IL144230A - Bifurcated stent and method of making same - Google Patents
Bifurcated stent and method of making sameInfo
- Publication number
- IL144230A IL144230A IL144230A IL14423097A IL144230A IL 144230 A IL144230 A IL 144230A IL 144230 A IL144230 A IL 144230A IL 14423097 A IL14423097 A IL 14423097A IL 144230 A IL144230 A IL 144230A
- Authority
- IL
- Israel
- Prior art keywords
- tubular member
- lumen
- edge
- expandable tubular
- expandable
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/856—Single tubular stent with a side portal passage
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2/07—Stent-grafts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/852—Two or more distinct overlapping stents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
- A61F2/954—Instruments specially adapted for placement or removal of stents or stent-grafts for placing stents or stent-grafts in a bifurcation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/95—Instruments specially adapted for placement or removal of stents or stent-grafts
- A61F2/958—Inflatable balloons for placing stents or stent-grafts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2002/065—Y-shaped blood vessels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2002/065—Y-shaped blood vessels
- A61F2002/067—Y-shaped blood vessels modular
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2/07—Stent-grafts
- A61F2002/075—Stent-grafts the stent being loosely attached to the graft material, e.g. by stitching
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0025—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2220/0041—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements using additional screws, bolts, dowels or rivets, e.g. connecting screws
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0025—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2220/0058—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements soldered or brazed or welded
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0002—Two-dimensional shapes, e.g. cross-sections
- A61F2230/0004—Rounded shapes, e.g. with rounded corners
- A61F2230/001—Figure-8-shaped, e.g. hourglass-shaped
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2240/00—Manufacturing or designing of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2240/001—Designing or manufacturing processes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S623/00—Prosthesis, i.e. artificial body members, parts thereof, or aids and accessories therefor
- Y10S623/901—Method of manufacturing prosthetic device
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/494—Fluidic or fluid actuated device making
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Transplantation (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Cardiology (AREA)
- Public Health (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Gastroenterology & Hepatology (AREA)
- Pulmonology (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Prostheses (AREA)
- Materials For Medical Uses (AREA)
Abstract
A bifurcated stent for insertion into a bifurcated vessel such as a blood vessel. In one embodiment, a first sheet is formed into a first leg, a second sheet is formed into a second leg, a third sheet is formed into a stem, and the two legs are attached to the stem. In a second embodiment, a first sheet is formed into a member having a first leg and half of a stem, a second sheet is formed into a second member having a second leg and half of a stem, and the two stem halves are combined to form the bifurcated stent. In a third embodiment, the stent comprises two sections that are serially inserted and assembled within the vessel at the site of the bifurcation to be treated.
Description
BIFURCATED STENT AND METHOD OF MAKING SAME VI)*» fl\5»¾» J ott WJ\?X> For the Applicant, Eitan, Pearl, Latzer & Cohen-Zedek Advocates, Patent Attorneys & Notaries P-1245-IL1 . .
Field of the Invention The present invention relates to stents, and more oart icularly to bifurcated stents and methods of making bifurcated stents for insertion within a branching vessel.
Background of the Invention Stents are well known in the art. They are typically formed of a cylindrical metal mesh which can expand when pressure is internally applied. Alternatively, they can be formed of wire wrapped into a cylindrical shape or sheets of material formed into a cylindrical shape.
Stents are devices which are usually implanted within bodily conduits including the vascular system to reinforce collapsing, arcially occluded, weakened, or abnormally dilated sections of : e blood vessel. Stents also have been successfully implanted r. or'ner areas, e.g., the urinary tract or the bile duct to reinforce such bodily conduits.
U.S. Patent No. 4,994,071 (MacGregor) discloses an expandable, bifurcating stent having a main cylindrical lattice rorr.ed from interconnected, flexible. Two additional cylindrical lattices, having smaller diameters than the main lattice, are similarly constructed. The main lattice includes a flexible wire interconnecting the main lattice to o¾e of the additional lattices. A second flexible wire interconnects the main lattice backbones that extend axially along the length of the main lattice and along each of the additional lattices. One disadvantage of this bifurcating stent is the complex nature of che interconnection of the flexible wires forming the backbones - wich che loop structure of each lattice.
Summary of the Invention The present invention solves these and other disadvantages of the prior art by providing bifurcated stents and methods of fabricating and deploying bifurcated stents having a stem portion and two leg portions. engages the material defining the branch aperture so as to secure the second leg in the desired position.
It is an object of this' invention to provide a method of -aking a bifurcated stents comprising the steps of: a) preparing a first sheet having a first edge, a second edge, a third edge, and a fourth edge; b/j preparing a second sheet having a first edge, a second edse, a third edge, and a fourth edge; c) preparing a third sheet having a first edge, a second edge, a third edge, nd a fourth edge; d) attaching the second edge to the third /edge of the first sheet to form a tubular first leg po tion having a proximal end and a distal end; e) attaching the secocra edge to the third edge of the second sheet to form a t oular second leg portion having a prpximal end and 6. distal ½r,a ,·— —attaching the cecond edge to the third edge of the third ^glem half to the second stem hal — o form a, stem.
It is yet an object of this invention to provide a method of making a bifurcated stent comprising the steps of a) preparing a first expandable tubular member having a proximal end and a distal end and a longitudinal bore therethrough, the first tubular member provided with a branch aperture disposed between said proximal end and the distal end, the branch aperture communicating with said longitudinal bore and the aperture sized and adapted to receive and secure a second expandable tubular member; b) delivering the first expandable tubular member to a bifurcated vessel having a first lumen and a second lumen so that the first expandable member is disposed within the first lumen and the branch aperture communicates with the second lumen; c) secure the first expandable member in the first lumen; d) preparing a second expandable tubular member having a proximal end and a distal end and having longitudinal bore therethrough; e! widening the branch aperture; f) delivering the second expandable tubular member into the branch aperture so that the distal end of the second expandable tubular member is disposed within the second lumen and the proximal end of the second expandable tubular member is disposed within the longitudinal bore of the first longitudinal member; and g) expanding the second expandable tubular member in an amount sufficient to secure the second expandable tubular member within the second lumen and within said branch aperture.
Passages which are not in the ambit of the claims do not belong to the invention. The scope of protection is as defined in the claims, and as stipulated in the Patent Law (1967).
Brief Description of the Drawings FIG. 1 shows a bifurcated stent manufactured in accordance w r the present invention; FIG. 2 shows sheets used to form the legs and stem of the stent shown in FIG. 1; FIG. 3 shows the sheets shown in FIG. 2 after they have been rolled into a tubular shape; FIG. 4 is a perspective view of the tubes shown in FIG. 3 prior to assembly; FIG. 5 is an end view of the tube.s shown in FIGS. 3 and 4 after they have been assembled to form a stent; .
FIG. 5; FIG. 7 shows sheets used to form another embodiment of a bifurcated stent manufactured in accordance with the invention; FIG. 7B shows sheets used to form another embodiment of a bifurcated stent manufactured in accordance with the invention; FIG. 8 shows the sheets of FIG. 7 with demarcation points; FIG. 9 shows the sheets of FIG. 8 after they have been rolled into a tubular shape; FIG. 9B shows the sheets of FIG. 7B after they have been rolled into a tubular shape; FIG. 10 shows the tubes of FIG. 9 just prior to assembly; FIG. 10B shows the tubes of FIG. 9B just prior to assembly; FIG. 11 is a side view of the tubes shown in FIGS. 9 and 10 after assembly; FIG. 11B is a side view of the tubes shown in FIGS. 9B and 103 after assembly; FIG. 12 is an end view of the assembled apparatus shown in FIG. 11; FIG. 12B is an end view of the assembled apparatus shown in FIG. 11B; FIG. 12C shows an alternative embodiment of a pattern that may be used in place of the patterns shown in FIGS. 7 and 7B; FIG. 13 shows a stem and first leg portion and a second leg portion used to form another embodiment of a bifurcat*ed stent manufactured in accordance with this invention; . en branch lumen to be treated ; FIG. 15 shows the stem and first leg portion shown in FIG. 13 disposed on catheters and guide wires prior to introduction into the lumen to be treated; FIG. 16 shows the stem and first leg portion shown in FIG. 13 after it has been delivered to the bifurcation to be treated and prior to its " expansion ; FIG. 17 shows the second leg portion shown in FIG. 16 after it has been expanded ; FIG. 18 shows expansion of the branch aperture; FIG. 19 shows the unexpanded second leg portion disposed in the branch aperture; FIG. 20 shows the expansion of the second leg portion shown in FIG. 19; and FIG. 21 shows the assembled bifurcated stent disposed in the bifurcated lumen to be treated.
Detailed Description In the embodiment illustrated in FIG. 1, the bifurcation scent 5 comprises a first leg 10, a second leg 15, and a stem 20. FIG. 2 shows a first sheet 25 which is used to form first leg 10, a second sheet 30 which is used to form second leg 15, and a third sheet 35 which is used to form stem 20. The first sheet 25 and second sheet 30 are substantially Jflat and are si*zed to a predetermined length and width. For many applications, the first dimensions so as to produce legs 10 and 15 that are substantially the same size, however, the legs 10 and 15, and the sheets 25 and 30 used to produce them, may be of varying sizes as specific applications dictate. The stents of this invention may be sized so that when assembled they are their final size, however, in a preferred embodiment the stents are expandable and sized and adapted to assume their final dimensions upon expansion. The stent sheets 70 and 75 may be patterned or etched with perforations forming a variety of patterns as specific applications dictate to achieve the expandable features required as previously discussed. The third sheet 35 is sized so that when it is rolled into a tube its internal cross -section can be made to accommodate the cross - sectional external diameters of first- leg 10 and second leg 15. First sheet 25 has a first edge 26, a second edge 27, a third edge 28, and a fourth edge 29.
Second sheet 30 has a first edge 31, a second edge 32, a third edge 33, and a fourth edge 34. Third sheet 35 has a first edge 36, a second edge 37, a third edge 38, and a fourth edge 39.
After the sheet metal has been cut to form sheets 25, 30, and 35, it is deformed and rolled so as to cause two opposite edges to meet and create a cylinder. In the example shown in FIGs. 2 and 3, edge 27 is joined to edge 29 via weld run 14 to form first leg 10. Edge 32 is joined to edge 34 via weld run 19 to form second leg 15. Edge 37 is joined to edge 39 via weld run 29* to form stem 20. The edges may be joined in a wide variety of ways well ow e, e.g., screwing, crimping, soldering, however, in a preferred embodiment welding is utilized. In an especially preferred embodiment, spot welding is utilized. As shown in FIG. 3, first leg 10 has a proximal end 11, a distal end 12, and defines a longitudinal bore 13. Second leg 15 has a proximal end 16, a distal end 17, and defines a longitudinal bore 18. The stem 20 has a proximal end 26, a distal end 27, and defines a longitudinal bore 28. FIG. 4 shows the first leg 10, second leg 15, and stem 20 just prior to assembly. To form the bifurcated stent 5, the proximal end 11 of first leg 10 and the proximal end 16 of second leg 15 are joined to the distal end 27 of the stem portion 20 so that the longitudinal bores 13, 18, and 28 are in communication with each other. FIG. 5 is an end view and FIG. 6 is a side view of the assembled apparatus.
