrinseca di immunogeni basati su Nef<mut >pu? essere massimizzata. In particolare, come conseguenza del troncamento C-terminale, non si verificherebbero possibili eventi di mutazione di ritorno che trasformerebbero la proteina nella sua controparte di tipo selvatico. Pertanto, vettori di DNA esprimenti i prodotti di fusione tra Nefmut con delezione C-terminale e antigeni di SARS-CoV-2 sarebbero considerati candidati clinici sicuri ed efficienti per l?induzione di un?immunit? antivirale CTL-specifica.
Pertanto, la presente invenzione riguarda una proteina di fusione comprendente Nef<mut >o Nef<mut>PL e un antigene di SARS-CoV-2 come strategia vaccinale che innesca una efficace risposta di CTL.
Rispetto ad altre strategie vaccinali inducenti cellule T, una vaccinazione a DNA basata su Nef<mut >? pi? sicura, e la possibilit? di includere sequenze di Nef<mut>PL in preparazioni vaccinali a DNA rafforza ulteriormente il suo profilo di sicurezza. Nel caso delle strategie vaccinali per SARS-CoV-2, questa caratteristica distintiva rafforza la possibilit? di co-iniettare vettori di DNA esprimenti differenti antigeni virali nonch? di combinarli con un vaccino in grado di suscitare anticorpi neutralizzanti forti e sicuri.
Forma pertanto oggetto specifico della presente invenzione una proteina di fusione comprendente o consistente in una proteina ancorante esosomi fusa in corrispondenza del suo C-terminale con un antigene immunogenico di coronavirus, in cui detta proteina ancorante esosomi ? scelta tra Nef<mut >di sequenza SEQ ID NO:1 o una forma troncata di Nef<mut >avente una sequenza scelta dal gruppo consistente in SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24. SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29 e SEQ ID NO:30, preferibilmente SEQ ID NO:30, in cui
SEQ ID NO:1 ?
MGCKWSKSSVVGWPAVRERMRRAEPAADGVGAASRDLEKHGAITSSNTAA TNADCAWLEAQEEEEVGFPVTPQVPLRPMTYKAAVDLSHFLKEKGGLEGLIHSQR RQDILDLWIYHTQGYFPDWQNYTPGPGIRYPLTFGWCYKLVPVEPEKLEEANKGE NTSLLHPVSLHGMDDPGREVLEWRFDSRLAFHHVARELHPEYFKNC;
SEQ ID NO:2 ?
MGCKWSKSSVVGWPAVRERMRRAEPAADGVGAASRDLEKHGAITSSNTAA TNADCAWLEAQEEEEVGFPVTPQVPLRPMTYKAAVDLSHFLKEKGGLEGLIHSQR RQDILDLWIYHTQGYFPDWQNYTPGPGIRYPLTFGWCYKLVPVEPEKLEEANKGE NTSLLHPVSLHGMDDPGREVLEWRFDSRLAFHHVARELHPEYFKN;
SEQ ID NO:3 ?
MGCKWSKSSVVGWPAVRERMRRAEPAADGVGAASRDLEKHGAITSSNTAATNADC AWLEAQEEEEVGFPVTPQVPLRPMTYKAAVDLSHFLKEKGGLEGLIHSQRRQDIL DLWIYHTQGYFPDWQNYTPGPGIRYPLTFGWCYKLVPVEPEKLEEANKGENTSLL HPVSLHGMDDPGREVLEWRFDSRLAFHHVARELHPEYFK;
SEQ ID NO:4 ?
MGCKWSKSSVVGWPAVRERMRRAEPAADGVGAASRDLEKHGAITSSNTAATNADC AWLEAQEEEEVGFPVTPQVPLRPMTYKAAVDLSHFLKEKGGLEGLIHSQRRQDIL DLWIYHTQGYFPDWQNYTPGPGIRYPLTFGWCYKLVPVEPEKLEEANKGENTSLL HPVSLHGMDDPGREVLEWRFDSRLAFHHVARELHPEYF;
SEQ ID NO:5 ?
MGCKWSKSSVVGWPAVRERMRRAEPAADGVGAASRDLEKHGAITSSNTAATNADC AWLEAQEEEEVGFPVTPQVPLRPMTYKAAVDLSHFLKEKGGLEGLIHSQRRQDIL DLWIYHTQGYFPDWQNYTPGPGIRYPLTFGWCYKLVPVEPEKLEEANKGENTSLL HPVSLHGMDDPGREVLEWRFDSRLAFHHVARELHPEY;
SEQ ID NO:6 ?
MGCKWSKSSVVGWPAVRERMRRAEPAADGVGAASRDLEKHGAITSSNTAATNADC AWLEAQEEEEVGFPVTPQVPLRPMTYKAAVDLSHFLKEKGGLEGLIHSQRRQDIL DLWIYHTQGYFPDWQNYTPGPGIRYPLTFGWCYKLVPVEPEKLEEANKGENTSLL HPVSLHGMDDPGREVLEWRFDSRLAFHHVARELHPE;
SEQ ID NO:7 ?
MGCKWSKSSVVGWPAVRERMRRAEPAADGVGAASRDLEKHGAITSSNTAA TNADCAWLEAQEEEEVGFPVTPQVPLRPMTYKAAVDLSHFLKEKGGLEGLIHSQR RQDILDLWIYHTQGYFPDWQNYTPGPGIRYPLTFGWCYKLVPVEPEKLEEANKGE NTSLLHPVSLHGMDDPGREVLEWRFDSRLAFHHVARELHP;
SEQ ID NO:8 ?
MGCKWSKSSVVGWPAVRERMRRAEPAADGVGAASRDLEKHGAITSSNTAATNADC AWLEAQEEEEVGFPVTPQVPLRPMTYKAAVDLSHFLKEKGGLEGLIHSQRRQDIL DLWIYHTQGYFPDWQNYTPGPGIRYPLTFGWCYKLVPVEPEKLEEANKGENTSLL HPVSLHGMDDPGREVLEWRFDSRLAFHHVARELH;
SEQ ID NO:9 ?
MGCKWSKSSVVGWPAVRERMRRAEPAADGVGAASRDLEKHGAITSSNTAATNADC AWLEAQEEEEVGFPVTPQVPLRPMTYKAAVDLSHFLKEKGGLEGLIHSQRRQDIL DLWIYHTQGYFPDWQNYTPGPGIRYPLTFGWCYKLVPVEPEKLEEANKGENTSLL HPVSLHGMDDPGREVLEWRFDSRLAFHHVAREL;
SEQ ID NO:10 ?
MGCKWSKSSVVGWPAVRERMRRAEPAADGVGAASRDLEKHGAITSSNTAATNADC AWLEAQEEEEVGFPVTPQVPLRPMTYKAAVDLSHFLKEKGGLEGLIHSQRRQDIL DLWIYHTQGYFPDWQNYTPGPGIRYPLTFGWCYKLVPVEPEKLEEANKGENTSLL HPVSLHGMDDPGREVLEWRFDSRLAFHHVARE;
SEQ ID NO:11 ?
MGCKWSKSSVVGWPAVRERMRRAEPAADGVGAASRDLEKHGAITSSNTAATNADC AWLEAQEEEEVGFPVTPQVPLRPMTYKAAVDLSHFLKEKGGLEGLIHSQRRQDIL DLWIYHTQGYFPDWQNYTPGPGIRYPLTFGWCYKLVPVEPEKLEEANKGENTSLL HPVSLHGMDDPGREVLEWRFDSRLAFHHVAR;
SEQ ID NO:12 ?
MGCKWSKSSVVGWPAVRERMRRAEPAADGVGAASRDLEKHGAITSSNTAATNADC AWLEAQEEEEVGFPVTPQVPLRPMTYKAAVDLSHFLKEKGGLEGLIHSQRRQDIL DLWIYHTQGYFPDWQNYTPGPGIRYPLTFGWCYKLVPVEPEKLEEANKGENTSLL HPVSLHGMDDPGREVLEWRFDSRLAFHHVA;
SEQ ID NO:13 ?
MGCKWSKSSVVGWPAVRERMRRAEPAADGVGAASRDLEKHGAITSSNTAATNADC AWLEAQEEEEVGFPVTPQVPLRPMTYKAAVDLSHFLKEKGGLEGLIHSQRRQDIL DLWIYHTQGYFPDWQNYTPGPGIRYPLTFGWCYKLVPVEPEKLEEANKGENTSLL HPVSLHGMDDPGREVLEWRFDSRLAFHHV;
SEQ ID NO:14 ?
MGCKWSKSSVVGWPAVRERMRRAEPAADGVGAASRDLEKHGAITSSNTAA TNADCAWLEAQEEEEVGFPVTPQVPLRPMTYKAAVDLSHFLKEKGGLEGLIHSQR RQDILDLWIYHTQGYFPDWQNYTPGPGIRYPLTFGWCYKLVPVEPEKLEEANKGE NTSLLHPVSLHGMDDPGREVLEWRFDSRLAFHH;
SEQ ID NO:15 ?
MGCKWSKSSVVGWPAVRERMRRAEPAADGVGAASRDLEKHGAITSSNTAA TNADCAWLEAQEEEEVGFPVTPQVPLRPMTYKAAVDLSHFLKEKGGLEGLIHSQR RQDILDLWIYHTQGYFPDWQNYTPGPGIRYPLTFGWCYKLVPVEPEKLEEANKGE NTSLLHPVSLHGMDDPGREVLEWRFDSRLAFH;
SEQ ID NO:16 ?
MGCKWSKSSVVGWPAVRERMRRAEPAADGVGAASRDLEKHGAITSSNTAATNADC AWLEAQEEEEVGFPVTPQVPLRPMTYKAAVDLSHFLKEKGGLEGLIHSQRRQDIL DLWIYHTQGYFPDWQNYTPGPGIRYPLTFGWCYKLVPVEPEKLEEANKGENTSLL HPVSLHGMDDPGREVLEWRFDSRLAF;
SEQ ID NO:17 ?
MGCKWSKSSVVGWPAVRERMRRAEPAADGVGAASRDLEKHGAITSSNTAATNADC AWLEAQEEEEVGFPVTPQVPLRPMTYKAAVDLSHFLKEKGGLEGLIHSQRRQDIL DLWIYHTQGYFPDWQNYTPGPGIRYPLTFGWCYKLVPVEPEKLEEANKGENTSLL HPVSLHGMDDPGREVLEWRFDSRLA;
SEQ ID NO:18 ?
MGCKWSKSSVVGWPAVRERMRRAEPAADGVGAASRDLEKHGAITSSNTAATNADC AWLEAQEEEEVGFPVTPQVPLRPMTYKAAVDLSHFLKEKGGLEGLIHSQRRQDIL DLWIYHTQGYFPDWQNYTPGPGIRYPLTFGWCYKLVPVEPEKLEEANKGENTSLL HPVSLHGMDDPGREVLEWRFDSRL;
SEQ ID NO:19 ?
MGCKWSKSSVVGWPAVRERMRRAEPAADGVGAASRDLEKHGAITSSNTAATNADC AWLEAQEEEEVGFPVTPQVPLRPMTYKAAVDLSHFLKEKGGLEGLIHSQRRQDIL DLWIYHTQGYFPDWQNYTPGPGIRYPLTFGWCYKLVPVEPEKLEEANKGENTSLL HPVSLHGMDDPGREVLEWRFDSR;
SEQ ID NO:20 ?
MGCKWSKSSVVGWPAVRERMRRAEPAADGVGAASRDLEKHGAITSSNTAA TNADCAWLEAQEEEEVGFPVTPQVPLRPMTYKAAVDLSHFLKEKGGLEGLIHSQR RQDILDLWIYHTQGYFPDWQNYTPGPGIRYPLTFGWCYKLVPVEPEKLEEANKGE NTSLLHPVSLHGMDDPGREVLEWRFDS;
SEQ ID NO:21 ?
MGCKWSKSSVVGWPAVRERMRRAEPAADGVGAASRDLEKHGAITSSNTAATNADC AWLEAQEEEEVGFPVTPQVPLRPMTYKAAVDLSHFLKEKGGLEGLIHSQRRQDIL DLWIYHTQGYFPDWQNYTPGPGIRYPLTFGWCYKLVPVEPEKLEEANKGENTSLL HPVSLHGMDDPGREVLEWRFD;
SEQ ID NO:22 ?
MGCKWSKSSVVGWPAVRERMRRAEPAADGVGAASRDLEKHGAITSSNTAA TNADCAWLEAQEEEEVGFPVTPQVPLRPMTYKAAVDLSHFLKEKGGLEGLIHSQR RQDILDLWIYHTQGYFPDWQNYTPGPGIRYPLTFGWCYKLVPVEPEKLEEANKGE NTSLLHPVSLHGMDDPGREVLEWRF;
SEQ ID NO:23 ?
MGCKWSKSSVVGWPAVRERMRRAEPAADGVGAASRDLEKHGAITSSNTAA TNADCAWLEAQEEEEVGFPVTPQVPLRPMTYKAAVDLSHFLKEKGGLEGLIHSQR RQDILDLWIYHTQGYFPDWQNYTPGPGIRYPLTFGWCYKLVPVEPEKLEEANKGE NTSLLHPVSLHGMDDPGREVLEWR;
SEQ ID NO:24 ?
MGCKWSKSSVVGWPAVRERMRRAEPAADGVGAASRDLEKHGAITSSNTAA TNADCAWLEAQEEEEVGFPVTPQVPLRPMTYKAAVDLSHFLKEKGGLEGLIHSQR RQDILDLWIYHTQGYFPDWQNYTPGPGIRYPLTFGWCYKLVPVEPEKLEEANKGE NTSLLHPVSLHGMDDPGREVLEW;
SEQ ID NO:25 ?
MGCKWSKSSVVGWPAVRERMRRAEPAADGVGAASRDLEKHGAITSSNTAA TNADCAWLEAQEEEEVGFPVTPQVPLRPMTYKAAVDLSHFLKEKGGLEGLIHSQR RQDILDLWIYHTQGYFPDWQNYTPGPGIRYPLTFGWCYKLVPVEPEKLEEANKGE NTSLLHPVSLHGMDDPGREVLE;
SEQ ID NO:26 ?
MGCKWSKSSVVGWPAVRERMRRAEPAADGVGAASRDLEKHGAITSSNTAA TNADCAWLEAQEEEEVGFPVTPQVPLRPMTYKAAVDLSHFLKEKGGLEGLIHSQR RQDILDLWIYHTQGYFPDWQNYTPGPGIRYPLTFGWCYKLVPVEPEKLEEANKGE NTSLLHPVSLHGMDDPGREVL;
SEQ ID NO:27 ?
MGCKWSKSSVVGWPAVRERMRRAEPAADGVGAASRDLEKHGAITSSNTAA TNADCAWLEAQEEEEVGFPVTPQVPLRPMTYKAAVDLSHFLKEKGGLEGLIHSQR RQDILDLWIYHTQGYFPDWQNYTPGPGIRYPLTFGWCYKLVPVEPEKLEEANKGE NTSLLHPVSLHGMDDPGREV;
SEQ ID NO:28 ?
MGCKWSKSSVVGWPAVRERMRRAEPAADGVGAASRDLEKHGAITSSNTAA TNADCAWLEAQEEEEVGFPVTPQVPLRPMTYKAAVDLSHFLKEKGGLEGLIHSQR RQDILDLWIYHTQGYFPDWQNYTPGPGIRYPLTFGWCYKLVPVEPEKLEEANKGE NTSLLHPVSLHGMDDPGRE;
SEQ ID NO:29 ? MGCKWSKSSVVGWPAVRERMRRAEPAADGVGAASRDLEKHGAITSSNTAA TNADCAWLEAQEEEEVGFPVTPQVPLRPMTYKAAVDLSHFLKEKGGLEGLIHSQR RQDILDLWIYHTQGYFPDWQNYTPGPGIRYPLTFGWCYKLVPVEPEKLEEANKGE NTSLLHPVSLHGMDDPGR; e
SEQ ID NO:30 ? MGCKWSKSSVVGWPAVRERMRRAEPAADGVGAASRDLEKHGAITSSNTAA TNADCAWLEAQEEEEVGFPVTPQVPLRPMTYKAAVDLSHFLKEKGGLEGLIHSQR RQDILDLWIYHTQGYFPDWQNYTPGPGIRYPLTFGWCYKLVPVEPEKLEEANKGE NTSLLHPVSLHGMDDPG.
Secondo la presente invenzione, detto antigene immunogenico di coronavirus pu? essere scelto dal gruppo consistente in un antigene di SARS-CoV-2, un antigene di coronavirus OC43, un antigene di coronavirus 229E, un antigene di coronavirus NL63, un antigene di coronavirus HKU1, un antigene del betacoronavirus della sindrome respiratoria mediorientale (MERS-CoV) o un antigene del betacoronavirus della sindrome respiratoria acuta grave (SARS-CoV), preferibilmente un antigene di SARS-CoV-2.
In particolare, detto antigene di SARS-CoV-2 pu? essere scelto dal gruppo consistente in proteina S, subunit? S1, subunit? S2, proteina M e/o proteina N o loro frazioni immunogeniche.
Secondo la presente invenzione, la frazione immunogenica della subunit? S1 pu? consistere in SEQ ID NO:31, la porzione immunogenica della subunit? S2 pu? consistere in SEQ ID NO:32, la porzione immunogenica della proteina M pu? consistere in SEQ ID NO:33 e la porzione immunogenica della proteina N pu? consistere in SEQ ID NO:34, in cui
SEQ ID NO:31 ?
TRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIH VSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNAT NVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDL EGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGIN ITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAV DCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNA TRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADS FVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYR LFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYR VVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQ FGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTE VPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASY QTQTNS;
la SEQ ID NO:32 ?
QYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGA GAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASAL GKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITGR LQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQS APHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFY EPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVD LGDISGINASVVNIQKEIDRLNEVAKNLNES;
SEQ ID NO:33 ?
ARTRSMWSFNPETNILLNVPLHGTILTRPLLESELVIGAVILRGHLRIAGHHLGR CDIKDLPKEITVATSRTLSYYKLGASQRVAGDSGFAAYSRYRIGNYKLNTDHSSS SDNIALLVQ; e
SEQ ID NO:34 ? SDNGPQNQRNAPRITFGGPSDSTGSNQNGERSGARSKQRRPQGLPNNTASWFTAL TQHGKEDLKFPRGQGVPINTNSSPDDQIGYYRRATRRIRGGDGKMKDLSPRWYFY YLGTGPEAGLPYGANKDGIIWVATEGALNTPKDHIGTRNPANNAAIVLQLPQGTT LPKGFYAEGSRGGSQASSRSSSRSRNSSRNSTPGSSRGTSPARMAGNGGDAALAL LLLDRLNQLESKMSGKGQQQQGQTVTKKSAAEASKKPRQKRTATKAYNVTQAFGR RGPEQTQGNFGDQELIRQGTDYKHWPQIAQFAPSASAFFGMSRIGMEVTPSGTWL TYTGAIKLDDKDPNFKDQVILLNKHIDAYKTFPPTEPKKDKKKKADETQALPQRQ KKQQTVTLLPAADLDDFSKQLQQSMSSADSTQA.
Secondo la presente invenzione, detta proteina ancorante esosomi pu? essere fusa a detto antigene immunogeno mediante un linker, come GPGP (SEQ ID NO:35).
In aggiunta, secondo la presente invenzione, detta proteina di fusione pu? comprendere inoltre un flag-tag legato all?antigene immunogeno, come DYKDDDDK (SEQ ID NO:87).
Secondo una forma di realizzazione della presente invenzione, quando detta proteina ancorante esosomi ? Nef<mut>, detta proteina di fusione pu? essere scelta dal gruppo consistente in SEQ ID NO::36 (in cui l?antigene ? una porzione immunogenicaa della subunit? S1), SEQ ID NO:37 (in cui l?antigene ? una porzione immunogenica della subunit? S2), SEQ ID NO:38 (in cui l?antigene ? una porzione immunogenica della proteina M) e SEQ ID NO:39 (in cui l?antigene ? una porzione immunogenica della proteina N), in cui
SEQ ID NO:36 ? MGCKWSKSSVVGWPAVRERMRRAEPAADGVGAASRDLEKHGAITSSNTAA TNADCAWLEAQEEEEVGFPVTPQVPLRPMTYKAAVDLSHFLKEKGGLEGLIHSQR RQDILDLWIYHTQGYFPDWQNYTPGPGIRYPLTFGWCYKLVPVEPEKLEEANKGE NTSLLHPVSLHGMDDPGREVLEWRFDSRLAFHHVARELHPEYFKNCGPGPTRTQL PPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRF DNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQ FCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNL REFVFKNIDGYFKIYSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLAL HRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSET KCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWN RKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQ IAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPF ERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLH APATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTD AVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQL TPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSDYKD DDDK;
SEQ ID NO:37 ?
MGCKWSKSSVVGWPAVRERMRRAEPAADGVGAASRDLEKHGAITSSNTAA TNADCAWLEAQEEEEVGFPVTPQVPLRPMTYKAAVDLSHFLKEKGGLEGLIHSQR RQDILDLWIYHTQGYFPDWQNYTPGPGIRYPLTFGWCYKLVPVEPEKLEEANKGE NTSLLHPVSLHGMDDPGREVLEWRFDSRLAFHHVARELHPEYFKNCGPGPQYGDC LGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQ IPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQD VVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEQIDRLITGRLQSLQT YVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVV FLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIIT TDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISG INASVVNIQKEIDRLNEVAKNLNESDYKDDDDK;
SEQ ID NO:38 ?
MGCKWSKSSVVGWPAVRERMRRAEPAADGVGAASRDLEKHGAITSSNTAA TNADCAWLEAQEEEEVGFPVTPQVPLRPMTYKAAVDLSHFLKEKGGLEGLIHSQR RQDILDLWIYHTQGYFPDWQNYTPGPGIRYPLTFGWCYKLVPVEPEKLEEANKGE NTSLLHPVSLHGMDDPGREVLEWRFDSRLAFHHVARELHPEYFKNCGPGPARTRS MWSFNPETNILLNVPLHGTILTRPLLESELVIGAVILRGHLRIAGHHLGRCDIKD LPKEITVATSRTLSYYKLGASQRVAGDSGFAAYSRYRIGNYKLNTDHSSSSDNIA LLVQDYKDDDDK; e
SEQ ID NO:39 ? MGCKWSKSSVVGWPAVRERMRRAEPAADGVGAASRDLEKHGAITSSNTAA TNADCAWLEAQEEEEVGFPVTPQVPLRPMTYKAAVDLSHFLKEKGGLEGLIHSQR RQDILDLWIYHTQGYFPDWQNYTPGPGIRYPLTFGWCYKLVPVEPEKLEEANKGE NTSLLHPVSLHGMDDPGREVLEWRFDSRLAFHHVARELHPEYFKNCGPGPSDNGP QNQRNAPRITFGGPSDSTGSNQNGERSGARSKQRRPQGLPNNTASWFTALTQHGK EDLKFPRGQGVPINTNSSPDDQIGYYRRATRRIRGGDGKMKDLSPRWYFYYLGTG PEAGLPYGANKDGIIWVATEGALNTPKDHIGTRNPANNAAIVLQLPQGTTLPKGF YAEGSRGGSQASSRSSSRSRNSSRNSTPGSSRGTSPARMAGNGGDAALALLLLDR LNQLESKMSGKGQQQQGQTVTKKSAAEASKKPRQKRTATKAYNVTQAFGRRGPEQ TQGNFGDQELIRQGTDYKHWPQIAQFAPSASAFFGMSRIGMEVTPSGTWLTYTGA IKLDDKDPNFKDQVILLNKHIDAYKTFPPTEPKKDKKKKADETQALPQRQKKQQT VTLLPAADLDDFSKQLQQSMSSADSTQADYKDDDDK.
Secondo un?altra forma di realizzazione della presente invenzione, quando detta proteina ancorante esosomi ? una forma troncata di Nef<mut >di SEQ ID NO:30, detta proteina di fusione ? scelta dal gruppo consistente in SEQ ID NO:40 (in cui l?antigene ? una porzione della subunit? S1), ID di SEQ n. SEQ ID NO::41 (in cui l?antigene ? una porzione della subunit? S2), SEQ ID NO: (in cui l?antigene ? una porzione della proteina M) e SEQ ID NO: 43 (in cui l?antigene ? una porzione di proteina N), in cui
SEQ ID NO:40 ? MGCKWSKSSVVGWPAVRERMRRAEPAADGVGAASRDLEKHGAITSSNTAA TNADCAWLEAQEEEEVGFPVTPQVPLRPMTYKAAVDLSHFLKEKGGLEGLIHSQR RQDILDLWIYHTQGYFPDWQNYTPGPGIRYPLTFGWCYKLVPVEPEKLEEANKGE NTSLLHPVSLHGMDDPGGPGPTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQD LFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGT TLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSA NNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPQ GFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPR TFLLKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVR FPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVS PTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNS NNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQ SYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTG TGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTN TSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNN SYECDIPIGAGICASYQTQTNSDYKDDDDK;
SEQ ID NO:41 ?
MGCKWSKSSVVGWPAVRERMRRAEPAADGVGAASRDLEKHGAITSSNTAA TNADCAWLEAQEEEEVGFPVTPQVPLRPMTYKAAVDLSHFLKEKGGLEGLIHSQR RQDILDLWIYHTQGYFPDWQNYTPGPGIRYPLTFGWCYKLVPVEPEKLEEANKGE NTSLLHPVSLHGMDDPGGPGPQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEM IAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIA NQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLND ILSRLDKVEAEQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLG QSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFP REGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPEL DSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESDYKD DDDK;
SEQ ID NO:42 ?
MGCKWSKSSVVGWPAVRERMRRAEPAADGVGAASRDLEKHGAITSSNTAA TNADCAWLEAQEEEEVGFPVTPQVPLRPMTYKAAVDLSHFLKEKGGLEGLIHSQR RQDILDLWIYHTQGYFPDWQNYTPGPGIRYPLTFGWCYKLVPVEPEKLEEANKGE NTSLLHPVSLHGMDDPGGPGPARTRSMWSFNPETNILLNVPLHGTILTRPLLESE LVIGAVILRGHLRIAGHHLGRCDIKDLPKEITVATSRTLSYYKLGASQRVAGDSG FAAYSRYRIGNYKLNTDHSSSSDNIALLVQDYKDDDDK; e
SEQ ID NO:43 ? MGCKWSKSSVVGWPAVRERMRRAEPAADGVGAASRDLEKHGAITSSNTAA TNADCAWLEAQEEEEVGFPVTPQVPLRPMTYKAAVDLSHFLKEKGGLEGLIHSQR RQDILDLWIYHTQGYFPDWQNYTPGPGIRYPLTFGWCYKLVPVEPEKLEEANKGE NTSLLHPVSLHGMDDPGGPGPSDNGPQNQRNAPRITFGGPSDSTGSNQNGERSGA RSKQRRPQGLPNNTASWFTALTQHGKEDLKFPRGQGVPINTNSSPDDQIGYYRRA TRRIRGGDGKMKDLSPRWYFYYLGTGPEAGLPYGANKDGIIWVATEGALNTPKDH IGTRNPANNAAIVLQLPQGTTLPKGFYAEGSRGGSQASSRSSSRSRNSSRNSTPG SSRGTSPARMAGNGGDAALALLLLDRLNQLESKMSGKGQQQQGQTVTKKSAAEAS KKPRQKRTATKAYNVTQAFGRRGPEQTQGNFGDQELIRQGTDYKHWPQIAQFAPS ASAFFGMSRIGMEVTPSGTWLTYTGAIKLDDKDPNFKDQVILLNKHIDAYKTFPP TEPKKDKKKKADETQALPQRQKKQQTVTLLPAADLDDFSKQLQQSMSSADSTQA DYKDDDDK.
Forma ulteriore oggetto della presente invenzione una sequenza nucleotidica codificante una proteina di fusione come sopra definita.
Secondo la presente invenzione, la sequenza nucleotidica codificante Nef<mut >pu? essere SEQ ID NO:44 e la sequenza nucleotidica codificante la forma troncata di Nef<mut >pu? essere scelta dal gruppo consistente in SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:61, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72 e SEQ ID NO:73, preferibilmente SEQ ID NO:73,, in cui
SEQ ID NO:44 ?
Atgggttgcaagtggtcaaaaagtagtgtggttggatggcctgctgtaag ggaaagaatgagacgagctgagccagcagcagatggggtgggagcagcatctcga gacctagaaaaacatggagcaatcacaagtagcaatacagcagctaccaatgctg attgtgcctggctagaagcacaagaggaggaggaggtgggttttccagtcacacc tcaggtacctttaagaccaatgacttacaaggcagctgtagatcttagccacttt ttaaaagaaaaggggggactggaagggctaattcactcccaacgaagacaagata tccttgatctgtggatctaccacacacaaggctacttccctgattggcagaacta cacaccaggaccagggatcagatatccactgacctttggatggtgctacaagcta gtaccagttgagccagagaagttagaagaagccaacaaaggagagaacaccagct tgttacaccctgtgagcctgcatggaatggatgacccggggagagaagtgttaga gtggaggtttgacagccgcctagcatttcatcacgtggcccgagagctgcatccg gagtacttcaagaactgc,
SEQ ID NO:45 ?
Atgggttgcaagtggtcaaaaagtagtgtggttggatggcctgctgtaag ggaaagaatgagacgagctgagccagcagcagatggggtgggagcagcatctcga gacctagaaaaacatggagcaatcacaagtagcaatacagcagctaccaatgctg attgtgcctggctagaagcacaagaggaggaggaggtgggttttccagtcacacc tcaggtacctttaagaccaatgacttacaaggcagctgtagatcttagccacttt ttaaaagaaaaggggggactggaagggctaattcactcccaacgaagacaagata tccttgatctgtggatctaccacacacaaggctacttccctgattggcagaacta cacaccaggaccagggatcagatatccactgacctttggatggtgctacaagcta gtaccagttgagccagagaagttagaagaagccaacaaaggagagaacaccagct tgttacaccctgtgagcctgcatggaatggatgacccggggagagaagtgttaga gtggaggtttgacagccgcctagcatttcatcacgtggcccgagagctgcatccg gagtacttcaagaac,
SEQ ID NO:46 ?
Atgggttgcaagtggtcaaaaagtagtgtggttggatggcctgctgtaag ggaaagaatgagacgagctgagccagcagcagatggggtgggagcagcatctcga gacctagaaaaacatggagcaatcacaagtagcaatacagcagctaccaatgctg attgtgcctggctagaagcacaagaggaggaggaggtgggttttccagtcacacc tcaggtacctttaagaccaatgacttacaaggcagctgtagatcttagccacttt ttaaaagaaaaggggggactggaagggctaattcactcccaacgaagacaagata tccttgatctgtggatctaccacacacaaggctacttccctgattggcagaacta cacaccaggaccagggatcagatatccactgacctttggatggtgctacaagcta gtaccagttgagccagagaagttagaagaagccaacaaaggagagaacaccagct tgttacaccctgtgagcctgcatggaatggatgacccggggagagaagtgttaga gtggaggtttgacagccgcctagcatttcatcacgtggcccgagagctgcatccg gagtacttcaag,
SEQ ID NO:47 ?
Atgggttgcaagtggtcaaaaagtagtgtggttggatggcctgctgtaag ggaaagaatgagacgagctgagccagcagcagatggggtgggagcagcatctcga gacctagaaaaacatggagcaatcacaagtagcaatacagcagctaccaatgctg attgtgcctggctagaagcacaagaggaggaggaggtgggttttccagtcacacc tcaggtacctttaagaccaatgacttacaaggcagctgtagatcttagccacttt ttaaaagaaaaggggggactggaagggctaattcactcccaacgaagacaagata tccttgatctgtggatctaccacacacaaggctacttccctgattggcagaacta cacaccaggaccagggatcagatatccactgacctttggatggtgctacaagcta gtaccagttgagccagagaagttagaagaagccaacaaaggagagaacaccagct tgttacaccctgtgagcctgcatggaatggatgacccggggagagaagtgttaga gtggaggtttgacagccgcctagcatttcatcacgtggcccgagagctgcatccg gagtacttc,
SEQ ID NO:48 ?
Atgggttgcaagtggtcaaaaagtagtgtggttggatggcctgctgtaag ggaaagaatgagacgagctgagccagcagcagatggggtgggagcagcatctcga gacctagaaaaacatggagcaatcacaagtagcaatacagcagctaccaatgctg attgtgcctggctagaagcacaagaggaggaggaggtgggttttccagtcacacc tcaggtacctttaagaccaatgacttacaaggcagctgtagatcttagccacttt ttaaaagaaaaggggggactggaagggctaattcactcccaacgaagacaagata tccttgatctgtggatctaccacacacaaggctacttccctgattggcagaacta cacaccaggaccagggatcagatatccactgacctttggatggtgctacaagcta gtaccagttgagccagagaagttagaagaagccaacaaaggagagaacaccagct tgttacaccctgtgagcctgcatggaatggatgacccggggagagaagtgttaga gtggaggtttgacagccgcctagcatttcatcacgtggcccgagagctgcatccg gagtac,
SEQ ID NO:?
Atgggttgcaagtggtcaaaaagtagtgtggttggatggcctgctgtaag ggaaagaatgagacgagctgagccagcagcagatggggtgggagcagcatctcga gacctagaaaaacatggagcaatcacaagtagcaatacagcagctaccaatgctg attgtgcctggctagaagcacaagaggaggaggaggtgggttttccagtcacacc tcaggtacctttaagaccaatgacttacaaggcagctgtagatcttagccacttt ttaaaagaaaaggggggactggaagggctaattcactcccaacgaagacaagata tccttgatctgtggatctaccacacacaaggctacttccctgattggcagaacta cacaccaggaccagggatcagatatccactgacctttggatggtgctacaagcta gtaccagttgagccagagaagttagaagaagccaacaaaggagagaacaccagct tgttacaccctgtgagcctgcatggaatggatgacccggggagagaagtgttaga gtggaggtttgacagccgcctagcatttcatcacgtggcccgagagctgcatccg gag,
SEQ ID NO:50 ?
