HUE034892T2 - Letöltés irányú kapcsolat vezérlõ információ olcsó készülékekhez - Google Patents

Letöltés irányú kapcsolat vezérlõ információ olcsó készülékekhez Download PDF

Info

Publication number
HUE034892T2
HUE034892T2 HUE12794835A HUE12794835A HUE034892T2 HU E034892 T2 HUE034892 T2 HU E034892T2 HU E12794835 A HUE12794835 A HU E12794835A HU E12794835 A HUE12794835 A HU E12794835A HU E034892 T2 HUE034892 T2 HU E034892T2
Authority
HU
Hungary
Prior art keywords
dci
format
dci format
compact
olási
Prior art date
Application number
HUE12794835A
Other languages
English (en)
Inventor
Wanshi Chen
Hao Xu
Juan Montojo
Peter Gaal
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of HUE034892T2 publication Critical patent/HUE034892T2/hu

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

(12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: H04W 72104 <2009 01> H04L 5100 <2006 01> 08.11.2017 Bulletin 2017/45 (86) International application number: (21) Application number: 12794835.4 PCT/US2012/065161 (22) Date of filing: 15.11.2012 (87) International publication number: WO 2013/074722 (23.05.2013 Gazette 2013/21)
(54) DOWNLINK CONTROL INFORMATION FOR LOW COST DEVICES
DOWNLINK-STEUERINFORMATIONEN FUR KOSTENGLINSTIGES GERAT
INFORMATIONS DE CONTR0LE SUR LA LIAISON DESCENDANTE POUR DISPOSITIFS A BAS COUT (84) Designated Contracting States: · XU, Hao AL AT BE BG CH CY CZ DE DK EE ES FI FR GB San Diego, California 92121 (US) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO · MONTOJO, Juan PL PT RO RS SE SI SK SM TR San Diego, California 92121 (US) • GAAL, Peter (30) Priority: 16.11.2011 US 201161560337 P San Diego, California 92121 (US) 14.11.2012 US 201213676961 (74) Representative: Wegner, Hans
(43) Date of publication of application: Bardehle Pagenberg Partnerschaft mbB 24.09.2014 Bulletin 2014/39 Patentanwalte, Rechtsanwalte
Prinzregentenplatz 7 (73) Proprietor: Qualcomm Incorporated 81675 Miinchen (DE)
San Diego, CA 92121-1714 (US) (56) References cited: (72) Inventors: US-A1-2011 075 684 US-A1-2011 085 458 • CHEN.Wanshi US-A1-2011 237 283
San Diego, California 92121 (US)
Description
BACKGROUND
Field [0001] Aspects of the present disclosure relate generally to wireless communication systems, and more particularly, to Downlink Control Information (DCI) design for low cost devices.
Background [0002] Wireless communication networks are widely deployed to provide various communication services such as voice, video, packet data, messaging, broadcast, etc. These wireless networks may be multiple-access networks capable of supporting multiple users by sharing the available network resources. Examples of such multiple-access networks include Code Division Multiple Access (CDMA) networks, Time Division Multiple Access (TDMA) networks, Frequency Division Multiple Access (FDMA) networks, Orthogonal FDMA (OFDMA) networks, and Single-Carrier FDMA (SC-FDMA) networks.
[0003] A wireless communication network may include a number of base stations that can support communication for a number of user equipments (UEs). A UE may communicate with a base station via the downlink and uplink. The downlink (or forward link) refers to the communication link from the base station to the UE, and the uplink (or reverse link) refers to the communication link from the UE to the base station.
[0004] US 2011/0085458 A1 discloses techniques for generating a downlink control information (DCI) message which may be transmitted with a particular organization of a downlink control channel and techniques for receiving the same. The DCI message may support uplink enhancements such as single-user multiple input multiple output (SU-MIMO) and clustered DFT-S-OFDM, and may limit blind decoding operations at a user equipment.
[0005] US 2011/0237283 A1 discloses a method and apparatus for transmitting and receiving Downlink Control Information (DCI) in a wireless communication system. A method for transmitting DCI by a base station includes generating DCI including at least one of a data resource allocation indicator, a data format indicator for at least one Transport Block (TB), and a DeModulation Reference Signal (DMRS) resource allocation indicator corresponding to the at least one TB; and sending the DCI to a terminal. The DMRS resource allocation indicator includes a rank pattern for the at least one TB, an allocated scrambling code type, and DMRS port information.
[0006] US 2011/0075684 A1 discloses a method comprising composing downlink control information having a format configured to support a presence of a plurality of transport blocks in a single subframe, where the downlink control information comprises, for the plurality of trans port blocks, a common resource allocation and modula-tion/coding scheme field and a single cyclic redundancy check field. The method further includes transmitting the composed downlink control information to a relay node over a wireless link that comprises a backhaul link from the relay node.
SUMMARY
[0007] The invention is defined in the independent claims. Certain aspects of the present disclosure provide a method for wireless communications. The method generally includes generating a compact Downlink Control Information (DCI) format for transmitting DCI for use in at least one of uplink (UL) or down link (DL) transmissions by a first device of a first type, wherein the compact DCI format corresponds to at least one standard DCI format used by a second device of a second type and comprises areduced number of bits when compared to the standard DCI format, and transmitting the DCI according to the compact DCI format.
[0008] Certain aspects of the present disclosure provide an apparatus for wireless communications. The apparatus generally includes means for generating a compact Downlink Control Information (DCI) format for transmitting DCI for use in at least one of uplink (UL) or downlink (DL) transmissions by a first device of a first type, wherein the compact DCI format corresponds to at least one standard DCI format used by a second device of a second type and comprises a reduced number of bits when compared to the standard DCI format, and means for transmitting the DCI according to the compact DCI format.
[0009] Certain aspects of the present disclosure provide an apparatus for wireless communications. The apparatus generally includes at least one processor and a memory coupled to the at least one processor. The at least one processor is generally configured to generate a compact Downlink Control Information (DCI) formatfor transmitting DCI for use in at least one of uplink (UL) or downlink (DL) transmissions by a first device of a first type, wherein the compact DCI format corresponds to at least one standard DCI format used by a second device of a second type and comprises a reduced number of bits when compared to the standard DCI format, and transmit the DCI according to the compact DCI format.
[0010] Certain aspects of the present disclosure provide a computer program product for wireless communications. The computer program product generally includes a computer-readable medium comprising code for generating a compact Downlink Control Information (DCI) format for transmitting DCI for use in at least one of uplink (UL) or downlink (DL) transmissions by a first device of a first type, wherein the compact DCI format corresponds to at least one standard DCI format used by a second device of a second type and comprises a reduced number of bits when compared to the standard DCI format, and transmitting the DCI according to the compact DCI format.
[0011] Certain aspects of the present disclosure provide a method for wireless communications. The method generally includes receiving Downlink Control Information (DCI) according to a compact DCI format for use in at least one of uplink (UL) or downlink (DL) transmissions, wherein the compact DCI format corresponds to at least one standard DCI format used by a second device of a second type and comprises a reduced number of bits when compared to the standard DCI format, and processing the received DCI.
[0012] Certain aspects of the present disclosure provide an apparatus for wireless communications means for receiving Downlink Control Information (DCI) according to a compact DCI format for use in at least one of uplink (UL) or downlink (DL) transmissions, wherein the compact DCI format corresponds to at least one standard DCI format used by a second device of a second type and comprises a reduced number of bits when compared to the standard DCI format, and means for processing the received DCI.
[0013] Certain aspects of the present disclosure provide an apparatus for wireless communications. The apparatus generally includes at least one processor and a memory coupled to the at least one processor. The at least one processor is generally configured to receive Downlink Control Information (DCI) according to a compact DCI format for use in at least one of uplink (UL) or downlink (DL) transmissions, wherein the compact DCI format corresponds to at least one standard DCI format used by a second device of a second type and com prises a reduced number of bits when compared to the standard DCI format, and process the received DCI.
[0014] Certain aspects of the present disclosure provide a computer program product for wireless communications. The computer program product generally includes a computer-readable medium comprising code for receiving Downlink Control Information (DCI) according to a compact DCI format for use in at least one of uplink (UL) or downlink (DL) transmissions, wherein the compact DCI format corresponds to at least one standard DCI format used by a second device of a second type and comprises a reduced number of bits when compared to the standard DCI format, and processing the received DCI.
BRIEF DESCRIPTION OF THE DRAWINGS
[0015] FIG. 1 is a block diagram conceptually illustrating an example of a telecommunications system. FIG. 2 is a block diagram conceptually illustrating an example of a down link frame structure in a telecommunications system. FIG. 3 shows a block diagram conceptually illustrat ing an example of a Node B in communication with a user equipment device (UE) in a wireless communications network in accordance with certain aspects of the present disclosure. FIG. 4 illustrates an example comparison of legacy DCI format 1A and corresponding compact DCI format, in accordance with certain aspects of the disclosure. FIG. 5 illustrates an example comparison of legacy DCI format 0 and corresponding compact DCI format, in accordance with certain aspects of the disclosure. FIG. 6 illustrates example operations, which may be performed by a base station (BS).forgenerating DCI in accordance with certain aspects of the disclosure. FIG. 7 illustrates example operations, which may be performed by a user equipment (UE) (e.g., a low cost UE), for receiving and processing DCI in accordance with certain aspects of the disclosure.
DETAILED DESCRIPTION
[0016] The detailed description set forth below, in connection with the appended drawings, is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of the various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well-known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
[0017] The techniques described herein may be used for various wireless communication networks such as CDMA, TDMA, FDMA, OFDMA, SC-FDMA and other networks. The terms "network" and "system" are often used interchangeably. A CDMA network may implement a radio technology such as Universal Terrestrial Radio Access (UTRA), cdma2000, etc. UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA. cdma2000 covers IS-2000, IS-95 and IS-856 standards. ATDMA network may implement a radio technology such as Global System for Mobile Communications (GSM). An OFDMA network may implement a radio technology such as Evolved UTRA (E-UTRA), Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash-OFDMA, etc. UTRA and E-UTRA are part of Universal MobileTelecommunication System (UMTS). 3GPP Long Term Evolution (LTE) and LTE-Advanced (LTE-A) are new releases of UMTS that use E-UTRA. UTRA, E-UTRA, UMTS, LTE, LTE-A and GSM are described in documents from an organization named "3rd Generation Partnership Project" (3GPP). cdma2000 and UMB are described in documents from an organization named "3rd Generation Partnership Project 2" (3GPP2). The techniques described herein may be used for the wireless networks and radio technologies mentioned above as well as other wireless networks and radio technologies. For clarity, certain aspects of the techniques are described below for LTE, and LTE terminology is used in much of the description below.
[0018] FIG. 1 shows a wireless communication network 100, which may be an LTE network. The wireless network 100 may include a number of evolved Node Bs (eNodeBs) 110 and other network entities. An eNodeB may be a station that communicates with the UEs and may also be referred to as a base station, an access point, etc. A Node B is another example of a station that communicates with the UEs.
[0019] Each eNodeB 110 may provide communication coverage for a particular geographic area. In 3GPP, the term "cell" can refer to a coverage area of an eNodeB and/or an eNodeB subsystem serving this coverage area, depending on the context in which the term is used.