FIG. 11 shows a second embodiment of a bifurcation stent manufactured in accordance with this invention. The stent 50 is provided with a first leg 55 and a second leg 60 attached to a seem portion 65. The bifurcation stent 50 is formed from a first sheet 70 and a second sheet 75 as shown in FIG. 7. The stent sheets 70 and 75 may be patterned or etched with perforations forming a variety of patterns as specific applications dictate to achieve the expandable features required as previously discussed. The sheets 70 and 75 are substantially flat and have a predetermined length and width. Firs^ sheet 70 has a* first edge 7i, a second edge 72, a third edge 73 and a fourth edge 74. The , , edge 78, and a fourth edge 79. To form the legs of the stent a portion of edge 72 is rolled towards a portion of edge 74 and a portion of edge 77 is rolled towards a portion of edge 79.
Demarcation points 80, 81, 82, and 83 are selected on sheets 70 and 75 as shown in FIG. 8. These demarcation points 80, 81, 82, and 83 are selected to meet the requirement of specific applications and "may be adjusted depending upon the length required for legs 55 and 60 and the length required for stem 65. Demarcation points 80 and 81 that are equidistant from edges 73 and 71 and demarcation points 82 and 83 that are equidistant from edges 76 and 78 will result in a stent in which the legs 55 and 60 have a length that is substantially equal to stem portion 65. If the demarcation points are selected to be closer to edges 73 and 78 than to edges 71 and 76 the stem will have a length that is greater than the length of each of the legs. If the demarcation points are selected to be closer to edges 71 and 76 than to edges 73 and 78, each of the legs 60 and 65 will have a length that is greater than the length of the stem 65. In a preferred embodiment, however, the demarcation points 80, 81, 82, and 83, are selected so that proximal edges 72'', 74'', 77'', and 79'' are about 1/3 the length of edges 72, 74, 77, and 79. As shown in FIG. 8, demarcation point 80 divides edge 72 at approximately its midpoint into a distal edge 72' and a proximal edge 72''. Demarcation point 81 divides edge 74 at a proximately its midpoint into a distal edge 74' and a proximal edge 74''. midpoint into a distal edge 77' and a proximal edge 77' ' and demarcation point 83 divides edge 79 at approximately its midpoint into a distal edge 79' and a proximal edge 79''.
To form the stent, edge 72' is connected to edge 74' via weld run 90 to form first member 95 having a first leg portion 55 and a first stem half 65' as shown in FIG. 9. Edge 77' is connected to edge 79' via weld run 91 to form second member 100 having a second leg portion 60 and a second stem half 65''·. As previously discussed, the edges may be connected in a variety of ways well known to those skilled in the art. FIG. 10 shows the first member 95 and the second member 100 shown in FIG. 9. in alignment just prior to assembly. To produce the bifurcated scent 50 shown in FIGS. 11 and 12, edge 72'' is connected to edge 79'' via weld run 92 and edge 74'' is connected to edge 77'' via weld run 93 so that first stem half 65' and second stem half 65'' form stem 65. FIG. 12 is a cross - sectional end view of the stent shown in FIG. 11.
In the embodiment shown in FIG. 7, sheets 70 and 75 are squares or rectangles. The sheets 70 and 75 are not limited to t is configuration, however, as shown in FIG. 7B. FIG. 11B shows a bifurcation stent manufactured using the sheets 270 and 275 shown in FIG. 7B . The stent 250 is provided with a first leg 255 and a second leg 260 attached to a stem portion 265. The bifurcation stent 250 is formed from §. first sheet 2^0 and a second sheet 275 as shown in FIG. 7B. The stent sheets 270 and may e s ze an e c e as prev ous y scusse . s s own n FIG. 7B, first sheet 270 has a first edge 271, a second edge 272, a third edge 273, a fourth edge 274, a fifth edge 275, and a sixth edge 276, a seventh edge 146, and an eighth edge 147. The second sheet 275 has a first edge 277, a second edge 278, a third edge 279, a fourth edge 280, a fifth edge 281, a sixth edge 282, a seventh edge 148, and an eighth edge 149. As shown in FIG. 9B, edge 274 is connected to edge 276 via weld run 290 to form first member 295 having a first leg portion 255 and a first stem half 265'. Edge 280 is connected to edge 282 via weld run 291 to form second member 300 having a second leg portion 260 and a second stem half 265''. As previously discussed, the edges may be connected in a variety of ways well known to those skilled in the art. FIG. 10B shows the first member 295 and the second member 300 shown in FIG. 9B in alignment just prior to assembly. To produce the bifurcated stent 250 shown in FIGS. 11B and 12B, edge 272 is connected to edge 149 via weld run 292 and edge 278 is connected to edge 147 via weld run 293 so that first stem half 265' and second stem half 265'' form stem 265. FIG. 12B is a cross - sectional end view of the stent shown in FIG. 11B. FIG. 12C shows an alternative pattern that may be used in place of the patterns shwn in FIGS. 7 and 7B .
A third embodiment of this invention comprises two portions which are deployed serially in two steps and assembled within the patient to form a bifurcated stent. £IG. 13 shows stem and first leg portion 110 provided with a longitudinal bore 131 and having a prox ma en e n ng a s em port on 1 an a sta en 120 defining a first leg portion 130. Second leg portion 140 is provided with a longitudinal bore 132 and has a proximal end 145 and a distal end 150. Stem and firs leg portion 110 and second leg portion 140 may be sized and patterned or etched as previously discussed. A branch aperture 135 is disposed between the proximal end 115 and the distal end 120 of stem and first leg portion 110. The branch aperture 135 is sized to receive second leg portion 140 and is adapted to engage and secure the second leg portion 140 when it has been expanded within the branch aperture 135. Second leg portion 140 is sized and adapted to engage and be secured into branch aperture 135 upon expansion. FIGS. 14 to 21 show how the bifurcated stent is assembled within a bifurcated lumen. As shown in FIGS. 14 to 21, the area to be treated is a bifurcated lumen having a first or trunk lumen 190 and a second or branch lumen 195. As shown in FIG. 14, a first gu-de wire 155 is introduced into the trunk lumen 190 and a second guide wire 156 is introduced into the branch lumen 195. As shown in FIG. 15, a balloon expandable stem and first leg portion 110 is disposed on the tip of a first balloon catheter 170 so that the balloon 175 is disposed within longitudinal bore 131. A second balloon catheter 171 is then introduced into longitudinal bore 131 of stem and first leg portion 110 and is advanced so that the balloon 176 is disposed within aperture 135. First catheter 170 is mounted on firs^ guide wire 155 and second catheter 171 is mounted on second guide wire 156. As shown in . , o the area to be treated so that first leg portion 130 is disposed within trunk lumen 190 and branch aperture 135 communicates with branch lumen 195. Guide wire 156 facilitates the orientation of the branch aperture 135 with the branch lumen 195. The size of the conventional catheters and balloons is not to scale and details well known to those skilled in the art have been omitted for" clarity. Balloon 175 is inflated which causes the stem and first leg portion 110 to expand, as shown in FIG. 17, to secure it in the desired position. After expansion, the external wall of stem and first leg portion 110 would contact the interior walls of trunk lumen 190, however, a gap has been intentionally left for clarity. The balloon 175 on first catheter 170 is left inflated and the balloon 176 on second cathe-ter 171 is then inflated to enlarge the branch aperture 135 as shown in FIG. 18. As the branch aperture 135 is enlarged a portion of the stent defining the branch aperture 135 is pushed outward to form a branch securing lip 180.
Balloons 175 and 176 are deflated, second catheter 171 is withdrawn, and second guide wire 156 is left in place in the branch lumen 195. Second leg portion 140 is then applied to second catheter 171 so that first balloon 176 is disposed in longitudinal bore 132 and second catheter 171 is then applied to second guide wire 156. Second leg portion 140 is then guided to, and introduced into, the longitudinal jDore 131 of thi stem and first leg portion 110 and is advanced and passed through branch aper ure e secon eg port on 140 protrudes into the branch lumen 195 and the proximal end 145 communicates with longitudinal bore 131, as shown in FIG. 19. The balloon 176 on second catheter 171 is partially inflated and the balloon 175 on first catheter 170 is then partially inflated to a pressure substantially equal to the pressure in balloon 176. Both balloons 175 and 176 are then simultaneously inflated to substantiall equal pressures. As shown in FIG. 20, inflation of the balloon 176 on second catheter 171 causes second leg member 140 to expand so that its external walls engage and are secured to the area surrounding aperture 135. Inflation of the balloon 175 on the first catheter 170 prevents stem and first leg portion 110 from collapsing when balloon 176 is inflated. After expansion, the external walls of second leg 140 would contact the inner wall of lumen 195, however, a gap has been intentionally left for clarity. The balloons 175 and 176 are deflated, catheters 170 and 171 and guide wires 155 and 156 are withdrawn, ar.c the assembled bifurcated stent 160 is left in place as shown in FIG . 21.
Claims (4)
1. 44230/2 What is claimed is: A method of making a bifurcated stent comprising the steps of: a) preparing a first expandable tubular member having a proximal end and a distal end and a longitudinal bore therethrough, said first tubular member provided with a branch aperture disposed between said proximal end and said distal end, said branch aperture communicating with said longitudinal bore and said aperture sized and adapted to receive and secure a second expandable tubular member; b) delivering said first expandable tubular member to a bifurcated vessel having a first lumen and a second lumen so that said first expandable member is disposed within said first lumen and said branch aperture communicates with said second lumen; c) expanding said first expandable member in an amount sufficient to secure said first expandable member in said first lumen; d) preparing said second expandable tubular member having a proximal end and a distal end having longitudinal bore therethrough; e) widening said branch aperture in an amount sufficient to form a branch securing lip; f) delivering said second expandable tubular member into said branch aperture so that said distal end of said second expandable tubular member is disposed within said second lumen and said proximal end of said second expandable tubular member is disposed within said longitudinal bore of said first longitudinal member; and g) expanding said second expandable tubular member is an amount sufficient to secure said second expandable tubular member within said second lumen and within said branch aperture.
2. The method of claim 1 , wherein said delivering steps b and f and said expanding steps c and g and said widening step e are carried out using a balloon catheter.