Atgggttgcaagtggtcaaaaagtagtgtggttggatggcctgctgtaagggaaa gaatgagacgagctgagccagcagcagatggggtgggagcagcatctcgagacct agaaaaacatggagcaatcacaagtagcaatacagcagctaccaatgctgattgt gcctggctagaagcacaagaggaggaggaggtgggttttccagtcacacctcagg tacctttaagaccaatgacttacaaggcagctgtagatcttagccactttttaaa agaaaaggggggactggaagggctaattcactcccaacgaagacaagatatcctt gatctgtggatctaccacacacaaggctacttccctgattggcagaactacacac caggaccagggatcagatatccactgacctttggatggtgctacaagctagtacc agttgagccagagaagttagaagaagccaacaaaggagagaacaccagcttgtta caccctgtgagcctgcatggaatggatgacccggggagagaagtgttagagtgga ggtttgacagccgcctagcatttcatcacgtggcccgagagctgcatccg, SEQ ID NO:51 ? Atgggttgcaagtggtcaaaaagtagtgtggttggatggcctgctgtaag ggaaagaatgagacgagctgagccagcagcagatggggtgggagcagcatctcga gacctagaaaaacatggagcaatcacaagtagcaatacagcagctaccaatgctg attgtgcctggctagaagcacaagaggaggaggaggtgggttttccagtcacacc tcaggtacctttaagaccaatgacttacaaggcagctgtagatcttagccacttt ttaaaagaaaaggggggactggaagggctaattcactcccaacgaagacaagata tccttgatctgtggatctaccacacacaaggctacttccctgattggcagaacta cacaccaggaccagggatcagatatccactgacctttggatggtgctacaagcta gtaccagttgagccagagaagttagaagaagccaacaaaggagagaacaccagct tgttacaccctgtgagcctgcatggaatggatgacccggggagagaagtgttaga gtggaggtttgacagccgcctagcatttcatcacgtggcccgagagctgcat, SEQ ID NO:52 ? Atgggttgcaagtggtcaaaaagtagtgtggttggatggcctgctgtaag ggaaagaatgagacgagctgagccagcagcagatggggtgggagcagcatctcga gacctagaaaaacatggagcaatcacaagtagcaatacagcagctaccaatgctg attgtgcctggctagaagcacaagaggaggaggaggtgggttttccagtcacacc tcaggtacctttaagaccaatgacttacaaggcagctgtagatcttagccacttt ttaaaagaaaaggggggactggaagggctaattcactcccaacgaagacaagata tccttgatctgtggatctaccacacacaaggctacttccctgattggcagaacta cacaccaggaccagggatcagatatccactgacctttggatggtgctacaagcta gtaccagttgagccagagaagttagaagaagccaacaaaggagagaacaccagct tgttacaccctgtgagcctgcatggaatggatgacccggggagagaagtgttaga gtggaggtttgacagccgcctagcatttcatcacgtggcccgagagctg, SEQ ID NO:53 ? Atgggttgcaagtggtcaaaaagtagtgtggttggatggcctgctgtaag ggaaagaatgagacgagctgagccagcagcagatggggtgggagcagcatctcga gacctagaaaaacatggagcaatcacaagtagcaatacagcagctaccaatgctg attgtgcctggctagaagcacaagaggaggaggaggtgggttttccagtcacacc tcaggtacctttaagaccaatgacttacaaggcagctgtagatcttagccacttt ttaaaagaaaaggggggactggaagggctaattcactcccaacgaagacaagata tccttgatctgtggatctaccacacacaaggctacttccctgattggcagaacta cacaccaggaccagggatcagatatccactgacctttggatggtgctacaagcta gtaccagttgagccagagaagttagaagaagccaacaaaggagagaacaccagct tgttacaccctgtgagcctgcatggaatggatgacccggggagagaagtgttaga gtggaggtttgacagccgcctagcatttcatcacgtggcccgagag,
SEQ ID NO:54 ?
Atgggttgcaagtggtcaaaaagtagtgtggttggatggcctgctgtaag ggaaagaatgagacgagctgagccagcagcagatggggtgggagcagcatctcga gacctagaaaaacatggagcaatcacaagtagcaatacagcagctaccaatgctg attgtgcctggctagaagcacaagaggaggaggaggtgggttttccagtcacacc tcaggtacctttaagaccaatgacttacaaggcagctgtagatcttagccacttt ttaaaagaaaaggggggactggaagggctaattcactcccaacgaagacaagata tccttgatctgtggatctaccacacacaaggctacttccctgattggcagaacta cacaccaggaccagggatcagatatccactgacctttggatggtgctacaagcta gtaccagttgagccagagaagttagaagaagccaacaaaggagagaacaccagct tgttacaccctgtgagcctgcatggaatggatgacccggggagagaagtgttaga gtggaggtttgacagccgcctagcatttcatcacgtggcccga,
SEQ ID NO:55 ?
Atgggttgcaagtggtcaaaaagtagtgtggttggatggcctgctgtaag ggaaagaatgagacgagctgagccagcagcagatggggtgggagcagcatctcga gacctagaaaaacatggagcaatcacaagtagcaatacagcagctaccaatgctg attgtgcctggctagaagcacaagaggaggaggaggtgggttttccagtcacacc tcaggtacctttaagaccaatgacttacaaggcagctgtagatcttagccacttt ttaaaagaaaaggggggactggaagggctaattcactcccaacgaagacaagata tccttgatctgtggatctaccacacacaaggctacttccctgattggcagaacta cacaccaggaccagggatcagatatccactgacctttggatggtgctacaagcta gtaccagttgagccagagaagttagaagaagccaacaaaggagagaacaccagct tgttacaccctgtgagcctgcatggaatggatgacccggggagagaagtgttaga gtggaggtttgacagccgcctagcatttcatcacgtggcc,
SEQ ID NO:56 ?
Atgggttgcaagtggtcaaaaagtagtgtggttggatggcctgctgtaag ggaaagaatgagacgagctgagccagcagcagatggggtgggagcagcatctcga gacctagaaaaacatggagcaatcacaagtagcaatacagcagctaccaatgctg attgtgcctggctagaagcacaagaggaggaggaggtgggttttccagtcacacc tcaggtacctttaagaccaatgacttacaaggcagctgtagatcttagccacttt ttaaaagaaaaggggggactggaagggctaattcactcccaacgaagacaagata tccttgatctgtggatctaccacacacaaggctacttccctgattggcagaacta cacaccaggaccagggatcagatatccactgacctttggatggtgctacaagcta gtaccagttgagccagagaagttagaagaagccaacaaaggagagaacaccagct tgttacaccctgtgagcctgcatggaatggatgacccggggagagaagtgttaga gtggaggtttgacagccgcctagcatttcatcacgtg,
SEQ ID NO:57 ?
Atgggttgcaagtggtcaaaaagtagtgtggttggatggcctgctgtaag ggaaagaatgagacgagctgagccagcagcagatggggtgggagcagcatctcga gacctagaaaaacatggagcaatcacaagtagcaatacagcagctaccaatgctg attgtgcctggctagaagcacaagaggaggaggaggtgggttttccagtcacacc tcaggtacctttaagaccaatgacttacaaggcagctgtagatcttagccacttt ttaaaagaaaaggggggactggaagggctaattcactcccaacgaagacaagata tccttgatctgtggatctaccacacacaaggctacttccctgattggcagaacta cacaccaggaccagggatcagatatccactgacctttggatggtgctacaagcta gtaccagttgagccagagaagttagaagaagccaacaaaggagagaacaccagct tgttacaccctgtgagcctgcatggaatggatgacccggggagagaagtgttaga gtggaggtttgacagccgcctagcatttcatcac,
SEQ ID NO:58 ?
Atgggttgcaagtggtcaaaaagtagtgtggttggatggcctgctgtaag ggaaagaatgagacgagctgagccagcagcagatggggtgggagcagcatctcga gacctagaaaaacatggagcaatcacaagtagcaatacagcagctaccaatgctg attgtgcctggctagaagcacaagaggaggaggaggtgggttttccagtcacacc tcaggtacctttaagaccaatgacttacaaggcagctgtagatcttagccacttt ttaaaagaaaaggggggactggaagggctaattcactcccaacgaagacaagata tccttgatctgtggatctaccacacacaaggctacttccctgattggcagaacta cacaccaggaccagggatcagatatccactgacctttggatggtgctacaagcta gtaccagttgagccagagaagttagaagaagccaacaaaggagagaacaccagct tgttacaccctgtgagcctgcatggaatggatgacccggggagagaagtgttaga gtggaggtttgacagccgcctagcatttcat,
SEQ ID NO:59 ?
Atgggttgcaagtggtcaaaaagtagtgtggttggatggcctgctgtaag ggaaagaatgagacgagctgagccagcagcagatggggtgggagcagcatctcga gacctagaaaaacatggagcaatcacaagtagcaatacagcagctaccaatgctg attgtgcctggctagaagcacaagaggaggaggaggtgggttttccagtcacacc tcaggtacctttaagaccaatgacttacaaggcagctgtagatcttagccacttt ttaaaagaaaaggggggactggaagggctaattcactcccaacgaagacaagata tccttgatctgtggatctaccacacacaaggctacttccctgattggcagaacta cacaccaggaccagggatcagatatccactgacctttggatggtgctacaagcta gtaccagttgagccagagaagttagaagaagccaacaaaggagagaacaccagct tgttacaccctgtgagcctgcatggaatggatgacccggggagagaagtgttaga gtggaggtttgacagccgcctagcattt,
SEQ ID NO:60 ?
Atgggttgcaagtggtcaaaaagtagtgtggttggatggcctgctgtaag ggaaagaatgagacgagctgagccagcagcagatggggtgggagcagcatctcga gacctagaaaaacatggagcaatcacaagtagcaatacagcagctaccaatgctg attgtgcctggctagaagcacaagaggaggaggaggtgggttttccagtcacacc tcaggtacctttaagaccaatgacttacaaggcagctgtagatcttagccacttt ttaaaagaaaaggggggactggaagggctaattcactcccaacgaagacaagata tccttgatctgtggatctaccacacacaaggctacttccctgattggcagaacta cacaccaggaccagggatcagatatccactgacctttggatggtgctacaagcta gtaccagttgagccagagaagttagaagaagccaacaaaggagagaacaccagct tgttacaccctgtgagcctgcatggaatggatgacccggggagagaagtgttaga gtggaggtttgacagccgcctagca,
SEQ ID NO:61 ?
Atgggttgcaagtggtcaaaaagtagtgtggttggatggcctgctgtaag ggaaagaatgagacgagctgagccagcagcagatggggtgggagcagcatctcga gacctagaaaaacatggagcaatcacaagtagcaatacagcagctaccaatgctg attgtgcctggctagaagcacaagaggaggaggaggtgggttttccagtcacacc tcaggtacctttaagaccaatgacttacaaggcagctgtagatcttagccacttt ttaaaagaaaaggggggactggaagggctaattcactcccaacgaagacaagata tccttgatctgtggatctaccacacacaaggctacttccctgattggcagaacta cacaccaggaccagggatcagatatccactgacctttggatggtgctacaagcta gtaccagttgagccagagaagttagaagaagccaacaaaggagagaacaccagct tgttacaccctgtgagcctgcatggaatggatgacccggggagagaagtgttaga gtggaggtttgacagccgccta,
SEQ ID NO:62 ?
Atgggttgcaagtggtcaaaaagtagtgtggttggatggcctgctgtaag ggaaagaatgagacgagctgagccagcagcagatggggtgggagcagcatctcga gacctagaaaaacatggagcaatcacaagtagcaatacagcagctaccaatgctg attgtgcctggctagaagcacaagaggaggaggaggtgggttttccagtcacacc tcaggtacctttaagaccaatgacttacaaggcagctgtagatcttagccacttt ttaaaagaaaaggggggactggaagggctaattcactcccaacgaagacaagata tccttgatctgtggatctaccacacacaaggctacttccctgattggcagaacta cacaccaggaccagggatcagatatccactgacctttggatggtgctacaagcta gtaccagttgagccagagaagttagaagaagccaacaaaggagagaacaccagct tgttacaccctgtgagcctgcatggaatggatgacccggggagagaagtgttaga gtggaggtttgacagccgc
SEQ ID NO:63 ?
Atgggttgcaagtggtcaaaaagtagtgtggttggatggcctgctgtaag ggaaagaatgagacgagctgagccagcagcagatggggtgggagcagcatctcga gacctagaaaaacatggagcaatcacaagtagcaatacagcagctaccaatgctg attgtgcctggctagaagcacaagaggaggaggaggtgggttttccagtcacacc tcaggtacctttaagaccaatgacttacaaggcagctgtagatcttagccacttt ttaaaagaaaaggggggactggaagggctaattcactcccaacgaagacaagata tccttgatctgtggatctaccacacacaaggctacttccctgattggcagaacta cacaccaggaccagggatcagatatccactgacctttggatggtgctacaagcta gtaccagttgagccagagaagttagaagaagccaacaaaggagagaacaccagct tgttacaccctgtgagcctgcatggaatggatgacccggggagagaagtgttaga gtggaggtttgacagc,
SEQ ID NO:64 ?
Atgggttgcaagtggtcaaaaagtagtgtggttggatggcctgctgtaag ggaaagaatgagacgagctgagccagcagcagatggggtgggagcagcatctcga gacctagaaaaacatggagcaatcacaagtagcaatacagcagctaccaatgctg attgtgcctggctagaagcacaagaggaggaggaggtgggttttccagtcacacc tcaggtacctttaagaccaatgacttacaaggcagctgtagatcttagccacttt ttaaaagaaaaggggggactggaagggctaattcactcccaacgaagacaagata tccttgatctgtggatctaccacacacaaggctacttccctgattggcagaacta cacaccaggaccagggatcagatatccactgacctttggatggtgctacaagcta gtaccagttgagccagagaagttagaagaagccaacaaaggagagaacaccagct tgttacaccctgtgagcctgcatggaatggatgacccggggagagaagtgttaga gtggaggtttgac,
SEQ ID NO:65 ?
Atgggttgcaagtggtcaaaaagtagtgtggttggatggcctgctgtaag ggaaagaatgagacgagctgagccagcagcagatggggtgggagcagcatctcga gacctagaaaaacatggagcaatcacaagtagcaatacagcagctaccaatgctg attgtgcctggctagaagcacaagaggaggaggaggtgggttttccagtcacacc tcaggtacctttaagaccaatgacttacaaggcagctgtagatcttagccacttt ttaaaagaaaaggggggactggaagggctaattcactcccaacgaagacaagata tccttgatctgtggatctaccacacacaaggctacttccctgattggcagaacta cacaccaggaccagggatcagatatccactgacctttggatggtgctacaagcta gtaccagttgagccagagaagttagaagaagccaacaaaggagagaacaccagct tgttacaccctgtgagcctgcatggaatggatgacccggggagagaagtgttaga gtggaggttt,
SEQ ID NO:66 ?
Atgggttgcaagtggtcaaaaagtagtgtggttggatggcctgctgtaag ggaaagaatgagacgagctgagccagcagcagatggggtgggagcagcatctcga gacctagaaaaacatggagcaatcacaagtagcaatacagcagctaccaatgctg attgtgcctggctagaagcacaagaggaggaggaggtgggttttccagtcacacc tcaggtacctttaagaccaatgacttacaaggcagctgtagatcttagccacttt ttaaaagaaaaggggggactggaagggctaattcactcccaacgaagacaagata tccttgatctgtggatctaccacacacaaggctacttccctgattggcagaacta cacaccaggaccagggatcagatatccactgacctttggatggtgctacaagcta gtaccagttgagccagagaagttagaagaagccaacaaaggagagaacaccagct tgttacaccctgtgagcctgcatggaatggatgacccggggagagaagtgttaga gtggagg,
SEQ ID NO:67 ?
Atgggttgcaagtggtcaaaaagtagtgtggttggatggcctgctgtaag ggaaagaatgagacgagctgagccagcagcagatggggtgggagcagcatctcga gacctagaaaaacatggagcaatcacaagtagcaatacagcagctaccaatgctg attgtgcctggctagaagcacaagaggaggaggaggtgggttttccagtcacacc tcaggtacctttaagaccaatgacttacaaggcagctgtagatcttagccacttt ttaaaagaaaaggggggactggaagggctaattcactcccaacgaagacaagata tccttgatctgtggatctaccacacacaaggctacttccctgattggcagaacta cacaccaggaccagggatcagatatccactgacctttggatggtgctacaagcta gtaccagttgagccagagaagttagaagaagccaacaaaggagagaacaccagct tgttacaccctgtgagcctgcatggaatggatgacccggggagagaagtgttaga gtgg,
SEQ ID NO:68 ?
Atgggttgcaagtggtcaaaaagtagtgtggttggatggcctgctgtaag ggaaagaatgagacgagctgagccagcagcagatggggtgggagcagcatctcga gacctagaaaaacatggagcaatcacaagtagcaatacagcagctaccaatgctg attgtgcctggctagaagcacaagaggaggaggaggtgggttttccagtcacacc tcaggtacctttaagaccaatgacttacaaggcagctgtagatcttagccacttt ttaaaagaaaaggggggactggaagggctaattcactcccaacgaagacaagata tccttgatctgtggatctaccacacacaaggctacttccctgattggcagaacta cacaccaggaccagggatcagatatccactgacctttggatggtgctacaagcta gtaccagttgagccagagaagttagaagaagccaacaaaggagagaacaccagct tgttacaccctgtgagcctgcatggaatggatgacccggggagagaagtgttaga g,
SEQ ID NO:69 ? Atgggttgcaagtggtcaaaaagtagtgtggttggatggcctgctgtaag ggaaagaatgagacgagctgagccagcagcagatggggtgggagcagcatctcga gacctagaaaaacatggagcaatcacaagtagcaatacagcagctaccaatgctg attgtgcctggctagaagcacaagaggaggaggaggtgggttttccagtcacacc tcaggtacctttaagaccaatgacttacaaggcagctgtagatcttagccacttt ttaaaagaaaaggggggactggaagggctaattcactcccaacgaagacaagata tccttgatctgtggatctaccacacacaaggctacttccctgattggcagaacta cacaccaggaccagggatcagatatccactgacctttggatggtgctacaagcta gtaccagttgagccagagaagttagaagaagccaacaaaggagagaacaccagct tgttacaccctgtgagcctgcatggaatggatgacccggggagagaagtgtta, SEQ ID NO:70 ? Atgggttgcaagtggtcaaaaagtagtgtggttggatggcctgctgtaag ggaaagaatgagacgagctgagccagcagcagatggggtgggagcagcatctcga gacctagaaaaacatggagcaatcacaagtagcaatacagcagctaccaatgctg attgtgcctggctagaagcacaagaggaggaggaggtgggttttccagtcacacc tcaggtacctttaagaccaatgacttacaaggcagctgtagatcttagccacttt ttaaaagaaaaggggggactggaagggctaattcactcccaacgaagacaagata tccttgatctgtggatctaccacacacaaggctacttccctgattggcagaacta cacaccaggaccagggatcagatatccactgacctttggatggtgctacaagcta gtaccagttgagccagagaagttagaagaagccaacaaaggagagaacaccagct tgttacaccctgtgagcctgcatggaatggatgacccggggagagaagtg, SEQ ID NO:71 ?
Atgggttgcaagtggtcaaaaagtagtgtggttggatggcctgctgtaag ggaaagaatgagacgagctgagccagcagcagatggggtgggagcagcatctcga gacctagaaaaacatggagcaatcacaagtagcaatacagcagctaccaatgctg attgtgcctggctagaagcacaagaggaggaggaggtgggttttccagtcacacc tcaggtacctttaagaccaatgacttacaaggcagctgtagatcttagccacttt ttaaaagaaaaggggggactggaagggctaattcactcccaacgaagacaagata tccttgatctgtggatctaccacacacaaggctacttccctgattggcagaacta cacaccaggaccagggatcagatatccactgacctttggatggtgctacaagcta gtaccagttgagccagagaagttagaagaagccaacaaaggagagaacaccagct tgttacaccctgtgagcctgcatggaatggatgacccggggagagaa,
SEQ ID NO:72 ?
Atgggttgcaagtggtcaaaaagtagtgtggttggatggcctgctgtaag ggaaagaatgagacgagctgagccagcagcagatggggtgggagcagcatctcga gacctagaaaaacatggagcaatcacaagtagcaatacagcagctaccaatgctg attgtgcctggctagaagcacaagaggaggaggaggtgggttttccagtcacacc tcaggtacctttaagaccaatgacttacaaggcagctgtagatcttagccacttt ttaaaagaaaaggggggactggaagggctaattcactcccaacgaagacaagata tccttgatctgtggatctaccacacacaaggctacttccctgattggcagaacta cacaccaggaccagggatcagatatccactgacctttggatggtgctacaagcta gtaccagttgagccagagaagttagaagaagccaacaaaggagagaacaccagct tgttacaccctgtgagcctgcatggaatggatgacccggggaga, e
SEQ ID NO:73 ?
Atgggttgcaagtggtcaaaaagtagtgtggttggatggcctgctgtaag ggaaagaatgagacgagctgagccagcagcagatggggtgggagcagcatctcga gacctagaaaaacatggagcaatcacaagtagcaatacagcagctaccaatgctg attgtgcctggctagaagcacaagaggaggaggaggtgggttttccagtcacacc tcaggtacctttaagaccaatgacttacaaggcagctgtagatcttagccacttt ttaaaagaaaaggggggactggaagggctaattcactcccaacgaagacaagata tccttgatctgtggatctaccacacacaaggctacttccctgattggcagaacta cacaccaggaccagggatcagatatccactgacctttggatggtgctacaagcta gtaccagttgagccagagaagttagaagaagccaacaaaggagagaacaccagct tgttacaccctgtgagcctgcatggaatggatgacccgggg.
Secondo una forma di realizzazione della presente invenzione, la sequenza nucleotidica codificante la porzione immunogenica della subunit? S1 pu? essere SEQ ID NO:74, la sequenza nucleotidica codificante la porzione immunogenica della subunit? S2 pu? essere SEQ ID NO:75, la sequenza nucleotidica codificante la porzione immunogenica della proteina M pu? essere SEQ ID NO:76 e la sequenza nucleotidica codificante la porzione immunogenica della proteina N pu? essere SEQ ID NO:77, in cui
SEQ ID NO:74 ?
ACCAGAACACAGCTGCCACCTGCCTACACCAATAGCTTCACCCGCGGCGT TTACTATCCTGATAAGGTGTTCAGAAGCAGCGTCCTGCATTCTACACAGGACCTT TTCCTGCCTTTCTTCAGCAATGTGACCTGGTTCCACGCAATCCACGTGTCTGGCA CCAACGGCACCAAACGGTTCGACAACCCCGTGCTGCCTTTCAACGACGGCGTGTA CTTCGCCAGTACCGAGAAGTCTAACATCATTAGAGGCTGGATCTTCGGAACTACC CTGGATAGCAAGACCCAGTCTCTGCTGATCGTGAACAACGCCACAAACGTGGTGA TCAAGGTGTGCGAGTTCCAATTTTGCAACGACCCCTTCCTGGGCGTGTACTACCA CAAGAACAATAAATCCTGGATGGAAAGCGAATTCCGGGTGTATTCTAGCGCAAAC AACTGTACATTCGAGTACGTGTCCCAGCCCTTCCTGATGGACCTCGAGGGCAAGC AGGGCAATTTCAAGAATCTCAGAGAGTTCGTGTTCAAGAACATCGACGGCTACTT CAAAATCTACAGCAAGCACACCCCAATCAACCTGGTGAGGGATCTGCCTCAGGGC TTCAGCGCCCTGGAACCTCTGGTCGACCTGCCTATCGGCATCAACATCACCCGGT TCCAGACCCTGCTGGCCCTGCACAGATCCTATCTGACCCCTGGCGACAGCAGCTC CGGATGGACAGCCGGCGCCGCTGCTTATTACGTGGGCTACCTGCAGCCTAGAACC TTTCTGCTGAAGTACAACGAGAACGGCACCATCACTGATGCCGTGGACTGCGCCC TGGACCCTCTGAGCGAGACAAAGTGCACCCTGAAAAGCTTCACCGTGGAAAAGGG CATCTACCAAACCAGCAATTTCAGAGTGCAGCCAACAGAATCTATCGTGCGGTTC CCCAACATCACCAACCTGTGTCCTTTTGGCGAGGTGTTCAACGCCACCAGATTCG CCAGCGTGTACGCCTGGAATAGAAAGAGAATCAGCAACTGCGTGGCTGACTACAG CGTGCTGTACAATAGCGCCAGCTTTAGCACCTTCAAGTGCTACGGAGTGAGTCCT ACAAAACTGAACGACTTGTGCTTCACCAACGTGTACGCCGATAGCTTCGTGATCA GAGGCGATGAGGTGAGACAGATCGCCCCTGGCCAGACCGGAAAGATCGCCGATTA CAACTACAAGCTGCCTGACGACTTCACCGGCTGTGTGATCGCCTGGAACAGCAAC AACCTGGATTCCAAAGTGGGCGGCAACTACAACTACCTGTACAGACTGTTTCGGA AGAGCAACCTCAAGCCTTTCGAGAGAGATATTAGCACGGAAATCTACCAGGCCGG ATCTACACCTTGTAATGGCGTGGAAGGCTTTAATTGCTACTTTCCCCTGCAGAGC TACGGCTTTCAGCCAACCAACGGCGTGGGATATCAGCCCTACCGGGTTGTTGTCC TGTCTTTTGAGCTGCTGCACGCCCCTGCTACAGTGTGTGGCCCTAAGAAGTCCAC AAACCTGGTTAAGAACAAGTGCGTCAACTTCAACTTCAACGGCCTGACAGGCACA GGCGTGCTGACAGAGAGCAACAAGAAATTTCTGCCATTCCAGCAGTTCGGCAGAG ACATTGCCGACACCACAGACGCCGTGCGGGACCCCCAGACACTGGAAATCCTGGA CATCACGCCTTGCAGCTTCGGAGGCGTGTCCGTGATCACACCTGGAACCAATACC AGCAACCAGGTGGCTGTGCTGTACCAGGATGTGAACTGCACAGAAGTGCCCGTGG CCATCCACGCTGACCAGCTGACACCCACCTGGCGGGTGTACAGCACCGGCAGCAA CGTGTTTCAAACAAGAGCCGGATGTCTGATCGGCGCCGAGCACGTCAACAACAGC TACGAGTGCGATATCCCCATCGGTGCTGGAATCTGCGCCTCTTACCAGACCCAAA CCAATAGC,
SEQ ID NO:75 ?
CAGTACGGCGATTGCCTGGGAGATATCGCCGCTAGAGATCTGATCTGTGC CCAGAAATTCAACGGCCTGACCGTGCTGCCTCCTCTGCTGACAGACGAGATGATC GCCCAGTACACATCTGCCCTGCTCGCTGGCACCATCACAAGCGGCTGGACCTTCG GCGCCGGCGCCGCCCTGCAGATTCCTTTCGCCATGCAGATGGCCTATAGATTCAA CGGCATCGGCGTGACACAGAACGTGCTCTACGAGAACCAGAAGCTGATCGCCAAT CAGTTCAACAGCGCTATCGGCAAGATCCAGGACAGCCTGAGCAGCACCGCCAGCG CCCTGGGAAAGCTGCAAGACGTGGTCAACCAGAATGCCCAGGCCCTGAACACCCT GGTGAAGCAGCTGAGCTCTAATTTCGGCGCTATCAGCTCCGTGCTGAACGACATC CTGAGCAGACTGGACAAGGTGGAAGCTGAAGTGCAGATCGACCGGCTGATCACCG GTAGGCTTCAGAGCCTGCAGACCTACGTGACCCAGCAGCTGATCAGAGCCGCCGA GATCCGGGCCTCTGCCAACCTGGCCGCCACAAAGATGAGCGAATGTGTGCTGGGC CAGTCTAAGCGGGTGGACTTCTGCGGCAAAGGCTACCACCTGATGTCTTTTCCAC AGAGCGCTCCTCATGGAGTGGTTTTCCTGCACGTGACCTACGTGCCTGCTCAGGA GAAAAATTTTACCACCGCCCCAGCCATCTGCCACGAGGGCAAGGCCTACTTCCCC AGAGAGGGCGTGTTCGTGTCCAACGGCACACACTGGTTCGTCACCCAAAGAAACT TCTATGAACCCCAGATCATCACAACCGACAACACATTTGTGTCCGGCAACTGCGA CGTTGTGATCGGAATCGTGAACAACACCGTGTACGACCCCCTGCAACCTGAGCTG GACAGCTTCAAAGAGGAACTGGATAAGTACTTTAAGAATCACACCAGTCCTGACG TCGACCTGGGAGATATCAGCGGCATCAACGCCTCCGTGGTGAACATTCAAAAGGA AATCGATAGACTGAATGAGGTGGCCAAGAACCTGAACGAGAGC,
SEQ ID NO:76 ?
GCTAGAACCAGAAGCATGTGGTCCTTCAACCCCGAGACAAACATCCTGCT GAACGTGCCACTGCACGGCACAATCCTTACAAGACCTCTGCTGGAAAGCGAGCTG GTGATTGGCGCCGTGATCCTCCGCGGACATCTGAGAATCGCCGGCCACCACCTGG GCAGATGCGACATCAAGGACCTGCCTAAGGAAATCACCGTGGCCACCAGCCGGAC CCTGTCTTATTACAAACTGGGAGCCAGCCAGAGAGTGGCTGGCGATAGCGGCTTT GCCGCCTACAGCAGATACCGGATCGGCAACTACAAGCTGAATACCGACCACAGCA GCTCCTCTGATAACATCGCCCTGCTGGTCCAG, e
SEQ ID NO:77 ?
TCTGACAACGGCCCCCAGAATCAGAGAAACGCCCCTAGAATCACATTCGG CGGACCTAGCGATAGCACAGGCAGCAACCAGAATGGAGAAAGATCCGGCGCTAGA AGCAAGCAGCGGAGACCTCAGGGCCTGCCTAACAACACCGCCAGCTGGTTCACCG CCCTCACCCAACACGGCAAGGAAGATCTGAAGTTCCCCCGCGGCCAGGGAGTGCC AATCAACACCAACAGCTCTCCTGACGACCAGATCGGCTACTACAGACGGGCCACC AGAAGAATACGGGGCGGCGACGGCAAAATGAAGGACCTGAGCCCTAGATGGTACT TCTACTACCTGGGCACCGGCCCAGAGGCCGGACTGCCCTATGGCGCTAACAAGGA CGGCATTATCTGGGTCGCCACAGAGGGAGCTCTGAACACACCCAAGGACCACATC GGCACCCGGAACCCCGCTAACAACGCCGCCATCGTGCTGCAGCTGCCCCAGGGCA CGACCCTGCCCAAAGGCTTCTACGCCGAGGGCTCCCGGGGCGGATCTCAGGCCAG CTCCCGGAGCAGCAGCAGATCTCGGAATAGCTCCCGCAATTCTACACCTGGCTCC AGCAGAGGCACATCTCCTGCCAGAATGGCCGGCAACGGCGGCGATGCCGCTCTGG CCCTGCTGCTTCTGGATAGACTGAATCAACTGGAAAGCAAGATGAGCGGAAAAGG CCAGCAGCAGCAAGGACAGACCGTGACCAAGAAGAGCGCCGCCGAAGCCTCTAAG AAACCTCGGCAGAAAAGAACCGCCACAAAGGCCTACAACGTGACCCAGGCCTTTG GCAGAAGGGGACCTGAGCAGACCCAGGGGAACTTTGGCGACCAGGAGCTGATCAG ACAGGGCACCGACTACAAGCACTGGCCTCAGATCGCCCAGTTCGCCCCTAGCGCC AGCGCGTTCTTCGGCATGAGCCGGATCGGCATGGAAGTGACACCTTCTGGCACCT GGCTGACCTACACCGGCGCCATCAAGCTGGACGATAAGGACCCCAACTTCAAGGA TCAAGTGATCCTGCTGAACAAGCATATCGACGCCTATAAGACCTTTCCACCTACC GAGCCTAAGAAGGATAAGAAGAAGAAAGCCGACGAGACACAGGCCCTGCCTCAAA GACAGAAGAAACAGCAGACCGTGACCCTGCTGCCAGCCGCTGACCTGGACGACTT CAGCAAGCAGCTGCAACAGAGCATGTCCAGCGCTGATAGCACACAGGCT.
Secondo la presente invenzione, la sequenza nucleotidica codificante la proteina ancorante esosomi pu? essere legata alla sequenza nucleotidica codificante detto antigene immunogenico mediante un linker, come ggacctgggccc (SEQ ID NO:78).
La sequenza nucleotidica secondo la presente invenzione pu? comprendere inoltre una sequenza nucleotidica codificante un flag-tag legato alla sequenza nucleotidica codificante l?antigene immunogenico. Ad esempio, la sequenza nucleotidica codificante un flag-tag ? GAC TAC AAG GAC GAC GAC GAC AAG (SEQ ID NO:88).
Secondo una forma di realizzazione della presente invenzione, quando detta proteina ancorante esosomi ? Nef<mut>, detta sequenza nucleotidica pu? essere scelta dal gruppo consistente in SEQ ID NO:79 (in cui l?antigene ? una porzione immunogenica della subunit? S1), SEQ ID NO:80 (in cui l?antigene ? una porzione immunogenica della subunit? S2), SEQ ID NO:81 (in cui l?antigene ? una porzione immunogenica della proteina M) e SEQ ID NO:82 (in cui l?antigene ? una porzione immunogenica della proteina N), in cui
SEQ ID NO:79 ?
atgggttgcaagtggtcaaaaagtagtgtggttggatggcctgctgtaag ggaaagaatgagacgagctgagccagcagcagatggggtgggagcagcatctcga gacctagaaaaacatggagcaatcacaagtagcaatacagcagctaccaatgctg attgtgcctggctagaagcacaagaggaggaggaggtgggttttccagtcacacc tcaggtacctttaagaccaatgacttacaaggcagctgtagatcttagccacttt ttaaaagaaaaggggggactggaagggctaattcactcccaacgaagacaagata tccttgatctgtggatctaccacacacaaggctacttccctgattggcagaacta cacaccaggaccagggATCagatatccactgacctttggatggtgctacaagcta gtaccagttgagccagagaagttagaagaagccaacaaaggagagaacaccagct tgttacaccctgtgagcctgcatggaatggatgacccggggagagaagtgttaga gtggaggtttgacagccgcctagcatttcatcacgtggcccgagagctgcatccg gagtacttcaagaactgcggacctgggcccACCAGAACACAGCTGCCACCTGCCT ACACCAATAGCTTCACCCGCGGCGTTTACTATCCTGATAAGGTGTTCAGAAGCAG CGTCCTGCATTCTACACAGGACCTTTTCCTGCCTTTCTTCAGCAATGTGACCTGG TTCCACGCAATCCACGTGTCTGGCACCAACGGCACCAAACGGTTCGACAACCCCG TGCTGCCTTTCAACGACGGCGTGTACTTCGCCAGTACCGAGAAGTCTAACATCAT TAGAGGCTGGATCTTCGGAACTACCCTGGATAGCAAGACCCAGTCTCTGCTGATC GTGAACAACGCCACAAACGTGGTGATCAAGGTGTGCGAGTTCCAATTTTGCAACG ACCCCTTCCTGGGCGTGTACTACCACAAGAACAATAAATCCTGGATGGAAAGCGA ATTCCGGGTGTATTCTAGCGCAAACAACTGTACATTCGAGTACGTGTCCCAGCCC TTCCTGATGGACCTCGAGGGCAAGCAGGGCAATTTCAAGAATCTCAGAGAGTTCG TGTTCAAGAACATCGACGGCTACTTCAAAATCTACAGCAAGCACACCCCAATCAA CCTGGTGAGGGATCTGCCTCAGGGCTTCAGCGCCCTGGAACCTCTGGTCGACCTG CCTATCGGCATCAACATCACCCGGTTCCAGACCCTGCTGGCCCTGCACAGATCCT ATCTGACCCCTGGCGACAGCAGCTCCGGATGGACAGCCGGCGCCGCTGCTTATTA CGTGGGCTACCTGCAGCCTAGAACCTTTCTGCTGAAGTACAACGAGAACGGCACC ATCACTGATGCCGTGGACTGCGCCCTGGACCCTCTGAGCGAGACAAAGTGCACCC TGAAAAGCTTCACCGTGGAAAAGGGCATCTACCAAACCAGCAATTTCAGAGTGCA GCCAACAGAATCTATCGTGCGGTTCCCCAACATCACCAACCTGTGTCCTTTTGGC GAGGTGTTCAACGCCACCAGATTCGCCAGCGTGTACGCCTGGAATAGAAAGAGAA TCAGCAACTGCGTGGCTGACTACAGCGTGCTGTACAATAGCGCCAGCTTTAGCAC CTTCAAGTGCTACGGAGTGAGTCCTACAAAACTGAACGACTTGTGCTTCACCAAC GTGTACGCCGATAGCTTCGTGATCAGAGGCGATGAGGTGAGACAGATCGCCCCTG GCCAGACCGGAAAGATCGCCGATTACAACTACAAGCTGCCTGACGACTTCACCGG CTGTGTGATCGCCTGGAACAGCAACAACCTGGATTCCAAAGTGGGCGGCAACTAC AACTACCTGTACAGACTGTTTCGGAAGAGCAACCTCAAGCCTTTCGAGAGAGATA TTAGCACGGAAATCTACCAGGCCGGATCTACACCTTGTAATGGCGTGGAAGGCTT TAATTGCTACTTTCCCCTGCAGAGCTACGGCTTTCAGCCAACCAACGGCGTGGGA TATCAGCCCTACCGGGTTGTTGTCCTGTCTTTTGAGCTGCTGCACGCCCCTGCTA CAGTGTGTGGCCCTAAGAAGTCCACAAACCTGGTTAAGAACAAGTGCGTCAACTT CAACTTCAACGGCCTGACAGGCACAGGCGTGCTGACAGAGAGCAACAAGAAATTT CTGCCATTCCAGCAGTTCGGCAGAGACATTGCCGACACCACAGACGCCGTGCGGG ACCCCCAGACACTGGAAATCCTGGACATCACGCCTTGCAGCTTCGGAGGCGTGTC CGTGATCACACCTGGAACCAATACCAGCAACCAGGTGGCTGTGCTGTACCAGGAT GTGAACTGCACAGAAGTGCCCGTGGCCATCCACGCTGACCAGCTGACACCCACCT GGCGGGTGTACAGCACCGGCAGCAACGTGTTTCAAACAAGAGCCGGATGTCTGAT CGGCGCCGAGCACGTCAACAACAGCTACGAGTGCGATATCCCCATCGGTGCTGGA ATCTGCGCCTCTTACCAGACCCAAACCAATAGCGACTACAAGGACGACGACGACA AGtaatag;