[0020] An eNodeB may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or other types of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by U Es having association with the femto cell (e.g., UEs in a Closed Subscriber Group (CSG), UEs for users in the home, etc.). An eNodeB fora macro cell may be referred to as a macro eNodeB. An eNodeB for a pico cell may be referred to as a pico eNodeB. An eNodeB for a femto cell may be referred to as a femto eNodeB or a home eNodeB. In the example shown in FIG. 1, the eNodeBs 110a, 110b and 110c may be macro eNodeBs for the macro cells 102a, 102b and 102c, respectively. The eNodeB 110x may be a pico eNodeB for a pico cell 102x. The eNodeBs 110y and 110z may be femto eNodeBs for the femto cells 102y and 102z, respectively. An eNodeB may support one or multiple (e.g., three) cells.
[0021] The wireless network 100 may also include relay stations. A relay station is a station that receives a transmission of data and/or other information from an upstream station (e.g., an eNodeB or a UE) and sends a transmission of the data and/or other information to a downstream station (e.g., a UE or an eNodeB). A relay station may also be a UE that relays transmissions for other UEs. In the example shown in FIG. 1, a relay station 110r may communicate with the eNodeB 110a and a UE 120r in order to facilitate communication between the eNodeB 110a and the UE 120r. A relay station may also be referred to as a relay eNodeB, a relay, etc.
[0022] The wireless network 100 may be a heteroge neous network that includes eNodeBs of different types, e.g., macro eNodeBs, pico eNodeBs, femto eNodeBs, relays, etc. These different types of eNodeBs may have different transmit power levels, different coverage areas, and different impact on interference in the wireless network 100. For example, macro eNodeBs may have a high transmit power level (e.g., 20 Watts) whereas pico eNodeBs, femto eNodeBs and relays may have a lowertrans-mit power level (e.g., 1 Watt).
[0023] The wireless network 100 may support synchronous or asynchronous operation. For synchronous operation, the eNodeBs may have similarframe timing, and transmissions from different eNodeBs may be approximately aligned in time. For asynchronous operation, the eNodeBs may have different frame timing, and transmissions from different eNodeBs may not be aligned in time. The techniques described herein may be used for both synchronous and asynchronous operation.
[0024] A network controller 130 may couple to a set of eNodeBs and provide coordination and control for these eNodeBs. The network controller 130 may communicate with the eNodeBs 110 via a backhaul. The eNodeBs 110 may also communicate with one another, e.g., directly or indirectly via wireless or wireline backhaul.
[0025] The UEs 120 (e.g., 120x, 120y, etc.) may be dispersed throughout the wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as a terminal, a mobile station, a subscriber unit, a station, etc. A UE may be a cellular phone, a personal digital assistant (PDA), a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a netbook, a smart book, etc. A UE may be able to communicate with macro eNodeBs, pico eNodeBs, femto eNodeBs, relays, etc. In FIG. 1, a solid line with double arrows indicates desired transmissions between a UE and a serving eNodeB, which is an eNodeB designated to serve the U Eon the down link and/or uplink. A dashed line with double arrows indicates interfering transmissions between a UE and an eNodeB.
[0026] LTE utilizes orthogonal frequency division multiplexing (OFDM) on the downlink and single-carrier frequency division multiplexing (SC-FDM) on the uplink. OFDM and SC-FDM partition the system bandwidth into multiple (K) orthogonal subcarriers, which are also commonly referred to as tones, bins, etc. Each subcarrier may be modulated with data. In general, modulation symbols are sent in the frequency domain with OFDM and in the time domain with SC-FDM. The spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system bandwidth. For example, the spacing of the subcarriers may be 15 kHz and the minimum resource allocation (called a ’resource block’) may be 12 subcarriers (or 180 kHz). Consequently, the nominal FFT size may be equal to 128, 256, 512, 1024 or 2048 for system bandwidth of 1.25,2.5,5,10 or20 megahertz (MHz), respectively. The system bandwidth may also be partitioned into subbands.
For example, a subband may cover 1.08 MHz (i.e., 6 resource blocks), and there may be 1,2, 4, 8 or 16 subbands for system bandwidth of 1.25,2.5,5,10 or20 MHz, respectively.
[0027] FIG. 2 shows a down link frame structure used in LTE. The transmission timeline for the downlink may be partitioned into units of radio frames. Each radio frame may have a predetermined duration (e.g., 10 milliseconds (ms)) and may be partitioned into 10 sub-frames with indices of 0 through 9. Each sub-frame may include two slots. Each radio frame may thus include 20 slots with indices of 0 through 19. Each slot may include L symbol periods, e.g., 7 symbol periods for a normal cyclic prefix (as shown in FIG. 2) or 14 symbol periods for an extended cyclic prefix. The 2L symbol periods in each sub-frame may be assigned indices of 0 through 2L-1. The available time frequency resources may be partitioned into resource blocks. Each resource block may cover N subcarriers (e.g., 12 subcarriers) in one slot.
[0028] In LTE, an eNodeB may send a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) for each cell in the eNodeB. The primary and secondary synchronization signals may be sent in symbol periods 6 and 5, respectively, in each of sub-frames 0 and 5 of each radio frame with the normal cyclic prefix, as shown in FIG. 2. The synchronization signals may be used by UEs for cell detection and acquisition. The eNodeB may send a Physical Broadcast Channel (PBCH) in symbol periods 0 to 3 in slot 1 of sub-frame 0. The PBCH may carry certain system information.
[0029] The eNodeB may send a Physical Control Format Indicator Channel (PCFICH) in only a portion of the first symbol period of each sub-frame, although depicted in the entire first symbol period in FIG. 2. The PCFICH may convey the number of symbol periods (M) used for control channels, where M may be equal to 1,2 or 3 and may change from sub-frame to sub-frame. M may also be equal to 4 for a small system bandwidth, e.g., with less than 10 resource blocks. In the example shown in FIG. 2, M=3. The eNodeB may send a Physical HARQ Indicator Channel (PHICH) and a Physical Downlink Control Channel (PDCCH) in the first M symbol periods of each sub-frame (M=3 in FIG. 2). The PHICH may carry information to support hybrid automatic retransmission (HARQ). The PDCCH may carry information on uplink and downlink resource allocation for UEs and power control information for uplink channels. Although not shown in the first symbol period in FIG. 2, it is understood that the PDCCH and PH ICH are also included in the first symbol period. Similarly, the PHICH and PDCCH are also both in the second and third symbol periods, although not .shown that way in FIG. 2. The eNodeB may send a Physical Downlink Shared Channel (PDSCH) in the remaining symbol periods of each sub-frame. The PDSCH may carry data for UEs scheduled for data transmission on the downlink. The various signals and channels in LTE are described in 3GPP TS 36.211, entitled "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical
Channels and Modulation," which is publicly available.
[0030] The eNodeB may send the PSS, SSS and PBCH in the center 1.08 MHz of the system bandwidth used by the eNodeB. The eNodeB may send the PCFICH and PHICH across the entire system bandwidth in each symbol period in which these channels are sent. The eNodeB may send the PDCCH to groups of UEs in certain portions of the system bandwidth. The eNodeB may send the PDSCH to specific UEs in specific portions of the system bandwidth. The eNodeB may send the PSS, SSS, PBCH, PCFICH and PHICH in a broadcast manner to all UEs, may send the PDCCH in a unicast manner to specific UEs, and may also send the PDSCH in a unicast manner to specific UEs.
[0031] A number of resource elements may be available in each symbol period. Each resource element may cover one subcarrier in one symbol period and may be used to send one modulation symbol, which may be a real or complex value. Resource elements not used for a reference signal in each symbol period may be arranged into resource elementgroups (REGs). Each REG may include four resource elements in one symbol period. The PCFICH may occupy four REGs, which may be spaced approximately equally across frequency, in symbol period 0. The PHICH may occupy three REGs, which may be spread across frequency, in one or more configurable symbol periods. For example, the three REGs for the PHICH may all belong in symbol period 0 or may be spread in symbol periods 0, 1 and 2. The PDCCH may occupy 9, 18, 32 or 64 REGs, which may be selected from the available REGs, in the first M symbol periods. Only certain combinations of REGs may be allowed for the PDCCH.
[0032] A UE may know the specific REGs used for the PHICH and the PCFICH. The UE may search different combinations of REGs for the PDCCH. The number of combinations to search is typically less than the number of allowed combinations for the PDCCH. An eNodeB may send the PDCCH to the UE in any of the combinations that the UE will search.
[0033] A UE may be within the coverage of multiple eNodeBs. One of these eNodeBs may be selected to serve the UE. The serving eNodeB may be selected based on various criteria such as received power, path loss, signal-to-noise ratio (SNR), etc.
[0034] FIG. 3 shows a block diagram of a design of a base station or an eNB 110 and a UE 120, which may be one of the base stations/eNBs and one of the UEs in FIG. 1. For a restricted association scenario, the eNB 110 may be macro eNB 110c in FIG. 1, and UE 120 may be UE 120y. The eNB 110 may also be a base station of some other type. The eNB 110 may be equipped with T antennas 334a through 334t, and the UE 120 may be equipped with R antennas 352a through 352r, where in general T>1 and R>1.
[0035] At the eNB 110, a transmit processor 320 may receive data from a data source 312 and control information from a controller/processor 340. The control in- formation may be for the PBCH, PCFICH, PHICH, PD-CCH, etc. The data may be for the PDSCH, etc. The transmit processor 320 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively. The transmit processor 320 may also generate reference symbols, e.g., for the PSS, SSS, and cell-specific reference signal. A transmit (TX) multiple-input multiple-out-put (ΜΙΜΟ) processor 330 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/orthe reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 332a through 332t. Each modulator 332 may process a respective output symbol stream (e.g., for OFDM, etc.) to obtain an output sample stream. Each modulator 332 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 332a through 332t may be transmitted via T antennas 334a through 334t, respectively.
[0036] At the UE 120, antennas 352a through 352rmay receive the downlink signals from the eNB 110 and may provide received signals to demodulators (DEMODs) 354a through 354r, respectively. Each demodulator 354 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples. Each demodulator 354 may further process the input samples (e.g., for OFDM, etc.) to obtain received sym bols. A ΜIMO detector 356 may obtain received symbols from all R demodulators 354a through 354r, perform ΜΙΜΟ detection on the received symbols, if applicable, and provide detected symbols. A receive processor 358 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for the UE 120 to a data sink 360, and provide decoded control information to a controller/processor 380.
[0037] On the uplink, at the UE 120, a transmit processor 364 may receive and process data (e.g., for the PUSCH) from a data source 362 and control information (e.g., for the PUCCH) from the controller/processor 380. The transmit processor 364 may also generate reference symbols for a reference signal. The symbols from the transmit processor 364 may be precoded by a TX ΜΙΜΟ processor 366 if applicable, further processed by modulators 354a through 354r (e.g., for SC-FDM, etc.), and transmitted to the eNB 110. At the eNB 110, the uplink signals from the UE 120 may be received by antennas 334, processed by demodulators 332, detected by a MI-MO detector 336 if applicable, and further processed by a receive processor 338 to obtain decoded data and control information sent by the UE 120. The receive processor 338 may provide the decoded data to a data sink 339 and the decoded control information to the controller/processor 340.
[0038] The controllers/processors 340, 380 may direct the operation at the eNB 110 and the UE 120, respectively. The controller/processor 380 and/or other processors and modules at the UE 120 may perform or direct operations for blocks 800 in FIG. 8, operations for blocks 1000 in FIG. 10, operations for blocks 1100 in FIG. 11, and/or other processes for the techniques described herein. The memories 342 and 382 may store data and program codes for base station 110 and U E 120, respectively. A scheduler 344 may schedule UEs for data transmission on the downlink and/or uplink.
[0039] In LTE, cell identities range from 0 to 503. Synchronization signals are transmitted in the center 62 resource elements (REs) around the DC tone to help detect cells. The synchronization signals comprise two parts: a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS).
