IN2014CN03328A - - Google Patents

Info

Publication number
IN2014CN03328A
IN2014CN03328A IN3328CHN2014A IN2014CN03328A IN 2014CN03328 A IN2014CN03328 A IN 2014CN03328A IN 3328CHN2014 A IN3328CHN2014 A IN 3328CHN2014A IN 2014CN03328 A IN2014CN03328 A IN 2014CN03328A
Authority
IN
India
Prior art keywords
metal oxide
semi conductor
oxide layer
conductor laminate
relates
Prior art date
Application number
Inventor
Jürgen Steiger
Duy Vu Pham
Anita Neumann
Alexey Merkulov
Arne Hoppe
Original Assignee
Evonik Degussa Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Degussa Gmbh filed Critical Evonik Degussa Gmbh
Publication of IN2014CN03328A publication Critical patent/IN2014CN03328A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1225Deposition of multilayers of inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1279Process of deposition of the inorganic material performed under reactive atmosphere, e.g. oxidising or reducing atmospheres
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/14Decomposition by irradiation, e.g. photolysis, particle radiation or by mixed irradiation sources
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/14Decomposition by irradiation, e.g. photolysis, particle radiation or by mixed irradiation sources
    • C23C18/143Radiation by light, e.g. photolysis or pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02469Group 12/16 materials
    • H01L21/02472Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02483Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02614Transformation of metal, e.g. oxidation, nitridation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Thin Film Transistor (AREA)
  • Laminated Bodies (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

The present invention relates to a method for producing a semi conductor laminate comprising a first and a second metal oxide layer as well as a dielectric layer wherein the first metal oxide layer is arranged between the second metal oxide layer and the dielectric layer. The first and second metal oxide layers are formed accordingly from a first and a second liquid phase. The present invention also relates to a semi conductor laminate that can be obtained from such a method and to electronic components comprising such a semi conductor laminate.
IN3328CHN2014 2011-10-07 2012-09-12 IN2014CN03328A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011084145A DE102011084145A1 (en) 2011-10-07 2011-10-07 Process for the preparation of high-performance and electrically stable, semiconducting metal oxide layers, layers produced by the process and their use
PCT/EP2012/067804 WO2013050221A1 (en) 2011-10-07 2012-09-12 Method for producing high-performing and electrically stable semi-conductive metal oxide layers, layers produced according to the method and use thereof

Publications (1)

Publication Number Publication Date
IN2014CN03328A true IN2014CN03328A (en) 2015-07-03

Family

ID=46832402

Family Applications (1)

Application Number Title Priority Date Filing Date
IN3328CHN2014 IN2014CN03328A (en) 2011-10-07 2012-09-12

Country Status (10)

Country Link
US (1) US9059299B2 (en)
EP (1) EP2748857B1 (en)
JP (1) JP6192646B2 (en)
KR (1) KR102060492B1 (en)
CN (1) CN103959478B (en)
DE (1) DE102011084145A1 (en)
IN (1) IN2014CN03328A (en)
RU (1) RU2601210C2 (en)
TW (1) TWI555088B (en)
WO (1) WO2013050221A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010031895A1 (en) 2010-07-21 2012-01-26 Evonik Degussa Gmbh Indium oxoalkoxides for the production of indium oxide-containing layers
DE102012209918A1 (en) 2012-06-13 2013-12-19 Evonik Industries Ag Process for the preparation of indium oxide-containing layers
DE102013212018A1 (en) * 2013-06-25 2015-01-08 Evonik Industries Ag Metal oxide precursors, coating compositions containing them, and their use
DE102013109451B9 (en) 2013-08-30 2017-07-13 Osram Oled Gmbh Method for producing an optoelectronic component
EP2874187B1 (en) 2013-11-15 2020-01-01 Evonik Operations GmbH Low contact resistance thin film transistor
DE102014202718A1 (en) 2014-02-14 2015-08-20 Evonik Degussa Gmbh Coating composition, process for its preparation and its use
US10892327B2 (en) 2015-09-14 2021-01-12 University College Cork Semi-metal rectifying junction
US9515158B1 (en) 2015-10-20 2016-12-06 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor structure with insertion layer and method for manufacturing the same
DE102015121067B4 (en) * 2015-12-03 2018-10-18 Technische Universität Dresden Process for repair preparation of fiber-plastic composites
GB2549951B (en) * 2016-05-03 2019-11-20 Metodiev Lavchiev Ventsislav Light emitting structures and systems on the basis of group-IV material(s) for the ultra violet and visible spectral range
KR101914835B1 (en) * 2016-11-18 2018-11-02 아주대학교산학협력단 Metal oxide heterojunction structure, method of manufacturing the metal oxide heterojunction structure, and thin film transistor having the metal oxide heterojunction structure
CN108396312B (en) * 2018-01-19 2020-04-17 东华大学 Method for rapidly preparing high-flatness metal oxide film
US20210140917A1 (en) * 2018-04-11 2021-05-13 The Regents Of The University Of California Devices and methods for detecting/discriminating complementary and mismatched nucleic acids using ultrathin film field-effect transistors
WO2020180322A1 (en) 2019-03-06 2020-09-10 Hewlett-Packard Development Company, L.P. Semiconductor materials

