IN2013CN05221A - - Google Patents

Download PDF

Info

Publication number
IN2013CN05221A
IN2013CN05221A IN5221CHN2013A IN2013CN05221A IN 2013CN05221 A IN2013CN05221 A IN 2013CN05221A IN 5221CHN2013 A IN5221CHN2013 A IN 5221CHN2013A IN 2013CN05221 A IN2013CN05221 A IN 2013CN05221A
Authority
IN
India
Prior art keywords
nanoparticles
nanoparticle
substrate
target
hollow
Prior art date
Application number
Inventor
Jian Ping Wang
Shihai He
Original Assignee
Univ Minnesota
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Minnesota filed Critical Univ Minnesota
Publication of IN2013CN05221A publication Critical patent/IN2013CN05221A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/223Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating specially adapted for coating particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/228Gas flow assisted PVD deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/342Hollow targets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3438Electrodes other than cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/345Magnet arrangements in particular for cathodic sputtering apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/345Magnet arrangements in particular for cathodic sputtering apparatus
    • H01J37/3455Movable magnets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

Nanoparticle deposition systems including one or more of: a hollow target of a material; at least one rotating magnet providing a magnetic field that controls movement of ions and crystallization of nanoparticles from released atoms; a nanoparticle collection device that collects crystallized nanoparticles on a substrate wherein relative motion between the substrate and at least a target continuously expose new surface areas of the substrate to the crystallized nanoparticles; a hollow anode with a target at least partially inside the hollow anode; or a first nanoparticle source providing first nanoparticles of a first material and a second nanoparticle source providing second nanoparticles of a second material.
IN5221CHN2013 2011-01-13 2012-01-13 IN2013CN05221A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161432421P 2011-01-13 2011-01-13
PCT/US2012/021269 WO2012097268A2 (en) 2011-01-13 2012-01-13 Nanoparticle deposition systems

Publications (1)

Publication Number Publication Date
IN2013CN05221A true IN2013CN05221A (en) 2015-08-07

Family

ID=46489954

Family Applications (1)

Application Number Title Priority Date Filing Date
IN5221CHN2013 IN2013CN05221A (en) 2011-01-13 2012-01-13

Country Status (6)

Country Link
US (2) US20120181171A1 (en)
EP (1) EP2663666A4 (en)
CN (1) CN103459658B (en)
IN (1) IN2013CN05221A (en)
RU (1) RU2013137749A (en)
WO (1) WO2012097268A2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150119188A (en) 2013-02-15 2015-10-23 리젠츠 오브 더 유니버시티 오브 미네소타 Particle Functionalization
KR101772686B1 (en) 2016-02-02 2017-08-29 연세대학교 원주산학협력단 Nanoparticle drug delivery apparatus and method for controlling the same
KR20200036065A (en) 2016-03-30 2020-04-06 케이힌 람테크 가부시키가이샤 Sputtering cathode, sputtering apparatus and manufacturing method of film forming element
JP6807246B2 (en) * 2017-02-23 2021-01-06 東京エレクトロン株式会社 Substrate processing equipment and processing system
GB2560008B (en) * 2017-02-24 2020-03-25 Binns David An appratus and method related to core shell magnetic nanoparticles and structured nanoparticles
GB2566995B (en) 2017-09-29 2023-01-18 Cotton Mouton Diagnostics Ltd A method of detection
CN110578127A (en) * 2019-10-31 2019-12-17 浙江工业大学 Device for increasing deposition rate of magnetron sputtering coating
CN113564553A (en) * 2021-08-06 2021-10-29 昆山祁御新材料科技有限公司 Manufacturing process and equipment of rotary target material