SEQ ID NO:80 ?
atgggttgcaagtggtcaaaaagtagtgtggttggatggcctgctgtaag ggaaagaatgagacgagctgagccagcagcagatggggtgggagcagcatctcga gacctagaaaaacatggagcaatcacaagtagcaatacagcagctaccaatgctg attgtgcctggctagaagcacaagaggaggaggaggtgggttttccagtcacacc tcaggtacctttaagaccaatgacttacaaggcagctgtagatcttagccacttt ttaaaagaaaaggggggactggaagggctaattcactcccaacgaagacaagata tccttgatctgtggatctaccacacacaaggctacttccctgattggcagaacta cacaccaggaccagggATCagatatccactgacctttggatggtgctacaagcta gtaccagttgagccagagaagttagaagaagccaacaaaggagagaacaccagct tgttacaccctgtgagcctgcatggaatggatgacccggggagagaagtgttaga gtggaggtttgacagccgcctagcatttcatcacgtggcccgagagctgcatccg gagtacttcaagaactgcggacctgggcccCAGTACGGCGATTGCCTGGGAGATA TCGCCGCTAGAGATCTGATCTGTGCCCAGAAATTCAACGGCCTGACCGTGCTGCC TCCTCTGCTGACAGACGAGATGATCGCCCAGTACACATCTGCCCTGCTCGCTGGC ACCATCACAAGCGGCTGGACCTTCGGCGCCGGCGCCGCCCTGCAGATTCCTTTCG CCATGCAGATGGCCTATAGATTCAACGGCATCGGCGTGACACAGAACGTGCTCTA CGAGAACCAGAAGCTGATCGCCAATCAGTTCAACAGCGCTATCGGCAAGATCCAG GACAGCCTGAGCAGCACCGCCAGCGCCCTGGGAAAGCTGCAAGACGTGGTCAACC AGAATGCCCAGGCCCTGAACACCCTGGTGAAGCAGCTGAGCTCTAATTTCGGCGC TATCAGCTCCGTGCTGAACGACATCCTGAGCAGACTGGACAAGGTGGAAGCTGAA GTGCAGATCGACCGGCTGATCACCGGTAGGCTTCAGAGCCTGCAGACCTACGTGA CCCAGCAGCTGATCAGAGCCGCCGAGATCCGGGCCTCTGCCAACCTGGCCGCCAC AAAGATGAGCGAATGTGTGCTGGGCCAGTCTAAGCGGGTGGACTTCTGCGGCAAA GGCTACCACCTGATGTCTTTTCCACAGAGCGCTCCTCATGGAGTGGTTTTCCTGC ACGTGACCTACGTGCCTGCTCAGGAGAAAAATTTTACCACCGCCCCAGCCATCTG CCACGAGGGCAAGGCCTACTTCCCCAGAGAGGGCGTGTTCGTGTCCAACGGCACA CACTGGTTCGTCACCCAAAGAAACTTCTATGAACCCCAGATCATCACAACCGACA ACACATTTGTGTCCGGCAACTGCGACGTTGTGATCGGAATCGTGAACAACACCGT GTACGACCCCCTGCAACCTGAGCTGGACAGCTTCAAAGAGGAACTGGATAAGTAC TTTAAGAATCACACCAGTCCTGACGTCGACCTGGGAGATATCAGCGGCATCAACG CCTCCGTGGTGAACATTCAAAAGGAAATCGATAGACTGAATGAGGTGGCCAAGAA CCTGAACGAGAGCGACTACAAGGACGACGACGACAAGtaatag;
SEQ ID NO:81 ?
atgggttgcaagtggtcaaaaagtagtgtggttggatggcctgctgtaag ggaaagaatgagacgagctgagccagcagcagatggggtgggagcagcatctcga gacctagaaaaacatggagcaatcacaagtagcaatacagcagctaccaatgctg attgtgcctggctagaagcacaagaggaggaggaggtgggttttccagtcacacc tcaggtacctttaagaccaatgacttacaaggcagctgtagatcttagccacttt ttaaaagaaaaggggggactggaagggctaattcactcccaacgaagacaagata tccttgatctgtggatctaccacacacaaggctacttccctgattggcagaacta cacaccaggaccagggATCagatatccactgacctttggatggtgctacaagcta gtaccagttgagccagagaagttagaagaagccaacaaaggagagaacaccagct tgttacaccctgtgagcctgcatggaatggatgacccggggagagaagtgttaga gtggaggtttgacagccgcctagcatttcatcacgtggcccgagagctgcatccg gagtacttcaagaactgcggacctgggcccGCTAGAACCAGAAGCATGTGGTCCT TCAACCCCGAGACAAACATCCTGCTGAACGTGCCACTGCACGGCACAATCCTTAC AAGACCTCTGCTGGAAAGCGAGCTGGTGATTGGCGCCGTGATCCTCCGCGGACAT CTGAGAATCGCCGGCCACCACCTGGGCAGATGCGACATCAAGGACCTGCCTAAGG AAATCACCGTGGCCACCAGCCGGACCCTGTCTTATTACAAACTGGGAGCCAGCCA GAGAGTGGCTGGCGATAGCGGCTTTGCCGCCTACAGCAGATACCGGATCGGCAAC TACAAGCTGAATACCGACCACAGCAGCTCCTCTGATAACATCGCCCTGCTGGTCC AGGACTACAAGGACGACGACGACAAGtaatag;
SEQ ID NO:82 ?
atgggttgcaagtggtcaaaaagtagtgtggttggatggcctgctgtaag ggaaagaatgagacgagctgagccagcagcagatggggtgggagcagcatctcga gacctagaaaaacatggagcaatcacaagtagcaatacagcagctaccaatgctg attgtgcctggctagaagcacaagaggaggaggaggtgggttttccagtcacacc tcaggtacctttaagaccaatgacttacaaggcagctgtagatcttagccacttt ttaaaagaaaaggggggactggaagggctaattcactcccaacgaagacaagata tccttgatctgtggatctaccacacacaaggctacttccctgattggcagaacta cacaccaggaccagggATCagatatccactgacctttggatggtgctacaagcta gtaccagttgagccagagaagttagaagaagccaacaaaggagagaacaccagct tgttacaccctgtgagcctgcatggaatggatgacccggggagagaagtgttaga gtggaggtttgacagccgcctagcatttcatcacgtggcccgagagctgcatccg gagtacttcaagaactgcggacctgggcccTCTGACAACGGCCCCCAGAATCAGA GAAACGCCCCTAGAATCACATTCGGCGGACCTAGCGATAGCACAGGCAGCAACCA GAATGGAGAAAGATCCGGCGCTAGAAGCAAGCAGCGGAGACCTCAGGGCCTGCCT AACAACACCGCCAGCTGGTTCACCGCCCTCACCCAACACGGCAAGGAAGATCTGA AGTTCCCCCGCGGCCAGGGAGTGCCAATCAACACCAACAGCTCTCCTGACGACCA GATCGGCTACTACAGACGGGCCACCAGAAGAATACGGGGCGGCGACGGCAAAATG AAGGACCTGAGCCCTAGATGGTACTTCTACTACCTGGGCACCGGCCCAGAGGCCG GACTGCCCTATGGCGCTAACAAGGACGGCATTATCTGGGTCGCCACAGAGGGAGC TCTGAACACACCCAAGGACCACATCGGCACCCGGAACCCCGCTAACAACGCCGCC ATCGTGCTGCAGCTGCCCCAGGGCACGACCCTGCCCAAAGGCTTCTACGCCGAGG GCTCCCGGGGCGGATCTCAGGCCAGCTCCCGGAGCAGCAGCAGATCTCGGAATAG CTCCCGCAATTCTACACCTGGCTCCAGCAGAGGCACATCTCCTGCCAGAATGGCC GGCAACGGCGGCGATGCCGCTCTGGCCCTGCTGCTTCTGGATAGACTGAATCAAC TGGAAAGCAAGATGAGCGGAAAAGGCCAGCAGCAGCAAGGACAGACCGTGACCAA GAAGAGCGCCGCCGAAGCCTCTAAGAAACCTCGGCAGAAAAGAACCGCCACAAAG GCCTACAACGTGACCCAGGCCTTTGGCAGAAGGGGACCTGAGCAGACCCAGGGGA ACTTTGGCGACCAGGAGCTGATCAGACAGGGCACCGACTACAAGCACTGGCCTCA GATCGCCCAGTTCGCCCCTAGCGCCAGCGCGTTCTTCGGCATGAGCCGGATCGGC ATGGAAGTGACACCTTCTGGCACCTGGCTGACCTACACCGGCGCCATCAAGCTGG ACGATAAGGACCCCAACTTCAAGGATCAAGTGATCCTGCTGAACAAGCATATCGA CGCCTATAAGACCTTTCCACCTACCGAGCCTAAGAAGGATAAGAAGAAGAAAGCC GACGAGACACAGGCCCTGCCTCAAAGACAGAAGAAACAGCAGACCGTGACCCTGC TGCCAGCCGCTGACCTGGACGACTTCAGCAAGCAGCTGCAACAGAGCATGTCCAG CGCTGATAGCACACAGGCTGACTACAAGGACGACGACGACAAGtaatag.
Secondo un?altra forma di realizzazione della presente invenzione, quando detta proteina ancorante esosomi ? una forma troncata di Nef<mut >(SEQ ID NO:30), detta sequenza nucleotidica pu? essere scelta dal gruppo consistente in SEQ ID NO:83 (in cui l?antigene ? una porzione immunogenica della subunit? S1), SEQ ID NO:84 (in cui l?antigene ? una porzione immunogenica della subunit? S2), SEQ ID NO:85 (in cui l?antigene ? una porzione immunogenica della proteina M) e SEQ ID NO:86 (in cui l?antigene ? una porzione immunogenica della proteina N), in cui
SEQ ID NO:83 ? Atgggttgcaagtggtcaaaaagtagtgtggttggatggcctgctgtaag ggaaagaatgagacgagctgagccagcagcagatggggtgggagcagcatctcga gacctagaaaaacatggagcaatcacaagtagcaatacagcagctaccaatgctg attgtgcctggctagaagcacaagaggaggaggaggtgggttttccagtcacacc tcaggtacctttaagaccaatgacttacaaggcagctgtagatcttagccacttt ttaaaagaaaaggggggactggaagggctaattcactcccaacgaagacaagata tccttgatctgtggatctaccacacacaaggctacttccctgattggcagaacta cacaccaggaccagggATCagatatccactgacctttggatggtgctacaagcta gtaccagttgagccagagaagttagaagaagccaacaaaggagagaacaccagct tgttacaccctgtgagcctgcatggaatggatgacccggggggacctgggcccAC CAGAACACAGCTGCCACCTGCCTACACCAATAGCTTCACCCGCGGCGTTTACTAT CCTGATAAGGTGTTCAGAAGCAGCGTCCTGCATTCTACACAGGACCTTTTCCTGC CTTTCTTCAGCAATGTGACCTGGTTCCACGCAATCCACGTGTCTGGCACCAACGG CACCAAACGGTTCGACAACCCCGTGCTGCCTTTCAACGACGGCGTGTACTTCGCC AGTACCGAGAAGTCTAACATCATTAGAGGCTGGATCTTCGGAACTACCCTGGATA GCAAGACCCAGTCTCTGCTGATCGTGAACAACGCCACAAACGTGGTGATCAAGGT GTGCGAGTTCCAATTTTGCAACGACCCCTTCCTGGGCGTGTACTACCACAAGAAC AATAAATCCTGGATGGAAAGCGAATTCCGGGTGTATTCTAGCGCAAACAACTGTA CATTCGAGTACGTGTCCCAGCCCTTCCTGATGGACCTCGAGGGCAAGCAGGGCAA TTTCAAGAATCTCAGAGAGTTCGTGTTCAAGAACATCGACGGCTACTTCAAAATC TACAGCAAGCACACCCCAATCAACCTGGTGAGGGATCTGCCTCAGGGCTTCAGCG CCCTGGAACCTCTGGTCGACCTGCCTATCGGCATCAACATCACCCGGTTCCAGAC CCTGCTGGCCCTGCACAGATCCTATCTGACCCCTGGCGACAGCAGCTCCGGATGG ACAGCCGGCGCCGCTGCTTATTACGTGGGCTACCTGCAGCCTAGAACCTTTCTGC TGAAGTACAACGAGAACGGCACCATCACTGATGCCGTGGACTGCGCCCTGGACCC TCTGAGCGAGACAAAGTGCACCCTGAAAAGCTTCACCGTGGAAAAGGGCATCTAC CAAACCAGCAATTTCAGAGTGCAGCCAACAGAATCTATCGTGCGGTTCCCCAACA TCACCAACCTGTGTCCTTTTGGCGAGGTGTTCAACGCCACCAGATTCGCCAGCGT GTACGCCTGGAATAGAAAGAGAATCAGCAACTGCGTGGCTGACTACAGCGTGCTG TACAATAGCGCCAGCTTTAGCACCTTCAAGTGCTACGGAGTGAGTCCTACAAAAC TGAACGACTTGTGCTTCACCAACGTGTACGCCGATAGCTTCGTGATCAGAGGCGA TGAGGTGAGACAGATCGCCCCTGGCCAGACCGGAAAGATCGCCGATTACAACTAC AAGCTGCCTGACGACTTCACCGGCTGTGTGATCGCCTGGAACAGCAACAACCTGG ATTCCAAAGTGGGCGGCAACTACAACTACCTGTACAGACTGTTTCGGAAGAGCAA CCTCAAGCCTTTCGAGAGAGATATTAGCACGGAAATCTACCAGGCCGGATCTACA CCTTGTAATGGCGTGGAAGGCTTTAATTGCTACTTTCCCCTGCAGAGCTACGGCT TTCAGCCAACCAACGGCGTGGGATATCAGCCCTACCGGGTTGTTGTCCTGTCTTT TGAGCTGCTGCACGCCCCTGCTACAGTGTGTGGCCCTAAGAAGTCCACAAACCTG GTTAAGAACAAGTGCGTCAACTTCAACTTCAACGGCCTGACAGGCACAGGCGTGC TGACAGAGAGCAACAAGAAATTTCTGCCATTCCAGCAGTTCGGCAGAGACATTGC CGACACCACAGACGCCGTGCGGGACCCCCAGACACTGGAAATCCTGGACATCACG CCTTGCAGCTTCGGAGGCGTGTCCGTGATCACACCTGGAACCAATACCAGCAACC AGGTGGCTGTGCTGTACCAGGATGTGAACTGCACAGAAGTGCCCGTGGCCATCCA CGCTGACCAGCTGACACCCACCTGGCGGGTGTACAGCACCGGCAGCAACGTGTTT CAAACAAGAGCCGGATGTCTGATCGGCGCCGAGCACGTCAACAACAGCTACGAGT GCGATATCCCCATCGGTGCTGGAATCTGCGCCTCTTACCAGACCCAAACCAATAG CGACTACAAGGACGACGACGACAAGtaatag;
SEQ ID NO:84 ?
Atgggttgcaagtggtcaaaaagtagtgtggttggatggcctgctgtaag ggaaagaatgagacgagctgagccagcagcagatggggtgggagcagcatctcga gacctagaaaaacatggagcaatcacaagtagcaatacagcagctaccaatgctg attgtgcctggctagaagcacaagaggaggaggaggtgggttttccagtcacacc tcaggtacctttaagaccaatgacttacaaggcagctgtagatcttagccacttt ttaaaagaaaaggggggactggaagggctaattcactcccaacgaagacaagata tccttgatctgtggatctaccacacacaaggctacttccctgattggcagaacta cacaccaggaccagggATCagatatccactgacctttggatggtgctacaagcta gtaccagttgagccagagaagttagaagaagccaacaaaggagagaacaccagct tgttacaccctgtgagcctgcatggaatggatgacccggggggacctgggcccCA GTACGGCGATTGCCTGGGAGATATCGCCGCTAGAGATCTGATCTGTGCCCAGAAA TTCAACGGCCTGACCGTGCTGCCTCCTCTGCTGACAGACGAGATGATCGCCCAGT ACACATCTGCCCTGCTCGCTGGCACCATCACAAGCGGCTGGACCTTCGGCGCCGG CGCCGCCCTGCAGATTCCTTTCGCCATGCAGATGGCCTATAGATTCAACGGCATC GGCGTGACACAGAACGTGCTCTACGAGAACCAGAAGCTGATCGCCAATCAGTTCA ACAGCGCTATCGGCAAGATCCAGGACAGCCTGAGCAGCACCGCCAGCGCCCTGGG AAAGCTGCAAGACGTGGTCAACCAGAATGCCCAGGCCCTGAACACCCTGGTGAAG CAGCTGAGCTCTAATTTCGGCGCTATCAGCTCCGTGCTGAACGACATCCTGAGCA GACTGGACAAGGTGGAAGCTGAAGTGCAGATCGACCGGCTGATCACCGGTAGGCT TCAGAGCCTGCAGACCTACGTGACCCAGCAGCTGATCAGAGCCGCCGAGATCCGG GCCTCTGCCAACCTGGCCGCCACAAAGATGAGCGAATGTGTGCTGGGCCAGTCTA AGCGGGTGGACTTCTGCGGCAAAGGCTACCACCTGATGTCTTTTCCACAGAGCGC TCCTCATGGAGTGGTTTTCCTGCACGTGACCTACGTGCCTGCTCAGGAGAAAAAT TTTACCACCGCCCCAGCCATCTGCCACGAGGGCAAGGCCTACTTCCCCAGAGAGG GCGTGTTCGTGTCCAACGGCACACACTGGTTCGTCACCCAAAGAAACTTCTATGA ACCCCAGATCATCACAACCGACAACACATTTGTGTCCGGCAACTGCGACGTTGTG ATCGGAATCGTGAACAACACCGTGTACGACCCCCTGCAACCTGAGCTGGACAGCT TCAAAGAGGAACTGGATAAGTACTTTAAGAATCACACCAGTCCTGACGTCGACCT GGGAGATATCAGCGGCATCAACGCCTCCGTGGTGAACATTCAAAAGGAAATCGAT AGACTGAATGAGGTGGCCAAGAACCTGAACGAGAGCGACTACAAGGACGACGACG ACAAGtaatag;
SEQ ID NO:85 ?
Atgggttgcaagtggtcaaaaagtagtgtggttggatggcctgctgtaag ggaaagaatgagacgagctgagccagcagcagatggggtgggagcagcatctcga gacctagaaaaacatggagcaatcacaagtagcaatacagcagctaccaatgctg attgtgcctggctagaagcacaagaggaggaggaggtgggttttccagtcacacc tcaggtacctttaagaccaatgacttacaaggcagctgtagatcttagccacttt ttaaaagaaaaggggggactggaagggctaattcactcccaacgaagacaagata tccttgatctgtggatctaccacacacaaggctacttccctgattggcagaacta cacaccaggaccagggATCagatatccactgacctttggatggtgctacaagcta gtaccagttgagccagagaagttagaagaagccaacaaaggagagaacaccagct tgttacaccctgtgagcctgcatggaatggatgacccggggggacctgggcccGC TAGAACCAGAAGCATGTGGTCCTTCAACCCCGAGACAAACATCCTGCTGAACGTG CCACTGCACGGCACAATCCTTACAAGACCTCTGCTGGAAAGCGAGCTGGTGATTG GCGCCGTGATCCTCCGCGGACATCTGAGAATCGCCGGCCACCACCTGGGCAGATG CGACATCAAGGACCTGCCTAAGGAAATCACCGTGGCCACCAGCCGGACCCTGTCT TATTACAAACTGGGAGCCAGCCAGAGAGTGGCTGGCGATAGCGGCTTTGCCGCCT ACAGCAGATACCGGATCGGCAACTACAAGCTGAATACCGACCACAGCAGCTCCTC TGATAACATCGCCCTGCTGGTCCAGGACTACAAGGACGACGACGACAAGtaatag ;
SEQ ID NO:86 ?
Atgggttgcaagtggtcaaaaagtagtgtggttggatggcctgctgtaag ggaaagaatgagacgagctgagccagcagcagatggggtgggagcagcatctcga gacctagaaaaacatggagcaatcacaagtagcaatacagcagctaccaatgctg attgtgcctggctagaagcacaagaggaggaggaggtgggttttccagtcacacc tcaggtacctttaagaccaatgacttacaaggcagctgtagatcttagccacttt ttaaaagaaaaggggggactggaagggctaattcactcccaacgaagacaagata tccttgatctgtggatctaccacacacaaggctacttccctgattggcagaacta cacaccaggaccagggATCagatatccactgacctttggatggtgctacaagcta gtaccagttgagccagagaagttagaagaagccaacaaaggagagaacaccagct tgttacaccctgtgagcctgcatggaatggatgacccggggggacctgggcccTC TGACAACGGCCCCCAGAATCAGAGAAACGCCCCTAGAATCACATTCGGCGGACCT AGCGATAGCACAGGCAGCAACCAGAATGGAGAAAGATCCGGCGCTAGAAGCAAGC AGCGGAGACCTCAGGGCCTGCCTAACAACACCGCCAGCTGGTTCACCGCCCTCAC CCAACACGGCAAGGAAGATCTGAAGTTCCCCCGCGGCCAGGGAGTGCCAATCAAC ACCAACAGCTCTCCTGACGACCAGATCGGCTACTACAGACGGGCCACCAGAAGAA TACGGGGCGGCGACGGCAAAATGAAGGACCTGAGCCCTAGATGGTACTTCTACTA CCTGGGCACCGGCCCAGAGGCCGGACTGCCCTATGGCGCTAACAAGGACGGCATT ATCTGGGTCGCCACAGAGGGAGCTCTGAACACACCCAAGGACCACATCGGCACCC GGAACCCCGCTAACAACGCCGCCATCGTGCTGCAGCTGCCCCAGGGCACGACCCT GCCCAAAGGCTTCTACGCCGAGGGCTCCCGGGGCGGATCTCAGGCCAGCTCCCGG AGCAGCAGCAGATCTCGGAATAGCTCCCGCAATTCTACACCTGGCTCCAGCAGAG GCACATCTCCTGCCAGAATGGCCGGCAACGGCGGCGATGCCGCTCTGGCCCTGCT GCTTCTGGATAGACTGAATCAACTGGAAAGCAAGATGAGCGGAAAAGGCCAGCAG CAGCAAGGACAGACCGTGACCAAGAAGAGCGCCGCCGAAGCCTCTAAGAAACCTC GGCAGAAAAGAACCGCCACAAAGGCCTACAACGTGACCCAGGCCTTTGGCAGAAG GGGACCTGAGCAGACCCAGGGGAACTTTGGCGACCAGGAGCTGATCAGACAGGGC ACCGACTACAAGCACTGGCCTCAGATCGCCCAGTTCGCCCCTAGCGCCAGCGCGT TCTTCGGCATGAGCCGGATCGGCATGGAAGTGACACCTTCTGGCACCTGGCTGAC CTACACCGGCGCCATCAAGCTGGACGATAAGGACCCCAACTTCAAGGATCAAGTG ATCCTGCTGAACAAGCATATCGACGCCTATAAGACCTTTCCACCTACCGAGCCTA AGAAGGATAAGAAGAAGAAAGCCGACGAGACACAGGCCCTGCCTCAAAGACAGAA GAAACAGCAGACCGTGACCCTGCTGCCAGCCGCTGACCTGGACGACTTCAGCAAG CAGCTGCAACAGAGCATGTCCAGCGCTGATAGCACACAGGCTGACTACAAGGACG ACGACGACAAGtaatag.
In aggiunta, la presente invenzione riguarda un vettore di espressione di DNA comprendente una sequenza nucleotidica come definita sopra. Il vettore di espressione di DNA pu? essere un vettore plasmidico o un vettore virale.
La presente invenzione riguarda anche una vescicola extracellulare o esosoma comprendente una proteina di fusione come definita sopra.
? ulteriore oggetto della presente invenzione una composizione farmaceutica comprendente una proteina di fusione come definita sopra, una sequenza nucleotidica come definita sopra, un vettore di espressione di DNA come definito sopra o una vescicola extracellulare o esosoma come definiti sopra, insieme a uno o pi? eccipienti e/o adiuvanti farmaceuticamente accettabili. Preferibilmente, la composizione farmaceutica secondo la presente invenzione comprende una sequenza nucleotidica come definita sopra o un vettore di espressione di DNA come definito sopra. Pertanto, la composizione farmaceutica secondo la presente invenzione pu? essere un vaccino a DNA. Il vaccino a DNA pu? essere un vaccino a DNA preventivo o terapeutico.
Secondo la presente invenzione, l?adiuvante pu? essere un adiuvante della risposta delle cellule T CD8+.
In aggiunta, la presente invenzione riguarda una proteina di fusione come definita sopra, una sequenza nucleotidica come definita sorpa, un vettore di espressione di DNA come definito sopra, vescicola extracellulare o esosoma come definiti sopra o una composizione farmaceutica come definita sopra per l?uso come medicamento.
La presente invenzione riguarda una proteina di fusione come definita sopra, una sequenza nucleotidica come definita sopra, un vettore di espressione di DNA come definito sopra, vescicola extracellulare o esosoma come definiti sopra o una composizione farmaceutica come definita sopra, per l?uso nella prevenzione e nel trattamento vaccinali di un?infezione da coronavirus.
Secondo la presente invenzione, detto coronavirus pu? essere scelto dal gruppo consistente in SARS-CoV-2, coronavirus OC43, coronavirus 229E, coronavirus NL63, coronavirus HKU1, betacoronavirus della sindrome respiratoria mediorientale (MERS-CoV) e betacoronavirus della sindrome respiratoria acuta grave (SARS-CoV), preferibilmente SARS-CoV-2.
Preferibilmente, la presente invenzione riguarda una sequenza nucleotidica come definita sopra, un vettore di espressione di DNA come definito sopra o una composizione farmaceutica che li comprende, per l?uso nella prevenzione e trattamento vaccinali di un?infezione da coronavirus, come una infezione da SARS-CoV-2, inducendo una risposta immunitaria di CTL. Pertanto, detti sequenza nucleotidica, vettore di espressione di DNA o una composizione farmaceutica che li comprende possono essere usati come vaccino a DNA nella prevenzione e nel trattamento di una infezione da coronavirus, come una infezione da SARS-CoV-2.
Pertanto, la presente invenzione riguarda la prevenzione e il trattamento di COVID-19.
Secondo la presente invenzione, detta proteina di fusione, sequenza nucleotidica, vettore di espressione di DNA, vescicola extracellulare o esosoma o composizione farmaceutica, preferibilmente la sequenza nucleotidica, il vettore di espressione di DNA o una composizione farmaceutica comprendente lo stesso possono essere somministrati mediante somministrazione intramuscolare, preferibilmente seguita da elettroporazione.
La presente invenzione sar? ora descritta in modo illustrativo, ma non limitativo, secondo forme di realizzazione preferite della stessa, con particolare riferimento agli esempi e ai disegni allegati, in cui: La Figura 1 mostra la mappa di vettori esprimenti proteine di fusione basate su SARS-CoV-2, e relative sequenze amminoacidiche. A. Mappa del vettore pVAX1. Sono indicate le strategie di clonaggio per ottenere entrambi i vettori di fusione pVAX1-Nef<mut >e pVAX1-Nef<mut>. I siti di restrizione in cui sono state inserite le ORF di SARS-CoV-2 sono evidenziati in un rettangolo. Il C-terminale di Nef<mut >nel vettore di fusione pVAX1-Nef<mut >comprende il linker GPGP (SEQ ID NO:35) includente il sito di restrizione Apa I (sequenza sottolineata).
La Figura 2 mostra il rilevamento di prodotti di fusione Nef<mut>/SARS-CoV-2 in cellule trasfettate ed EV. ? mostrata un?analisi Western blot di lisati totali dallo stesso numero di cellule HEK293T trasfettate con vettori di DNA esprimenti Nef<mut >fusa con ORF di SARS-CoV-2 S1, S2, M o N (Fig. 2a). Sono stati analizzati anche pari volumi di tampone dove EV purificate sono state risospese dopo centrifugazioni differenziate dei rispettivi surnatanti (Fig. 2b). Come controlli sono state incluse condizioni da cellule trasfettate in fittizio (mock) come anche cellule trasfettate con Nef<mut >da sola. Anticorpi anti-Nef policlonali sono serviti per rilevare prodotti a base di Nef<mut>, mentre ?-actina e Alix sono stati rivelati come marcatori rispettivamente per lisati cellulari ed EV. I marcatori molecolari sono dati in kDa. I risultati sono rappresentativi di due esperimenti indipendenti.
La Figura 3 mostra l?immunit? di cellule T CD8<+ >SARS-CoV-2-specifiche indotta in topi dopo una iniezione i.m. di DNA. Risposta immunitaria delle cellule T CD8<+ >in topi C57 Bl/6 o, per la sola immunizzazione con S2, topi Balb/c inoculati i.m. con i vettori di DNA esprimenti Nef<mut >da sola o fusa con gli antigeni di SARS-CoV-2 indicati. Come controlli, topi sono stati inoculati con vettore vuoto o, solo per i topi C57 Bl/6, con un vettore esprimente Nef<mut>/E7. Al momento del sacrificio, 2,5?10<5 >splenociti sono stati incubati o.n. con o senza 5 ?g/ml di peptidi non correlati oppure specifici per SARS-CoV-2 in micropozzetti IFN-? Elispot triplicati. Sono mostrati i numeri di unit? di formazione di spot di IFN-? (SFU ? spot-forming units)/pozzetto come anche i valori medi dei triplicati dopo una sottrazione dei valori medi misurati in pozzetti di splenociti trattati con i peptidi non specifici. Sono riportati i valori medi intra-gruppo anche le deviazioni standard. La risposta immunitaria specifica di SARS-CoV-2 in topi Balb/c cui sono stati iniettati vettori vuoti oppure esprimenti Nef<mut >? rimasta ai livelli di fondo, vale a dire i livelli misurati in pozzetti trattati con peptidi aspecifici (non mostrato).
La Figura 4 mostra il rilevamento di Nef<mut>PL in cellule trasfettate ed EV. Analisi Western blot di lisati di cellule HEK293T trasfettate con vettori di DNA esprimenti Nef<mut >o Nef<mut>PL (pannelli di sinistra). Sono stati analizzati anche pari volumi di tampone dove esosomi purificati sono stati risospesi dopo centrifugazioni differenziate dei rispettivi surnatanti (pannelli di destra). Come controllo ? stato incluso lisato da cellule trasfettate in fittizio (mock).
Anticorpi anti-Nef policlonali sono serviti per rilevare prodotti a base di Nef<mut>, mentre ?-actina e Alix sono stati rivelati come marcatori rispettivamente per lisati cellulari ed esosomi. I marcatori molecolari sono dati in kDa. I risultati sono rappresentativi di sette esperimenti indipendenti.
La Figura 5 mostra il rilevamento di prodotti di fusione a base di Nef<mut>/E7 in cellule trasfettate ed EV. Analisi Western blot di lisati di cellule HEK293T trasfettate con vettori di DNA esprimenti Nef<mut>/E7 o Nef<mut>PL/E7. Come controlli sono state incluse condizioni da cellule trasfettate in fittizio (mock) come anche cellule trasfettate con Nef<mut >o Nef<mut>PL (pannelli di sinistra). Sono stati analizzati anche pari volumi di tampone dove EV purificate sono state risospese dopo centrifugazioni differenziate dei surnatanti da cellule trasfettate con vettori di DNA di Nef<mut>/E7 o Nef<mut>PL/E7 (pannelli di destra). Come controllo sono state incluse EV da cellule trasfettate in fittizio (mock). Anticorpi anti-Nef policlonali sono serviti per rilevare prodotti a base di Nef<mut>, mentre ?-actina e Alix sono stati rivelati come marcatori rispettivamente per lisati cellulari ed EV. I marcatori molecolari sono dati in kDa. I risultati sono rappresentativi di cinque esperimenti indipendenti.
La Figura 6 mostra il rilevamento di prodotti di fusione a base di Nef<mut>PL in cellule trasfettate ed EV. Analisi Western blot di lisati di cellule HEK293T trasfettate con vettori di DNA esprimenti Nef<mut>PL fusa con antigeni S1, S2, M, e N di SARS-CoV-2. Come controlli sono state incluse condizioni da cellule trasfettate in fittizio (mock). Sono stati analizzati anche pari volumi di tampone dove EV purificate sono state risospese dopo centrifugazioni differenziate dei surnatanti da cellule trasfettate con ciascun vettore di DNA a base di Nef<mut>PL. Come controllo sono state incluse EV da cellule trasfettate in fittizio. Anticorpi anti-Nef policlonali sono serviti per rilevare prodotti a base di Nef<mut>, mentre ?-actina e Alix sono stati rivelati come marcatori rispettivamente per lisati cellulari ed EV. I marcatori molecolari sono dati in kDa.
ESEMPIO 1: Sviluppo e ottimizzazione di un vaccino anti-SARS-CoV-2 per cellule T CD8+ secondo la presente invenzione basato su vescicole extracellulari ingegnerizzate per via endogena