3. The method of claim 2, wherein said branch securing lip is formed during step e. 144230/2
4. A method of making a bifurcated stent comprising the steps of: a) preparing a first expandable tubular member having a proximal end and a distal end and a longitudinal bore therethrough, said first tubular member provided with a branch aperture disposed between said proximal end and said distal end, said branch aperture communicating with said longitudinal bore and said aperture sized and adapted to receive and secure a second expandable tubular member; b) delivering said first expandable tubular member to a bifurcated vessel having a first lumen and a second lumen so that said first expandable member is disposed within said first lumen and said branch aperture communicates with said second lumen; c) expanding said first expandable member in an amount sufficient to secure said first expandable member in said first lumen; d) preparing said second expandable tubular member having a proximal end and a distal end and having a longitudinal bore therethrough; e) delivering said second expandable tubular member into said branch aperture so that said distal end of said second expandable tubular member is disposed within said second lumen and said proximal end of said second expandable tubular member is disposed within said longitudinal bore of said first longitudinal member, and f) expanding said second expandable tubular member in an amount sufficient to form a branch securing lip and in an amount sufficient to secure said second expandable tubular member within said second lumen and within said branch aperture. Eitan I^aw Group Eitan, Mehulal, Pappo, Kugler Advocates, Patent Attorneys and Notaries P-1245-IL1
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US64229796A | 1996-05-03 | 1996-05-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
IL144230A true IL144230A (en) | 2007-03-08 |
Family
ID=24576029
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
IL12074497A IL120744A (en) | 1996-05-03 | 1997-04-30 | Bifurcated stent and method of making same |
IL144230A IL144230A (en) | 1996-05-03 | 1997-04-30 | Bifurcated stent and method of making same |
IL21074497A IL120744A0 (en) | 1996-05-03 | 1997-04-30 | Bifurcated stent and method of making same |
IL179676A IL179676A (en) | 1996-05-03 | 1997-04-30 | Method of making a bifurcated stent |
IL192178A IL192178A (en) | 1996-05-03 | 1997-04-30 | Bifurcated stent |
IL207912A IL207912A (en) | 1996-05-03 | 1997-04-30 | Method of making a bifurcated stent |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
IL12074497A IL120744A (en) | 1996-05-03 | 1997-04-30 | Bifurcated stent and method of making same |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
IL21074497A IL120744A0 (en) | 1996-05-03 | 1997-04-30 | Bifurcated stent and method of making same |
IL179676A IL179676A (en) | 1996-05-03 | 1997-04-30 | Method of making a bifurcated stent |
IL192178A IL192178A (en) | 1996-05-03 | 1997-04-30 | Bifurcated stent |
IL207912A IL207912A (en) | 1996-05-03 | 1997-04-30 | Method of making a bifurcated stent |
Country Status (23)
Country | Link |
---|---|
US (7) | US5755734A (en) |
EP (2) | EP0804907B1 (en) |
JP (4) | JP3532730B2 (en) |
KR (1) | KR970073534A (en) |
CN (1) | CN1154449C (en) |
AR (3) | AR007008A1 (en) |
AT (2) | ATE310466T1 (en) |
AU (1) | AU729227B2 (en) |
BR (1) | BR9703057A (en) |
CA (2) | CA2204338C (en) |
CZ (1) | CZ130097A3 (en) |
DE (3) | DE69734691T2 (en) |
EE (1) | EE03739B1 (en) |
HK (1) | HK1032899A1 (en) |
IL (6) | IL120744A (en) |
MX (1) | MX9703259A (en) |
NO (2) | NO311681B1 (en) |
NZ (1) | NZ314698A (en) |
PL (1) | PL186753B1 (en) |
RU (2) | RU2181578C2 (en) |
SG (1) | SG91258A1 (en) |
SK (1) | SK54797A3 (en) |
UA (1) | UA58485C2 (en) |
Families Citing this family (313)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6039749A (en) | 1994-02-10 | 2000-03-21 | Endovascular Systems, Inc. | Method and apparatus for deploying non-circular stents and graftstent complexes |
US5836964A (en) * | 1996-10-30 | 1998-11-17 | Medinol Ltd. | Stent fabrication method |
CA2175720C (en) * | 1996-05-03 | 2011-11-29 | Ian M. Penn | Bifurcated stent and method for the manufacture and delivery of same |
FR2733682B1 (en) * | 1995-05-04 | 1997-10-31 | Dibie Alain | ENDOPROSTHESIS FOR THE TREATMENT OF STENOSIS ON BIFURCATIONS OF BLOOD VESSELS AND LAYING EQUIPMENT THEREFOR |
US5556382A (en) * | 1995-08-29 | 1996-09-17 | Scimed Life Systems, Inc. | Balloon perfusion catheter |
US6258116B1 (en) | 1996-01-26 | 2001-07-10 | Cordis Corporation | Bifurcated axially flexible stent |
US6017363A (en) * | 1997-09-22 | 2000-01-25 | Cordis Corporation | Bifurcated axially flexible stent |
CA2192520A1 (en) | 1996-03-05 | 1997-09-05 | Ian M. Penn | Expandable stent and method for delivery of same |
US6796997B1 (en) | 1996-03-05 | 2004-09-28 | Evysio Medical Devices Ulc | Expandable stent |
EP1477133B9 (en) | 1996-03-05 | 2007-11-21 | Evysio Medical Devices Ulc | Expandable stent |
UA58485C2 (en) | 1996-05-03 | 2003-08-15 | Медінол Лтд. | Method for manufacture of bifurcated stent (variants) and bifurcated stent (variants) |
US6770092B2 (en) * | 1996-05-03 | 2004-08-03 | Medinol Ltd. | Method of delivering a bifurcated stent |
US7641685B2 (en) * | 1996-05-03 | 2010-01-05 | Medinol Ltd. | System and method for delivering a bifurcated stent |
US6440165B1 (en) * | 1996-05-03 | 2002-08-27 | Medinol, Ltd. | Bifurcated stent with improved side branch aperture and method of making same |
US6251133B1 (en) * | 1996-05-03 | 2001-06-26 | Medinol Ltd. | Bifurcated stent with improved side branch aperture and method of making same |
MX9800715A (en) * | 1996-05-31 | 1998-04-30 | Bard Walway Ltd | Bifurcated endovascular stents and method and apparatus for their placement. |
US6007573A (en) * | 1996-09-18 | 1999-12-28 | Microtherapeutics, Inc. | Intracranial stent and method of use |
US6325826B1 (en) | 1998-01-14 | 2001-12-04 | Advanced Stent Technologies, Inc. | Extendible stent apparatus |
DE69736676T2 (en) * | 1996-11-04 | 2007-01-11 | Advanced Stent Technologies, Inc., Pleasanton | EXPERIENCED DOUBLE STAR |
US7341598B2 (en) * | 1999-01-13 | 2008-03-11 | Boston Scientific Scimed, Inc. | Stent with protruding branch portion for bifurcated vessels |
US7591846B2 (en) * | 1996-11-04 | 2009-09-22 | Boston Scientific Scimed, Inc. | Methods for deploying stents in bifurcations |
US8211167B2 (en) | 1999-12-06 | 2012-07-03 | Boston Scientific Scimed, Inc. | Method of using a catheter with attached flexible side sheath |
US6835203B1 (en) | 1996-11-04 | 2004-12-28 | Advanced Stent Technologies, Inc. | Extendible stent apparatus |
US6599316B2 (en) | 1996-11-04 | 2003-07-29 | Advanced Stent Technologies, Inc. | Extendible stent apparatus |
US6682536B2 (en) | 2000-03-22 | 2004-01-27 | Advanced Stent Technologies, Inc. | Guidewire introducer sheath |
US6596020B2 (en) | 1996-11-04 | 2003-07-22 | Advanced Stent Technologies, Inc. | Method of delivering a stent with a side opening |
US6692483B2 (en) | 1996-11-04 | 2004-02-17 | Advanced Stent Technologies, Inc. | Catheter with attached flexible side sheath |
US7959664B2 (en) * | 1996-12-26 | 2011-06-14 | Medinol, Ltd. | Flat process of drug coating for stents |
US6096073A (en) * | 1997-02-25 | 2000-08-01 | Scimed Life Systems, Inc. | Method of deploying a stent at a lesion site located at a bifurcation in a parent vessel |
IT1292295B1 (en) * | 1997-04-29 | 1999-01-29 | Sorin Biomedica Cardio Spa | ANGIOPLASTIC STENT |
US6102938A (en) * | 1997-06-17 | 2000-08-15 | Medtronic Inc. | Endoluminal prosthetic bifurcation shunt |
US6070589A (en) | 1997-08-01 | 2000-06-06 | Teramed, Inc. | Methods for deploying bypass graft stents |
US6361544B1 (en) | 1997-08-13 | 2002-03-26 | Advanced Cardiovascular Systems, Inc. | Stent and catheter assembly and method for treating bifurcations |
US7753950B2 (en) | 1997-08-13 | 2010-07-13 | Advanced Cardiovascular Systems, Inc. | Stent and catheter assembly and method for treating bifurcations |
US6221090B1 (en) | 1997-08-13 | 2001-04-24 | Advanced Cardiovascular Systems, Inc. | Stent delivery assembly |
US6165195A (en) * | 1997-08-13 | 2000-12-26 | Advanced Cardiovascylar Systems, Inc. | Stent and catheter assembly and method for treating bifurcations |
US6746476B1 (en) * | 1997-09-22 | 2004-06-08 | Cordis Corporation | Bifurcated axially flexible stent |
US6254627B1 (en) | 1997-09-23 | 2001-07-03 | Diseno Y Desarrollo Medico S.A. De C.V. | Non-thrombogenic stent jacket |
US6520988B1 (en) | 1997-09-24 | 2003-02-18 | Medtronic Ave, Inc. | Endolumenal prosthesis and method of use in bifurcation regions of body lumens |
US6086611A (en) * | 1997-09-25 | 2000-07-11 | Ave Connaught | Bifurcated stent |
FR2772592B1 (en) * | 1997-12-19 | 2000-04-07 | Braun Celsa Sa | ASSEMBLY FOR THE PLACEMENT OF AN IMPLANT IN AN INTERNAL CONDUIT OF A BODY |
AU2228699A (en) † | 1998-01-14 | 1999-08-02 | Advanced Stent Technologies, Inc. | Extendible stent apparatus |
US6395019B2 (en) | 1998-02-09 | 2002-05-28 | Trivascular, Inc. | Endovascular graft |