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06136162A (en) 1992-10-21 1994-05-17 Fujimori Kogyo Kk Formation of thin metal oxide film
JPH09157855A (en) 1995-12-06 1997-06-17 Kansai Shin Gijutsu Kenkyusho:Kk Formation of metal oxide thin film
CN1101352C (en) 2000-07-15 2003-02-12 昆明理工大学 Process for preparing sol-gel of indium tin oxide film
US7604839B2 (en) * 2000-07-31 2009-10-20 Los Alamos National Security, Llc Polymer-assisted deposition of films
US20060088962A1 (en) 2004-10-22 2006-04-27 Herman Gregory S Method of forming a solution processed transistor having a multilayer dielectric
JP4021435B2 (en) * 2004-10-25 2007-12-12 ヒタチグローバルストレージテクノロジーズネザーランドビーブイ Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
US7374984B2 (en) * 2004-10-29 2008-05-20 Randy Hoffman Method of forming a thin film component
RU2305346C2 (en) * 2004-11-29 2007-08-27 Федеральное Государственное Унитарное Предприятие "Научно-исследовательский физико-химический институт им. Л.Я. Карпова" (НИФХИ им. Л.Я. Карпова) Gate thin-film insulating material of high dielectric constant and its manufacturing method (alternatives)
JP2007073704A (en) 2005-09-06 2007-03-22 Canon Inc Semiconductor thin-film
JP2007073074A (en) * 2006-12-04 2007-03-22 Omron Corp Medical information processing system, medical information processing method, information processor and information processing method
DE102007018431A1 (en) * 2007-04-19 2008-10-30 Evonik Degussa Gmbh Pyrogenic zinc oxide containing composite of layers and field effect transistor having this composite
JP5489445B2 (en) * 2007-11-15 2014-05-14 富士フイルム株式会社 Thin film field effect transistor and display device using the same
JP5250322B2 (en) * 2008-07-10 2013-07-31 富士フイルム株式会社 Metal oxide film, method for manufacturing the same, and semiconductor device
JP2010050165A (en) * 2008-08-19 2010-03-04 Sumitomo Chemical Co Ltd Semiconductor device, method of manufacturing the same, transistor substrate, light emitting device, and display device
DE102008058040A1 (en) 2008-11-18 2010-05-27 Evonik Degussa Gmbh Formulations containing a mixture of ZnO cubanes and method for producing semiconducting ZnO layers
JP2010120270A (en) * 2008-11-19 2010-06-03 Seiko Epson Corp Liquid injection head, liquid injection device, actuator device, and method of manufacturing the liquid injection head
DE102009009338A1 (en) 2009-02-17 2010-08-26 Evonik Degussa Gmbh Indium alkoxide-containing compositions, process for their preparation and their use
DE102009009337A1 (en) 2009-02-17 2010-08-19 Evonik Degussa Gmbh Process for the preparation of semiconductive indium oxide layers, indium oxide layers produced by the process and their use
JP2010258057A (en) * 2009-04-22 2010-11-11 Konica Minolta Holdings Inc Metal oxide semiconductor, method of manufacturing the same, and thin film transistor using the same
WO2010122274A1 (en) 2009-04-24 2010-10-28 Panasonic Corporation Oxide semiconductor
KR20100130850A (en) * 2009-06-04 2010-12-14 삼성전자주식회사 Thin film transistor array panel and method of fabricating the same
DE102009028802B3 (en) 2009-08-21 2011-03-24 Evonik Degussa Gmbh Process for producing metal-oxide-containing layers, metal oxide-containing layer which can be produced by the process and their use
DE102009028801B3 (en) 2009-08-21 2011-04-14 Evonik Degussa Gmbh Process for the preparation of indium oxide-containing layers, indium oxide-containing layer which can be produced by the process and their use
US20120280227A1 (en) * 2009-11-27 2012-11-08 Hironori Wakana Oxide semiconductor device and method of manufacturing the same
DE102009054997B3 (en) 2009-12-18 2011-06-01 Evonik Degussa Gmbh Process for producing indium oxide-containing layers, indium oxide-containing layers produced by the process and their use
KR20120123343A (en) * 2009-12-18 2012-11-08 바스프 에스이 Metal oxide field effect transistors on a mechanically flexible polymer substrate having dielectric that can be processed from solution at low temperatures
KR20110106225A (en) * 2010-03-22 2011-09-28 삼성전자주식회사 Thin film transistor and method of manufacturing the same and display device including the thin film transistor
KR101669953B1 (en) * 2010-03-26 2016-11-09 삼성전자 주식회사 Oxide thin film and method of forming the oxide thin film and an electronic device including the oxide thin film
DE102010031592A1 (en) 2010-07-21 2012-01-26 Evonik Degussa Gmbh Indium oxoalkoxides for the production of indium oxide-containing layers
DE102010031895A1 (en) 2010-07-21 2012-01-26 Evonik Degussa Gmbh Indium oxoalkoxides for the production of indium oxide-containing layers
DE102010043668B4 (en) 2010-11-10 2012-06-21 Evonik Degussa Gmbh Process for producing indium oxide-containing layers, indium oxide-containing layers produced by the process and their use
JP6150038B2 (en) * 2013-03-13 2017-06-21 セイコーエプソン株式会社 Liquid ejecting head, liquid ejecting apparatus, piezoelectric element, ultrasonic transducer, and ultrasonic device