Materiali e metodi
Gli OGM descritti negli esperimenti sono stati preparati nel rispetto degli obblighi in materia di OGM, derivanti da normative nazionali o comunitarie, e in particolare da quanto previsto dal paragrafo 6 e dai decreti legislativi del 12 aprile 2001, n. 206, e dell?8 luglio 2003, n. 224.
Sintesi di vettori di DNA
Tutti i costrutti SARS-CoV-2 sono stati clonati nel plasmide pVAX1 (Thermo Fisher); ossia un vettore approvato dalla FDA per uso negli esseri umani. Per ottenere il vettore pVAX1 esprimente Nef<mut>, la sua ORF ? stata clonata nei siti Nhe I e EcoR I (Fig. 1). Per recuperare il vettore esprimente prodotti di fusione a base di Nef<mut>, ? stato prodotto il vettore di fusione pVAX1/Nef<mut >intermedio. Qui, l?intera ORF di Nef<mut >privata del suo codone di stop ? stata seguita da una sequenza codificante un linker di GPGP, e includente il sito Apa I unico.
In questo modo, sequenze comprendenti un sito di restrizione Apa I in corrispondenza della loro estremit? 5? sono state fuse in frame con ORF di Nef<mut >(Fig. 1). Le sequenze correlate a SARS-CoV-2 sono state inserite in siti di restrizione Apa I/Pme I del vettore di fusione pVAX1/Nef<mut>, e una sequenza di tag epitopico DYKDDDDK (ID di SEQ n.:87) (flag-tag) ? stata inclusa appena prima dei codoni di stop. La sequenza del sito di restrizione Pme I che ? stata inclusa subito dopo i codoni di stop ? GTTTAAAC. Le sequenze di SARS-CoV-2 sono state ottimizzate per l?espressione in cellule umane attraverso il software GeneSmart da Genescript. Tutti questi vettori sono stati sintetizzati da Explora Biotech.
Il vettore pTargeT-Nef<mut>PL ? stato ottenuto partendo dal vettore pTargeT-Nef<mut>fusion, ossia, un vettore pTargeT (Invitrogen) dove la sequenza intera di Nef<mut >? stata inserita tra le due estremit? T sporgenti della regione polilinker. ? stato digerito con l?enzima di restrizione Sma I che riconosce un primo sito subito a valle della mutazione Nef<mut >C-terminale pi? tipica (vale a dire, <E>177<G>), e un secondo sito in corrispondenza della parte in 3? del polilinker del vettore. La successiva ri-ligazione ha generato una delezione di 29 amminoacidi C-terminale, con una formazione de novo di un codone di stop subito a valle del sito di restrizione Sma I.
Il vettore pTargeT esprimente la proteina di fusione Nef<mut>/HPV16-E7 ? stato gi? descritto [36]. Per ottenere il vettore pTargeT esprimente Nef<mut>PL/E7, l?ORF di Nef<mut>PL da pTargeT-Nef<mut>PL ? stata amplificata mediante PCR usando un primer diretto taggato con un sito di restrizione Nhe I, e un primer inverso includente un sito Apa I, e inserita nei corrispondenti siti di pTargeT. In questo modo, l?inserimento di Apa I di ORF a valle ha dato come risultato una sequenza in-frame e, alla traduzione, una proteina di fusione. Questo vettore (definito come fusione di Nef<mut>PL) ? stato digerito in corrispondenza dei siti di restrizione Apa I e Sal I dove l?ORF di HPV-16 E7 ? stata inserita in-frame dopo l'escissione dalla digestione di pTarget-Nef<mut>/E7 da Apa I/Sal I del vettore.
Per recuperare vettori pVAX1 esprimenti Nef<mut>PL fusa con ciascun antigene di SARS-CoV-2, ? stato costruito in un primo caso un vettore di fusione di pVAX1-Nef<mut>. Partendo dal vettore pVAX-1 commerciale, pVAX1- Nef<mut>/fusione ? stato ottenuto digerendo Nhe I/Apa I il vettore pTarget-Nef<mut>/fusione (Di Bonito et al., Int. J. Nanomed., 2017), vale a dire, un vettore pTarget (Invitrogen) dove l?intera sequenza di Nef<mut >? stata inserita tra le due estremit? T sporgenti della regione di polilinker. All?estremit? 3? della ORF di Nef<mut>PL, il codone di stop ? stato sostituito da un linker GPGP includente un sito Apa I in corrispondenza di questa estremit? 3? in modo tale che la ligazione con sequenze eterologhe a valle digerite mediante Apa I dia come risultato una unica sequenza in frame. Il pTarget-Nef<mut>/fusione ? stato digerito con gli enzimi Nhe I/Apa I e inserito nei corrispondenti siti all?interno del polilinker di pVAX1. Prodotti di fusione a base di Nef<mut>PL sono stati quindi ottenuti mediante sintesi del DNA (Explora Biotech) e inserimento in frame di ciascuna ORF di SARS-CoV-2 nei siti unici Apa I/Pme I del vettore delle fusioni di pVAX1-Nef<mut>.
Colture cellulari e trasfezione
Cellule renali embrionali umane (HEK, Human embryonic kidney) 293T (ATCC, CRL-11268) sono state coltivate in DMEM (Gibco) pi? siero fetale di vitello termoinattivato al 10% (FCS, Gibco). I saggi di trasfezione sono stati eseguiti usando Lipofectamine 2000 (Invitrogen, Thermo Fisher Scientifi).
Isolamento di EV
Cellule trasfettate con vettori esprimenti le proteine di fusione a base di Nef<mut >sono state lavate 24 ore dopo, e riseminate in terreno integrato con FCS privato di EV. I surnatanti sono stati raccolti da 48 a 72 ore dopo la trasfezione. Le EV sono state recuperate attraverso centrifugazioni differenziali [37] centrifugando surnatanti a 500?g per 10 min, e quindi a 10.000?g per 30 min. I surnatanti sono stati raccolti, filtrati con filtri di dimensione del poro di 0,22 ?m, e ultracentrifugati a 70.000?g per 1 ora. Le vescicole in pellet sono state risospese in 1?PBS, e ultracentrifugate nuovamente a 70.000?g per 1 ora. In seguito, i sedimenti contenenti esosomi sono stati risospesi in 1:100 del volume iniziale.
Analisi Western blot
Le analisi Western blot sia dei lisati cellulari sia delle EV sono state eseguite come descritto [33] dopo avere risolto i campioni in elettroforesi su gel di poliacrilammide con dodecilsolfato di sodio al 10% (SDS-PAGE). In breve, l?analisi dei lisati cellulari ? stata eseguita lavando le cellule due volte con 1?PBS (pH 7,4) e lisandole con tampone per campione SDS-PAGE 1x. I campioni sono stati risolti mediante SDS-PAGE e trasferiti mediante elettroblotting su una membrana di nitrocellulosa di dimensione del poro di 0,45 ?M (Amersham) per tutta la notte usando un Trans-Blot Bio-Rad. Per l?analisi Western blot delle EV, queste sono state lisate e analizzate come descritto per i lisati cellulari. Per i saggi immunologici, le membrane sono state bloccate con latte secco non grasso al 5% in PBS contenente lo 0,1% di Triton X-100 per 1 ora a temperatura ambiente, quindi incubate per tutta la notte a 4 ?C con anticorpi specifici diluiti in PBS contenente lo 0,1% di Triton X-100. I filtri sono stati rivelati utilizzando antisiero di pecora anti-Nef ARP 444 diluito a 1:1.000 (MHRC, Londra, Regno Unito), mAb AC-74 anti?-actina diluito a 1:500 da Sigma (Milano, Italia), anticorpi policlonali anti-Alix H-270 diluiti a 1:500 da Santa Cruz (Heidelberg, Germania), e mAb anti-flag M2 diluito a 1:1000 da Sigma.
Immunizzazione dei topi
Topi femmine sia C57 Bl/6 sia (per la sola immunizzazione con S2) Balb/c di 6 settimane di et? sono stati ottenuti da Charles River (Como, Italia) e collocati presso la Central Animal Facility dell?Istituto Superiore di Sanit?, come approvato dal Ministero italiano della Salute, autorizzazione n.
565/2020 rilasciata il 3 giugno 2020. Il giorno precedente il primo inoculo, microchip da DATAMARS sono stati inseriti sotto cute in corrispondenza della nuca tra le scapole sulla linea mediana dorsale. Le quantit? di ciascun vettore di espressione sono state diluite in soluzione salina sterile allo 0,9%. Sia la qualit? sia la quantit? delle preparazioni di DNA sono state verificate mediante saggi di assorbanza a 260/280 nm ed elettroforesi. I topi sono stati anestetizzati con isoflurano come prescritto dall?autorizzazione ministeriale. Ciascun volume di inoculo ? stato quindi misurato mediante micropipetta, caricato singolarmente in una siringa da 1 ml senza volume morto, e iniettato nel quadricipite destro dei topi. Immediatamente dopo l'inoculazione, i topi sono stati sottoposti a elettroporazione in corrispondenza del sito di iniezione attraverso il dispositivo Agilpulse BTX utilizzando una matrice di 4 aghi con 4 mm di distanza, 5 mm di lunghezza dell'ago, con i seguenti parametri: 1 impulso da 450 V per 50 ?sec; intervallo di 0,2 msec; 1 impulso da 450 V per 50 ?sec; intervallo di 50 msec; 8 impulsi da 110 V per 10 msec con intervalli di 20 msec. La stessa procedura ? stata ripetuta per il quadricipite sinistro di ciascun topo. Le immunizzazioni sono state ripetute dopo 14 giorni. Quattordici giorni dopo la seconda immunizzazione, i topi sono stati sacrificati mediante dislocazione cervicale come raccomandato dal protocollo dell?autorizzazione ministeriale.
Analisi IFN-? EliSpot
Le milze sono state espiantate da personale qualificato della Central Animal Facility dell?ISS, e poste in provette Eppendorf da 2 ml riempite con 1 ml di RPMI 1640 (Gibco), 50 ?M di 2-mercaptoetanolo (Sigma). Le milze sono state trasferite in una capsula di Petri da 60 mm contenente 2 ml di RPMI 1640 (Gibco), 50 ?M di 2-mercaptoetanolo (Sigma). Gli splenociti sono stati estratti incidendo la milza con forbici sterili e spremendo le cellule dal sacco della milza con il sigillo dello stantuffo di una siringa da 1 ml. Dopo l'aggiunta di 2 ml di terreno RPMI, le cellule sono state trasferite in una provetta conica da 15 ml e la piastra di Petri ? stata lavata con 4 ml di terreno per raccogliere le cellule rimanenti. Dopo tre minuti di sedimentazione, gli splenociti sono stati trasferiti in una nuova provetta sterile per rimuovere i detriti cellulari/tissutali. Le conte delle cellule vive sono state eseguite mediante il metodo di esclusione con Trypan blue. Un totale di 5?10<6 >splenociti freschi ? stato risospeso in terreno completo RPMI contenente 50 ?M di 2-mercaptoetanolo e il 10% di FBS, e testato mediante saggio IFN-? EliSpot.
Per il saggio IFN-? EliSpot, 2,5?10<5 >cellule vive sono state seminate in ciascun micropozzetto. Le colture sono state eseguite in triplicato in piastre EliSpot multipozzetto (Millipore, n. di cat MSPS4510) prerivestite con il mAb AN18 contro IFN-? di topo (Mabtech) in RPMI 1640 (Gibco), il 10% di FCS, 50 ?M di 2mercaptoetanolo (Sigma) per 16 ore in presenza di 5 ?g/ml dei seguenti peptidi specifici per CD8: HPV-16 E7 (H2-K<b>): 21-28 DLYCYEQL (SEQ ID NO:89) [38]; 49-57 RAHYNIVTF (SEQ ID NO:90) [38]; 67-75 LCVQSTHVD (SEQ ID NO:91) [39]. SARS-CoV-2 S1 (H2-K<b>): 525-531 VNFNFNGL (SEQ ID NO:92) [40]; SARS-CoV-2 S2 (H2-K<d>): 1079-1089 PAICHDGKAH (SEQ ID NO:93) [41]; SARS-CoV-2 M (H2-K<b>): 173-180 RTLSYYKL (SEQ ID NO:94) [42]; SARS-CoV-2 N (H2-K<b>): 219-228 ALALLLLDRL (SEQ ID NO:95) [42]. Come controllo negativo sono stati usati 5 ?g/ml dei peptidi leganti H2-K<b >oppure H2-K<d>. Pi? del 70% delle preparazioni pure dei peptidi sono state ottenute sia da UFPeptides, Ferrara, Italia, sia da JPT, Berlino, Germania. Per il controllo dell'attivazione cellulare, le colture sono state trattate con 10 ng/ml di PMA (Sigma) pi? 500 ng/ml di ionomicina (Sigma). Dopo 16 ore, le colture sono state rimosse, e i pozzetti sono stati incubati con 100 ?L di 1 ?g/ml dell?anti-IFN-? biotinilato con R4?6A2 (Mabtech) per 2 ore a TA. I pozzetti sono stati quindi lavati e trattati per 1 ora a TA con preparati di streptavidina-ALP diluiti a 1:1000 da Mabtech. Dopo il lavaggio, gli spot sono stati sviluppati aggiungendo 100 ?l/pozzetto di BCIP/NBT SigmaFast, n. di CAT B5655. Le cellule formanti spot sono state infine analizzate e contate usando un lettore AELVIS EliSpot.
Risultati
Costruzione di vettori esprimenti Nef<mut >fusi ad antigeni di SARS-CoV-2
Il vettore pVAX1 ? stato usato per tutti i costrutti esprimenti proteine di fusione a base di Nef<mut>/SARS-CoV2 (Fig. 1A). Le ORF codificanti le proteine S, M e N di SARS-CoV-2 provenivano dall?isolato clinico italiano di SARS-CoV-2 ITA/INMI1/2020 (https://www.ncbi.nlm.nih.gov/nuccore/MT066156;
GenBank: MT066156.1).
Ciascun costrutto di fusione di Nef<mut >? stato progettato in modo da garantire una internalizzazione ottimale in EV tramite Nef<mut >al contempo conservando tutti gli epitopi murini immunodominanti. Le sequenze amminoacidiche di SARS-CoV-2 incluse nelle proteine di fusione a base di Nef<mut >sono la porzione dell?antigene S1 di sequenza di SEQ ID NO:31, la porzione dell?antigene S2 di sequenza SEQ ID NO:32, la porzione dell?antigene M di sequenza SEQ ID NO:33, la porzione dell?antigene N di sequenza SEQ ID NO:34. In SARS-CoV-2, S ? clivata al confine tra le subunit? S1 e S2, che rimangono legate non covalentemente nella conformazione pre-fusione [43]. Il clivaggio avviene in corrispondenza del sito di clivaggio furina-simile PRRARS (SEQ ID NO:96). Il fatto che il clivaggio dipendente da furina di S influenzasse negativamente il suo caricamento in EV alla fusione con Nef<mut >era previsto. Pertanto, per superare questa limitazione, sono stati progettati due costrutti a base di Nef<mut >con S di SARS-CoV-2: Nef<mut>-S1 (aa da 19 a 680), dove il peptide segnale ? stato escluso, e Nef<mut>-S2 (aa da 836 a 1196), includente la porzione extracellulare della proteina con esclusione dei domini di fusione.
La proteina M di SARS-CoV-2 (221 aa) ? composta da una regione esterna ammino-terminale di 18 amminoacidi, una regione di transmembrana che compone approssimativamente un terzo dell?intera proteina, e una regione C-terminale composta da 123 residui situati all?interno della cellula [43]. Solamente la regione C-terminale di M (aa da 94 a 221) ? stata fusa a Nef<mut>. Per quanto riguarda la proteina N (422 aa), l?ORF a piena lunghezza della proteina (eccetto l?amminoacido M1) ? stata fusa a Nef<mut>.
Prodotti di fusione basati su Nef<mut >con antigeni di SARS-CoV-2 sono efficientemente caricati in EV L?espressione cellulare dei prodotti di fusione tra Nef<mut >e gli antigeni di SARS-CoV-2 S1, S2, M, e N ? stata valutata mediante trasfezione transitoria in cellule HEK293T. Per studiare l?incorporazione in EV dei prodotti di fusione, surnatanti dalla cellula trasfettata sono stati raccolti 48-72 ore dopo la trasfezione, subendo in tal modo centrifugazioni differenziali.
Sia i lisati cellulari sia gli esosomi isolati dai rispettivi surnatanti sono stati analizzati mediante saggio Western blot (Fig. 2). ? stato notato che i livelli di stato stazionario associati alle cellule di tutti i derivati di Nef<mut >erano abbastanza forti da essere rilevati chiaramente. I segnali correlati a Nef pi? forti sono apparsi in cellule esprimenti solo Nef<mut >oppure il prodotto di fusione con N. In quest?ultimo caso erano rilevabili anche i prodotti di clivaggio. Il fatto che i segnali di peso molecolare inferiore non fossero rilevabili all?incubazione con Ab anti-Flag (non mostrato) ha fortemente suggerito la generazione di prodotti di clivaggio invece che di prodotti di riarrangiamento. I risultati ottenuti dall?analisi delle EV hanno fondamentalmente rispecchiato quelli dall?analisi dei lisati cellulari. Anche in questo caso, la presenza di un prodotto di fusione di Nef<mut >intera/N si ? accoppiata a quella di due prodotti apparentemente clivati.
Presi insieme, questi risultati hanno indicato che tutti i prodotti di fusione analizzati sono stabili e si associano a EV.
Risposta delle cellule T CD8<+ >indotta in topi cui sono stati iniettati vettori esprimenti Nef<mut >fusa ad antigeni di SARS-CoV-2
Successivamente, ? stata valutata l'immunogenicit? dei vettori di DNA esprimenti ciascun antigene di SARS-CoV-2 (S1, S2, M, N) fuso a Nef<mut>. Come valore indicativo dell?immunit? delle cellule T CD8<+>, topi sono stati immunizzati con un vettore esprimente Nef<mut>/E7, vale a dire un vettore la cui iniezione genera una risposta immunitaria CTL anti-E7 sia forte sia efficace [35, 44]. Topi C57 Bl/6 o, nel caso dell?immunizzazione con il vettore di Nef<mut>/S2, topi Balb/c sono stati inoculati i.m. in ciascun quadricipite con 10 ?g dei due vettori di DNA e, come controllo, con pari quantit? di vettore vuoto o vettore di pVAX1-Nef<mut>. Le iniezioni sono state immediatamente seguite da procedure di elettroporazione. Le inoculazioni sono state ripetute 14 giorni dopo e, dopo altri 14 giorni, i topi sono stati sacrificati. Gli splenociti sono stati quindi isolati e coltivati per tutta la notte in micropozzetti di IFN-? EliSpot in presenza di nonameri/decameri non correlati oppure specifici per l?antigene. In merito alla scelta di peptidi attivanti cellule T CD8<+>, sono stati scelti peptidi specifici per epitopi immunodominanti gi? descritti per SARS-CoV e la cui sequenza ? identica in antigeni di SARS-CoV-2. ? stata osservata un'attivazione delle cellule T CD8<+ >specifica per l'antigene sia sostenuta sia comparabile in splenociti da topi inoculati con vettori esprimenti le diverse proteine di fusione a base di Nef<mut >(Fig. 3). Bench? il saggio non consenta una quantificazione assoluta della risposta immunitaria, ? stato osservato che le entit? di attivazione delle cellule T CD8<+ >rilevate in topi cui ? stato iniettato ciascun vettore esprimente derivati di SARS-CoV-2 erano simili a quella indotta dal vettore esprimente Nef<mut>/E7.
Questi dati hanno fortemente suggerito che l?immunit? indotta da tutti i vettori di DNA di SARS-CoV-2 basati su Nef<mut >sia sufficientemente potente da essere presa in considerazione per nuove e originali formulazioni vaccinali.
Un troncamento C-terminale di Nef<mut >non influisce sulla sua efficienza di caricamento in EV
I promettenti risultati di immunogenicit? ottenuti con vettori di DNA esprimenti proteine di fusione basate su SARS-CoV-2 ha portato a considerarli vaccini candidati per indurre una immunit? di CTL anti-SARS-CoV-2. Considerando che ci si aspetta che i vaccini anti-SARS-CoV-2 efficaci siano offerti a un numero piuttosto grande di individui sani, le questioni sulla sicurezza di una formulazione vaccinale devono essere considerate di rilevanza fondamentale per la trasposizione a livello clinico. Nel caso della strategia esposta nella presente, ci si aspetta che la riduzione delle sequenze correlate alla funzione di ancoraggio a EV aumenti il suo profilo di sicurezza. A questo scopo, ? stato pianificato di identificare la sequenza amminoacidica correlata a Nef<mut >pi? corta che mantenesse ancora la capacit? di incorporarsi fortemente nelle EV.
Nef ? una molecola di 206 amminoacidi di lunghezza che riconosce una porzione N strutturata piuttosto estesa, e una regione flessibile C-terminale non strutturata [45]. Per non colpire la struttura secondaria complessiva di Nef<mut>, sono state considerate solamente isoforme di Nef<mut >con delezione del suo C-terminale non strutturato. In aggiunta, ? stato considerato che la mutazione amminoacidica unica pi? al C-terminale di Nef<mut >si situi nella posizione 177, e questa mutazione tipica deve essere considerata per preservare la peculiare efficienza di associarsi a EV. Per tutti questi motivi, ? stata testata l?associazione a EV di una Nef<mut >troncata in corrispondenza dell?amminoacido 178, quindi privata dei 29 amminoacidi C-terminali. ? degno di nota osservare che questo progetto ? stato impegnativo, poich? ? stato riportato che il C-terminale di Nef, la cui sequenza ? ben conservata in Nef<mut >(Fig. 4), include un dominio definito come CRM (vale a dire, motivo di riconoscimento del colesterolo) che ha dimostrato di essere determinante per l'associazione di Nef a nanovescicole.
Per confrontare la stabilit? e l?associazione a EV di Nef<mut >intera con la sua forma troncata al C-terminale (di seguito nella presente definita Nef<mut>PL), sono stati eseguiti esperimenti di trasfezione transitoria in cellule HEK293T. Successivamente, un?analisi Western blot ? stata eseguita sia su lisati cellulari sia su EV isolati da surnatanti di cellule trasfettate. Risultati rappresentativi mostrati nella fig. 5 indicano che Nef<mut>PL si associa con EV a livelli paragonabili a quelli di Nef<mut >intera.
Si ? raggiunta la conclusione che la presenza dei 29 amminoacidi C-terminali non sia essenziale per un caricamento di alto livello di Nef<mut >in EV.
Nef<mut>PL funge da proteina ancorante EV tanto efficientemente quanto Nef<mut>
La scoperta che il C-terminale di Nef<mut >? superfluo per un?associazione a EV di alto livello sarebbe di rilevanza nella prospettiva di trasporre la tecnologia basata su Nef<mut >nella clinica solo nel caso in cui questa funzione sia mantenuta in presenza di un antigene estraneo fuso. Per valutare questa possibilit?, ? stato confrontato il caricamento in EV di Nef<mut >e di Nef<mut>PL quando entrambe le proteine erano fuse in corrispondenza del rispettivo C-terminale con HPV16-E7. Cellule HEK293T sono state trasfettate separatamente con i due vettori, e i livelli di associazione a EV sono stati valutati mediante analisi Western blot di EV isolate dai surnatanti cellulari. Come mostrato in fig. 6, i livelli intracellulari di stato stazionario dei due prodotti di fusione sono apparsi simili, come anche le quantit? di prodotti di fusione associati alle EV.
Prodotti di fusione tra antigeni di SARS-CoV-2 e Nef<mut>PL sono caricati in EV
Analogamente a quanto gi? fatto con i prodotti di fusione di antigeni di SARS-CoV-2 con Nef<mut >intera, l?espressione cellulare dei prodotti di fusione basati su Nef<mut>PL ? stata valutata mediante Western blot dopo trasfezione transitoria in cellule HEK293T. L?incorporazione in EV dei prodotti di fusione ? stata analizzata raccogliendo surnatanti da cellule trasfettate 48-72 ore dopo la trasfezione, seguita da centrifugazioni differenziali.
Come riportato nella fig. 6, tutti i derivati di Nef<mut>PL si sono accumulati in cellule trasfettate in entit? rilevabili. Coerentemente con quanto osservato con lisati cellulari, segnali da derivati di Nef<mut>PL sono stati chiaramente rilevabili in preparazioni di EV.
Abbiamo concluso che, come gi? osservato con la fusione di Nef<mut>PL con HPV16-E7, gli antigeni di SARS-CoV-2 si associano con EV anche quando sono fusi con la forma troncata C-terminale di Nef<mut>. Questo risultato sarebbe di rilevanza nella prospettiva della trasposizione nella clinica della strategia vaccinale basata su Nef<mut>.
Questi risultati consentono di proporre Nef<mut>PL come alternativa efficace e pi? sicura a Nef<mut >intera nella preparazione di vaccini a CTL anti-SARS-CoV-2 basati sulla tecnologia delle EV ingegnerizzate per via endogena.