US6099497A (en) * | 1998-03-05 | 2000-08-08 | Scimed Life Systems, Inc. | Dilatation and stent delivery system for bifurcation lesions |
US6290731B1 (en) | 1998-03-30 | 2001-09-18 | Cordis Corporation | Aortic graft having a precursor gasket for repairing an abdominal aortic aneurysm |
US6656215B1 (en) | 2000-11-16 | 2003-12-02 | Cordis Corporation | Stent graft having an improved means for attaching a stent to a graft |
US8029561B1 (en) | 2000-05-12 | 2011-10-04 | Cordis Corporation | Drug combination useful for prevention of restenosis |
US6129738A (en) * | 1998-06-20 | 2000-10-10 | Medtronic Ave, Inc. | Method and apparatus for treating stenoses at bifurcated regions |
FR2780270B1 (en) * | 1998-06-25 | 2000-12-15 | Patrice Bergeron | THREE-DIMENSIONAL POSITIONING SYSTEM OF ENDOLUMINAL MATERIALS |
US6143002A (en) * | 1998-08-04 | 2000-11-07 | Scimed Life Systems, Inc. | System for delivering stents to bifurcation lesions |
US6117117A (en) * | 1998-08-24 | 2000-09-12 | Advanced Cardiovascular Systems, Inc. | Bifurcated catheter assembly |
US6238432B1 (en) * | 1998-08-25 | 2001-05-29 | Juan Carlos Parodi | Stent graft device for treating abdominal aortic aneurysms |
US6514281B1 (en) | 1998-09-04 | 2003-02-04 | Scimed Life Systems, Inc. | System for delivering bifurcation stents |
US6190403B1 (en) | 1998-11-13 | 2001-02-20 | Cordis Corporation | Low profile radiopaque stent with increased longitudinal flexibility and radial rigidity |
US6325820B1 (en) | 1998-11-16 | 2001-12-04 | Endotex Interventional Systems, Inc. | Coiled-sheet stent-graft with exo-skeleton |
US8092514B1 (en) | 1998-11-16 | 2012-01-10 | Boston Scientific Scimed, Inc. | Stretchable anti-buckling coiled-sheet stent |
US7655030B2 (en) | 2003-07-18 | 2010-02-02 | Boston Scientific Scimed, Inc. | Catheter balloon systems and methods |
US20050060027A1 (en) | 1999-01-13 | 2005-03-17 | Advanced Stent Technologies, Inc. | Catheter balloon systems and methods |
US8257425B2 (en) * | 1999-01-13 | 2012-09-04 | Boston Scientific Scimed, Inc. | Stent with protruding branch portion for bifurcated vessels |
EP1152711B1 (en) * | 1999-01-27 | 2005-07-06 | Boston Scientific Limited | Bifurcation stent delivery system |
US7018401B1 (en) | 1999-02-01 | 2006-03-28 | Board Of Regents, The University Of Texas System | Woven intravascular devices and methods for making the same and apparatus for delivery of the same |
BR0007932A (en) * | 1999-02-01 | 2002-07-02 | Univ Texas | Bifurcated and trifurcated braided stents and methods for their manufacture |
US6110201A (en) * | 1999-02-18 | 2000-08-29 | Venpro | Bifurcated biological pulmonary valved conduit |
EP1161185A2 (en) * | 1999-03-09 | 2001-12-12 | St. Jude Medical Cardiovascular Group, Inc. | Medical grafting methods and apparatus |
DE19921788A1 (en) * | 1999-05-11 | 2000-11-16 | Jomed Implantate Gmbh | Device for implanting vascular supports |
BR9901540C1 (en) | 1999-05-17 | 2001-12-18 | Fundacao Zerbini | Device for unblocking atherosclerotic lesions that include the origin of lateral branches or located in bifurcations of the coronary circulation, and the respective intervention process for placing the referred device |
US6290673B1 (en) * | 1999-05-20 | 2001-09-18 | Conor Medsystems, Inc. | Expandable medical device delivery system and method |
US6884258B2 (en) * | 1999-06-04 | 2005-04-26 | Advanced Stent Technologies, Inc. | Bifurcation lesion stent delivery using multiple guidewires |
US7387639B2 (en) * | 1999-06-04 | 2008-06-17 | Advanced Stent Technologies, Inc. | Short sleeve stent delivery catheter and methods |
DE60020562T2 (en) * | 1999-07-02 | 2006-05-11 | Endotex Interventional Systems, Inc., Cupertino | BENDY, EXPERIENCED DEVELOPED STENT |
US20060293695A1 (en) * | 1999-07-20 | 2006-12-28 | Ricci Donald R | Bifurcated stent delivery system and method of use |
US6402779B1 (en) | 1999-07-26 | 2002-06-11 | Endomed, Inc. | Balloon-assisted intraluminal stent graft |
US6183481B1 (en) | 1999-09-22 | 2001-02-06 | Endomed Inc. | Delivery system for self-expanding stents and grafts |
US6689156B1 (en) | 1999-09-23 | 2004-02-10 | Advanced Stent Technologies, Inc. | Stent range transducers and methods of use |
US6383213B2 (en) | 1999-10-05 | 2002-05-07 | Advanced Cardiovascular Systems, Inc. | Stent and catheter assembly and method for treating bifurcations |
US6652567B1 (en) * | 1999-11-18 | 2003-11-25 | David H. Deaton | Fenestrated endovascular graft |
US6673107B1 (en) | 1999-12-06 | 2004-01-06 | Advanced Cardiovascular Systems, Inc. | Bifurcated stent and method of making |
US6387120B2 (en) | 1999-12-09 | 2002-05-14 | Advanced Cardiovascular Systems, Inc. | Stent and catheter assembly and method for treating bifurcations |
US6221080B1 (en) * | 1999-12-10 | 2001-04-24 | John A. Power | Bifurcation lesion stenting catheter |
US6254593B1 (en) | 1999-12-10 | 2001-07-03 | Advanced Cardiovascular Systems, Inc. | Bifurcated stent delivery system having retractable sheath |
US6361555B1 (en) | 1999-12-15 | 2002-03-26 | Advanced Cardiovascular Systems, Inc. | Stent and stent delivery assembly and method of use |
US6942691B1 (en) | 2000-04-27 | 2005-09-13 | Timothy A. M. Chuter | Modular bifurcated graft for endovascular aneurysm repair |
US8236048B2 (en) | 2000-05-12 | 2012-08-07 | Cordis Corporation | Drug/drug delivery systems for the prevention and treatment of vascular disease |
US6776796B2 (en) | 2000-05-12 | 2004-08-17 | Cordis Corportation | Antiinflammatory drug and delivery device |
US6540775B1 (en) | 2000-06-30 | 2003-04-01 | Cordis Corporation | Ultraflexible open cell stent |
US6482211B1 (en) | 2000-07-31 | 2002-11-19 | Advanced Cardiovascular Systems, Inc. | Angulated stent delivery system and method of use |
WO2002015823A2 (en) | 2000-08-23 | 2002-02-28 | Endomed Inc. | Method of manufacturing custom intravascular devices |
US7101391B2 (en) * | 2000-09-18 | 2006-09-05 | Inflow Dynamics Inc. | Primarily niobium stent |
US6669722B2 (en) * | 2000-09-22 | 2003-12-30 | Cordis Corporation | Stent with optimal strength and radiopacity characteristics |
US6485512B1 (en) * | 2000-09-27 | 2002-11-26 | Advanced Cardiovascular Systems, Inc. | Two-stage light curable stent and delivery system |
MXPA03002871A (en) | 2000-09-29 | 2004-12-06 | Johnson & Johnson | Coated medical devices. |
US6582394B1 (en) | 2000-11-14 | 2003-06-24 | Advanced Cardiovascular Systems, Inc. | Stent and catheter assembly and method for treating bifurcated vessels |
AU3052202A (en) * | 2000-11-15 | 2002-05-27 | Mcmurray Fabrics Inc | Soft-tissue tubular prostheses with seamed transitions |
US20040106972A1 (en) * | 2000-11-20 | 2004-06-03 | Deaton David H. | Fenestrated endovascular graft |
US6544219B2 (en) | 2000-12-15 | 2003-04-08 | Advanced Cardiovascular Systems, Inc. | Catheter for placement of therapeutic devices at the ostium of a bifurcation of a body lumen |
WO2002067816A1 (en) * | 2001-02-26 | 2002-09-06 | Scimed Life Systems, Inc. | Bifurcated stent and delivery system |
WO2002067815A1 (en) | 2001-02-26 | 2002-09-06 | Scimed Life Systems, Inc. | Bifurcated stent |
US20030097169A1 (en) * | 2001-02-26 | 2003-05-22 | Brucker Gregory G. | Bifurcated stent and delivery system |
US6679911B2 (en) | 2001-03-01 | 2004-01-20 | Cordis Corporation | Flexible stent |
US6955686B2 (en) | 2001-03-01 | 2005-10-18 | Cordis Corporation | Flexible stent |
US6790227B2 (en) * | 2001-03-01 | 2004-09-14 | Cordis Corporation | Flexible stent |
AU784552B2 (en) * | 2001-03-02 | 2006-05-04 | Cardinal Health 529, Llc | Flexible stent |
US8182527B2 (en) * | 2001-05-07 | 2012-05-22 | Cordis Corporation | Heparin barrier coating for controlled drug release |
US6749628B1 (en) | 2001-05-17 | 2004-06-15 | Advanced Cardiovascular Systems, Inc. | Stent and catheter assembly and method for treating bifurcations |
US8617231B2 (en) | 2001-05-18 | 2013-12-31 | Boston Scientific Scimed, Inc. | Dual guidewire exchange catheter system |
CA2457860C (en) * | 2001-08-23 | 2010-03-16 | Darrel C. Gumm | Rotating stent delivery system for side branch access and protection and method of using same |
US7252679B2 (en) * | 2001-09-13 | 2007-08-07 | Cordis Corporation | Stent with angulated struts |
US7578841B2 (en) | 2001-09-24 | 2009-08-25 | Boston Scientific Scimed, Inc. | Stent with protruding branch portion for bifurcated vessels |
US6752825B2 (en) | 2001-10-02 | 2004-06-22 | Scimed Life Systems, Inc | Nested stent apparatus |
US6682537B2 (en) | 2001-12-20 | 2004-01-27 | The Cleveland Clinic Foundation | Apparatus and method for capturing a wire in a blood vessel |
US6641606B2 (en) | 2001-12-20 | 2003-11-04 | Cleveland Clinic Foundation | Delivery system and method for deploying an endovascular prosthesis |
US7014653B2 (en) * | 2001-12-20 | 2006-03-21 | Cleveland Clinic Foundation | Furcated endovascular prosthesis |
US7147661B2 (en) | 2001-12-20 | 2006-12-12 | Boston Scientific Santa Rosa Corp. | Radially expandable stent |
US7125464B2 (en) | 2001-12-20 | 2006-10-24 | Boston Scientific Santa Rosa Corp. | Method for manufacturing an endovascular graft section |
