CN111972022A - 移动通信中紧凑下行链路控制信息的时域资源分配 - Google Patents

移动通信中紧凑下行链路控制信息的时域资源分配 Download PDF

Info

Publication number
CN111972022A
CN111972022A CN201980025205.6A CN201980025205A CN111972022A CN 111972022 A CN111972022 A CN 111972022A CN 201980025205 A CN201980025205 A CN 201980025205A CN 111972022 A CN111972022 A CN 111972022A
Authority
CN
China
Prior art keywords
time domain
resource allocation
domain resource
determining
scheduling parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980025205.6A
Other languages
English (en)
Inventor
穆罕默德·S·阿利比·艾勒马利
拉哈文达·玛戴那哈里·罗摩克里希那
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MediaTek Singapore Pte Ltd
Original Assignee
MediaTek Singapore Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MediaTek Singapore Pte Ltd filed Critical MediaTek Singapore Pte Ltd
Publication of CN111972022A publication Critical patent/CN111972022A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

描述了关于移动通信中用户设备和网络装置的紧凑下行链路控制信息(DCI)设计和操作的时域资源分配的各种解决方案。装置可以在物理下行链路控制信道(PDCCH)上接收紧凑DCI。该装置可以从紧凑DCI提取隐式调度参数。该装置可以根据隐式调度参数确定时域资源分配。该装置可以根据时域资源分配来执行下行链路或上行链路传输。

