IN2014KN02982A - - Google Patents

Info

Publication number
IN2014KN02982A
IN2014KN02982A IN2982KON2014A IN2014KN02982A IN 2014KN02982 A IN2014KN02982 A IN 2014KN02982A IN 2982KON2014 A IN2982KON2014 A IN 2982KON2014A IN 2014KN02982 A IN2014KN02982 A IN 2014KN02982A
Authority
IN
India
Prior art keywords
phase
separation chamber
separating
liquid phase
solid phase
Prior art date
Application number
Inventor
Gerhard Rohlfing
Jens-Uwe Brandt
Original Assignee
Itt Bornemann Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Itt Bornemann Gmbh filed Critical Itt Bornemann Gmbh
Publication of IN2014KN02982A publication Critical patent/IN2014KN02982A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C13/00Adaptations of machines or pumps for special use, e.g. for extremely high pressures
    • F04C13/007Venting; Gas and vapour separation during pumping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C13/00Adaptations of machines or pumps for special use, e.g. for extremely high pressures
    • F04C13/005Removing contaminants, deposits or scale from the pump; Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/0018Separation of suspended solid particles from liquids by sedimentation provided with a pump mounted in or on a settling tank
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/24Feed or discharge mechanisms for settling tanks
    • B01D21/2494Feed or discharge mechanisms for settling tanks provided with means for the removal of gas, e.g. noxious gas, air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/30Control equipment
    • B01D21/34Controlling the feed distribution; Controlling the liquid level ; Control of process parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/04Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia
    • B01D45/08Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia by impingement against baffle separators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
    • B01D45/16Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces generated by the winding course of the gas stream, the centrifugal forces being generated solely or partly by mechanical means, e.g. fixed swirl vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B3/00Machines or pumps with pistons coacting within one cylinder, e.g. multi-stage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C11/00Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations
    • F04C11/001Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C13/00Adaptations of machines or pumps for special use, e.g. for extremely high pressures
    • F04C13/001Pumps for particular liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C13/00Adaptations of machines or pumps for special use, e.g. for extremely high pressures
    • F04C13/008Pumps for submersible use, i.e. down-hole pumping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/06Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/107Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C3/00Rotary-piston machines or pumps, with non-parallel axes of movement of co-operating members, e.g. of screw type
    • F04C3/06Rotary-piston machines or pumps, with non-parallel axes of movement of co-operating members, e.g. of screw type the axes being arranged otherwise than at an angle of 90 degrees
    • F04C3/08Rotary-piston machines or pumps, with non-parallel axes of movement of co-operating members, e.g. of screw type the axes being arranged otherwise than at an angle of 90 degrees of intermeshing engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C3/085Rotary-piston machines or pumps, with non-parallel axes of movement of co-operating members, e.g. of screw type the axes being arranged otherwise than at an angle of 90 degrees of intermeshing engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing the axes of cooperating members being on the same plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C3/00Apparatus in which the axial direction of the vortex flow following a screw-thread type line remains unchanged ; Devices in which one of the two discharge ducts returns centrally through the vortex chamber, a reverse-flow vortex being prevented by bulkheads in the central discharge duct
    • B04C2003/006Construction of elements by which the vortex flow is generated or degenerated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C3/00Apparatus in which the axial direction of the vortex flow following a screw-thread type line remains unchanged ; Devices in which one of the two discharge ducts returns centrally through the vortex chamber, a reverse-flow vortex being prevented by bulkheads in the central discharge duct
    • B04C3/06Construction of inlets or outlets to the vortex chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/12Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C2/14Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C2/16Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/24Fluid mixed, e.g. two-phase fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/806Pipes for fluids; Fittings therefor

Abstract

The invention concerns a method and an apparatus for operating a multi-phase pump which has a suction side inlet (10) and a discharge side outlet (20) and which pumps a multi-phase mixture charged with solids, comprising the following steps: a. pumping a multi phase mixture into a discharge side separation chamber (45), b. separating a gaseous phase from a liquid phase and a solid phase in the separation chamber (45, c. separating the liquid phase from the solid phase in the separation chamber (45), d. feeding a portion of the liquid phase released from the solid phase to the suction side.
IN2982KON2014 2012-07-31 2013-07-31 IN2014KN02982A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012015064.4A DE102012015064B4 (en) 2012-07-31 2012-07-31 Method for operating a multi-phase pump and device thereto
PCT/EP2013/002260 WO2014019687A2 (en) 2012-07-31 2013-07-31 Method for operating a multi-phase pump and apparatus therefor