[0040] In one configuration, the base station 110 includes means for generating a compact Downlink Control Information (DCI) format for transmitting DCI for use in at least one of uplink (UL) or downlink (DL) transmissions by a low cost UE, wherein the compact DCI format corresponds to at least one standard DCI format used by a regularUEand com prises a reduced number of bits when compared to the standard DCI format, and means for transmitting the DCI according to the compact DCI format. In one aspect, the aforementioned means may include controller/processor 340, the memory 342, the transmit processor 320, the modulators 332, and the antennas 334, or a combination thereof, configured to perform the functions recited by the aforementioned means. In another aspect, an aforementioned means may include a module or any apparatus configured to perform the functions recited by the aforementioned means.
[0041] In one configuration, the UE 120 (e.g., low cost UE) includes means for receiving the DCI for at least one of uplink (UL) or downlink (DL) transmissions, transmitted according to the compact DCI format, wherein the DCI comprises a reduced number of bits when compared to a standard DCI format, and means for processing the DCI. In one aspect, the aforementioned means may include the controller/processor 380, the memory 382, the receive processor 358, the ΜΙΜΟ detector 356, the demodulators 354, and the antennas 352, ora combination thereof, configured to perform the functions recited by the aforementioned means. In another aspect, an aforementioned means may include a module or any apparatus configured to perform the functions recited by the aforementioned means.
EXAMPLE DCI DESIGN FOR LOW COST DEVICES
[0042] In LTE Rel-8/9/10, each PDCCH follows downlink control information (DCI) format. Downlink (DL) grant DCI formats may include DCI formats 1, 1A, 1B, 1D, 2, 2A, 2B and 2C. Uplink (UL) DCI grant DCI formats may include DCI formats 0 and 4. Broadcast/multicast DCI formats may include DCI formats 1C, 3 and 3A.
[0043] In certain aspects, each DCI format contains a 16-bit Cyclic Redundancy Check (CRC), which is masked by an identifier (ID) (e.g. UE-specific ID or a broadcast/multicast ID). In an aspect, the size of the DCI may depend on the system bandwidth, system type (e.g. Frequency division Duplex (FDD) or Time Division Duplex (TDD)), number of common reference signal (CRS) antenna ports, DCI format, carrier aggregation or not, etc. The size of the DCI is typically tens of bits (e.g. 30~70 bits) including CRC. In addition, a UE may need to perform blind decodes to determine whether there is one or more PDCCFIs addressed to it or not. In an aspect, the number of blind decodes may be up to 44 in LTE Rel-8 and 9, and up to 60 in LTE Rel-10, when UL ΜΙΜΟ is configured.
[0044] In Rel-11 and beyond, low cost devices (e.g., low cost UE) may be supported. Generally, low cost devices are meant for machine type communications, and cost lower and have reduced processing capabilities when compared to regular UEs. In certain aspects, these low cost devices may operate in small system bandwidth cells, and may be expected to have less processing power. In certain aspects, scheduling flexibility, channel exploitation (e.g., MCS), resource allocation flexibility, etc., are relatively less important for low cost devices than regular UEs.
[0045] In certain aspects, maintaining the same PD-CCFI design as regular UEs for low cost UEs may result in a decoding complexity, which the low cost device may not be capable of handling. Certain aspects of the present disclosure discuss techniques for reducing the decoding complexity for low cost devices (e.g., low cost UEs). One technique may include simplifying the PDCCH format to save the low cost device from large amount of processing. This may be accomplished by generating a compact DCI format for transmitting DCI to a low cost device. The compact DCI format may correspond to at least one standard DCI format used by a regular UE and may comprise a reduced number of bits when compared to the standard DCI format. Another technique may include reducing the number of blind decodes (discussed above) in order to reduce the amount of processing by the low cost device. This technique may include selecting a set of resources for transmitting DCI from a limited set of decoding candidates, such that a receiving low cost device need only perform blind decodes for the limited set of decoding candidates.
[0046] As noted above, in accordance with the first technique, the size of a DCI format may be reduced, for example, to achieve better PDCCFI overhead efficiency, while having limited impact on scheduling, resource allocation, channel utilization, flexibility and the like.
[0047] In certain aspects, a DCI design for low cost devices may include DCI design with limited resource allocation. For example, for a small system bandwidth (e.g., 6 resource blocks RBs) monitored by a low cost UEs, the DCI may allocate resources for one user at a time. In this case no resource allocation information field may be needed in the DCI, and thus, the DCI may be generated without bits allocated for the resource allocation information.
[0048] In an alternative aspect, the DCI may be gen erated with limited set of resource allocation possibilities. For example, considering a 6RB system, and assuming that 4 RBs are available for data and 2 other RBs are available for control signalling, only 3 possible resource allocations may be allowed, for example, all 4 RBs, the top 2 RBs, and the bottom 2 RBs. This would require only 2 bits for resource allocation and may thus lead to a saving of 2 bits, compared to fully flexible resource allocation in a regular DCI format.
[0049] In certain aspects, a DCI design for low cost devices may include DCI with limited modulation and coding schemes (MCS). For instance, only QPSK, along with a limited set of possible coding rates (hence a limited set of transport block sizes) may be allowed. For example, 4 possibilities may need 2 bits in the DCI design, which may lead to a saving of 3 bits from the current LTE design.
[0050] In certain aspects, a DCI design for low cost devices may include DCI with limited Hybrid Automatic Repeat Request (HARQ) processes. In an aspect, a limited set of H-ARQ processes may be allowed. For example, only one H-ARQ process may be allowed requiring no HARQ information field (e.g., for indicating a HARQ process) in the DCI. This may lead to a saving of 3 bits in frequency division duplex (FDD) and 4 bits in time division duplex (TDD).
[0051] In LTE Rel-8/9/10, DCI formats 1A and 0 have the same size, and one bit is used in the DCI to differentiate between the two formats. In certain aspects, this bit may be removed (e.g., for overhead efficiency) if the formats 1A and 0 are required to have different sizes. Thus, a DCI design for low cost devices may include DCI with no 1-bitflag differentiating DCI formats 1A and 0.
[0052] In certain aspects, a DCI design for low cost devices may include DCI design with reduced CRC length. For instance, 8-bit CRC (instead of the regular 16-bit CRC) may be used, as in the aperiodic channel quality indicator (CQI) case in LTE. Alternatively, the same 16-bit CRC generator polynomial as in LTE may be used, but after applying some truncation. For example, after the 16-bit CRC is generated, it may be truncated to K<16 bits. The truncated CRC may be appended to the transmit information bits and further masked by the K LSB bits of the Radio Network Temporary Identifier (RNTI).
[0053] In certain aspects, a DCI design for low cost devices may include DCI without bits allocated for incremental redundancy. This may include always assuming redundancy version (RV) = 0, which may lead to a saving of 2 bits.
[0054] In certain aspects, a DCI design for low cost devices may include DCI without bits allocated for aperiodic sounding reference signal (SRS) request. This may lead to a saving of one bit.
[0055] In certain aspects, a DCI design for low cost devices may include DCI with reduced bit-width fortrans-mitter power control TPC. In an aspect, instead of 2-bit TPC commands, 1-bit may be used, which may be suf- ficient for low cost devices.
[0056] In certain aspects, a DCI design for low cost devices may include DCI with reduced cyclic shift bit-width for Demodulation Reference Signal (DM-RS). In certain aspects, instead of 3 bits, 1-bit may be used to indicate two values.
[0057] In certain aspects, a DCI design for low cost devices may include DCI without a bit allocated for multicluster flag. This may lead to a saving of 1 bit.
[0058] In certain aspects, the aperiodic CSI may be kept only if needed, for example if periodic CSI is not supported. In an aspect, in certain cases only periodic CSI may be supported and the 1-bit aperiodic CSI may be removed. Thus, a DCI design for low cost devices may include DCI without the one bit allocated for aperiodic CSI. In an aspect, a low cost UE may determine whether periodic CSI is supported. The low cost UE may keep aperiodic CSI if periodic CSI is not supported, and remove aperiodic CSI if periodic CSI is supported.
[0059] In certain aspects, the localized/distributed virtual resource block (VRB) assignment flag may be removed. Thus, a DCI design for low cost devices may include DCI without one bit allocated for the localized/distributed VRB assignment flag.
[0060] In certain aspects, low cost UEs may be always required to hop or never hop. Thus, a DCI design for the low cost devices may include DCI without one bit allocated for the frequency hopping flag (typically used to indicate hop or no hop).
[0061] In certain aspects, the Downlink Assignment Index (DAI) and UL assignment index (TDD) may be removed. In an aspect, this may be accomplished by ensuring that there is always a one-to-one DL subframe to UL subframe mapping (e.g., for H-ARQ operation) for each UE, such that the need for DAI (e.g., due to multiple DL to one UL mapping) or UL assignment index (e.g., due to one DL to multiple UL mapping) is removed. Thus, a DCI design for low cost devices may include DCI without a bit allocated for DAI and UL assignment index.
[0062] In certain aspects, for different UEs, the mapping for DL subframe and UL subframe may be different for better load balancing. For example, for a UE 1, DL subframe x may be mapped to UL subframe y, and for UE 2, DL subframe z may be mapped to UL subframe y. Thus, UL subframe y maps to different DL subframes (x and z) for the two UEs. In an aspect, the DL subframe to UL subframe mapping may be indicated to the low cost device(s) via Radio Resource Control (RRC) signaling.
[0063] FIG. 4 illustrates an example comparison 400 of legacy DCI format 1A and corresponding compact DCI format, in accordance with certain aspects of the disclosure. Column 402 lists the fields for the DCI format 1A. Column 404 lists bit-widths for each field of legacy DCI format 1A and column 408 lists bit-widths for each field of the compact DCI design for DCI format 1 A, compacted using the techniques discussed above. Column 410 discusses the specific technique used for each field 402 for reducing the number of bits in the compact DCI design.
[0064] Row 420 shows a total number of bits required for DCI according to legacy DCI format 1A and the compact DCI format 1A. As shown in FIG. 4, DCI according to the legacy DCI format 1A requires 37 bits. However, DCI according to the compacted DCI format 1A, by employing techniques discussed above, requires only 18 bits, which is a saving of more than 50% of PDCCH overhead.
[0065] FIG. 5 illustrates an example comparison 500 of legacy DCI format 0 and corresponding compact DCI format, in accordance with certain aspects of the disclosure. Column 502 lists the fields for the DCI format 0. Column 504 lists bit-widths for each field of the legacy DCI format 0 and column 508 lists bit-widths for each field of the compact DCI design for DCI format 0, compacted using the techniques discussed above. Column 510 discusses the specific technique used for each field 502 for reducing the number of bits in the compact DCI design.
[0066] Row 520 shows a total number of bits required for DCI according to the legacy DCI format 0 and the compact DCI format 0. As shown in FIG. 5, the DCI according to legacy format 0 requires 37 bits. However, DCI according to the compacted format 0, by employing techniques discussed above, requires only 19 bits, which is a saving of close to 50% of PDCCH overhead.
[0067] FIG. 6 illustrates example operations 600, which may be performed by a base station (BS), for generating DCI in accordance with certain aspects of the disclosure. Operations 600 may begin, at 602, by generating a compact DCI format for transmitting DCI for use in at least one of UL or DL transmissions by a first device of a first type, wherein the compact DCI format corresponds to at least one standard DCI format used by a second device of a second type and comprises a reduced number of bits when compared to the standard DCI format. At 604, the BS may transmit the DCI according to the compact DCI format. In an aspect, the device of the first type may include a low cost device (e.g., low cost UE) and a device of a second type may include a regular UE. Further, as noted above, the low cost UE may comprise reduced processing capability when compared to theregularUE. InanaspecttheBSmay includeeNB 110.
[0068] FIG. 7 illustrates example operations 700, which maybe performed by a user equipment (UE) (e.g., a low cost UE), for receiving and processing DCI in accordance with certain aspects of the disclosure. Operations 700 may begin, at 702, receiving DCI according to a compact DCI format for use in at least one of UL or DL transmissions, wherein the compact DCI format corresponds to at least one standard DCI format used by a second device of a second type, and comprises a reduced number of bits when compared to the standard DCI format. At 704, the UE may process the received DCI. In an aspect, the device of the first type may include a low cost device (e.g., low cost UE) and a device of a second type may include a regular UE. Further, as noted above, the low cost UE may comprise reduced process- ing capability when compared to the regular UE. In an aspect the UE may include UE 120.