Claims (24)

RIVENDICAZIONI
1) Proteina di fusione comprendente o consistente in una proteina ancorante esosomi fusa in corrispondenza del suo C-terminale con un antigene immunogenico di coronavirus,
in cui detta proteina ancorante esosomi ? scelta tra Nef<mut >di SEQ ID NO:1 o una forma troncata di Nef<mut >avente una sequenza scelta dal gruppo consistente in SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24. SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29 e SEQ ID NO:30, preferibilmente SEQ ID NO:30.
2) Proteina di fusione secondo la rivendicazione 1, in cui detto antigene immunogenico di coronavirus ? scelto dal gruppo consistente in un antigene di SARS-CoV-2, un antigene di coronavirus OC43, un antigene di coronavirus 229E, un antigene di coronavirus NL63, un antigene di coronavirus HKU1, un antigene del betacoronavirus della sindrome respiratoria mediorientale (MERS-CoV) o un antigene del betacoronavirus della sindrome respiratoria acuta grave (SARS-CoV), preferibilmente un antigene di SARS-CoV-2.
3) Proteina di fusione secondo la rivendicazione 2, in cui l?antigene di SARS-CoV-2 ? scelto dal gruppo consistente in proteina S, subunit? S1, subunit? S2, proteina M e/o proteina N o loro porzioni immunogeniche.
4) Proteina di fusione secondo la rivendicazione 3, in cui la porzione immunogenica della subunit? S1 consiste in SEQ ID NO:31, la porzione immunogenica della subunit? S2 consiste in SEQ ID NO:32, la porzione immunogenica della proteina M consiste in SEQ ID NO:33, la porzione immunogenica della proteina N consiste in SEQ ID NO:34.
5) Proteina di fusione secondo una qualsiasi delle rivendicazioni 1-4, in cui detta proteina ancorante esosomi ? fusa a detto antigene immunogenico mediante un linker, come GPGP (SEQ ID NO:35).
6) Proteina di fusione secondo una qualsiasi delle rivendicazioni 1-5, detta proteina di fusione comprendendo ulteriormente un flag-tag legato all?antigene immunogenico, come DYKDDDDK (SEQ ID NO:87).
7) Proteina di fusione secondo una qualsiasi delle rivendicazioni 1-6, in cui, quando detta proteina ancorante esosomi ? Nef<mut>, detta proteina di fusione ? scelta dal gruppo consistente in SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38 e SEQ ID NO:39.
8) Proteina di fusione secondo una qualsiasi delle rivendicazioni 1-6, in cui, quando detta proteina ancorante esosomi ? una forma troncata di Nef<mut >di SEQ ID NO:30, detta proteina di fusione ? scelta dal gruppo consistente in SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42 e SEQ ID NO:43.
9) Sequenza nucleotidica codificante una proteina di fusione come definita in una qualsiasi delle rivendicazioni 1-8.
10) Sequenza nucleotidica secondo la rivendicazione 9, in cui la sequenza nucleotidica codificante Nef<mut >? SEQ ID NO:44 e la sequenza nucleotidica codificante la forma troncata di Nef<mut >? scelta dal gruppo consistente in SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:61, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72 e SEQ ID NO:73, preferibilmente SEQ ID NO:73,.
11) Sequenza nucleotidica secondo una qualsiasi delle rivendicazioni 9-10, in cui la sequenza nucleotidica codificante la porzione della subunit? S1 ? SEQ ID NO:74, la sequenza nucleotidica codificante la porzione della subunit? S2 ? SEQ ID NO:75, la sequenza nucleotidica codificante la porzione della proteina M ? SEQ ID NO:76, la sequenza nucleotidica codificante la porzione della proteina N ? SEQ ID NO:77.
12) Sequenza nucleotidica secondo una qualsiasi delle rivendicazioni 9-11, in cui la sequenza nucleotidica codificante la proteina ancorante esosomi ? legata alla sequenza nucleotidica codificante detto antigene immunogenico mediante un linker, come ggacctgggccc (SEQ ID NO:78).
13) Sequenza nucleotidica secondo una qualsiasi delle rivendicazioni 9-12, comprendente ulteriormente una sequenza nucleotidica codificante un flag-tag, come GAC TAC AAG GAC GAC GAC GAC AAG (SEQ ID NO:88), legato alla sequenza nucleotidica codificante l?antigene immunogenico.
14) Sequenza nucleotidica secondo una qualsiasi delle rivendicazioni 9-13, in cui, quando detta proteina ancorante esosomi ? Nef<mut>, detta sequenza nucleotidica ? scelta dal gruppo consistente in SEQ ID NO:79, SEQ ID NO:80, SEQ ID NO:81 e SEQ ID NO:82.
15) Sequenza nucleotidica secondo una qualsiasi delle rivendicazioni 9-13, in cui, quando detta proteina ancorante esosomi ? una forma troncata di Nef<mut >(SEQ ID NO:30), detta sequenza nucleotidica ? scelta dal gruppo consistente in SEQ ID NO:83, SEQ ID NO:84, SEQ ID NO:85 e SEQ ID NO:86.
16) Vettore di espressione di DNA comprendente una sequenza nucleotidica come definita in una qualsiasi delle rivendicazioni 9-15.
17) Vescicola extracellulare o esosoma comprendente una proteina di fusione come definita in una qualsiasi delle rivendicazioni 1-8.
18) Composizione farmaceutica comprendente una proteina di fusione come definita in una qualsiasi delle rivendicazioni 1-8, una sequenza nucleotidica come definita in una qualsiasi delle rivendicazioni 9-15, un vettore di espressione di DNA come definito nella rivendicazione 16 o una vescicola extracellulare o esosoma come definiti nella rivendicazione 17, insieme a uno o pi? eccipienti e/o adiuvanti.
19) Composizione farmaceutica secondo la rivendicazione 18, in cui detta composizione farmaceutica ? un vaccino a DNA comprendente una sequenza nucleotidica come definita in una qualsiasi delle rivendicazioni 9-15 o un vettore di espressione di DNA come definito nella rivendicazione 16.
20) Composizione farmaceutica secondo la rivendicazione 19, in cui l?adiuvante ? un adiuvante della risposta delle cellule T CD8+.
21) Proteina di fusione come definita in una qualsiasi delle rivendicazioni 1-8, una sequenza nucleotidica come definita in una qualsiasi delle rivendicazioni 9-15, un vettore di espressione di DNA come definito nella rivendicazione 16, vescicola extracellulare o esosoma come definiti nella rivendicazione 17 o composizione farmaceutica come definita in una qualsiasi delle rivendicazioni 18-20 per l?uso come medicamento.
22) Proteina di fusione come definita in una qualsiasi delle rivendicazioni 1-8, una sequenza nucleotidica come definita in una qualsiasi delle rivendicazioni 9-15, un vettore di espressione di DNA come definito nella rivendicazione 16, vescicola extracellulare o esosoma come definiti nella rivendicazione 17 o composizione farmaceutica come definita in una qualsiasi delle rivendicazioni 18-20, per l?uso nella prevenzione e nel trattamento vaccinali di un?infezione da coronavirus.
23) Proteina di fusione come definita in una qualsiasi delle rivendicazioni 1-8, una sequenza nucleotidica come definita in una qualsiasi delle rivendicazioni 9-15, un vettore di espressione di DNA come definito nella rivendicazione 16, vescicola extracellulare o esosoma come definiti nella rivendicazione 17 o composizione farmaceutica come definita in una qualsiasi delle rivendicazioni 18-20, per l?uso secondo la rivendicazione 22, in cui detto coronavirus ? scelto dal gruppo consistente in SARS-CoV-2, coronavirus OC43, coronavirus 229E, coronavirus NL63, coronavirus HKU1, betacoronavirus della sindrome respiratoria mediorientale (MERS-CoV) e betacoronavirus della sindrome respiratoria acuta grave (SARS-CoV), preferibilmente SARS-CoV-2.
24) Proteina di fusione come definita in una qualsiasi delle rivendicazioni 1-8, una sequenza nucleotidica come definita in una qualsiasi delle rivendicazioni 9-15, un vettore di espressione di DNA come definito nella rivendicazione 16, vescicola extracellulare o esosoma come definiti nella rivendicazione 17 o composizione farmaceutica come definita in una qualsiasi delle rivendicazioni 18-20, per l?uso secondo una qualsiasi delle rivendicazioni 22-23, in cui detta proteina di fusione, sequenza nucleotidica, vettore di espressione di DNA, vescicola extracellulare o esosoma o composizione farmaceutica ? somministrata mediante somministrazione intramuscolare, preferibilmente seguita da elettroporazione.
IT102020000030740A 2020-12-14 2020-12-14 SEQUENZA NUCLEOTIDICA ESPRIMENTE UNA PROTEINA ANCORANTE VESCICOLE EXTRACELLULARI FUSA AD ANTIGENI DI SARS-CoV-2 E RELATIVA PROTEINA DI FUSIONE PER L’USO COME VACCINO IT202000030740A1 (it)