Also Published As

Publication number Publication date
CN103959478B (en) 2016-10-26
TWI555088B (en) 2016-10-21
KR102060492B1 (en) 2020-02-11
JP6192646B2 (en) 2017-09-06
US20150053966A1 (en) 2015-02-26
CN103959478A (en) 2014-07-30
JP2015501529A (en) 2015-01-15
EP2748857A1 (en) 2014-07-02
KR20140072148A (en) 2014-06-12
RU2601210C2 (en) 2016-10-27
DE102011084145A1 (en) 2013-04-11
TW201334070A (en) 2013-08-16
RU2014118033A (en) 2015-11-27
US9059299B2 (en) 2015-06-16
WO2013050221A1 (en) 2013-04-11
EP2748857B1 (en) 2018-06-13

Similar Documents

Publication Publication Date Title
IN2014CN03328A (en)
EP2709140A4 (en) Method for producing laminated substrate having insulating layer at portion of substrate
WO2012028279A9 (en) Gate insulator layer for electronic devices
GB201104824D0 (en) Structures and methods relating to graphene
TW201614840A (en) Semiconductor device and method for fabricating the same
EP2555601A4 (en) Method of producing formed circuit component
WO2012148218A3 (en) Horizontal thermoelectric tape and method for manufacturing same
EP2826589A4 (en) Flux, solder composition and method for producing electronic circuit mounting substrate
EP2769775A4 (en) Method for producing electrical steel surface super-thick insulating coating
EP2761663A4 (en) Electropositive metal containing layers for semiconductor applications
EP3032576A4 (en) Oxide semiconductor layer and production method therefor, oxide semiconductor precursor, oxide semiconductor layer, semiconductor element, and electronic device
EP2634795A4 (en) Process for manufacture of through-type wiring substrate, and through-type wiring substrate
HUE053497T2 (en) Method for producing an electronic part mounting substrate
EP2846615A4 (en) Multilayer wiring substrate and manufacturing method thereof
EP3016162A4 (en) Substrate for organic electronic devices and production method therefor
EP2738773A4 (en) Copper particle dispersion, conductive film formation method, and circuit substrate
EP2681767A4 (en) Semiconductor structure having a capacitor and metal wiring integrated in a same dielectric layer
JP2011192973A5 (en) Method of manufacturing transistor
EP2927977A4 (en) Conductive substrate and method for manufacturing same
WO2013011127A3 (en) Thermoelectric module, method for producing a thermoelectric module and use of a metallic glass or a sintered material
EP2692878A4 (en) Cu-si-co-base copper alloy for electronic materials and method for producing same
EP3070738A4 (en) Through electrode and method for producing multilayer substrate using through electrode
EP2738772A4 (en) Copper particle dispersion, conductive film formation method, and circuit substrate
SG2014004899A (en) Methods of forming barrier layers for conductive copper structures
WO2013167270A8 (en) Organic photonic device