[0069] In certain aspects, as noted above, another technique for reducing decoding complexity at a low cost UE may include reducing the number of blind PDCCH decodes in order to reduce the amount of processing by the low cost device. As noted above, this technique may include selecting a set of resources for transmitting DCI from a limited set of decoding candidates, such that a receiving low cost device need only perform blind decodes for the limited set of decoding candidates [0070] In an aspect, in addition to lesser decoding complexity, the number of blind decodes may be reduced for less power consumption, and/orfor potentially lesserPD-CCH payload size. In an aspect, the number of blind PDCCH decodes may be significantly reduced. For example, for 6 RBs, even with good channel conditions, the number of PDCCHs may be limited to, for e.g., four decoding candidates, if MU-MIMO is adopted for PDSCH and there are 2 RBs for PDCCH. The four decoding candidates may include 2 RBs-port 7, 2 RBs-port 8, 1 RB-port 7, and 1 RB-port 7. In this case, the number of blind decodes is 1/11th of the original 44 blind decodes. In an aspect, the lesser number of blind decodes may also enable a shorter CRC length.
[0071] Those of skill in the art would understand that information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
[0072] Those of skill would further appreciate that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the disclosure herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present disclosure.
[0073] The various illustrative logical blocks, modules, and circuits described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof de signed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
[0074] The steps of a method or algorithm described in connection with the disclosure herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination thereof. A software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a user terminal. In the alternative, the processor and the storage medium may reside as discrete components in a user terminal.
[0075] I n one or more exem plary designs, the functions described may be implemented in hardware, soft-ware/firmware, or various combinations thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A storage media may be any available media that can be accessed by a general purpose or special purpose computer. By way of example, and not limitation, such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose orspecial-purpose processor. Also, any connection is properly termed a computer-readable medium. Forex-ample, ifthesoftware is transmitted from awebsite, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and micro-wave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
[0076] In the following, further exam pies are described to facilitate the understanding of the invention: 1. A method for wireless communications, comprising: generating a compact Downlink Control Information (DCI) format for transmitting DCI for use in at least one of uplink (UL) or downlink (DL) transmissions by a first device of a first type, wherein the compact DCI format corresponds to at least one standard DCI format used by a second device of a second type and comprises a reduced number of bits when compared to the standard DCI format; and transmitting the DCI according to the compact DCI format. 2. The method of example 1, wherein a device of the first type comprises reduced processing capability when compared to a device of the second type. 3. The method of example 1, wherein the first device comprises a low cost User Equipment (UE). 4. The method of example 1, wherein generating the DCI comprises: generating the DCI without bits allocated for resource allocation information, wherein the DCI allocates resources for one user at a time. 5. The method of example 1, wherein generating the DCI comprises: generating the DCI for a limited set of resource allocation possibilities. 6. The method of example 1, wherein generating the DCI comprises: generating the DCI for a limited modulation and coding scheme (MCS). 7. The method of example 6, wherein the limited MCS comprises Quadrature Phase Shift Keying (QPSK) only with a limited set of possible coding rates. 8. The method of example 1, wherein generating the DCI comprises: generating the DCI for a limited set of Hybrid Automatic Repeat Request (HARQ) processes. 9. The method of example 8, wherein the DCI lacks an indication of a HARQ process. 10. The method of example 1, wherein generating the DCI comprises: generating the DCI without a bit allocated for differentiating between DCI formats 1A and o, wherein the DCI formats 1A and o have different sizes. 11. The method of example 1, wherein generating the DCI comprises: generating a reduced length Cyclic Redundancy Check (CRC) for the DCI. 12. The method of example 11, wherein generating the reduced length CRC comprises: generating a CRC of a first length and truncating the CRC of the first length to generate the reduced length CRC. 13. The method of example 1, wherein generating the DCI comprises: generating the DCI without bits allocated for Redundancy Version (RV). 14. The method of example 1, wherein generating the DCI comprises: generating the DCI without bits allocated for Sounding Reference Signal (SRS) request. 15. The method of example 1, wherein generating the DCI comprises: generating the DCI with reduced bit-width for Transmitter Power Control (TPC). 16. The method of example 1, wherein generating the DCI comprises: generating the DCI with reduced bit-width for Demodulation Reference Signal (DM-RS). 17. The method of example 1, wherein generating the DCI comprises: generating the DCI without a bit allocated for multi-cluster flag. 18. The method of example 1, wherein generating the DCI comprises: generating the DCI without a bit allocated for Virtual Resource Block assignment. 19. The method of example 1, further comprising determining whether periodic channel state information (CSI) is supported; keeping aperiodic CSI if periodic CSI is not supported; and removing aperiodic CSI if periodic CSI is supported. 20. The method of example 1, wherein generating the DCI comprises: generating the DCI without a bit allocated for frequency hopping flag. 21. The method of example 1, wherein generating the DCI comprises: generating the DCI without a bit allocated for Downlink Assignment Index (DAI) and UL assignment index, wherein a one to one mapping is maintained between DL subframe and UL subframe for each UE. 22. The method of example 1, further comprising: selecting a set of resources for transmitting the DCI from a limited set of decoding candidates; and transmitting the DCI using the selected set of resources, such that a receiving UE need only perform blind decodes for the limited set of decoding candidates. 23. An apparatus for wireless communications, comprising: means for generating a compact Downlink Control Information (DCI)formatfortransmitting DCI for use in at least one of uplink (UL) or downlink (DL) transm issions by a first device of a first type, wherein the compact DCI format corresponds to at least one standard DCI format used by a second device of a second type and comprises a reduced number of bits when compared to the standard DCI format; and means for transmitting the DCI according to the compact DCI format. 24. The apparatus of example 23, wherein a device of the first type comprises reduced processing capability when compared to a device of the second type. 25. The apparatus of example 23, wherein the first device comprises a low cost User Equipment (UE). 26. The apparatus of example 23, further comprising: means for selecting a set of resources for trans mitting the DCI from a limited set of decoding candidates; and means for transmitting the DCI using the selected set of resources, such that a receiving UE need only perform blind decodes for the limited set of decoding candidates. 27. An apparatus for wireless communications, comprising: at least one processor configured to: generate a compact Downlink Control Information (DCI) format for transmitting DCI for use in at least one of uplink (UL) or downlink (DL) transmissions by a first device of a first type, wherein the compact DCI format corresponds to at least one standard DCI format used by a second device of a second type and comprises a reduced number of bits when compared to the standard DCI format; and transmit the DCI according to the compact DCI format, a memory coupled to the at least one processor. 28. A computer program product for wireless communications, comprising: a computer-readable medium comprising code for: generating a compact Downlink Control Information (DCI) format for transmitting DCI for use in atleastoneofuplink(UL) or downlink (DL) transmissions by a first device of a first type, wherein the compact DCI format corresponds to at least one standard DCI format used by a second device of a second type and comprises a reduced number of bits when compared to the standard DCI format; and transmitting the DCI according to the compact DCI format. 29. A method for wireless communications by a first device of a first type, comprising: receiving Downlink Control Information (DCI) according to a compact DCI format for use in at least one of uplink (UL) or downlink (DL) transmissions, wherein the compact DCI format corresponds to at least one standard DCI format used by a second device of a second type and comprises a reduced number of bits when compared to the standard DCI format; and processing the received DCI. 30. The method of example 29, wherein a device of the first type comprises reduced processing capability when compared to a device of the second type. 31. The method of example 29, wherein the first device comprises a low cost User Equipment (UE). 32. The method of example 29, wherein the DCI comprises: DCI without bits allocated for resource allocation information, wherein the DCI allocates resources for one user at a time. 33. The method of example 29, wherein the DCI comprises: DCI for a limited set of resource allocation possibilities. 34. The method of example 29, wherein DCI comprises: DCI fora limited modulation and coding scheme (MCS). 35. The method of example 34, wherein the limited MCS comprises Quadrature Phase Shift Keying (QPSK) only with a limited set of possible coding rates. 36. The method of example 29, wherein the DCI comprises: DCI for a limited set of Hybrid Automatic Repeat Request (HARQ) processes. 37. The method of example 36, wherein the DCI lacks an indication of a HARQ process. 38. The method of example 29, wherein the DCI comprises: DCI without a bit allocated for differentiating between DCI formats 1A and o, wherein the DCI formats 1A and o have different sizes. 39. The method of example 29, wherein the DCI comprises: a reduced length Cyclic Redundancy Check (CRC) for the DCI. 40. The method of example 39, wherein the reduced length CRC comprises: a CRC generated by generating a CRC of a first length and truncating the CRC of the first length to generate the reduced length CRC. 41. The method of example 29, wherein the DCI comprises: DCI without bits allocated for Redundancy Version (RV). 42. The method of example 29, wherein the DCI comprises: DCI without bits allocated for Sounding Reference Signal (SRS) request. 43. The method of example 29, wherein the DCI comprises: DCI with reduced bit-width for Transmitter Power Control (TPC). 44. The method of example 29, wherein the DCI comprises: DCI with reduced bit-width for Demodulation Reference Signal (DM-RS). 45. The method of example 29, wherein the DCI comprises: DCI without a bit allocated for multi-cluster flag. 46. The method of example 29, wherein the DCI comprises: DCI with aperiodic channel state information (CSI) if periodic CSI is not supported; and DCI without aperiodic CSI if periodic CSI is supported. 47. The method of example 29, wherein the DCI comprises: DCI without a bit allocated for Virtual Resource Block assignment. 48. The method of example 29, wherein the DCI comprises: DCI without a bit allocated forfrequency hopping flag. 49. The method of example 29, wherein the DCI comprises: DCI without a bit allocated for Downlink Assignment Index (DAI) and UL assignment index, wherein a one to one mapping is maintained between DL subframe and UL subframe for each UE. 50. The method of example 29, wherein: the DCI is transmitted using a set of resources selected from a limited set of decoding candidates; and the method comprises performing blind decodes for the limited set of decoding candidates to detect a PDCCH containing the DCI. 51. An apparatus for wireless communications by a first device of a first type, comprising: means for receiving Downlink Control Information (DCI) according to a compact DCI format for use in at least one of uplink (UL) or downlink (DL) transmissions, wherein the compact DCI format corresponds to at least one standard DCI format used by a second device of a second type and comprises a reduced number of bits when compared to the standard DCI format; and means for processing the received DCI. 52. The apparatus of example 51, wherein a device of the first type comprises reduced processing capability when compared to a device of the second type. 53. The apparatus of example 51, wherein the first device comprises a low cost User Equipment (UE). 54. The apparatus of example 51, wherein: the DCI is transmitted using a set of resources selected from a limited set of decoding candidates; and the apparatus comprises means for performing blind decodesforthe limited set ofdecoding candidates to detect a PDCCH containing the DCI. 55. An apparatus for wireless communications by a first device of a first type, comprising: at least one processor configured to: receive Downlink Control Information (DCI) according to a compact DCI format for use in at least one of uplink (UL) or downlink (DL) transmissions, wherein the compact DCI format corresponds to at least one standard DCI format used by a second device of a second type and comprises a reduced numberof bits when compared to the standard DCI format; and process the received DCI, and a memory coupled to the at least one processor. 56. A computer program product for wireless communications by a first device of a first type, comprising: a computer-readable medium comprising code for: receiving Downlink Control Information (DCI) according to a compact DCI format for use in at least one of uplink (UL) or downlink (DL) transmissions, wherein the compact DCI format corresponds to at least one standard DCI format used by a second device of a second type and comprises a reduced numberof bits when compared to the standard DCI format; and processing the received DCI.