Priority Applications (3)

Application Number Priority Date Filing Date Title
IT102020000030740A IT202000030740A1 (it) 2020-12-14 2020-12-14 SEQUENZA NUCLEOTIDICA ESPRIMENTE UNA PROTEINA ANCORANTE VESCICOLE EXTRACELLULARI FUSA AD ANTIGENI DI SARS-CoV-2 E RELATIVA PROTEINA DI FUSIONE PER L’USO COME VACCINO
EP21830524.1A EP4259191A1 (en) 2020-12-14 2021-12-13 Nucleotide sequence expressing an extracellular vesicle-anchoring protein fused with sars-cov-2 antigens and related fusion protein for use as vaccine
PCT/IT2021/050405 WO2022130432A1 (en) 2020-12-14 2021-12-13 Nucleotide sequence expressing an extracellular vesicle-anchoring protein fused with sars-cov-2 antigens and related fusion protein for use as vaccine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IT102020000030740A IT202000030740A1 (it) 2020-12-14 2020-12-14 SEQUENZA NUCLEOTIDICA ESPRIMENTE UNA PROTEINA ANCORANTE VESCICOLE EXTRACELLULARI FUSA AD ANTIGENI DI SARS-CoV-2 E RELATIVA PROTEINA DI FUSIONE PER L’USO COME VACCINO