US7029493B2 (en) * | 2002-01-25 | 2006-04-18 | Cordis Corporation | Stent with enhanced crossability |
US6746411B2 (en) * | 2002-02-06 | 2004-06-08 | The University Of Medicine And Dentistry Of New Jersey | Exitable lumen guide wire sheath and method of use |
US20060253480A1 (en) * | 2002-04-06 | 2006-11-09 | Staples Peter E | Collaborative design process for a design team, outside suppliers, and outside manufacturers |
AU2003241129A1 (en) * | 2002-06-13 | 2003-12-31 | Existent, Inc. | Guidewire system |
EP1551309A2 (en) * | 2002-06-13 | 2005-07-13 | Lee, Byung-don | Mechanical structures and implants using said structures |
AU2003294226A1 (en) | 2002-09-20 | 2004-04-23 | Flowmedica, Inc. | Method and apparatus for intra aortic substance delivery to a branch vessel |
JP2006508776A (en) | 2002-09-20 | 2006-03-16 | フローメディカ,インコーポレイテッド | Method and apparatus for selective substance delivery via an intrarenal catheter |
US20050197624A1 (en) | 2004-03-04 | 2005-09-08 | Flowmedica, Inc. | Sheath for use in peripheral interventions |
US7993325B2 (en) | 2002-09-20 | 2011-08-09 | Angio Dynamics, Inc. | Renal infusion systems and methods |
US20040093056A1 (en) | 2002-10-26 | 2004-05-13 | Johnson Lianw M. | Medical appliance delivery apparatus and method of use |
US7637942B2 (en) | 2002-11-05 | 2009-12-29 | Merit Medical Systems, Inc. | Coated stent with geometry determinated functionality and method of making the same |
US7875068B2 (en) | 2002-11-05 | 2011-01-25 | Merit Medical Systems, Inc. | Removable biliary stent |
US7959671B2 (en) | 2002-11-05 | 2011-06-14 | Merit Medical Systems, Inc. | Differential covering and coating methods |
US7169177B2 (en) * | 2003-01-15 | 2007-01-30 | Boston Scientific Scimed, Inc. | Bifurcated stent |
US7367989B2 (en) * | 2003-02-27 | 2008-05-06 | Scimed Life Systems, Inc. | Rotating balloon expandable sheath bifurcation delivery |
US7314480B2 (en) * | 2003-02-27 | 2008-01-01 | Boston Scientific Scimed, Inc. | Rotating balloon expandable sheath bifurcation delivery |
US7637934B2 (en) | 2003-03-31 | 2009-12-29 | Merit Medical Systems, Inc. | Medical appliance optical delivery and deployment apparatus and method |
US7481834B2 (en) * | 2003-04-14 | 2009-01-27 | Tryton Medical, Inc. | Stent for placement at luminal os |
US7717953B2 (en) * | 2004-10-13 | 2010-05-18 | Tryton Medical, Inc. | Delivery system for placement of prosthesis at luminal OS |
US8083791B2 (en) | 2003-04-14 | 2011-12-27 | Tryton Medical, Inc. | Method of treating a lumenal bifurcation |
US7731747B2 (en) * | 2003-04-14 | 2010-06-08 | Tryton Medical, Inc. | Vascular bifurcation prosthesis with multiple thin fronds |
US8109987B2 (en) | 2003-04-14 | 2012-02-07 | Tryton Medical, Inc. | Method of treating a lumenal bifurcation |
US7972372B2 (en) * | 2003-04-14 | 2011-07-05 | Tryton Medical, Inc. | Kit for treating vascular bifurcations |
US7758630B2 (en) | 2003-04-14 | 2010-07-20 | Tryton Medical, Inc. | Helical ostium support for treating vascular bifurcations |
US7604660B2 (en) | 2003-05-01 | 2009-10-20 | Merit Medical Systems, Inc. | Bifurcated medical appliance delivery apparatus and method |
US20050033416A1 (en) * | 2003-05-02 | 2005-02-10 | Jacques Seguin | Vascular graft and deployment system |
EP1635736A2 (en) | 2003-06-05 | 2006-03-22 | FlowMedica, Inc. | Systems and methods for performing bi-lateral interventions or diagnosis in branched body lumens |
US20040254628A1 (en) * | 2003-06-13 | 2004-12-16 | Patrice Nazzaro | One-branch stent-graft for bifurcated lumens |
US7491227B2 (en) * | 2003-06-16 | 2009-02-17 | Boston Scientific Scimed, Inc. | Coiled-sheet stent with flexible mesh design |
US7604621B2 (en) * | 2003-07-30 | 2009-10-20 | Boston Scientific Scimed, Inc. | Bifurcated stent delivery system |
US7959665B2 (en) | 2003-07-31 | 2011-06-14 | Abbott Cardiovascular Systems Inc. | Intravascular stent with inverted end rings |
US8784472B2 (en) * | 2003-08-15 | 2014-07-22 | Boston Scientific Scimed, Inc. | Clutch driven stent delivery system |
US7628806B2 (en) * | 2003-08-20 | 2009-12-08 | Boston Scientific Scimed, Inc. | Stent with improved resistance to migration |
US8298280B2 (en) | 2003-08-21 | 2012-10-30 | Boston Scientific Scimed, Inc. | Stent with protruding branch portion for bifurcated vessels |
US7344557B2 (en) | 2003-11-12 | 2008-03-18 | Advanced Stent Technologies, Inc. | Catheter balloon systems and methods |
US7090694B1 (en) | 2003-11-19 | 2006-08-15 | Advanced Cardiovascular Systems, Inc. | Portal design for stent for treating bifurcated vessels |
US7686841B2 (en) * | 2003-12-29 | 2010-03-30 | Boston Scientific Scimed, Inc. | Rotating balloon expandable sheath bifurcation delivery system |
US7922753B2 (en) * | 2004-01-13 | 2011-04-12 | Boston Scientific Scimed, Inc. | Bifurcated stent delivery system |
US7803178B2 (en) | 2004-01-30 | 2010-09-28 | Trivascular, Inc. | Inflatable porous implants and methods for drug delivery |
US8012192B2 (en) * | 2004-02-18 | 2011-09-06 | Boston Scientific Scimed, Inc. | Multi-stent delivery system |
US7225518B2 (en) * | 2004-02-23 | 2007-06-05 | Boston Scientific Scimed, Inc. | Apparatus for crimping a stent assembly |
US7922740B2 (en) | 2004-02-24 | 2011-04-12 | Boston Scientific Scimed, Inc. | Rotatable catheter assembly |
US7744619B2 (en) * | 2004-02-24 | 2010-06-29 | Boston Scientific Scimed, Inc. | Rotatable catheter assembly |
US7207204B2 (en) | 2004-02-26 | 2007-04-24 | Boston Scientific Scimed, Inc. | Crimper |
US7480973B2 (en) * | 2004-03-01 | 2009-01-27 | Boston Scientific Scimed, Inc. | Automated marker band nest placement crimper |
US8632580B2 (en) * | 2004-12-29 | 2014-01-21 | Boston Scientific Scimed, Inc. | Flexible medical devices including metallic films |
US7901447B2 (en) * | 2004-12-29 | 2011-03-08 | Boston Scientific Scimed, Inc. | Medical devices including a metallic film and at least one filament |
US8998973B2 (en) * | 2004-03-02 | 2015-04-07 | Boston Scientific Scimed, Inc. | Medical devices including metallic films |
US8591568B2 (en) * | 2004-03-02 | 2013-11-26 | Boston Scientific Scimed, Inc. | Medical devices including metallic films and methods for making same |
US20060142838A1 (en) * | 2004-12-29 | 2006-06-29 | Masoud Molaei | Medical devices including metallic films and methods for loading and deploying same |
US20050197687A1 (en) * | 2004-03-02 | 2005-09-08 | Masoud Molaei | Medical devices including metallic films and methods for making same |
US8992592B2 (en) * | 2004-12-29 | 2015-03-31 | Boston Scientific Scimed, Inc. | Medical devices including metallic films |
US8007528B2 (en) * | 2004-03-17 | 2011-08-30 | Boston Scientific Scimed, Inc. | Bifurcated stent |
US20050273149A1 (en) * | 2004-06-08 | 2005-12-08 | Tran Thomas T | Bifurcated stent delivery system |
US7389670B1 (en) | 2004-07-26 | 2008-06-24 | Abbott Laboratories | Stent crimping system |
US20060064064A1 (en) * | 2004-09-17 | 2006-03-23 | Jang G D | Two-step/dual-diameter balloon angioplasty catheter for bifurcation and side-branch vascular anatomy |
WO2006034276A1 (en) * | 2004-09-21 | 2006-03-30 | William A. Cook Austrialia Pty. Ltd. | Side branch stent graft |
EP1807022A2 (en) * | 2004-11-03 | 2007-07-18 | Jacques Seguin | Vascular graft and deployment system |
US9427340B2 (en) * | 2004-12-14 | 2016-08-30 | Boston Scientific Scimed, Inc. | Stent with protruding branch portion for bifurcated vessels |
US8128680B2 (en) * | 2005-01-10 | 2012-03-06 | Taheri Laduca Llc | Apparatus and method for deploying an implantable device within the body |
US9101500B2 (en) * | 2005-01-10 | 2015-08-11 | Trireme Medical, Inc. | Stent with self-deployable portion having wings of different lengths |
US9114033B2 (en) * | 2005-01-10 | 2015-08-25 | Trireme Medical, Inc. | Stent with self-deployable portion |
US20070150051A1 (en) * | 2005-01-10 | 2007-06-28 | Duke Fiduciary, Llc | Vascular implants and methods of fabricating the same |
US8287583B2 (en) | 2005-01-10 | 2012-10-16 | Taheri Laduca Llc | Apparatus and method for deploying an implantable device within the body |
US20080188803A1 (en) * | 2005-02-03 | 2008-08-07 | Jang G David | Triple-profile balloon catheter |
US7850645B2 (en) * | 2005-02-11 | 2010-12-14 | Boston Scientific Scimed, Inc. | Internal medical devices for delivery of therapeutic agent in conjunction with a source of electrical power |
US7922754B2 (en) | 2005-04-18 | 2011-04-12 | Trireme Medical, Inc. | Apparatus and methods for delivering prostheses to luminal bifurcations |
US7854760B2 (en) * | 2005-05-16 | 2010-12-21 | Boston Scientific Scimed, Inc. | Medical devices including metallic films |
US8608789B2 (en) | 2005-05-24 | 2013-12-17 | Trireme Medical, Inc. | Delivery system for bifurcation stents |
US8480728B2 (en) * | 2005-05-26 | 2013-07-09 | Boston Scientific Scimed, Inc. | Stent side branch deployment initiation geometry |
US20060271161A1 (en) * | 2005-05-26 | 2006-11-30 | Boston Scientific Scimed, Inc. | Selective treatment of stent side branch petals |