Claims 1. A method (600) for wireless communications, comprising: generating (602) a compact Downlink Control Information, DCI, format for transmitting DCI for use in at least one of uplink, UL, or downlink, DL, transmissions by a first device of a first type, wherein the compact DCI format corresponds to at least one standard DCI format used by a second device of a second type and comprises a reduced numberof bits when compared to the standard DCI format; and transmitting (604) the DCI according to the compact DCI format. 2. The method of claim 1, wherein generating the DCI comprises: generating the DCI without bits allocated for resource allocation information, wherein the DCI allocates resources for one user at a time. 3. The method of claim 1, wherein generating the DCI comprises: generating the DCI for a limited set of resource allocation possibilities. 4. The method of claim 1, wherein generating the DCI comprises: generating the DCI for a limited modulation and coding scheme, MCS. 5. The method of claim 1, wherein generating the DCI comprises: generating the DCI for a limited set of Hybrid Automatic Repeat Request, HARQ, processes. 6. The method of claim 1, wherein generating the DCI comprises: generating a reduced length Cyclic Redundancy Check, CRC, for the DCI. 7. An apparatus for wireless communications, comprising: means for generating a compact Downlink Control Information, DCI,formatfortransmitting DCI for use in at least one of uplink, UL, or downlink, DL, transm issions by a first device of a first type, wherein the compact DCI format corresponds to at least one standard DCI format used by a second device of a second type and comprises a reduced number of bits when compared to the standard DCI format; and means for transmitting the DCI according to the compact DCI format. 8. A method (700) for wireless communications by a first device of a first type, comprising: receiving (702) Downlink Control Information, DCI, according to a compact DCI formatfor use in at least one of uplink, UL, or downlink, DL, transmissions, wherein the compact DCI format corresponds to at least one standard DCI format used by a second device of a second type and comprises a reduced number of bits when compared to the standard DCI format; and processing (704) the received DCI. 9. The method of claim 8, wherein the DCI comprises: DCI without bits allocated for resource allocation information, wherein the DCI allocates resources for one user at a time. 10. The method of claim 8, wherein the DCI comprises: DCI for a limited set of resource allocation possibilities. 11. The method of claim 8, wherein DCI comprises: DCI for a limited modulation and coding scheme, MCS. 12. The method of claim 8, wherein the DCI comprises: DCI for a limited set of Hybrid Automatic Repeat Request, HARQ, processes. 13. The method of claim 8, wherein the DCI comprises: a reduced length Cyclic Redundancy Check, CRC, for the DCI. 14. An apparatus for wireless communications by a first device of a first type, comprising: means for receiving Downlink Control Information, DCI, according to a compact DCI formatfor use in at least one of uplink, UL, or downlink, DL, transmissions, wherein the compact DCI format corresponds to at least one standard DCI format used by a second device of a second type and comprises a reduced number of bits when compared to the standard DCI format; and means for processing the received DCI. 15. A computer program product for wireless communications comprising code for carrying out a method a method according to any of claims 1 to 6 or 8 to 13 when run on a computer
Patentansprüche 1. Ein Verfahren (600) für drahtlose Kommunikation aufweisend:
Erzeugen (602) eines kompakten Abwärtsstre-cke-Steuerungsinformation-, DCI, Formats zum Übertragen von DCI zur Verwendung in zumindest einer von Aufwärtsstrecke-, UL-, oder Abwärtsstrecke-, DL-, Übertragungen von einem ersten Gerät einer ersten Art, wobei der kompakte DCI-Format zumindest einem standardisierten DCI-Format entspricht, das von einem zweiten Gerät einer zweiten Art verwendet wird, und eine reduzierte Anzahl von Bits im Vergleich zum standardisierten DCI-Format umfasst; und Senden (604) der DCI gemäß dem kompakten DCI-Format. 2. Das Verfahren gemäß Anspruch 1, wobei das Erzeugen der DCI umfasst:
Erzeugen der DCI ohne die für Ressourcenzuweisung zugewiesenen Bits, wobei die DCI Ressourcen für jeweils einen Benutzer zu einem bestimmten Zeitpunkt zuweist. 3. Das Verfahren gemäß Anspruch 1, wobei das Erzeugen der DCI umfasst:
Erzeugen der DCI für eine begrenzte Menge von Ressourcenzuweisungsmöglichkeiten. 4. Das Verfahren gemäß Anspruch 1, wobei das Er- zeugen der DCI umfasst:
Erzeugen der DCI für ein begrenztes Modulations- und Codierungsverfahren, MCS. 5. Das Verfahren gemäß Anspruch 1, wobei das Erzeugen die DCI umfasst:
Erzeugen der DCI für eine begrenzte Menge von Hybriden-Automatischen-Wiederholungsauf-forderungs-, HARQ-, Prozessen. 6. Das Verfahren gemäß Anspruch 1, wobei das Erzeugen die DCI umfasst:
Erzeugen einer Zyklischen-Redundanz-Über-prüfung, CRC, mit reduzierten Länge für die DCI. 7. Eine Vorrichtung für drahtlose Kommunikation aufweisend:
Mittel zum Erzeugen eines kompakten Abwärts-strecke-Steuerungsinformation-, DCI, Formats zum Übertragen von DCI zur Verwendung in zumindest einer von Aufwärtsstrecke-, UL-, oder Abwärtsstrecke-, DL-, Übertragungen von einem ersten Gerät einer ersten Art, wobei das kompakte DCI-Format zumindest einem standardisierten DCI-Format entspricht, das von einem zweiten Gerät einer zweiten Art verwendet wird, und eine reduzierte Anzahl von Bits im Vergleich zum standardisierten DCI-Format umfasst; und
Mittel zum Senden der DCI gemäß dem kompakten DCI-Format. 8. Ein Verfahren (700) für drahtlose Kommunikation von einem ersten Gerät einer ersten Art, aufweisend:
Empfangen (702) von Abwärtsstrecke-Steue-rungsinformation-, DCI, gemäß einem kompakten DCI-Format zur Verwendung in zumindest einer von Aufwärtsstrecke-, UL-, oder Abwärtsstrecke-, DL-, Übertragungen, wobei der kompakte DCI-Format zumindest einem standardisierten DCI-Format entspricht, das von einem zweiten Gerät einer zweiten Art verwendet wird, und eine reduzierte Anzahl von Bits im Vergleich zum standardisierten DCI-Format umfasst; und Verarbeiten (704) der empfangenen DCI. 9. Das Verfahren gemäß Anspruch 8, wobei die DCI umfasst: DCI ohne die für Ressourcenzuweisung zugewiesenen Bits, wobei die DCI Ressourcen für jeweils einen Benutzer zu einem bestimmten
Zeitpunkt zuweist. 10. Das Verfahren gemäß Anspruch 8, wobei die DCI umfasst: DCI für eine begrenzte Menge von Ressourcenzuweisungsmöglichkeiten. 11. Das Verfahren gemäß Anspruch 8, wobei die DCI umfasst: DCI für ein begrenztes Modulations- und Codierungsverfahren, MCS. 12. Das Verfahren gemäß Anspruch 8, wobei die DCI umfasst: DCI für eine begrenzte Menge von Flybriden-Automatischen-Wiederholungsaufforderungs-, FIARQ-, Prozessen. 13. Das Verfahren gemäß Anspruch 8, wobei die DCI umfasst:
Eine Zyklischen-Redundanz-Überprüfung, CRC, mit reduzierten Länge für die DCI. 14. Eine Vorrichtung für drahtlose Kommunikation von einem ersten Gerät einer ersten Art aufweisend:
Mittel zum Empfangen von Abwärtsstrecke-Steuerungsinformation-, DCI, gemäß einem kompakten DCI-Format zur Verwendung in zumindest einer von Aufwärtsstrecke-, UL-, oder Abwärtsstrecke-, DL-, Übertragungen, wobei der kompakte DCI-Format zumindest einem standardisierten DCI-Format entspricht, das von einem zweiten Gerät einer zweiten Art verwendetwird, und eine reduzierte Anzahl von Bits im Vergleich zum standardisierten DCI-Format umfasst; und
Mittel zum Verarbeiten der empfangenen DCI. 15. Ein Computerprogrammprodukt für drahtlose Kommunikation aufweisend:
Code zum Durchführen eines Verfahrens gemäß einem der Ansprüche 1 bis 6 oder 8 bis 13, wenn derCode von einem Computer ausgeführt wird.
Revendications 1. Procédé (600) pour des communications sans fil, comprenant : la génération (602) d’un format compact d’infor- mations de contrôle de liaison descendante, DCI, pour émettre des DCI à utiliser dans au moins l’une d’entre des émissions de liaison montante, UL, ou de liaison descendante, DL, par un premierdispositif d’un premier type, dans lequel le format compact de DCI correspond au moins à un format standard de DCI, utilisé par un second dispositif d’un second type, et comprend un nombre réduit de bits en comparaison du format standard de DCI ; et l’émission (604) des DCI selon le format compact de DCI. 2. Procédé selon la revendication 1, dans lequel la génération des DCI comprend : la génération des DCI sans bits attribués à des informations d’attribution de ressource, dans lequel les DCI attribuent des ressources à un utilisateur à la fois. 3. Procédé selon la revendication 1, dans lequel la génération des DCI comprend : la génération des DCI pour un ensemble limité de possibilités d’attribution de ressource. 4. Procédé selon la revendication 1, dans lequel la génération des DCI comprend : la génération des DCI pour un schéma limité de modulation et de codage, MCS. 5. Procédé selon la revendication 1, dans lequel la génération des DCI comprend : la génération des DCI pour un ensemble limité de processus de demande de répétition automatique hybride, HARQ. 6. Procédé selon la revendication 1, dans lequel la génération des DCI comprend : la génération d’un contrôle par redondance cyclique, CRC, de longueur réduite, pour les DCI. 7. Appareil pour des communications sans fil, comprenant : un moyen pour générer un format compact d’informations de contrôle de liaison descendante, DCI, pour émettre des DCI à utiliser dans au moins l’une d’entre des émissions de liaison montante, UL, ou de liaison descendante, DL, par un premierdispositif d’un premier type, dans lequel le format compact de DCI correspond à au moins un format standard de DCI utilisé par un second dispositif d’un second type et comprend un nombre réduit de bits en comparaison au format standard de DCI ; et un moyen pour émettre les DCI selon le format compact de DCI. 8. Procédé (700) pour des communications sans fil par un premierdispositif d’un premier type, comprenant : la réception (702) des informations de contrôle de liaison descendante, DCI, selon un format compact de DCI à utiliser dans au moins l’une d’entre des émissions de liaison montante, UL, ou de liaison descendante, DL, dans lequel le format compact de DCI correspond à au moins un format standard de DCI utilisé par un second dispositif d’un second type et comprend un nombre réduit de bits en comparaison au format standard de DCI ; et le traitement (704) des DCI reçues. 9. Procédé selon la revendication 8, dans lequel les DCI comprennent : des DCI sans bits attribués à des informations d’attribution de ressource, dans lequel les DCI attribuent des ressources à un utilisateur à la fois. 10. Procédé selon la revendication 8, dans lequel les DCI comprennent : des DCI pour un ensemble limité de possibilités d’attribution de ressource. 11. Procédé selon la revendication 8, dans lequel des DCI comprennent : des DCI pour un schéma limité de modulation et de codage, MCS. 12. Procédé selon la revendication 8, dans lequel les DCI comprennent : des DCI pour un ensemble limité de processus de demande de répétition automatique hybride, HARQ. 13. Procédé selon la revendication 8, dans lequel les DCI comprennent : un contrôle par redondance cyclique, CRC, de longueur réduite, pour les DCI. 14. Appareil pour des communications sans fil par un premier dispositif d’un premier type, comprenant : un moyen pour recevoir des informations de contrôle de liaison descendante, DCI, selon un format compact de DCI à utiliser dans au moins l’une d’entre des émissions de liaison montante, UL, ou de liaison descendante, DL, dans lequel le format compact de DCI correspond à au moins un format standard de DCI utilisé par un second dispositif d’un second type et comprend un nombre réduit de bits en comparaison au format standard de DCI ; et un moyen pour traiter les DCI reçues. 15. Programme-produit informatique pour des communications sans fil, comprenant du code pour mettre en oeuvre un procédé selon l’une quelconque des revendications 1 à6ou8à13 lorsqu’il est exécuté sur un ordinateur.
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.
Patent documents cited in the description • US 20110085458 A1 [0004] · US 20110075684 A1 [0006] • US 20110237283 A1 [0005]