Publications (1)

Publication Number Publication Date
IT202000030740A1 true IT202000030740A1 (it) 2022-06-14

Family

ID=74669466

Family Applications (1)

Application Number Title Priority Date Filing Date
IT102020000030740A IT202000030740A1 (it) 2020-12-14 2020-12-14 SEQUENZA NUCLEOTIDICA ESPRIMENTE UNA PROTEINA ANCORANTE VESCICOLE EXTRACELLULARI FUSA AD ANTIGENI DI SARS-CoV-2 E RELATIVA PROTEINA DI FUSIONE PER L’USO COME VACCINO

Country Status (3)

Country Link
EP (1) EP4259191A1 (it)
IT (1) IT202000030740A1 (it)
WO (1) WO2022130432A1 (it)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018069947A1 (en) * 2016-10-11 2018-04-19 Intituto Superiore Di Sanita' Nucleotide sequence expressing an exosome-anchoring protein for use as vaccine
US20200325182A1 (en) * 2020-06-11 2020-10-15 MBF Therapeutics, Inc. Alphaherpesvirus glycoprotein d-encoding nucleic acid constructs and methods
EP3734286A1 (en) * 2020-05-15 2020-11-04 Euroimmun Medizinische Labordiagnostika AG A method for determining the efficacy of a sars-cov-2 vaccine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021224429A1 (en) * 2020-05-06 2021-11-11 Biovelocita S.R.L Exosome-anchoring coronavirus fusion proteins and vaccines

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018069947A1 (en) * 2016-10-11 2018-04-19 Intituto Superiore Di Sanita' Nucleotide sequence expressing an exosome-anchoring protein for use as vaccine
EP3389701B1 (en) 2016-10-11 2020-04-29 Instituto Superiore Di Sanita' Nucleotide sequence expressing an exosome-anchoring protein for use as vaccine
EP3734286A1 (en) * 2020-05-15 2020-11-04 Euroimmun Medizinische Labordiagnostika AG A method for determining the efficacy of a sars-cov-2 vaccine
US20200325182A1 (en) * 2020-06-11 2020-10-15 MBF Therapeutics, Inc. Alphaherpesvirus glycoprotein d-encoding nucleic acid constructs and methods

Non-Patent Citations (75)