Publications (1)

Publication Number Publication Date
IN2014KN02982A true IN2014KN02982A (en) 2015-05-08

Family

ID=48979701

Family Applications (1)

Application Number Title Priority Date Filing Date
IN2982KON2014 IN2014KN02982A (en) 2012-07-31 2013-07-31

Country Status (12)

Country Link
US (2) US9689385B2 (en)
EP (1) EP2880313B1 (en)
JP (1) JP6324957B2 (en)
KR (1) KR102036224B1 (en)
CN (1) CN104487715B (en)
BR (1) BR112015000844A2 (en)
CA (1) CA2877513C (en)
DE (1) DE102012015064B4 (en)
IN (1) IN2014KN02982A (en)
MX (1) MX362235B (en)
RU (1) RU2638897C2 (en)
WO (1) WO2014019687A2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3371454A4 (en) * 2015-11-02 2019-05-08 Flowserve Management Company Multi-phase pump with cooled liquid reservoir
JP2019512075A (en) * 2016-02-16 2019-05-09 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ Method and system for cooling treatment plant water
GB2578012B (en) 2017-05-15 2022-06-15 Aker Solutions As System and method for fluid processing
SE541077C2 (en) * 2017-09-05 2019-03-26 Husqvarna Ab Separator, separator system and methods of their operation
US10926197B2 (en) 2018-06-22 2021-02-23 Hamilton Sunstrand Corporation Multifunctional phase separation apparatus
DE102020133760A1 (en) 2020-12-16 2022-06-23 Leistritz Pumpen Gmbh Process for conveying a fluid through a screw pump and screw pump

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2381695A (en) * 1943-03-11 1945-08-07 Laval Steam Turbine Co Pumping system
NL6501909A (en) * 1964-06-25 1965-12-27
DE1607694C3 (en) * 1967-02-11 1974-08-29 Deutsche Gold- Und Silber-Scheideanstalt Vormals Roessler, 6000 Frankfurt Plant for the separation of solids from aerosols
US3559809A (en) * 1969-02-07 1971-02-02 Amf Inc Filter back wash means
DE4316735C2 (en) 1993-05-19 1996-01-18 Bornemann J H Gmbh & Co Pumping method for operating a multi-phase screw pump and pump
JP3712817B2 (en) * 1997-03-27 2005-11-02 株式会社日立製作所 Hybrid gear pump and hydraulic circuit of engine using the same
US6033577A (en) * 1998-05-18 2000-03-07 Dravo Lime Company Coordination of liquid-solid separators and fluid tanks
US6214092B1 (en) * 1998-11-12 2001-04-10 Larry G. Odom Fracturing material separator apparatus
US6358411B1 (en) * 2000-05-19 2002-03-19 Mckinney Jerry L. Wastewater treatment plant
US6662951B1 (en) * 2000-09-27 2003-12-16 Basic Resources, Inc. Process for extracting and purifying naturally occurring zeolite
FR2818702B1 (en) * 2000-12-21 2003-04-11 Roxer DEVICE AND METHOD FOR INJECTING A GASEOUS FUEL IN LIQUID FORM FOR INTERNAL COMBUSTION ENGINES
GB0321455D0 (en) 2003-09-12 2003-10-15 Aesseal Plc Self regulating re-circulation system for use with vacuum pumps
DE10350226B4 (en) 2003-10-27 2005-11-24 Joh. Heinr. Bornemann Gmbh Method for conveying multiphase mixtures and pump system
US7255233B2 (en) * 2004-06-14 2007-08-14 Uchicago Argonne Llc Method and apparatus for separating mixed plastics using flotation techniques
US7569097B2 (en) 2006-05-26 2009-08-04 Curtiss-Wright Electro-Mechanical Corporation Subsea multiphase pumping systems
US7708059B2 (en) 2007-11-13 2010-05-04 Baker Hughes Incorporated Subsea well having a submersible pump assembly with a gas separator located at the pump discharge
DE102008018407B4 (en) 2008-04-10 2012-03-22 Joh. Heinr. Bornemann Gmbh Underwater delivery unit
RU2366833C1 (en) * 2008-04-17 2009-09-10 Открытое акционерное общество "Татарский научно-исследовательский и проектно-конструкторский институт нефтяного машиностроения" (ОАО "ТатНИИнефтемаш") Multi-phase screw pump
JP5104656B2 (en) * 2008-08-26 2012-12-19 株式会社豊田自動織機 Variable displacement rotary pump
US20100278672A1 (en) * 2009-04-30 2010-11-04 General Electric Company Method and apparatus for lubricating a screw pump system
US20100278671A1 (en) * 2009-04-30 2010-11-04 General Electric Company Method and apparatus for reducing particles in a screw pump lubricant
US8419398B2 (en) * 2009-04-30 2013-04-16 General Electric Company Method and apparatus for managing fluid flow within a screw pump system
US20120211230A1 (en) * 2009-10-27 2012-08-23 Karl Gregory Anderson Subsea separation systems
US20110103987A1 (en) * 2009-11-04 2011-05-05 General Electric Company Pump system
DE102010019238A1 (en) 2010-05-03 2011-11-24 Joh. Heinr. Bornemann Gmbh Container, sump and multi-phase pump system and method for separating and splitting a multi-phase mixture
US8425667B2 (en) 2010-08-31 2013-04-23 General Electric Company System and method for multiphase pump lubrication
US9101859B2 (en) * 2012-06-01 2015-08-11 Dow Global Technologies Llc Cross-flow filtration system including particulate settling zone
US8986431B2 (en) * 2012-11-14 2015-03-24 Pall Corporation Purification arrangements and methods for gas pipeline systems
JP6143633B2 (en) * 2013-10-15 2017-06-07 住友重機械工業株式会社 Compressor and compressor oil quantity management system
US10036319B2 (en) * 2014-10-31 2018-07-31 General Electric Company Separator assembly for a gas turbine engine
US10233925B2 (en) * 2016-06-23 2019-03-19 James D. Sutton Scalable hydraulic motor with drive input shaft and driven output shaft