Description

移动通信中紧凑下行链路控制信息的时域资源分配
相关申请的交叉引用
本发明是要求于2018年4月12日提交的美国专利申请No.62/656,545的优先权权益的非临时申请的一部分,以上列出申请的内容透过引用完整地并入本文中。
技术领域
本发明总体上关于移动通信,更具体地,关于移动通信中用户设备(userequipment,UE)和网络装置的用于紧凑(compact)下行链路控制信息(downlink controlinformation)的时域资源分配(resource allocation)。
背景技术
除非在本文中另外指示,否则本部分中描述的方法不是对于下面列出权利要求的现有技术,并且不因包含在该部分中而被承认是现有技术。
在新无线电(New Radio,NR)中,对于端到端延迟和可靠性具有高要求的新兴应用,支持超可靠和低延迟通信(ultra-reliable and low latency communication,URLLC)。一般的URLLC可靠性要求是大小为32字节的数据包应当以10-5的成功概率在1毫秒的端到端延迟内传输。URLLC业务通常较为零散且短,而对低延迟和高可靠性的要求较为严格。例如,URLLC的控制可靠性必须比10-6BLER的数据可靠性更加严格。
对于延迟敏感高的传输,正常DCI的一些字段不适用或者没有意义。DCI的可靠性取决于大小。在传输资源相同的情况下,DCI的大小越小,由于较低的编码增益,可靠性越好。使用正常DCI来获得相同的可靠性需要增加聚合级别(aggregation level),如此具有的缺点是阻塞可能性(blocking probability)。此外,较小的带宽部分(bandwidth part)可能无法适应更高的聚合级别。由于正常的DCI大小较大,并且对于URLLC控制传输其效率低,因而需要紧凑的DCI设计。
可以预期将来有各种各样的URLLC服务,每种服务针对不同的使用实例。因此,如何满足严格的可靠性要求将成为新开发的通信系统中的新问题。需要提供适当的紧凑DCI设计和操作以减小DCI大小并提高控制信号传输的可靠性。
发明内容
以下发明内容仅是例示性的,并且不旨在以任何方式限制。即,提供以下发明内容以引入这里所描述的新颖且非显而易见的技术的概念、亮点、益处以及优点。下面详细的描述中进一步描述了选择的实现方式。因此,以下发明内容不旨在识别所要求保护主题的必要特征,也不旨在用于确定所要求保护主题的范围。
本公开的目的是提出解决方案或机制,以解决上述在移动通信中关于用户设备和网络装置的紧凑DCI设计和操作的时域资源分配的上述问题。
在一个方面,一种方法可以涉及由装置在物理下行链路控制信道(physicaldownlink control channel,PDCCH)上接收紧凑DCI。该方法还涉及由装置从紧凑DCI中提取隐式调度参数。该方法还涉及由装置根据隐式调度参数确定时域资源分配。该方法还涉及由装置根据时域资源分配执行下行链路或上行链路传输。
在一个方面,一种装置可以包括能够与无线网络的网络节点无线通信的收发器。该装置还可以包括通信地耦接到收发器的处理器。所述处理器能够经由收发器在PDCCH上接收紧凑DCI。所述处理器还能够从紧凑DCI中提取隐式调度参数。所述处理器还能够根据隐式调度参数确定时域资源分配。所述处理器还能够根据时域资源分配,通过收发器执行下行链路或上行链路传输。
值得注意的是,尽管这里提供的描述可以在某些无线电接入技术、网络和网络拓扑的背景下,例如长期演进(Long-Term Evolution,LTE)、LTE-A、LTE-A Pro、5G、新无线电(New Radio,NR)、物联网(Internet-of-Things,IoT)和窄带物联网(Narrow BandInternet of Things,NB-IoT),所提出的概念、方案及其任何变体/衍生物可以在、用于和通过其他类型的无线电接入技术、网络和网络拓扑实现。因此,本公开的范围不限于本文描述的示例。
附图说明
附图被包括进来以提供对本发明的进一步理解,并入本发明并构成本发明的一部分。附图例示了本发明的实现方式,并且与说明书一起用于说明本发明的原理。能理解的是,附图不一定是按比例的,因为为了清楚地例示本发明的构思,一些组件可以被显示为与实际实现方式中的尺寸不成比例。
图1示出了根据本公开的实现方式的方案下的示例性场景。
图2示出了根据本公开的实现方式的方案下的示例性场景。
图3示出了根据本公开的实现方式的方案下的示例性场景。
图4示出了根据本公开的实现方式的方案下的示例性场景。
图5示出了根据本公开的实现方式的方案下的示例性场景。
图6示出了根据本公开的实现方式的方案下的示例性场景。
图7示出了根据本公开的实现方式的方案下的示例性场景。
图8示出了根据本公开的实现方式的方案下的示例性场景。
图9示出了根据本公开的实现方式的方案下的示例性场景。
图10示出了根据本公开的实现方式的方案下的示例性场景。
图11示出了根据本公开的实现方式的示例通信装置和示例网络装置。
图12示出了根据本公开的实现方式的示例过程。
具体实施方式
这里公开了所要求保护主题内容的详细实施例和实现方式。然而,应当理解,公开的详细实施例和实现方式仅为了示例体现为各种形式的所要求保护的主题内容。然而本发明可以体现为多种不同形式,不应理解为仅限于示例的实施例和实现方式。提供这些示例的实施例和实现方式以使得本发明的描述全面且完整并且能够向本领域普通技术人员全面传递本发明的范围。在下面的描述中,省略了已知特征和技术的细节,以避免不必要地使得本发明的实施例和实现方式变得模糊。
概述