US8317855B2 (en) * | 2005-05-26 | 2012-11-27 | Boston Scientific Scimed, Inc. | Crimpable and expandable side branch cell |
US8043366B2 (en) | 2005-09-08 | 2011-10-25 | Boston Scientific Scimed, Inc. | Overlapping stent |
US7731741B2 (en) | 2005-09-08 | 2010-06-08 | Boston Scientific Scimed, Inc. | Inflatable bifurcation stent |
US8038706B2 (en) * | 2005-09-08 | 2011-10-18 | Boston Scientific Scimed, Inc. | Crown stent assembly |
US20070112418A1 (en) | 2005-11-14 | 2007-05-17 | Boston Scientific Scimed, Inc. | Stent with spiral side-branch support designs |
US8343211B2 (en) | 2005-12-14 | 2013-01-01 | Boston Scientific Scimed, Inc. | Connectors for bifurcated stent |
US8435284B2 (en) | 2005-12-14 | 2013-05-07 | Boston Scientific Scimed, Inc. | Telescoping bifurcated stent |
US7540881B2 (en) | 2005-12-22 | 2009-06-02 | Boston Scientific Scimed, Inc. | Bifurcation stent pattern |
US8821561B2 (en) | 2006-02-22 | 2014-09-02 | Boston Scientific Scimed, Inc. | Marker arrangement for bifurcation catheter |
US7833264B2 (en) * | 2006-03-06 | 2010-11-16 | Boston Scientific Scimed, Inc. | Bifurcated stent |
US20070208414A1 (en) * | 2006-03-06 | 2007-09-06 | Shawn Sorenson | Tapered strength rings on a bifurcated stent petal |
US20070208419A1 (en) * | 2006-03-06 | 2007-09-06 | Boston Scientific Scimed, Inc. | Bifurcation stent with uniform side branch projection |
US20070208411A1 (en) * | 2006-03-06 | 2007-09-06 | Boston Scientific Scimed, Inc. | Bifurcated stent with surface area gradient |
US8298278B2 (en) * | 2006-03-07 | 2012-10-30 | Boston Scientific Scimed, Inc. | Bifurcated stent with improvement securement |
US8167929B2 (en) * | 2006-03-09 | 2012-05-01 | Abbott Laboratories | System and method for delivering a stent to a bifurcated vessel |
US20070270933A1 (en) * | 2006-03-09 | 2007-11-22 | Abbott Laboratories | Stent having contoured proximal end |
US9757260B2 (en) * | 2006-03-30 | 2017-09-12 | Medtronic Vascular, Inc. | Prosthesis with guide lumen |
US20080097620A1 (en) | 2006-05-26 | 2008-04-24 | Nanyang Technological University | Implantable article, method of forming same and method for reducing thrombogenicity |
US7771401B2 (en) | 2006-06-08 | 2010-08-10 | Angiodynamics, Inc. | Selective renal cannulation and infusion systems and methods |
EP2051673A2 (en) | 2006-06-23 | 2009-04-29 | Boston Scientific Limited | Bifurcated stent with twisted hinges |
US8029558B2 (en) * | 2006-07-07 | 2011-10-04 | Abbott Cardiovascular Systems, Inc. | Stent and catheter assembly and method for treating bifurcations |
US8834554B2 (en) | 2006-08-22 | 2014-09-16 | Abbott Cardiovascular Systems Inc. | Intravascular stent |
US8882826B2 (en) | 2006-08-22 | 2014-11-11 | Abbott Cardiovascular Systems Inc. | Intravascular stent |
WO2008024943A1 (en) * | 2006-08-23 | 2008-02-28 | Abbott Laboratories | Catheter system and method for delivering medical devices |
US8216267B2 (en) | 2006-09-12 | 2012-07-10 | Boston Scientific Scimed, Inc. | Multilayer balloon for bifurcated stent delivery and methods of making and using the same |
US20080071346A1 (en) * | 2006-09-14 | 2008-03-20 | Boston Scientific Scimed, Inc. | Multilayer Sheet Stent |
US7951191B2 (en) * | 2006-10-10 | 2011-05-31 | Boston Scientific Scimed, Inc. | Bifurcated stent with entire circumferential petal |
MX2009004291A (en) | 2006-10-22 | 2009-09-07 | Idev Technologies Inc | Methods for securing strand ends and the resulting devices. |
MX344492B (en) | 2006-10-22 | 2016-12-16 | Idev Tech Inc * | Devices and methods for stent advancement. |
WO2008051554A2 (en) * | 2006-10-24 | 2008-05-02 | Beth Israel Deaconess Medical Center | Percutaneous aortic valve assembly |
US8206429B2 (en) | 2006-11-02 | 2012-06-26 | Boston Scientific Scimed, Inc. | Adjustable bifurcation catheter incorporating electroactive polymer and methods of making and using the same |
US7842082B2 (en) * | 2006-11-16 | 2010-11-30 | Boston Scientific Scimed, Inc. | Bifurcated stent |
US20080147174A1 (en) * | 2006-12-11 | 2008-06-19 | Trireme Medical, Inc. | Apparatus and method of using markers to position stents in bifurcations |
US20080161873A1 (en) | 2007-01-03 | 2008-07-03 | Gunderson Bruce D | Method and apparatus for reducing inappropriate detection of lead-related noise |
US8216298B2 (en) | 2007-01-05 | 2012-07-10 | Medtronic Vascular, Inc. | Branch vessel graft method and delivery system |
US7959668B2 (en) * | 2007-01-16 | 2011-06-14 | Boston Scientific Scimed, Inc. | Bifurcated stent |
EP2114303A4 (en) | 2007-02-09 | 2012-08-08 | Taheri Laduca Llc | Vascular implants and methods of fabricating the same |
JP5662683B2 (en) * | 2007-02-09 | 2015-02-04 | タヘリ ラドュカ エルエルシー | Apparatus and method for deploying an implantable device in a body |
US8343181B2 (en) | 2007-03-01 | 2013-01-01 | Medtronic Vascular, Inc. | Method and apparatus for treating stenoses at bifurcated regions |
US20080300602A1 (en) * | 2007-03-02 | 2008-12-04 | Schmitt Peter J | Fabric medical device having a tapered transition and method of making |
US8118861B2 (en) * | 2007-03-28 | 2012-02-21 | Boston Scientific Scimed, Inc. | Bifurcation stent and balloon assemblies |
US8647376B2 (en) * | 2007-03-30 | 2014-02-11 | Boston Scientific Scimed, Inc. | Balloon fold design for deployment of bifurcated stent petal architecture |
US20090012601A1 (en) * | 2007-07-05 | 2009-01-08 | Abbott Cardiovascular Systems, Inc. | Stent and catheter assembly and method for treating bifurcations |
US8486134B2 (en) | 2007-08-01 | 2013-07-16 | Boston Scientific Scimed, Inc. | Bifurcation treatment system and methods |
US7959669B2 (en) * | 2007-09-12 | 2011-06-14 | Boston Scientific Scimed, Inc. | Bifurcated stent with open ended side branch support |
US8226701B2 (en) | 2007-09-26 | 2012-07-24 | Trivascular, Inc. | Stent and delivery system for deployment thereof |
US8663309B2 (en) | 2007-09-26 | 2014-03-04 | Trivascular, Inc. | Asymmetric stent apparatus and method |
US8066755B2 (en) | 2007-09-26 | 2011-11-29 | Trivascular, Inc. | System and method of pivoted stent deployment |
EP2194921B1 (en) | 2007-10-04 | 2018-08-29 | TriVascular, Inc. | Modular vascular graft for low profile percutaneous delivery |
US20090125097A1 (en) * | 2007-11-13 | 2009-05-14 | Medtronic Vascular, Inc. | Device and Method for Stent Graft Fenestration in Situ |
US8936567B2 (en) | 2007-11-14 | 2015-01-20 | Boston Scientific Scimed, Inc. | Balloon bifurcated lumen treatment |
US8083789B2 (en) | 2007-11-16 | 2011-12-27 | Trivascular, Inc. | Securement assembly and method for expandable endovascular device |
US8328861B2 (en) | 2007-11-16 | 2012-12-11 | Trivascular, Inc. | Delivery system and method for bifurcated graft |
US7833266B2 (en) | 2007-11-28 | 2010-11-16 | Boston Scientific Scimed, Inc. | Bifurcated stent with drug wells for specific ostial, carina, and side branch treatment |
US8277501B2 (en) * | 2007-12-21 | 2012-10-02 | Boston Scientific Scimed, Inc. | Bi-stable bifurcated stent petal geometry |
US8747456B2 (en) | 2007-12-31 | 2014-06-10 | Boston Scientific Scimed, Inc. | Bifurcation stent delivery system and methods |
US8221494B2 (en) * | 2008-02-22 | 2012-07-17 | Endologix, Inc. | Apparatus and method of placement of a graft or graft system |
US20090240318A1 (en) * | 2008-03-19 | 2009-09-24 | Boston Scientific Scimed, Inc. | Stent expansion column, strut and connector slit design |
US8333003B2 (en) * | 2008-05-19 | 2012-12-18 | Boston Scientific Scimed, Inc. | Bifurcation stent crimping systems and methods |
US8932340B2 (en) * | 2008-05-29 | 2015-01-13 | Boston Scientific Scimed, Inc. | Bifurcated stent and delivery system |
US8377108B2 (en) | 2008-06-02 | 2013-02-19 | Boston Scientific Scimed, Inc. | Staggered two balloon bifurcation catheter assembly and methods |
EP2320999A1 (en) * | 2008-06-02 | 2011-05-18 | Medtronic, Inc. | Sensing integrity determination based on cardiovascular pressure |
EP2303403B1 (en) * | 2008-06-02 | 2016-09-14 | Medtronic, Inc. | Electrogram storage for suspected non-physiological episodes |
US20090299421A1 (en) * | 2008-06-02 | 2009-12-03 | Medtronic, Inc. | Evaluation of implantable medical device sensing integrity based on evoked signals |
US8644931B2 (en) * | 2008-06-02 | 2014-02-04 | Medtronic, Inc. | Impedance variability analysis to identify lead-related conditions |
WO2009148428A1 (en) * | 2008-06-02 | 2009-12-10 | Medtronic, Inc. | Electrode lead integrity reports |
WO2009149410A1 (en) | 2008-06-05 | 2009-12-10 | Boston Scientific Scimed, Inc. | Deflatable bifurcated device |
US10898620B2 (en) | 2008-06-20 | 2021-01-26 | Razmodics Llc | Composite stent having multi-axial flexibility and method of manufacture thereof |
US8206636B2 (en) | 2008-06-20 | 2012-06-26 | Amaranth Medical Pte. | Stent fabrication via tubular casting processes |
US8206635B2 (en) | 2008-06-20 | 2012-06-26 | Amaranth Medical Pte. | Stent fabrication via tubular casting processes |
US7974690B2 (en) * | 2008-06-30 | 2011-07-05 | Medtronic, Inc. | Lead integrity testing during suspected tachyarrhythmias |
EP2520320B1 (en) | 2008-07-01 | 2016-11-02 | Endologix, Inc. | Catheter system |