Also Published As

Publication number Publication date
DE102012015064B4 (en) 2018-08-02
RU2638897C2 (en) 2017-12-18
CN104487715A (en) 2015-04-01
JP6324957B2 (en) 2018-05-16
CA2877513A1 (en) 2014-02-06
JP2015523498A (en) 2015-08-13
WO2014019687A3 (en) 2014-06-26
BR112015000844A2 (en) 2017-06-27
EP2880313A2 (en) 2015-06-10
MX2014015877A (en) 2015-08-05
MX362235B (en) 2019-01-09
US20170254328A1 (en) 2017-09-07
KR20150038001A (en) 2015-04-08
EP2880313B1 (en) 2021-06-30
WO2014019687A8 (en) 2015-01-15
WO2014019687A2 (en) 2014-02-06
KR102036224B1 (en) 2019-11-26
CN104487715B (en) 2018-04-17
RU2014152045A (en) 2016-09-20
DE102012015064A1 (en) 2014-02-06
CA2877513C (en) 2019-07-09
US9689385B2 (en) 2017-06-27
US11143180B2 (en) 2021-10-12
US20150226214A1 (en) 2015-08-13

Similar Documents

Publication Publication Date Title
IN2014KN02982A (en)
GB2479330B (en) A device for liquid treatment when compressing a well flow
SA517381540B1 (en) Multiphase Production Boost Method and System
WO2016073415A3 (en) Microscale plasma separator
MY167335A (en) Apparatus and method for operating a subsea compression system
NZ594627A (en) Centrifugal separator using negative pressure to remove higher density components
MX2013003570A (en) Developer replenishing container, developer replenishing system, and image formation device.
FI20130366A (en) The flow deviation means for a hydrocyclone
MY183880A (en) Pack for extracting a coffee beverage
MX2010003909A (en) Apparatus for and method of separating multi-phase fluids.
EP2687726A4 (en) Compressor
AR095628A1 (en) APPARATUS AND METHOD FOR SEPARATING GAS FROM THE LIQUID
MX360677B (en) High pressure multistage centrifugal pump for fracturing hydrocarbon reserves.
MX2017002606A (en) System and method for extracting gas from a well.
GB2560140B (en) Deriving the gas volume fraction (GVF) of a multiphase flow from the motor parameters of a pump
MX2010007960A (en) Separation system and method for separating a fluid mixture with this separating system.
WO2013186517A3 (en) Separating device for downhole compressor
MX366733B (en) A fluid treatment system, a fluid processing apparatus and a method of treating a mixture.
MX2012013681A (en) Separating apparatus and method.
MX350292B (en) A de-areation device.
WO2013184041A3 (en) Method for evaluating the thermodynamic equilibrium of a gas-liquid mixture when conducting filtration experiments
MX357053B (en) Subsea processing.
EP2720247A3 (en) Improved ion source
WO2014041407A3 (en) Oil separator device for a volumetric compressor and volumetric compressor
WO2012049499A3 (en) Liquid pump