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3669860A (en) * 1970-04-01 1972-06-13 Zenith Radio Corp Method and apparatus for applying a film to a substrate surface by diode sputtering
JP3034076B2 (en) * 1991-04-18 2000-04-17 日本真空技術株式会社 Metal ion source
US5228963A (en) * 1991-07-01 1993-07-20 Himont Incorporated Hollow-cathode magnetron and method of making thin films
US5482611A (en) * 1991-09-30 1996-01-09 Helmer; John C. Physical vapor deposition employing ion extraction from a plasma
US5334302A (en) * 1991-11-15 1994-08-02 Tokyo Electron Limited Magnetron sputtering apparatus and sputtering gun for use in the same
US7144627B2 (en) * 1997-03-12 2006-12-05 William Marsh Rice University Multi-layer nanoshells comprising a metallic or conducting shell
JPH111770A (en) * 1997-06-06 1999-01-06 Anelva Corp Sputtering apparatus and sputtering method
US6217716B1 (en) * 1998-05-06 2001-04-17 Novellus Systems, Inc. Apparatus and method for improving target erosion in hollow cathode magnetron sputter source
SE521904C2 (en) * 1999-11-26 2003-12-16 Ladislav Bardos Hybrid Plasma Treatment Device
US20040000478A1 (en) * 2002-06-26 2004-01-01 Guenzer Charles S. Rotating hollow cathode magnetron
US20060081467A1 (en) * 2004-10-15 2006-04-20 Makoto Nagashima Systems and methods for magnetron deposition
US20070089983A1 (en) * 2005-10-24 2007-04-26 Soleras Ltd. Cathode incorporating fixed or rotating target in combination with a moving magnet assembly and applications thereof
CN101375366B (en) * 2005-12-13 2011-04-27 欧瑞康太阳Ip股份公司 Improved sputter target utilization
US7951276B2 (en) * 2006-06-08 2011-05-31 The Board Of Trustees Of The University Of Illinois Cluster generator
EP2017367A1 (en) * 2007-07-18 2009-01-21 Applied Materials, Inc. Sputter coating device and method of depositing a layer on a substrate
WO2009149563A1 (en) * 2008-06-13 2009-12-17 Fablab Inc. A system and method for fabricating macroscopic objects, and nano-assembled objects obtained therewith
GB2461094B (en) * 2008-06-20 2012-08-22 Mantis Deposition Ltd Deposition of materials
CN201545907U (en) * 2009-11-17 2010-08-11 深圳市振恒昌实业有限公司 Novel target tube rotary magnetic control splashing cylindrical target
US10582834B2 (en) * 2010-06-15 2020-03-10 Covidien Lp Locatable expandable working channel and method

Also Published As

Publication number Publication date
CN103459658B (en) 2015-09-23
EP2663666A4 (en) 2014-08-20
US20180127865A1 (en) 2018-05-10
EP2663666A2 (en) 2013-11-20
US20120181171A1 (en) 2012-07-19
RU2013137749A (en) 2015-02-20
WO2012097268A2 (en) 2012-07-19
CN103459658A (en) 2013-12-18
WO2012097268A3 (en) 2013-01-17

Similar Documents

Publication Publication Date Title
IN2013CN05221A (en)
GB2506317B (en) Atomic layer deposition of transition metal thin films
GB2519888A (en) Film deposition assisted by angular selective etch
WO2012169747A3 (en) Plasma-generating source comprising a belt-type magnet, and thin-film deposition system using same
IN2014DN11074A (en)
SG10201500148WA (en) Ferromagnetic sputtering target with less particle generation
MY166492A (en) Sputtering target for forming magnetic recording film and process for producing same
WO2012148218A3 (en) Horizontal thermoelectric tape and method for manufacturing same
FR2986503B1 (en) METHOD FOR MANAGING ORIENTATION CONTROL OF AN ORIENTABLE PART OF AN AIRCRAFT INTERFERENCE.
FR2976911B1 (en) METHOD FOR CONTROLLING THE ORIENTATION OF AN ORIENTABLE PART OF AN AIRCRAFT INTERFERENCE.
CN102199754A (en) Magnetic control sputtering apparatus and sputtering method
TW201612956A (en) Method of depositing a layer, method of manufacturing a transistor, layer stack for an electronic device, and an electronic device
MX2014004436A (en) Solar control glazing comprising a layer of an alloy containing nicu.
EP2566998A4 (en) Thermal evaporation sources with separate crucible for holding the evaporant material
JP2015517170A5 (en)
IN2015DN00421A (en)
PT2586888T (en) Arc evaporation source having fast film-forming speed, film formation device and manufacturing method for coating film using the arc evaporation source
FR2995323B1 (en) METHOD FOR FORMING A METAL COATING ON A SURFACE OF A THERMOPLASTIC SUBSTRATE, AND CORRESPONDING COMPOSITE MATERIAL
EP2779163A3 (en) Non-Magnetic Seed Layer Method and Apparatus
AU2012247265A1 (en) Electromagnetic actuator having magnetic generator
IN2012DN06287A (en)
WO2013097842A3 (en) Device for evaporating a substance for evaporation
EP2677065A4 (en) Production method for r-fe-b sintered magnet having plating film on surface thereof
MY152203A (en) Methods of forming a window layer in a cadmium telluride based thin film photovoltaic device
GB201207376D0 (en) Magnetic shielding material for superconducting magnet