Claims (4)

  1. letöltés Irányú Séaöádátmt igénypootök 11Í11 ^ 1 Ilii J! Í Síi! J j| | |ΐ 11Í "8ZTNH-100085118' 1. bÖár«yj68D) yeipték oéjfcöii kemmímikáesórs, stepfss táfts^ms^a; egy kompit letöltés irányú képsort vetériő Információ, ÖÖ. formátum ölÖálíításét pD2) DG egy eisS típtíssS első késtüiéfe aisaM átvitelére feitöités Irányú lápcsölati, UL vagy :pt.,..íe?^· alább egyikében y*!é htmoélstra, ahol s í kompakt DCI formátum egy második típusú második MsMGkÉffcV bssxnsjtJégatább egy-;pafeváfcfpg: ö^t.#mtát«tn»«lí felel meg,%« szabványos DCI formátuma!:ÍHPffüf<P«: Híva csökkentett számé ídtettersslöfae; és a QG konmakt OSI formátumnak megfelelő átvitelét {SOI},
  2. 2. M L igénypont szerint; eljárás, ahol >5 DCI előállítás,s tartalmaira; a Düí előállítását erófortás allokációs információ számára allokált ölték: néiküb sbol a DG: egyszerre egy fel használó számára altekét érái orrá sok a t
  3. 8. Az l, igénypont szerinti eljárás, ahol a DCI élőállfásá tartalma zass s DCÍ előállítását erőforrás aítekáélús íehetőségsk égy korlátozott képlete párnára.
    4.. Az t. igénygöm: szerints eljárás, ahol a DCI előállítása tartalmazza; .8 Ölt előállítását egy ketiltotöti: möluláciés és kődolási Séep káCS, számárá:. % A? 1. igénypont szedni! eljárás, aböl aíPél elöállMsg tartalmazza: * ESŐI föléfá Vitását híbNíá ístítömtstjkíis ismMási kúféiéífú HABÜ, folyamatok; kodéfötoitkésziete számára, S. As l.ijgeoypoétAtstíntisSiárás, 8bélm^lWliiÍ:^:tsftaÍ.0a2^'t égy esökkébfétí hosszúságú ciklikus reduoösncia ellenőrző, CRC, kőd éiőáiHtásél: á ©Ü számára, y, :BerendéZés véreték néjkljf komotiinikikáór;!, a berendezés tartalmaz: gszkőst egy kompakt letöltés irányú kapcsolati vezérlő informál#, |ÍCI, formátum: előállításéra, D£i égy első típusú első késtíilék: általi átvitelére teilöit^s: sé^íáyy Ísáípctiöistíy Ub, vagy letöltés irányú kapcsolati, Dj,f: átvitelek; iegaiébb egyikébeo vélő basaoáíatra, ahol a kompakt Íáci; formátum ép második tipusö második késimiék áltaj; használt legalább épipabvipyos DG vbrmáímfíhak létei meg, és a szabványos DG formátummabisstébásom' iiiys icsökkentett számú ibifet tartalmaz, és estkött á líCi kompakt DG formátumnak megfelelő átvitelére, •8'i lljjfrrás'PQO) vezeték néiköfl kommunikációra egyéisö ff## első készÚék úpn, az eljárás tartalmazza:: p^ív^^r^limátSiftyOiafe;-kapcsoteij: yezf #Ő: Információ, DCI, vétőiét f?Ö2j fel· töltés Irányú kapcsolati, íJL vapdatŐilÉli IMöy'ú •'.jtiápsóNillb-íPi.i átvitel legalább egyikében való használatra, shöi ti kömpkt BCI formáíumegy misoöik típusú második készülék által használt legalább egy szabványos DG formátumnak feléi meg és s szabványos DCifotmátommáí összéhasöoiitva csökkentőit számú bitet tartalma;; és mm DCI iéidbigözásét (704). &amp; .ahol?» ^t^aimar' m<* wMwrM altekáisA litorméció szstoéd §!lp^ák Sís# «é)Mk «tol a DCi íeibaestoló 5ϊ4má?« aílokS? erőforrásokat %ÍL Ai,:igéfipoot 5«82ΐ«ίΓ«Ρ:ί45ί ahol s DSktáAatosá;; Dd~t erőforrás aiiokásési tebsídségek ktoásözöítkésaiei:® számára,
  4. 11- AB. igénypont sAerihtí eljárás, ahol3 ÖCÍ tartalmaz; 'Dd5*:«g^te}áí^öté«^áwl»ic!ás ét kódolási séma, IkíCS, sálAíéra.. 12. :AB,igénypont $.mtM$ eljárás,. abeks Qú'isúaimzr. ÜCl-t hibrid autómra; kos követetek egy korktozoa kérdésé siásziáfa, %% A S. igénypont szerinti eljárás, ahol a&amp;CI tartalmai; stoktafeö hosszúságú tiklikukrédModansidielfed^tg^ föRC, ködet « PCtszámúra, M. lerendezés vezeték nélküli kororouoikáciöra egy *m öSíkizt *gf pQ: főfalamnak megfelelő ieuikés Mmfú kapeselafi wzédő infprmásié, i5£|, vételére, feítöités irányú kapcsolati, Ul, vagy letöltés irányú kapcsolati, Dl, átvitel legalább egyikében való hasmslatra, ahol sskompaki DCkformétum agy siésödik: íjípasö mtófck készülik által hésenáit legalább egy szabványos DCI formátumnak feléi meg és sísiaibyáhyos DCifémtótummai összetoMnktor csbkkedtétt AMmA bítgt tar^Jmszg és eszközt« vett DO léldölgoááslto IS*. fszámitigépi prograrn termék vezeték néfkölf k§Atmö^ké«lÖif:kWík*lé4lV:':I^Öt' tartalmaz: egy íszémtogépom fa itatva az 1-S.vagy s*iaei$in#*mi ok bármelyike szerinti eljárás végrehajtására.
HUE12794835A 2011-11-16 2012-11-15 Letöltés irányú kapcsolat vezérlõ információ olcsó készülékekhez HUE034892T2 (hu)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161560337P 2011-11-16 2011-11-16
US13/676,961 US9826514B2 (en) 2011-11-16 2012-11-14 Downlink control information (DCI) design for low cost devices