US9522277B2 (en) | 2008-07-28 | 2016-12-20 | Medtronic, Inc. | Lead integrity testing triggered by sensed signal saturation |
US7953488B2 (en) * | 2008-07-31 | 2011-05-31 | Medtronic, Inc. | Pre-qualification of an alternate sensing configuration |
US8133199B2 (en) | 2008-08-27 | 2012-03-13 | Boston Scientific Scimed, Inc. | Electroactive polymer activation system for a medical device |
WO2010036982A1 (en) * | 2008-09-25 | 2010-04-01 | Henry Bourang | Partially crimped stent |
US8769796B2 (en) | 2008-09-25 | 2014-07-08 | Advanced Bifurcation Systems, Inc. | Selective stent crimping |
US8821562B2 (en) | 2008-09-25 | 2014-09-02 | Advanced Bifurcation Systems, Inc. | Partially crimped stent |
US11298252B2 (en) | 2008-09-25 | 2022-04-12 | Advanced Bifurcation Systems Inc. | Stent alignment during treatment of a bifurcation |
US12076258B2 (en) | 2008-09-25 | 2024-09-03 | Advanced Bifurcation Systems Inc. | Selective stent crimping |
US20100106255A1 (en) * | 2008-10-24 | 2010-04-29 | Dubin Marc G | Self-expanding frontal sinus stent and insertion tool |
US8078277B2 (en) * | 2008-10-29 | 2011-12-13 | Medtronic, Inc. | Identification and remediation of oversensed cardiac events using far-field electrograms |
US10118042B2 (en) | 2008-10-31 | 2018-11-06 | Medtronic, Inc. | Lead integrity testing triggered by sensed asystole |
US9427302B2 (en) * | 2009-04-09 | 2016-08-30 | Medtronic Vascular, Inc. | Stent having a C-shaped body section for use in a bifurcation |
US8292941B2 (en) | 2009-04-23 | 2012-10-23 | Medtronic Vascular, Inc. | Delivery system for deployment of a one-piece iliac-branch device |
US20110054586A1 (en) | 2009-04-28 | 2011-03-03 | Endologix, Inc. | Apparatus and method of placement of a graft or graft system |
KR101073035B1 (en) * | 2009-05-13 | 2011-10-12 | 연세대학교 산학협력단 | H Side-branch Stent |
US20100318170A1 (en) * | 2009-06-15 | 2010-12-16 | Richard Newhauser | Proximal catheter flap for managing wire twist |
US8366763B2 (en) | 2009-07-02 | 2013-02-05 | Tryton Medical, Inc. | Ostium support for treating vascular bifurcations |
ES2549000T3 (en) | 2009-07-27 | 2015-10-22 | Endologix, Inc. | Endoprosthesis |
US20110130825A1 (en) * | 2009-12-01 | 2011-06-02 | Altura Medical, Inc. | Modular endograft devices and associated systems and methods |
US8396543B2 (en) * | 2010-01-28 | 2013-03-12 | Medtronic, Inc. | Storage of data for evaluation of lead integrity |
AU2011232360B2 (en) | 2010-03-24 | 2015-10-08 | Advanced Bifurcation Systems Inc. | Methods and systems for treating a bifurcation with provisional side branch stenting |
CN109363807B (en) | 2010-03-24 | 2021-04-02 | 高级分支系统股份有限公司 | System and method for treating a bifurcation |
EP2549951B1 (en) | 2010-03-24 | 2017-05-10 | Advanced Bifurcation Systems, Inc. | Stent alignment during treatment of a bifurcation |
US9402754B2 (en) | 2010-05-18 | 2016-08-02 | Abbott Cardiovascular Systems, Inc. | Expandable endoprostheses, systems, and methods for treating a bifurcated lumen |
US9023095B2 (en) | 2010-05-27 | 2015-05-05 | Idev Technologies, Inc. | Stent delivery system with pusher assembly |
WO2012040240A1 (en) | 2010-09-20 | 2012-03-29 | Altura Medical, Inc. | Stent graft delivery systems and associated methods |
US20120109279A1 (en) | 2010-11-02 | 2012-05-03 | Endologix, Inc. | Apparatus and method of placement of a graft or graft system |
EP2642946B1 (en) | 2010-11-24 | 2023-08-16 | Poseidon Medical Inc. | Support for treating vascular bifurcations |
EP2672925B1 (en) | 2011-02-08 | 2017-05-03 | Advanced Bifurcation Systems, Inc. | Multi-stent and multi-balloon apparatus for treating bifurcations |
EP3449879B1 (en) | 2011-02-08 | 2020-09-23 | Advanced Bifurcation Systems Inc. | System for treating a bifurcation with a fully crimped stent |
EP2680915B1 (en) | 2011-03-01 | 2021-12-22 | Endologix LLC | Catheter system |
CN103648445B (en) * | 2011-07-12 | 2016-06-29 | 拉什大学医学中心 | There is the vessel bifurcation stent deployment system of zip mode conduit |
KR101237438B1 (en) * | 2011-08-16 | 2013-02-26 | 양수인 | A non-cylindrical stent |
EP2572751B1 (en) | 2011-09-21 | 2014-10-29 | Sorin CRM SAS | Probe for stimulation in an extended region of a cardiac chamber, which can be implanted by wire guidance in the deep coronary network |
US8774909B2 (en) | 2011-09-26 | 2014-07-08 | Medtronic, Inc. | Episode classifier algorithm |
US8437840B2 (en) | 2011-09-26 | 2013-05-07 | Medtronic, Inc. | Episode classifier algorithm |
US9668668B2 (en) | 2011-09-30 | 2017-06-06 | Medtronic, Inc. | Electrogram summary |
US8744560B2 (en) | 2011-09-30 | 2014-06-03 | Medtronic, Inc. | Electrogram summary |
US8886296B2 (en) | 2011-10-14 | 2014-11-11 | Medtronic, Inc. | T-wave oversensing |
US8521281B2 (en) | 2011-10-14 | 2013-08-27 | Medtronic, Inc. | Electrogram classification algorithm |
US20130103163A1 (en) | 2011-10-21 | 2013-04-25 | Merit Medical Systems, Inc. | Devices and methods for stenting an airway |
US8992595B2 (en) | 2012-04-04 | 2015-03-31 | Trivascular, Inc. | Durable stent graft with tapered struts and stable delivery methods and devices |
US9498363B2 (en) | 2012-04-06 | 2016-11-22 | Trivascular, Inc. | Delivery catheter for endovascular device |
WO2013162724A1 (en) | 2012-04-26 | 2013-10-31 | Tryton Medical, Inc. | Support for treating vascular bifurcations |
US10098665B2 (en) | 2012-08-01 | 2018-10-16 | DePuy Synthes Products, Inc. | Spine derotation system |
JP6326648B2 (en) | 2012-08-10 | 2018-05-23 | アルツラ メディカル インコーポレイテッド | Stent delivery system and related method |
US9737426B2 (en) | 2013-03-15 | 2017-08-22 | Altura Medical, Inc. | Endograft device delivery systems and associated methods |
JP6128689B2 (en) * | 2013-11-29 | 2017-05-17 | 弘志 岩村 | Artificial blood vessel |
US9468545B2 (en) | 2014-04-04 | 2016-10-18 | W. L. Gore & Associates, Inc. | Bifurcated graft device |
EP3139860B1 (en) | 2015-06-30 | 2024-06-12 | Endologix LLC | Locking assembly for coupling guidewire to delivery system |
US10130465B2 (en) | 2016-02-23 | 2018-11-20 | Abbott Cardiovascular Systems Inc. | Bifurcated tubular graft for treating tricuspid regurgitation |
US10772719B2 (en) * | 2017-02-14 | 2020-09-15 | Cook Medical Technologies Llc | Method of making a contoured internal limb for a prosthesis and prosthesis with a contoured internal limb |
US20200016382A1 (en) * | 2017-04-28 | 2020-01-16 | S&G Biotech, Inc. | Drainage catheter |
US10350395B2 (en) * | 2017-06-23 | 2019-07-16 | Cook Medical Technologies Llc | Introducer for lumen support or dilation |
US11969335B2 (en) | 2020-04-28 | 2024-04-30 | Cook Medical Technologies Llc | Woven graft having a taper with a re-engaged warp end |
US11938087B2 (en) * | 2021-08-23 | 2024-03-26 | Young Hei Lee | Intramuscular stimulation needling device |
Family Cites Families (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4577631A (en) * | 1984-11-16 | 1986-03-25 | Kreamer Jeffry W | Aneurysm repair apparatus and method |
US4733665C2 (en) * | 1985-11-07 | 2002-01-29 | Expandable Grafts Partnership | Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft |
US4795465A (en) * | 1987-05-14 | 1989-01-03 | Hood Laboratories | Tracheobronchial stent |
US4896670A (en) | 1988-04-19 | 1990-01-30 | C. R. Bard, Inc. | Kissing balloon catheter |
US4994071A (en) * | 1989-05-22 | 1991-02-19 | Cordis Corporation | Bifurcating stent apparatus and method |
US5064435A (en) * | 1990-06-28 | 1991-11-12 | Schneider (Usa) Inc. | Self-expanding prosthesis having stable axial length |
AR246020A1 (en) * | 1990-10-03 | 1994-03-30 | Hector Daniel Barone Juan Carl | A ball device for implanting an intraluminous aortic prosthesis, for repairing aneurysms. |
US5383891A (en) | 1991-04-08 | 1995-01-24 | Walker; Marshall D. | Nose bleed kid |
US5304220A (en) * | 1991-07-03 | 1994-04-19 | Maginot Thomas J | Method and apparatus for implanting a graft prosthesis in the body of a patient |
FR2678508B1 (en) * | 1991-07-04 | 1998-01-30 | Celsa Lg | DEVICE FOR REINFORCING VESSELS OF THE HUMAN BODY. |
CA2380683C (en) | 1991-10-28 | 2006-08-08 | Advanced Cardiovascular Systems, Inc. | Expandable stents and method for making same |
FR2683449A1 (en) * | 1991-11-08 | 1993-05-14 | Cardon Alain | ENDOPROTHESIS FOR TRANSLUMINAL IMPLANTATION. |
US5316023A (en) * | 1992-01-08 | 1994-05-31 | Expandable Grafts Partnership | Method for bilateral intra-aortic bypass |
US5464449A (en) * | 1993-07-08 | 1995-11-07 | Thomas J. Fogarty | Internal graft prosthesis and delivery system |
US5855598A (en) | 1993-10-21 | 1999-01-05 | Corvita Corporation | Expandable supportive branched endoluminal grafts |
US5443497A (en) * | 1993-11-22 | 1995-08-22 | The Johns Hopkins University | Percutaneous prosthetic by-pass graft and method of use |
US5607444A (en) * | 1993-12-02 | 1997-03-04 | Advanced Cardiovascular Systems, Inc. | Ostial stent for bifurcations |
DE9319267U1 (en) * | 1993-12-15 | 1994-02-24 | Günther, Rudolf W., Prof. Dr., 52074 Aachen | Aortic endoprosthesis |
US5609627A (en) * | 1994-02-09 | 1997-03-11 | Boston Scientific Technology, Inc. | Method for delivering a bifurcated endoluminal prosthesis |