* Cited by examiner, † Cited by third party
Title
ANTICOLI SIMONA ET AL: "An Exosome-Based Vaccine Platform Imparts Cytotoxic T Lymphocyte Immunity Against Viral Antigens", BIOTECHNOLOGY JOURNAL, vol. 13, no. 4, 24 March 2018 (2018-03-24), DE, pages 1700443, XP055838601, ISSN: 1860-6768, Retrieved from the Internet <URL:https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2Fbiot.201700443> DOI: 10.1002/biot.201700443 *
ANTICOLI, S.ARICO, E.ARENACCIO, C.MANFREDI, F.CHIOZZINI, C.OLIVETTA, E.FERRANTELLI, F.LATTANZI, L.D'URSO, M. T.PROIETTI, E., ENGINEERED EXOSOMES EMERGING FROM MUSCLE CELLS BREAK IMMUNE TOLERANCE TO HER2 IN TRANSGENIC MICE AND INDUCE ANTIGEN-SPECIFIC CTLS UPON CHALLENGE BY HUMAN DENDRITIC CELLS, 21 August 2020 (2020-08-21), Retrieved from the Internet <URL:https://pubmed.ncbi.nlm.nih.gov/29282521>
ANTICOLI, S.MANFREDI, F.CHIOZZINI, C.ARENACCIO, C.OLIVETTA, E.FERRANTELLI, F.CAPOCEFALO, A.FALCONE, E.RUGGIERI, A.FEDERICO, M.: "An Exosome-Based Vaccine Platform Imparts Cytotoxic T Lymphocyte Immunity Against Viral Antigens", BIOTECHNOL J, vol. 13, no. 4, 2018, pages e1700443, Retrieved from the Internet <URL:https://doi.org/10.1002/biot.201700443>
ARENACCIO, C.FEDERICO, M.: "The Multifaceted Functions of Exosomes in Health and Disease: An Overview", ADV. EXP. MED. BIOL., vol. 998, 2017, pages 3 - 19, Retrieved from the Internet <URL:https://doi.org/10.1007/978-981-10-4397-0_1>
BAUER, S.HEEG, K.WAGNER, H.LIPFORD, G. B.: "Identification of H-2Kb Binding and Immunogenic Peptides from Human Papilloma Virus Tumour Antigens E6 and E7", SCAND. J. IMMUNOL., vol. 42, no. 3, 1995, pages 317 - 323, XP009040900, Retrieved from the Internet <URL:https://doi.org/10.1111/j.1365-3083.1995.tb03662.x>
BRAUN, J.LOYAL, L.FRENTSCH, M.WENDISCH, D.GEORG, P.KURTH, F.HIPPENSTIEL, S.DINGELDEY, M.KRUSE, B.FAUCHERE, F.: "Presence of SARS-CoV-2 Reactive T Cells in COVID-19 Patients and Healthy Donors", MEDRXIV 2020, 2020.04.17.20061440, 2020, Retrieved from the Internet <URL:https://doi.org/10.1101/2020.04.17.20061440>
CAI, C. Y.ZHANG, X.SINKO, P. J.BURAKOFF, S. J.JIN, Y.-J.: "Two Sorting Motifs, a Ubiquitination Motif and a Tyrosine Motif, Are Involved in HIV-1 and Simian Immunodeficiency Virus Nef-Mediated Receptor Endocytosis", J. IMMUNOL., vol. 186, no. 10, 2011, pages 5807 - 5814, Retrieved from the Internet <URL:https://doi.org/10.4049/jimmunol.1003506>
CARGNELUTTI, D. E.SANCHEZ, M. V.MATTION, N. M.SCODELLER, E. A: "Development of a Universal CTL-Based Vaccine for Influenza", BIOENGINEERED, vol. 4, no. 6, 2013, pages 374 - 378, Retrieved from the Internet <URL:https://doi.org/10.4161/bioe.23573>
CHAN, J. F.-W.YUAN, S.KOK, K.-H.TO, K. K.-W.CHU, H.YANG, J.XING, F.LIU, J.YIP, C. C.-Y.POON, R. W.-S.: "A Familial Cluster of Pneumonia Associated with the 2019 Novel Coronavirus Indicating Person-to-Person Transmission: A Study of a Family Cluster", LANCET, vol. 395, no. 10223, 2020, pages 514 - 523, XP086050313, Retrieved from the Internet <URL:https://doi.org/10.1016/S0140-6736(20)30154-9> DOI: 10.1016/S0140-6736(20)30154-9
CHANG, S.-C.WANG, J.-T.HUANG, L.-M.CHEN, Y.-C.FANG, C.-T.SHENG, W.-H.WANG, J.-L.YU, C.-J.YANG, P.-C.: "Longitudinal Analysis of Severe Acute Respiratory Syndrome (SARS) Coronavirus-Specific Antibody in SARS Patients", CLIN. DIAGN. LAB. IMMUNOL., vol. 12, no. 12, 2005, pages 1455 - 1457, Retrieved from the Internet <URL:https://doi.org/10.1128/CDLI.12.12.1455-1457.2005>
CHANNAPPANAVAR, R.FETT, C.ZHAO, J.MEYERHOLZ, D. K.PERLMAN, S.: "Virus-Specific Memory CD8 T Cells Provide Substantial Protection from Lethal Severe Acute Respiratory Syndrome Coronavirus Infection", J. VIROL., vol. 88, no. 19, 2014, pages 11034 - 11044, XP055769889, Retrieved from the Internet <URL:https://doi.org/10.1128/JVI.01505-14> DOI: 10.1128/JVI.01505-14
CHIOZZINI, C.MANFREDI, F.ARENACCIO, C.FERRANTELLI, F.LEONE, P.FEDERICO, M: "N-Terminal Fatty Acids of NEFMUT Are Required for the CD8+ T-Cell Immunogenicity of In Vivo Engineered Extracellular Vesicles", VACCINES (BASEL, vol. 8, no. 2, 2020, Retrieved from the Internet <URL:https://doi.org/10.3390/vaccines8020243>
D'ALOJA, P.SANTARCANGELO, A. C.AROLD, S.BAUR, A.FEDERICO, M.: "Genetic and Functional Analysis of the Human Immunodeficiency Virus (HIV) Type 1-Inhibiting F12-HIVnef Allele", J. GEN. VIROL., vol. 82, 2001, pages 2735 - 2745, XP002411121, Retrieved from the Internet <URL:https://doi.org/10.1099/0022-1317-82-11-2735>
DE OLIVEIRA, L. M. F.MORALE, M. G.CHAVES, A. A. M.CAVALHER, A. M.LOPES, A. S.DINIZ, M. DE 0.SCHANOSKI, A. S.DE MELO, R. L.FERREIRA: "Design, Immune Responses and Anti-Tumor Potential of an HPV16 E6E7 Multi-Epitope Vaccine", PLOS ONE, vol. 10, no. 9, 2015, pages e0138686, XP055713233, Retrieved from the Internet <URL:https://doi.org/10.1371/journal.pone.0138686> DOI: 10.1371/journal.pone.0138686
DI BONITO ET AL., INT. J. NANOMED., 2017
DI BONITO PAOLA ET AL: "HPV-E7 Delivered by Engineered Exosomes Elicits a Protective CD8(+) T Cell-Mediated Immune Response", VIRUSES, MDPI, CH, vol. 7, no. 3, 1 March 2015 (2015-03-01), pages 1079 - 1099, XP002772906, ISSN: 1999-4915, DOI: 10.3390/V7031079 *
DI BONITO, P.CHIOZZINI, C.ARENACCIO, C.ANTICOLI, S.MANFREDI, F.OLIVETTA, E.FERRANTELLI, F.FALCONE, E.RUGGIERI, A.FEDERICO, M.: "Antitumor HPV E7-Specific CTL Activity Elicited by in Vivo Engineered Exosomes Produced through DNA Inoculation", INT J NANOMEDICINE, vol. 12, 2017, pages 4579 - 4591, Retrieved from the Internet <URL:https://doi.org/10.2147/1JN.S131309>
DI BONITO, P.RIDOLFI, B.COLUMBA-CABEZAS, S.GIOVANNELLI, A.CHIOZZINI, C.MANFREDI, F.ANTICOLI, S.ARENACCIO, C.FEDERICO, M.: "HPV-E7 Delivered by Engineered Exosomes Elicits a Protective CD8+ T Cell-Mediated Immune Response", VIRUSES, vol. 7, no. 3, 2015, pages 1079 - 1099, XP002772906, Retrieved from the Internet <URL:https://doi.org/10.3390/v7031079> DOI: 10.3390/v7031079
FAN, Y.-Y.HUANG, Z.-T.LI, L.WU, M.-H.YU, T.KOUP, R. A.BAILER, R. T.WU, C.-Y.: "Characterization of SARS-CoV-Specific Memory T Cells from Recovered Individuals 4 Years after Infection", ARCH. VIROL., vol. 154, no. 7, 2009, pages 1093 - 1099, XP019722966, Retrieved from the Internet <URL:https://doi.org/10.1007/s00705-009-0409-6>
FERRANTELLI, F.MANFREDI, F.CHIOZZINI, C.ANTICOLI, S.OLIVETTA, E.ARENACCIO, C.FEDERICO, M.: "DNA Vectors Generating Engineered Exosomes Potential CTL Vaccine Candidates Against AIDS, Hepatitis B, and Tumors", MOL. BIOTECHNOL., vol. 60, no. 11, 2018, pages 773 - 782, XP036609747, Retrieved from the Internet <URL:https://doi.org/l0.l007/s12033-018-0114-3> DOI: 10.1007/s12033-018-0114-3
FOSTER, J. L.DENIAL, S. J.TEMPLE, B. R. S.GARCIA, J. V.: "Mechanisms of HIV-1 Nef Function and Intracellular Signaling", J NEUROIMMUNE PHARMACOL, vol. 6, no. 2, 2011, pages 230 - 246, XP019898645, Retrieved from the Internet <URL:https://doi.org/10.1007/sll481-011-9262-y> DOI: 10.1007/s11481-011-9262-y
GASPER, D. J.NELDNER, B.PLISCH, E. H.RUSTOM, H.CARROW, E.IMAI, H.KAWAOKA, Y.SURESH, M.: "Effective Respiratory CD8 T-Cell Immunity to Influenza Virus Induced by Intranasal Carbomer-Lecithin-Adjuvanted Non-Replicating Vaccines", PLOS PATHOG, vol. 12, no. 12, 2016, pages e1006064, Retrieved from the Internet <URL:https://doi.org/10.1371/journal.ppat.1006064>
GATTINGER, P.BOROCHOVA, K.DOROFEEVA, Y.HENNING, R.KISS, R.KRATZER, B.MUHL, B.PERKMANN, T.TRAPIN, D.TRELLA, M.: "Antibodies in Serum of Convalescent Patients Following Mild COVID-19 Do Not Always Prevent Virus Receptor Binding", ALLERGY, 2020, Retrieved from the Internet <URL:https://doi.org/10.1111/all.14523>
GREEN, L. A.LIU, Y.HE, J. J.: "Inhibition of HIV-1 Infection and Replication by Enhancing Viral Incorporation of Innate Anti-HIV-1 Protein A3G: A Non-Pathogenic Nef Mutant-Based Anti-HIV Strategy", J. BIOL. CHEM., vol. 284, no. 20, 2009, pages 13363 - 13372, Retrieved from the Internet <URL:https://doi.org/10.1074/jbc.M806631200>
GRIFONI, A.WEISKOPF, D.RAMIREZ, S. I.MATEUS, J.DAN, J. M.MODERBACHER, C. R.RAWLINGS, S. A.SUTHERLAND, A.PREMKUMAR, L.JADI, R. S.: "Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals", CELL, vol. 181, no. 7, 2020, pages 1489 - 1501, XP086202865, Retrieved from the Internet <URL:https://doi.org/10.1016/j.cell.2020.05.015> DOI: 10.1016/j.cell.2020.05.015
GUAN, W. D.MOK, C. K. P.CHEN, Z. L.FENG, L. Q.LI, Z. T.HUANG, J. C.KE, C. W.DENG, X.LING, Y.WU, S. G.: "Characteristics of Traveler with Middle East Respiratory Syndrome", EMERGING INFECT. DIS. 2015, vol. 21, no. 12, 2015, pages 2278 - 2280, Retrieved from the Internet <URL:https://doi.org/10.3201/eid2112.151232>
GUPTA, M.GREER, P.MAHANTY, S.SHIEH, W.-J.ZAKI, S. R.AHMED, R.ROLLIN, P. E.: "CD8-Mediated Protection against Ebola Virus Infection Is Perforin Dependent", J. IMMUNOL., vol. 174, no. 7, 2005, pages 4198 - 4202, Retrieved from the Internet <URL:https://doi.org/10.4049/jimmunol.174.7.4198>
HARTENIAN, E.NANDAKUMAR, D.LARI, A.LY, M.TUCKER, J. M.GLAUNSINGER, B. A.: "The Molecular Virology of Coronaviruses", J. BIOL. CHEM., 2020, Retrieved from the Internet <URL:https://doi.org/10.1074/jbc.REV120.013930>
HENSLEY, L. E.MULANGU, S.ASIEDU, C.JOHNSON, J.HONKO, A. N.STANLEY, D.FABOZZI, G.NICHOL, S. T.KSIAZEK, T. G.ROLLIN, P. E.: "Demonstration of Cross-Protective Vaccine Immunity against an Emerging Pathogenic Ebolavirus Species", PLOS PATHOG., vol. 6, no. 5, 2010, pages e1000904, XP055009238, Retrieved from the Internet <URL:https://doi.org/10.1371/journal.ppat.1000904> DOI: 10.1371/journal.ppat.1000904
HUANG, J.CAO, Y.DU, J.BU, X.MA, R.WU, C.: "Priming with SARS CoV S DNA and Boosting with SARS CoV S Epitopes Specific for CD4+ and CD8+ T Cells Promote Cellular Immune Responses", VACCINE, vol. 25, no. 39-40, 2007, pages 6981 - 6991, XP022250385, Retrieved from the Internet <URL:https://doi.org/10.1016/j.vaccine.2007.06.047> DOI: 10.1016/j.vaccine.2007.06.047
JANG, Y. H.SEONG, B. L: "The Quest for a Truly Universal Influenza Vaccine", FRONT CELL INFECT MICROBIOL, vol. 9, 2019, pages 344, Retrieved from the Internet <URL:https://doi.org/10.3389/fcimb.2019.00344>
KALLURI, R.LEBLEU, V. S: "The Biology, Function, and Biomedical Applications of Exosomes", SCIENCE, vol. 367, no. 6478, 2020, Retrieved from the Internet <URL:https://doi.org/10.1126/science.aau6977>
KAWANO, M.MORIKAWA, K.SUDA, T.OHNO, N.MATSUSHITA, S.AKATSUKA, T.HANDA, H.MATSUI, M.: "Chimeric SV40 Virus-like Particles Induce Specific Cytotoxicity and Protective Immunity against Influenza A Virus without the Need of Adjuvants", VIROLOGY, vol. 448, 2014, pages 159 - 167, XP028793877, Retrieved from the Internet <URL:https://doi.org/10.1016/j.virol.2013.10.010> DOI: 10.1016/j.virol.2013.10.010
LATTANZI, L.FEDERICO, M.: "A Strategy of Antigen Incorporation into Exosomes: Comparing Cross-Presentation Levels of Antigens Delivered by Engineered Exosomes and by Lentiviral Virus-like Particles", VACCINE, vol. 30, no. 50, 2012, pages 7229 - 7237, XP055200679, Retrieved from the Internet <URL:https://doi.org/10.1016/j.vaccine.2012.10.010> DOI: 10.1016/j.vaccine.2012.10.010
LEE, S.-Y.KANG, J.-O.CHANG, J.: "Nucleoprotein Vaccine Induces Cross-Protective Cytotoxic T Lymphocytes against Both Lineages of Influenza B Virus", CLIN EXP VACCINE RES, vol. 8, no. 1, 2019, pages 54 - 63, Retrieved from the Internet <URL:https://doi.org/10.7774/cevr.2019.8.1.54>
LI, J.LIU, K.LIU, Y.XU, Y.ZHANG, F.YANG, H.LIU, J.PAN, T.CHEN, J.WU, M.: "Exosomes Mediate the Cell-to-Cell Transmission of IFN-a-Induced Antiviral Activity", NAT. IMMUNOL., vol. 14, no. 8, 2013, pages 793 - 803, Retrieved from the Internet <URL:https://doi.org/10.1038/ni.2647>
LI, Q.GUAN, X.WU, P.WANG, X.ZHOU, L.TONG, Y.REN, R.LEUNG, K. S. M.LAU, E. H. Y.WONG, J. Y.: "Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia", N. ENGL. J. MED., vol. 382, no. 13, 2020, pages 1199 - 1207, Retrieved from the Internet <URL:https://doi.org/10.1056/NEJMoa2001316>
LIU, L.WEI, Q.LIN, Q.FANG, J.WANG, H.KWOK, H.TANG, H.NISHIURA, K.PENG, J.TAN, Z.: "Anti-Spike IgG Causes Severe Acute Lung Injury by Skewing Macrophage Responses during Acute SARS-CoV Infection", JCI INSIGHT, vol. 4, no. 4, 2019, Retrieved from the Internet <URL:https://doi.org/10.1172/jci.insight.123158>
LIU, W. J.ZHAO, M.LIU, K.XU, K.WONG, G.TAN, W.GAO, G. F.: "T-Cell Immunity of SARS-CoV: Implications for Vaccine Development against MERS-CoV", ANTIVIRAL RES., vol. 137, 2017, pages 82 - 92, XP029857174, Retrieved from the Internet <URL:https://doi.org/10.1016/j.antiviral.2016.11.006> DOI: 10.1016/j.antiviral.2016.11.006
LIU, W.FONTANET, A.ZHANG, P.-H.ZHAN, L.XIN, Z.-T.BARIL, L.TANG, F.LV, H.CAO, W.-C.: "Two-Year Prospective Study of the Humoral Immune Response of Patients with Severe Acute Respiratory Syndrome", J. INFECT. DIS., vol. 193, no. 6, 2006, pages 792 - 795, Retrieved from the Internet <URL:https://doi.org/10.1086/500469>
MO, H.ZENG, GREN, X.LI, H.KE, C.TAN, Y.CAI, C.LAI, K.CHEN, R.CHAN-YEUNG, M.: "Longitudinal Profile of Antibodies against SARS-Coronavirus in SARS Patients and Their Clinical Significance", RESPIROLOGY, vol. 11, no. 1, 2006, pages 49 - 53, Retrieved from the Internet <URL:https://doi.org/10.1111/j.1440-1843.2006.00783.x>
MURATORI, C.CAVALLIN, L. E.KRATZEL, K.TINARI, A.DE MILITO, A.FAIS, S.D'ALOJA, P.FEDERICO, M.VULLO, V.FOMINA, A.: "Massive Secretion by T Cells Is Caused by HIV Nef in Infected Cells and by Nef Transfer to Bystander Cells", CELL HOST MICROBE, vol. 6, no. 3, 2009, pages 218 - 230, Retrieved from the Internet <URL:https://doi.org/10.1016/j.chom.2009.06.009>
NETLAND, J.BEVAN, M. J.: "CD8 and CD4 T Cells in West Nile Virus Immunity and Pathogenesis", VIRUSES, vol. 5, no. 10, 2013, pages 2573 - 2584, Retrieved from the Internet <URL:https://doi.org/10.3390/v5102573>
NG, O.-W.CHIA, A.TAN, A. T.JADI, R. S.LEONG, H. N.BERTOLETTI, A.TAN, Y.-J.: "Memory T Cell Responses Targeting the SARS Coronavirus Persist up to 11 Years Post-Infection", VACCINE, vol. 34, no. 17, 2016, pages 2008 - 2014, XP029471338, Retrieved from the Internet <URL:https://doi.org/10.1016/j.vaccine.2016.02.063> DOI: 10.1016/j.vaccine.2016.02.063
NI, L.YE, F.CHENG, M.-L.FENG, Y.DENG, Y.-Q.ZHAO, H.WEI, P.GE, J.GOU, M.LI, X.: "Detection of SARS-CoV-2-Specific Humoral and Cellular Immunity in COVID-19 Convalescent Individuals", IMMUNITY, vol. 52, no. 6, 2020, pages 971 - 977, XP086192156, Retrieved from the Internet <URL:https://doi.org/10.1016/j.immuni.2020.04.023> DOI: 10.1016/j.immuni.2020.04.023
NIE, Y.WANG, G.SHI, X.ZHANG, H.QIU, Y.HE, Z.WANG, W.LIAN, G.YIN, X.DU, L.: "Neutralizing Antibodies in Patients with Severe Acute Respiratory Syndrome-Associated Coronavirus Infection", J. INFECT. DIS., vol. 190, no. 6, 2004, pages 1119 - 1126, XP003024804, Retrieved from the Internet <URL:https://doi.org/10.1086/423286> DOI: 10.1086/423286
OH, H.-L. J.CHIA, A.CHANG, C. X. L.LEONG, H. N.LING, K. L.GROTENBREG, G. M.GEHRING, A. J.TAN, Y. J.BERTOLETTI, A.: "Engineering T Cells Specific for a Dominant Severe Acute Respiratory Syndrome Coronavirus CD8 T Cell Epitope", J. VIROL., vol. 85, no. 20, 2011, pages 10464 - 10471, XP055392983, Retrieved from the Internet <URL:https://doi.org/10.1128/JVI.05039-11> DOI: 10.1128/JVI.05039-11
OLINGER, G. G.BAILEY, M. A.DYE, J. M.BAKKEN, R.KUEHNE, A.KONDIG, J.WILSON, J.HOGAN, R. J.HART, M. K.: "Protective Cytotoxic T-Cell Responses Induced by Venezuelan Equine Encephalitis Virus Replicons Expressing Ebola Virus Proteins", J. VIROL., vol. 79, no. 22, 2005, pages 14189 - 14196, Retrieved from the Internet <URL:https://doi.org/10.1128/JVI.79.22.14189-14196.2005>
PENG, H.YANG, L.WANG, L.LI, J.HUANG, J.LU, Z.KOUP, R. A.BAILER, R. T.WU, C.: "Long-Lived Memory T Lymphocyte Responses against SARS Coronavirus Nucleocapsid Protein in SARS-Recovered Patients", VIROLOGY, vol. 351, no. 2, 2006, pages 466 - 475, XP024896461, Retrieved from the Internet <URL:https://doi.org/10.1016/j.virol.2006.03.036> DOI: 10.1016/j.virol.2006.03.036
PERLMAN, S.DANDEKAR, A. A.: "Immunopathogenesis of Coronavirus Infections: Implications for SARS", NAT. REV. IMMUNOL., vol. 5, no. 12, 2005, pages 917 - 927, XP037065568, Retrieved from the Internet <URL:https://doi.org/10.1038/nri1732> DOI: 10.1038/nri1732
RANEY, A.SHAW, A. Y.FOSTER, J. L.GARCIA, J. V.: "Structural Constraints on Human Immunodeficiency Virus Type 1 Nef Function", VIROLOGY, vol. 368, no. 1, 2007, pages 7 - 16, XP022309826, Retrieved from the Internet <URL:https://doi.org/10.1016/j.virol.2007.02.036> DOI: 10.1016/j.virol.2007.02.036
ROME, S.FORTERRE, A.MIZGIER, M. L.BOUZAKRI, K.: "Skeletal Muscle-Released Extracellular Vesicles: State of the Art", FRONT PHYSIOL, vol. 10, 2019, pages 929, Retrieved from the Internet <URL:https://doi.org/10.3389/fphys.2019.00929>
SAKABE, S.SULLIVAN, B. M.HARTNETT, J. N.ROBLES-SIKISAKA, R.GANGAVARAPU, K.CUBITT, B.WARE, B. C.KOTLIAR, D.BRANCO, L. M.GOBA, A.: "Analysis of CD8+ T Cell Response during the 2013-2016 Ebola Epidemic in West Africa", PROC. NATL. ACAD. SCI. U.S.A., vol. 115, no. 32, 2018, pages E7578 - E7586, XP055595456, Retrieved from the Internet <URL:https://doi.org/10.1073/pnas.1806200115> DOI: 10.1073/pnas.1806200115
SCHOTSAERT, M.IBANEZ, L. I.FIERS, W.SAELENS, X: "Controlling Influenza by Cytotoxic T-Cells: Calling for Help from Destroyers", J. BIOMED. BIOTECHNOL. 2010, vol. 863985, 2010, Retrieved from the Internet <URL:https://doi.org/10.1155/2010/863985>
SHEDLOCK, D. J.AVILES, J.TALBOTT, K. T.WONG, G.WU, S. J.VILLARREAL, D. 0.MYLES, D. J.CROYLE, M. A.YAN, J.KOBINGER, G. P.: "Induction of Broad Cytotoxic T Cells by Protective DNA Vaccination against Marburg and Ebola", MOL. THER., vol. 21, no. 7, 2013, pages 1432 - 1444, XP055239476, Retrieved from the Internet <URL:https://doi.org/10.1038/mt.2013.61> DOI: 10.1038/mt.2013.61
SRIDHAR, S.LUEDTKE, A.LANGEVIN, E.ZHU, M.BONAPARTE, M.MACHABERT, T.SAVARINO, S.ZAMBRANO, B.MOUREAU, A.KHROMAVA, A.: "Effect of Dengue Serostatus on Dengue Vaccine Safety and Efficacy", N. ENGL. J. MED., vol. 379, no. 4, 2018, pages 327 - 340, XP055686029, Retrieved from the Internet <URL:https://doi.org/10.1056/NEJMoa1800820> DOI: 10.1056/NEJMoa1800820
SULLIVAN, N. J.HENSLEY, L.ASIEDU, C.GEISBERT, T. W.STANLEY, D.JOHNSON, J.HONKO, A.OLINGER, G.BAILEY, M.GEISBERT, J. B.: "CD8+ Cellular Immunity Mediates RAd5 Vaccine Protection against Ebola Virus Infection of Nonhuman Primates", NAT. MED., vol. 17, no. 9, 2011, pages 1128 - 1131, Retrieved from the Internet <URL:https://doi.org/10.1038/nm.2447>
TANG, F.QUAN, Y.XIN, Z.-T.WRAMMERT, J.MA, M.-J.LV, H.WANG, T.-B.YANG, H.RICHARDUS, J. H.LIU, W.: "Lack of Peripheral Memory B Cell Responses in Recovered Patients with Severe Acute Respiratory Syndrome: A Six-Year Follow-up Study", J. IMMUNOL., vol. 186, no. 12, 2011, pages 7264 - 7268, Retrieved from the Internet <URL:https://doi.org/10.4049/jimmunol.0903490>
TEMPERTON, N. J.CHAN, P. K.SIMMONS, G.ZAMBON, M. C.TEDDER, R. S.TAKEUCHI, Y.WEISS, R. A.: "Longitudinally Profiling Neutralizing Antibody Response to SARS Coronavirus with Pseudotypes", EMERGING INFECT. DIS., vol. 11, no. 3, 2005, pages 411 - 416, XP003024803, Retrieved from the Internet <URL:https://doi.org/10.3201/eid1103.040906>
THERY, C.AMIGORENA, S.RAPOSO, G.CLAYTON, A.: "Curr Protoc Cell Biol", 2006, article "Isolation and Characterization of Exosomes from Cell Culture Supernatants and Biological Fluids"
THERY, C.DUBAN, L.SEGURA, E.VERON, P.LANTZ, 0.AMIGORENA, S.: "Indirect Activation of Naive CD4+ T Cells by Dendritic Cell-Derived Exosomes", NAT. IMMUNOL., vol. 3, no. 12, 2002, pages 1156 - 1162, XP003000081, Retrieved from the Internet <URL:https://doi.org/10.1038/ni854> DOI: 10.1038/ni854
THERY, C.OSTROWSKI, M.SEGURA, E.: "Membrane Vesicles as Conveyors of Immune Responses", NAT. REV. IMMUNOL., vol. 9, no. 8, 2009, pages 581 - 593, XP055018445, Retrieved from the Internet <URL:https://doi.org/10.1038/nri2567> DOI: 10.1038/nri2567
VALKENBURG, S. A.JOSEPHS, T. M.CLEMENS, E. B.GRANT, E. J.NGUYEN, T. H. 0.WANG, G. C.PRICE, D. A.MILLER, A.TONG, S. Y. C.THOMAS, P.: "Molecular Basis for Universal HLA-A*0201-Restricted CD8+ T-Cell Immunity against Influenza Viruses", PROC. NATL. ACAD. SCI. U.S.A., vol. 113, no. 16, 2016, pages 4440 - 4445, Retrieved from the Internet <URL:https://doi.org/10.1073/pnas.1603106113>
VAN NIEL, G.D'ANGELO, G.RAPOSO, G: "Shedding Light on the Cell Biology of Extracellular Vesicles", NAT. REV. MOL. CELL BIOL., vol. 19, no. 4, 2018, pages 213 - 228, XP055548667, Retrieved from the Internet <URL:https://doi.org/10.1038/nrm.2017.125> DOI: 10.1038/nrm.2017.125
WEISKOPF, D.SCHMITZ, K. S.RAADSEN, M. P.GRIFONI, A.OKBA, N. M. A.ENDEMAN, H.VAN DEN AKKER, J. P. C.MOLENKAMP, R.KOOPMANS, M. P. G.: "Phenotype and Kinetics of SARS-CoV-2-Specific T Cells in COVID-19 Patients with Acute Respiratory Distress Syndrome", SCI IMMUNOL, vol. 5, no. 48, 2020, Retrieved from the Internet <URL:https://doi.org/10.1126/sciimmunol.abd2071>
WEN, J.ELONG NGONO, A.REGLA-NAVA, J. A.KIM, K.GORMAN, M. J.DIAMOND, M. S.SHRESTA, S.: "Dengue Virus-Reactive CD8+ T Cells Mediate Cross-Protection against Subsequent Zika Virus Challenge", NAT COMMUN, vol. 8, no. 1, 2017, pages 1459, Retrieved from the Internet <URL:https://doi.org/10.1038/s41467-017-01669-z>
WILSON, J. A.HART, M. K.: "Protection from Ebola Virus Mediated by Cytotoxic T Lymphocytes Specific for the Viral Nucleoprotein", J. VIROL., vol. 75, no. 6, 2001, pages 2660 - 2664, Retrieved from the Internet <URL:https://doi.org/10.1128/JVI.75.6.2660-2664.2001>
WOO, P. C. Y.LAU, S. K. P.WONG, B. H. L.CHAN, K.CHU, C.TSOI, H.HUANG, Y.PEIRIS, J. S. M.YUEN, K.: "Longitudinal Profile of Immunoglobulin G (IgG), IgM, and IgA Antibodies against the Severe Acute Respiratory Syndrome (SARS) Coronavirus Nucleocapsid Protein in Patients with Pneumonia Due to the SARS Coronavirus", CLIN. DIAGN. LAB. IMMUNOL., vol. 11, no. 4, 2004, pages 665 - 668, Retrieved from the Internet <URL:https://doi.org/10.1128/CDLI.11.4.665-668.2004>
WU, L.-P.WANG, N.-C.CHANG, Y.-H.TIAN, X.-Y.NA, D.-Y.ZHANG, L.-Y.ZHENG, L.LAN, T.WANG, L.-F.LIANG, G.-D: "Duration of Antibody Responses after Severe Acute Respiratory Syndrome", EMERGING INFECT. DIS., vol. 13, no. 10, 2007, pages 1562 - 1564, Retrieved from the Internet <URL:https://doi.org/10.3201/eid1310.070576>
WU, T.HU, Y.LEE, Y.-T.BOUCHARD, K. RBENECHET, A.KHANNA, K.CAULEY, L. S.: "Lung-Resident Memory CD8 T Cells (TRM) Are Indispensable for Optimal Cross-Protection against Pulmonary Virus Infection", J. LEUKOC. BIOL., vol. 95, no. 2, 2014, pages 215 - 224, Retrieved from the Internet <URL:https://doi.org/10.1189/jlb.0313180>
YIP, M. S.LEUNG, N. H. L.CHEUNG, C. Y.LI, P. H.LEE, H. H. Y.DAERON, M.PEIRIS, J. S. M.BRUZZONE, R.JAUME, M.: "Antibody-Dependent Infection of Human Macrophages by Severe Acute Respiratory Syndrome Coronavirus", VIROL. J., vol. 11, no. 82, 2014, Retrieved from the Internet <URL:https://doi.org/10.1186/1743-422X-11-82>
ZHAO, J.ZHAO, J.PERLMAN, S.: "T Cell Responses Are Required for Protection from Clinical Disease and for Virus Clearance in Severe Acute Respiratory Syndrome Coronavirus-Infected Mice", J. VIROL., vol. 84, no. 18, 2010, pages 9318 - 9325, Retrieved from the Internet <URL:https://doi.org/10.1128/JVI.01049-10>
ZHENG, Y.-H.PLEMENITAS, A.FIELDING, C. J.PETERLIN, B. M.: "Nef Increases the Synthesis of and Transports Cholesterol to Lipid Rafts and HIV-1 Progeny Virions", PROC. NATL. ACAD. SCI. U.S.A., vol. 100, no. 14, 2003, pages 8460 - 8465, Retrieved from the Internet <URL:https://doi.org/10.1073/pnas.1437453100>
ZHI, Y.KOBINGER, G. P.JORDAN, H.SUCHMA, K.WEISS, S. R.SHEN, H.SCHUMER, G.GAO, G.BOYER, J. L.CRYSTAL, R. G.: "Identification of Murine CD8 T Cell Epitopes in Codon-Optimized SARS-Associated Coronavirus Spike Protein", VIROLOGY, vol. 335, no. 1, 2005, pages 34 - 45, XP004844952, Retrieved from the Internet <URL:https://doi.org/10.1016/j.virol.2005.01.050> DOI: 10.1016/j.virol.2005.01.050
ZHU, N.ZHANG, D.WANG, W.LI, X.YANG, B.SONG, J.ZHAO, X.HUANG, B.SHI, W.LU, R.: "China Novel Coronavirus Investigating and Research Team. A Novel Coronavirus from Patients with Pneumonia in China", N. ENGL. J. MED. 2020, vol. 382, no. 8, 2019, pages 727 - 733, Retrieved from the Internet <URL:https://doi.org/10.1056/NEJMoa2001017>

Also Published As

Publication number Publication date
EP4259191A1 (en) 2023-10-18
WO2022130432A1 (en) 2022-06-23

Similar Documents

Publication Publication Date Title
Alameh et al. Messenger RNA-based vaccines against infectious diseases
Khan DNA vaccines: roles against diseases
JP6844045B2 (ja) 組換え単純ヘルペスウィルス2(hsv−2)ワクチンベクター
AU2017222644B2 (en) Novel vaccines against Zika virus
BR112014011229B1 (pt) Partículas vírus-like (vlp), composição farmacêutica compreendendo a referida partícula, método de produção e uso da mesma
US20230323389A1 (en) Synthetic modified vaccinia ankara (smva) based coronavirus vaccines
Mulama et al. A multivalent Kaposi sarcoma-associated herpesvirus-like particle vaccine capable of eliciting high titers of neutralizing antibodies in immunized rabbits
WO2019055887A1 (en) PSEUDO-VIRAL PARTICLES OF MULTIVALENT EPSTEIN-BARR VIRUS AND USES THEREOF
Ge et al. An mRNA vaccine encoding Chikungunya virus E2-E1 protein elicits robust neutralizing antibody responses and CTL immune responses
Wang et al. Vaccination with a single consensus envelope protein ectodomain sequence administered in a heterologous regimen induces tetravalent immune responses and protection against dengue viruses in mice
Marín-López et al. Microspheres-prime/rMVA-boost vaccination enhances humoral and cellular immune response in IFNAR (−/−) mice conferring protection against serotypes 1 and 4 of bluetongue virus
Szurgot et al. Self-adjuvanting influenza candidate vaccine presenting epitopes for cell-mediated immunity on a proteinaceous multivalent nanoplatform
WO2019216929A1 (en) Mva vectors for expressing multiple cytomegalovirus (cmv) antigens and use thereof
Embry et al. Enhancement of immune response to an antigen delivered by vaccinia virus by displaying the antigen on the surface of intracellular mature virion
IT202000009688A1 (it) Proteine di fusione di ancoraggio a esosomi
IT202000030740A1 (it) SEQUENZA NUCLEOTIDICA ESPRIMENTE UNA PROTEINA ANCORANTE VESCICOLE EXTRACELLULARI FUSA AD ANTIGENI DI SARS-CoV-2 E RELATIVA PROTEINA DI FUSIONE PER L’USO COME VACCINO
Seesen et al. A bivalent form of nanoparticle-based dengue vaccine stimulated responses that potently eliminate both DENV-2 particles and DENV-2-infected cells
Wanjalla et al. Dendritic cells infected by recombinant rabies virus vaccine vector expressing HIV-1 Gag are immunogenic even in the presence of vector-specific immunity
US20220143174A1 (en) Multivalent kaposi sarcoma-associated herpesvirus-like particles and uses thereof
Burnette Recombinant subunit vaccines
Chen et al. An intranasal vaccine targeting the receptor binding domain of SARS-CoV-2 elicits a protective immune response
Park et al. Immunogenicity and protective efficacy of an intranasal live-attenuated vaccine against SARS-CoV-2 in preclinical animal models
CA2803029A1 (en) Constrained immunogenic compositions and uses therefor
US20130337009A1 (en) Chimeric dna vaccine compositions and methods of use
Liao et al. Co‐delivery of a trimeric spike DNA and protein vaccine with aluminum hydroxide enhanced Th1‐dominant humoral and cellular immunity against SARS‐CoV‐2