Publications (1)

Publication Number Publication Date
HUE034892T2 true HUE034892T2 (hu) 2018-03-28

Family

ID=48280591

Family Applications (1)

Application Number Title Priority Date Filing Date
HUE12794835A HUE034892T2 (hu) 2011-11-16 2012-11-15 Letöltés irányú kapcsolat vezérlõ információ olcsó készülékekhez

Country Status (8)

Country Link
US (3) US9826514B2 (hu)
EP (1) EP2781133B1 (hu)
JP (3) JP2014533910A (hu)
KR (2) KR101920862B1 (hu)
CN (1) CN103931255B (hu)
ES (1) ES2657112T3 (hu)
HU (1) HUE034892T2 (hu)
WO (1) WO2013074722A1 (hu)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9826514B2 (en) 2011-11-16 2017-11-21 Qualcomm Incorporated Downlink control information (DCI) design for low cost devices
KR20140121401A (ko) * 2011-12-27 2014-10-15 엘지전자 주식회사 무선 통신 시스템에서 데이터 수신 방법 및 장치
CN105340210B (zh) * 2013-05-10 2020-06-16 爱立信(中国)通信有限公司(中国) 用于动态tdd系统中pusch上harq ack/nack捆绑的方法、用户设备和无线电网络节点
JP6271895B2 (ja) 2013-07-22 2018-01-31 株式会社Nttドコモ 基地局及び無線通信システム
KR20180008924A (ko) * 2013-08-23 2018-01-24 후아웨이 테크놀러지 컴퍼니 리미티드 Tdd 시스템에서의 정보 전송 방법, 정보 결정 방법, 및 장치, 및 시스템
CN103929816A (zh) * 2013-10-15 2014-07-16 上海朗帛通信技术有限公司 一种tdd-fdd联合系统中的用户和系统设备及方法
CN105898870B (zh) * 2014-05-10 2019-07-12 上海朗帛通信技术有限公司 一种在非授权频带上的传输方法和装置
WO2016070417A1 (en) 2014-11-07 2016-05-12 Panasonic Intellectual Property Corporation Of America Improved resource allocation for transmissions on unlicensed carriers
US10536970B2 (en) * 2015-01-29 2020-01-14 Telefonaktiebolaget Lm Ericsson (Publ) PDCCH initialization suitable for MTC devices
EP3944551A1 (en) 2015-04-02 2022-01-26 Samsung Electronics Co., Ltd. Transmission and reception method and apparatus for reducing transmission time interval in wireless cellular communication system
KR102316775B1 (ko) 2015-04-02 2021-10-26 삼성전자 주식회사 무선 셀룰라 통신 시스템에서 전송시간구간 감소를 위한 송수신 방법 및 장치
WO2016165123A1 (en) * 2015-04-17 2016-10-20 Mediatek Singapore Pte. Ltd. Enhancement for harq with channel repetitions
WO2016195177A1 (ko) * 2015-05-29 2016-12-08 엘지전자(주) 무선 통신 시스템에서 데이터 송수신 방법 및 이를 위한 장치
WO2017024563A1 (zh) 2015-08-12 2017-02-16 华为技术有限公司 一种数据传输方法、装置及系统
CN112492685A (zh) * 2015-08-14 2021-03-12 华为技术有限公司 一种信息的传输方法和基站以及用户设备
US10455611B2 (en) 2015-09-16 2019-10-22 Lg Electronics Inc. Method for transceiving data in wireless communication system and apparatus for same
CN106856613B (zh) * 2015-12-09 2020-04-14 华为技术有限公司 一种下行控制信息dci的发送方法及相关装置
US11424855B2 (en) * 2015-12-28 2022-08-23 Qualcomm Incorporated Physical broadcast channel (PBCH) and master information block (MIB) design
US11196599B2 (en) * 2015-12-30 2021-12-07 Ondas Networks Inc. System and method for per frame overhead reduction in air interface for OFDMA systems
US11109372B2 (en) * 2016-01-11 2021-08-31 Qualcomm Incorporated Narrow-band physical control channel design
BR112018013981A2 (pt) 2016-01-29 2018-12-11 Panasonic Ip Corp America enodeb, equipamento de usuário e método de comunicação sem fio
US10492213B2 (en) 2016-03-02 2019-11-26 Samsung Electronics Co., Ltd. Method and device for transmitting, by terminal, uplink control information in communication system
US20190191434A1 (en) * 2016-07-21 2019-06-20 Nokia Technologies Oy Downlink control channel search space definition for reduced processing time
WO2018030228A1 (ja) * 2016-08-10 2018-02-15 京セラ株式会社 移動通信方法、基地局及びユーザ端末
US10367672B2 (en) * 2016-09-28 2019-07-30 Qualcomm Incorporated Enhancements to phase-noise compensation reference signal design and scrambling
CN108259142B (zh) * 2016-12-29 2020-10-16 上海诺基亚贝尔股份有限公司 用于反馈下行链路信号重发次数信息的方法及装置
US10326578B2 (en) 2017-02-13 2019-06-18 At&T Intellectual Property I, L.P. Early termination scheme for blind decoding of a downlink control channel
US11483189B2 (en) * 2017-05-04 2022-10-25 Qualcomm Incorporated Limits for modulation and coding scheme values
US10554363B2 (en) 2017-05-04 2020-02-04 At&T Intellectual Property I, L.P. Facilitating incremental downlink control information design to support downlink control information scheduling
US10986647B2 (en) 2017-05-04 2021-04-20 At&T Intellectual Property I, L.P. Management of group common downlink control channels in a wireless communications system
US10880062B2 (en) * 2017-06-29 2020-12-29 Qualcomm Incorporated Providing protection for information delivered in demodulation reference signals (DMRS)
EP4243507A3 (en) * 2017-10-11 2023-11-22 Ntt Docomo, Inc. User equipment, base station and wireless communication method
US10849117B2 (en) * 2017-11-13 2020-11-24 Qualcomm Incorporated Techniques and apparatuses for control information determination for payloads with leading zeroes
KR102404617B1 (ko) * 2017-11-22 2022-05-31 지티이 코포레이션 효율적인 제어 시그널링 방법 및 시스템
CN110034859B (zh) * 2018-01-12 2021-06-08 华为技术有限公司 一种通信方法及设备
CN111587548B (zh) * 2018-01-12 2023-05-26 瑞典爱立信有限公司 具有混合自动重传请求确认的物理上行链路共享信道
US10925047B2 (en) * 2018-02-07 2021-02-16 Huawei Technologies Co., Ltd. Systems and methods for scheduling wireless communications
WO2019160499A1 (en) * 2018-02-16 2019-08-22 Telefonaktiebolaget Lm Ericsson (Publ) Compact downlink control information messages
US20190268207A1 (en) * 2018-02-26 2019-08-29 Mediatek Singapore Pte. Ltd. Compact Downlink Control Information Design And Operations In Mobile Communications
JP7099844B2 (ja) * 2018-03-27 2022-07-12 株式会社Kddi総合研究所 移動通信ネットワーク及び基地局
US11909678B2 (en) 2018-04-04 2024-02-20 Beijing Xiaomi Mobile Software Co., Ltd. Determination method and device for size of downlink control information format
US11089582B2 (en) 2018-04-05 2021-08-10 Huawei Technologies Co., Ltd. Method and system for downlink control information payload size determination
CN111972022A (zh) * 2018-04-12 2020-11-20 联发科技(新加坡)私人有限公司 移动通信中紧凑下行链路控制信息的时域资源分配
CN113170353B (zh) * 2018-09-28 2023-07-25 株式会社Ntt都科摩 用户终端以及无线通信方法
CN111148230B (zh) * 2018-11-02 2022-11-08 华为技术有限公司 传输下行控制信息的方法和装置
WO2020204561A1 (ko) * 2019-03-29 2020-10-08 엘지전자 주식회사 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
CN114503497B (zh) * 2019-10-02 2023-11-07 Lg电子株式会社 在无线通信系统中发送和接收探测参考信号的方法和装置
US11937260B2 (en) * 2020-10-14 2024-03-19 Lg Electronics Inc. Method and apparatus for transmitting/receiving wireless signal in wireless communication system
WO2022085757A1 (ja) * 2020-10-22 2022-04-28 京セラ株式会社 通信制御方法
CN116982371A (zh) * 2021-03-12 2023-10-31 高通股份有限公司 与没有下行链路指派的下行链路控制信息中的统一传输配置指示相对应的反馈
WO2024047596A1 (en) * 2022-09-02 2024-03-07 Jio Platforms Limited System and method for implementing a common processing chain for pbch and pdcch channels