US5643312A (en) | 1994-02-25 | 1997-07-01 | Fischell Robert | Stent having a multiplicity of closed circular structures |
US5549663A (en) | 1994-03-09 | 1996-08-27 | Cordis Corporation | Endoprosthesis having graft member and exposed welded end junctions, method and procedure |
DE69510986T2 (en) | 1994-04-25 | 1999-12-02 | Advanced Cardiovascular Systems, Inc. | Radiation-opaque stent markings |
US5765418A (en) | 1994-05-16 | 1998-06-16 | Medtronic, Inc. | Method for making an implantable medical device from a refractory metal |
DE69518435T3 (en) * | 1994-06-08 | 2004-07-22 | CardioVascular Concepts, Inc., Portola Valley | A branching graft manufacturing system |
US5609605A (en) * | 1994-08-25 | 1997-03-11 | Ethicon, Inc. | Combination arterial stent |
JP2911763B2 (en) * | 1994-10-27 | 1999-06-23 | 三桜子 布川 | Artificial blood vessel |
CA2175720C (en) * | 1996-05-03 | 2011-11-29 | Ian M. Penn | Bifurcated stent and method for the manufacture and delivery of same |
CA2134997C (en) | 1994-11-03 | 2009-06-02 | Ian M. Penn | Stent |
US5613980A (en) * | 1994-12-22 | 1997-03-25 | Chauhan; Tusharsindhu C. | Bifurcated catheter system and method |
NL9500094A (en) * | 1995-01-19 | 1996-09-02 | Industrial Res Bv | Y-shaped stent and method of deployment. |
FR2733682B1 (en) * | 1995-05-04 | 1997-10-31 | Dibie Alain | ENDOPROSTHESIS FOR THE TREATMENT OF STENOSIS ON BIFURCATIONS OF BLOOD VESSELS AND LAYING EQUIPMENT THEREFOR |
EP0830109B1 (en) | 1995-06-08 | 2003-10-15 | Ave Galway Limited | Bifurcated endovascular stent |
US5833707A (en) * | 1995-07-05 | 1998-11-10 | Advanced Cardiovascular Systems, Inc. | Removable stent and method of deployment |
US5679659A (en) | 1995-08-22 | 1997-10-21 | Medtronic, Inc. | Method for making heparinized biomaterials |
DE69633411T2 (en) * | 1995-10-13 | 2005-10-20 | Transvascular, Inc., Menlo Park | METHOD AND DEVICE FOR PREVENTING ARTERIAL ATTRACTIONS AND / OR FOR CARRYING OUT OTHER TRANSVASCULAR INTERVENTIONS |
US5669924A (en) * | 1995-10-26 | 1997-09-23 | Shaknovich; Alexander | Y-shuttle stent assembly for bifurcating vessels and method of using the same |
US5895406A (en) | 1996-01-26 | 1999-04-20 | Cordis Corporation | Axially flexible stent |
US6017363A (en) * | 1997-09-22 | 2000-01-25 | Cordis Corporation | Bifurcated axially flexible stent |
US5843160A (en) * | 1996-04-01 | 1998-12-01 | Rhodes; Valentine J. | Prostheses for aneurysmal and/or occlusive disease at a bifurcation in a vessel, duct, or lumen |
US5824042A (en) | 1996-04-05 | 1998-10-20 | Medtronic, Inc. | Endoluminal prostheses having position indicating markers |
DE19614160A1 (en) | 1996-04-10 | 1997-10-16 | Variomed Ag | Stent for transluminal implantation in hollow organs |
UA58485C2 (en) * | 1996-05-03 | 2003-08-15 | Медінол Лтд. | Method for manufacture of bifurcated stent (variants) and bifurcated stent (variants) |
US5617878A (en) * | 1996-05-31 | 1997-04-08 | Taheri; Syde A. | Stent and method for treatment of aortic occlusive disease |
FR2749500B1 (en) * | 1996-06-06 | 1998-11-20 | Jacques Seguin | DEVICE ALLOWING THE TREATMENT OF BODY DUCTS AT THE LEVEL OF A BIFURCATION |
US5676697A (en) * | 1996-07-29 | 1997-10-14 | Cardiovascular Dynamics, Inc. | Two-piece, bifurcated intraluminal graft for repair of aneurysm |
US5755682A (en) * | 1996-08-13 | 1998-05-26 | Heartstent Corporation | Method and apparatus for performing coronary artery bypass surgery |
DE69736676T2 (en) | 1996-11-04 | 2007-01-11 | Advanced Stent Technologies, Inc., Pleasanton | EXPERIENCED DOUBLE STAR |
US5972017A (en) * | 1997-04-23 | 1999-10-26 | Vascular Science Inc. | Method of installing tubular medical graft connectors |
DE29701758U1 (en) * | 1997-02-01 | 1997-03-27 | Jomed Implantate GmbH, 72414 Rangendingen | Radially expandable stent for implantation in a body vessel, particularly in the area of a vascular branch |
US6090128A (en) | 1997-02-20 | 2000-07-18 | Endologix, Inc. | Bifurcated vascular graft deployment device |
US6096073A (en) | 1997-02-25 | 2000-08-01 | Scimed Life Systems, Inc. | Method of deploying a stent at a lesion site located at a bifurcation in a parent vessel |
US5824052A (en) | 1997-03-18 | 1998-10-20 | Endotex Interventional Systems, Inc. | Coiled sheet stent having helical articulation and methods of use |
US5906641A (en) * | 1997-05-27 | 1999-05-25 | Schneider (Usa) Inc | Bifurcated stent graft |
US6165195A (en) | 1997-08-13 | 2000-12-26 | Advanced Cardiovascylar Systems, Inc. | Stent and catheter assembly and method for treating bifurcations |
US5984955A (en) * | 1997-09-11 | 1999-11-16 | Wisselink; Willem | System and method for endoluminal grafting of bifurcated or branched vessels |
US5961548A (en) * | 1997-11-18 | 1999-10-05 | Shmulewitz; Ascher | Bifurcated two-part graft and methods of implantation |
-
1997
- 1997-04-25 UA UA97042026A patent/UA58485C2/en unknown
- 1997-04-29 CZ CZ971300A patent/CZ130097A3/en unknown
- 1997-04-29 US US08/840,612 patent/US5755734A/en not_active Expired - Lifetime
- 1997-04-29 NZ NZ314698A patent/NZ314698A/en unknown
- 1997-04-30 IL IL12074497A patent/IL120744A/en not_active IP Right Cessation
- 1997-04-30 IL IL144230A patent/IL144230A/en not_active IP Right Cessation
- 1997-04-30 IL IL21074497A patent/IL120744A0/en active IP Right Grant
- 1997-04-30 CN CNB971108420A patent/CN1154449C/en not_active Expired - Fee Related
- 1997-04-30 PL PL97319780A patent/PL186753B1/en not_active IP Right Cessation
- 1997-04-30 NO NO19972030A patent/NO311681B1/en not_active IP Right Cessation
- 1997-04-30 EE EE9700097A patent/EE03739B1/en not_active IP Right Cessation
- 1997-04-30 RU RU97107487/14A patent/RU2181578C2/en not_active IP Right Cessation
- 1997-04-30 SK SK547-97A patent/SK54797A3/en unknown
- 1997-04-30 US US08/841,702 patent/US5755735A/en not_active Expired - Lifetime
- 1997-04-30 IL IL179676A patent/IL179676A/en not_active IP Right Cessation
- 1997-04-30 IL IL192178A patent/IL192178A/en not_active IP Right Cessation
- 1997-04-30 IL IL207912A patent/IL207912A/en not_active IP Right Cessation
- 1997-05-01 AU AU19983/97A patent/AU729227B2/en not_active Expired
- 1997-05-02 KR KR1019970017550A patent/KR970073534A/en not_active Application Discontinuation
- 1997-05-02 MX MX9703259A patent/MX9703259A/en unknown
- 1997-05-02 CA CA002204338A patent/CA2204338C/en not_active Expired - Lifetime
- 1997-05-02 CA CA002393663A patent/CA2393663C/en not_active Expired - Lifetime
- 1997-05-03 SG SG200001087A patent/SG91258A1/en unknown
- 1997-05-05 DE DE69734691T patent/DE69734691T2/en not_active Expired - Lifetime
- 1997-05-05 EP EP97107358A patent/EP0804907B1/en not_active Expired - Lifetime
- 1997-05-05 AR ARP970101861A patent/AR007008A1/en not_active Application Discontinuation
- 1997-05-05 AT AT97107358T patent/ATE310466T1/en not_active IP Right Cessation
- 1997-05-05 BR BR9703057A patent/BR9703057A/en not_active IP Right Cessation
- 1997-05-05 DE DE69733722T patent/DE69733722T2/en not_active Expired - Lifetime
- 1997-05-05 AT AT00114957T patent/ATE299359T1/en not_active IP Right Cessation
- 1997-05-05 DE DE19718966A patent/DE19718966A1/en not_active Ceased
- 1997-05-05 EP EP00114957A patent/EP1040795B1/en not_active Expired - Lifetime
- 1997-05-06 JP JP11582297A patent/JP3532730B2/en not_active Expired - Lifetime
- 1997-08-14 US US08/911,606 patent/US5827320A/en not_active Expired - Lifetime
-
1998
- 1998-03-27 US US09/049,842 patent/US6090133A/en not_active Expired - Lifetime
- 1998-03-27 US US09/049,363 patent/US6117156A/en not_active Expired - Lifetime
- 1998-09-29 AR ARP980104859A patent/AR017167A2/en not_active Application Discontinuation
- 1998-09-29 AR ARP980104860A patent/AR017168A2/en not_active Application Discontinuation
-
2000
- 2000-02-16 US US09/505,357 patent/US6406489B1/en not_active Expired - Lifetime
-
2001
- 2001-03-29 HK HK01102294A patent/HK1032899A1/en not_active IP Right Cessation
- 2001-06-13 NO NO20012907A patent/NO313079B1/en not_active IP Right Cessation
-
2002
- 2002-01-25 RU RU2002102422/14A patent/RU2002102422A/en not_active Application Discontinuation
- 2002-05-06 US US10/139,615 patent/US6770091B2/en not_active Expired - Lifetime
-
2003
- 2003-09-25 JP JP2003333592A patent/JP2004041766A/en active Pending
- 2003-09-25 JP JP2003333781A patent/JP4456842B2/en not_active Expired - Lifetime
-
2007
- 2007-05-16 JP JP2007130921A patent/JP4567707B2/en not_active Expired - Lifetime
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5755735A (en) | Bifurcated stent and method of making same | |
US6251133B1 (en) | Bifurcated stent with improved side branch aperture and method of making same | |
US6440165B1 (en) | Bifurcated stent with improved side branch aperture and method of making same | |
MXPA97003259A (en) | Implanta bifurcado and method to make my | |
US20030074047A1 (en) | Method of delivering a bifurcated stent | |
AU757584B2 (en) | Birfurcated stent and method of making same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
KB | Patent renewed | ||
KB | Patent renewed | ||
EXP | Patent expired |