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7940795B2 (en) 2007-09-26 2011-05-10 Nokia Corporation Signaling limitation of multiple payload sizes for resource assignments
JP4511621B2 (ja) 2008-04-22 2010-07-28 株式会社エヌ・ティ・ティ・ドコモ 移動通信方法、移動局及び無線基地局
US8144712B2 (en) 2008-08-07 2012-03-27 Motorola Mobility, Inc. Scheduling grant information signaling in wireless communication system
KR101649493B1 (ko) 2008-09-18 2016-08-19 삼성전자주식회사 Crc 길이의 가상 확장 방법 및 장치
KR101557676B1 (ko) 2008-10-31 2015-10-06 삼성전자주식회사 이동무선 통신시스템의 하향링크 제어채널의 페이로드 크기결정장치 및 방법
WO2010077938A1 (en) 2008-12-17 2010-07-08 Research In Motion Limited Semi-persistent resource release by wireless communication device
EP2200208A1 (en) 2008-12-19 2010-06-23 Panasonic Corporation HARQ ACK/NACK for dynamic PDSCH
WO2010114446A1 (en) 2009-04-03 2010-10-07 Telefonaktiebolaget L M Ericsson (Publ) Uplink link adaption at the user equipment
CA2758589A1 (en) * 2009-04-13 2010-10-21 Research In Motion Limited System and method for semi-synchronous hybrid automatic repeat request
KR101741397B1 (ko) * 2009-05-15 2017-06-08 엘지전자 주식회사 무선 통신 시스템에서 사운딩 참조 신호 송신 방법 및 이를 위한 장치
US20110019776A1 (en) * 2009-07-24 2011-01-27 Interdigital Patent Holdings, Inc. Method and apparatus for obtaining port index information
US20110194504A1 (en) 2009-08-12 2011-08-11 Qualcomm Incorporated Method and apparatus for supporting single-user multiple-input multiple-output (su-mimo) and multi-user mimo (mu-mimo)
CN102006657B (zh) 2009-08-31 2016-03-30 华为技术有限公司 上行功率控制方法、装置及终端
CN105610549B (zh) 2009-09-21 2019-07-30 中兴通讯股份有限公司 一种下行控制信息的传输方法及传输系统
US8670396B2 (en) 2009-09-29 2014-03-11 Qualcomm Incorporated Uplink control channel resource allocation for transmit diversity
US8724648B2 (en) 2009-09-30 2014-05-13 Nokia Corporation Enhanced control signaling for backhaul link
US8379536B2 (en) * 2009-10-08 2013-02-19 Qualcomm Incorporated Downlink control information for efficient decoding
US9031008B2 (en) 2009-10-30 2015-05-12 Samsung Electronics Co., Ltd. Methods and apparatus for multi-user MIMO transmissions in wireless communication systems
CN101714892B (zh) 2009-11-02 2014-12-31 中兴通讯股份有限公司 一种下行控制信息的传输方法及系统
CN102088343B (zh) 2009-12-03 2014-06-25 华为技术有限公司 载波聚合时反馈ack/nack信息的方法、基站和用户设备
WO2011085230A2 (en) 2010-01-08 2011-07-14 Interdigital Patent Holdings, Inc. Channel state information transmission for multiple carriers
WO2011084014A2 (en) * 2010-01-11 2011-07-14 Samsung Electronics Co., Ltd. Apparatus and method for enabling low latency transmissions in the uplink of a communication system
BR112012017002A2 (pt) 2010-01-12 2016-04-05 Alcatel Lucent método e aparelho para redução da sobrecarga de sinalização de controle
KR101781854B1 (ko) 2010-02-04 2017-09-26 엘지전자 주식회사 사운딩 참조 신호를 전송하는 방법 및 장치
EP2541797B1 (en) 2010-02-23 2018-12-19 LG Electronics Inc. Method and device for providing control information for uplink transmission in wireless communication system supporting uplink multi-antenna transmission
US9379844B2 (en) 2010-02-24 2016-06-28 Samsung Electronics Co., Ltd. Method and system for indicating an enabled transport block
KR101915271B1 (ko) 2010-03-26 2018-11-06 삼성전자 주식회사 무선 통신 시스템에서 자원 할당을 위한 하향링크 제어 지시 방법 및 장치
JP2011211323A (ja) 2010-03-29 2011-10-20 Sharp Corp 移動局装置、基地局装置、無線通信システム、無線通信方法および集積回路
JP5556885B2 (ja) 2010-03-31 2014-07-23 富士通株式会社 無線通信方法、無線通信システムおよび無線通信装置
JP5455228B2 (ja) 2010-04-05 2014-03-26 株式会社Nttドコモ 基地局装置及びユーザ端末
US8891461B2 (en) * 2010-06-21 2014-11-18 Futurewei Technologies, Inc. System and method for control information multiplexing for uplink multiple input, multiple output
US9515799B2 (en) * 2011-09-29 2016-12-06 Lg Electronics Inc. Method of transmitting control information for low-cost machine type communication, and apparatus for supporting same
KR20190044141A (ko) 2011-09-30 2019-04-29 인터디지탈 패튼 홀딩스, 인크 감소된 채널 대역폭을 사용하는 장치 통신
US9826514B2 (en) 2011-11-16 2017-11-21 Qualcomm Incorporated Downlink control information (DCI) design for low cost devices

Also Published As

Publication number Publication date
EP2781133B1 (en) 2017-11-08
WO2013074722A1 (en) 2013-05-23
US11337202B2 (en) 2022-05-17
US20130121274A1 (en) 2013-05-16
KR20160065220A (ko) 2016-06-08
CN103931255A (zh) 2014-07-16
US20200100229A1 (en) 2020-03-26
US20180077693A1 (en) 2018-03-15
CN103931255B (zh) 2018-09-07
JP6866422B2 (ja) 2021-04-28
JP2014533910A (ja) 2014-12-15
US9826514B2 (en) 2017-11-21
KR101658830B1 (ko) 2016-09-22
US10542530B2 (en) 2020-01-21
EP2781133A1 (en) 2014-09-24
ES2657112T3 (es) 2018-03-01
KR20140090252A (ko) 2014-07-16
KR101920862B1 (ko) 2018-11-21
JP2019195196A (ja) 2019-11-07
JP2017188913A (ja) 2017-10-12

Similar Documents

Publication Publication Date Title
US11337202B2 (en) Downlink control information (DCI) design for low cost devices
KR101642366B1 (ko) 물리적 하이브리드 arq 표시자 채널(phich) 자원들의 할당
EP2989739B1 (en) Pdsch transmission schemes with compact downlink control information (dci) format in new carrier type (nct) in lte
EP2417814B1 (en) Method and apparatus for supporting user equipments on different system bandwidths
CN103905171B (zh) 用于将旧式长期演进用户装备与高级长期演进用户装备相复用的方法和装置
KR101840862B1 (ko) 기계 타입 통신들(mtc)에 대한 물리적 브로드캐스트 채널(pbch) 커버리지 강화들
RU2572566C2 (ru) Передача информации управления в беспроводной сети с агрегацией несущих
KR101461453B1 (ko) Mimo 전송들을 위한 제어 정보 시그널링
US20190313385A1 (en) Compact dci for urllc
KR101626813B1 (ko) Lte에서의 새로운 반송파 타입의 mbms 지원 장치 및 방법들
KR101514241B1 (ko) 업링크 제어 채널에 대한 자원 할당들
US9083494B2 (en) Efficient resource utilization in TDD
US8665809B2 (en) Systems and methods for sending power control information
KR20130064128A (ko) 다중 비트 ack/nak를 위한 제어 채널 자원들
KR101955659B1 (ko) 가상 셀 id의 시그널링