本公开的实现方式涉及与移动通信中用户设备和网络装置的紧凑DCI的时域资源分配有关的各种技术、方法、方案和/或解决方案。根据本公开,可以单独地或联合地实现许多可能的解决方案。也就是说,尽管可以在下面分别描述这些可能的解决方案,但是这些可能的解决方案中的两个或更多个可以以一种组合或另一种组合的方式实现。
在NR中,对于端到端延迟和可靠性具有高要求的新兴应用,支持URLLC。一般的URLLC可靠性要求是大小为32字节的数据包应当以10-5的成功概率在1毫秒的端到端延迟内传输。URLLC业务通常较为零散且短,而对低延迟和高可靠性的要求较为严格。例如,URLLC的控制可靠性必须比高达10-6BLER的数据可靠性更加严格。
对于延迟敏感性高的传输,正常DCI的一些字段不适用或者没有意义。DCI的可靠性取决于大小。在传输资源相同的情况下,DCI的大小越小,由于较低的编码增益,可靠性越好。使用正常DCI来获得相同的可靠性需要增加聚合级别(aggregation level),如此具有的缺点是阻塞可能性(blocking probability)。此外,较小的部分带宽(bandwidth part)可能无法适应更高的聚合级别。由于正常的DCI大小较大,并且对于URLLC控制传输其效率低,因而需要紧凑的DCI设计。
UE应当使用检测的PDCCH DCI中的资源分配字段来确定时域中的资源块分配。DCI的时域资源分配字段(time domain resource allocation filed)提供调度参数(scheduling parameters),调度参数可包括时隙偏移(slot offset)(例如,K2)、开始和长度指示符(start and length indicator)(例如,SLIV)、要在物理上行链路共享信道(physical uplink shared channel,PUSCH)传输中应用的PUSCH映射类型。在URLLC中,期望网络将最早可用的资源调度给UE。因此,不期望网络使用大的调度参数值。
鉴于以上所述,本公开提出了关于UE和网络装置的紧凑DCI的时域资源分配的多种方案。根据本公开的方案,可以定义用于URLLC的紧凑DCI格式并将其用于URLLC服务。紧凑DCI的比特字段可以被精心设计以减小DCI的大小。特别地,通过利用对调度参数的隐式指示(implicit indication),可以减少DCI中时域资源分配比特的数量。用于URLLC的紧凑DCI设计可以提高控制信道的可靠性。这种设计还可以减少对更高聚合级别的需求以满足可靠性,从而降低了阻塞可能性。
为了减少紧凑DCI中的比特数量,一些调度参数可以被隐式地(implicitly)指示给UE。隐式指示的调度参数的可能值可以限于一小组值。UE可以被配置为在PDCCH上接收紧凑DCI。UE可以从紧凑DCI中提取隐式调度参数(implicit scheduling parameter)。UE可以被配置为根据隐式调度参数来确定时域资源分配。UE可以根据时域资源分配来执行下行链路或上行链路传输。隐式调度参数可以包括时隙偏移K0、时隙偏移K1、时隙偏移K2、映射类型和表格(table)中的至少一个。
例如,为了减少DCI的时域资源分配字段中所需的比特数,时隙偏移K2的值可以被隐式地指示给UE。图1示出了根据本公开的实现方式的方案下的示例性场景100。场景100涉及UE和网络装置,其可以是无线通信网络(例如,LTE网络、LTE-A网络、LTE-A Pro网络、5G网络、NR网络、IoT网络或NB-IoT网络)的一部分。在PDCCH上接收到上行链路(UL)许可(grant)之后,UE可以被配置为确定调度参数(例如,时隙偏移K2)的值。隐式调度参数指示第一值(例如,K2=0)时,UE可以确定该时域资源分配开始于PDCCH之后。UE能够在分配的时域资源上执行上行链路传输。
图2示出了根据本公开的实现方式的方案下的示例性场景201和202。场景201和202涉及UE和网络装置,其可以是无线通信网络的一部分。在场景201中,在PDCCH上接收UL许可之后,UE可以确定调度参数(例如,时隙偏移K2)的值。隐式调度参数指示第二值(例如,K2=1)时,UE可以确定时域资源分配开始于相同时隙(例如,时隙n)中PDCCH结束之前。UE能够在分配的时域资源上执行上行链路传输。在场景202中,隐式调度参数可以指另一时隙中的时域资源。例如,隐式调度参数指示第二值(例如,K2=1)时,UE可以确定时域资源分配开始于下一时隙(例如,时隙n+1)中PDCCH结束之前。UE能够在分配的时域资源上执行上行链路传输。
因此,网络能够仅使用一个比特(例如,0或1)用于隐式调度参数,以向UE指示时域资源分配。UE可以根据该一个比特指示来确定时域资源分配。因此,紧凑DCI设计可以显著减少DCI中的时域资源分配字段的比特数量。
或者,网络可以进一步考虑到UE处理时间(例如,PUSCH处理能力N2)。网络可以使用隐式调度参数向UE指示考虑了UE处理时间的时域资源分配。图3示出了根据本公开的实现方式的方案下的示例性场景300。场景300涉及UE和网络装置,其可以是无线通信网络的一部分。在PDCCH上接收UL许可之后,UE可以确定调度参数(例如,时隙偏移K2)的值。隐式调度参数指示第一值(例如,K2=0)时,UE可以确定时域资源分配开始于在PDCCH和UE处理时间(例如,N2)的组合之后。UE可以在分配的时域资源上执行上行链路传输。
图4示出了根据本公开的实现方式的方案下的示例性场景401和402。场景401和402涉及UE和网络装置,其可以是无线通信网络的一部分。在场景401中,在PDCCH上接收UL许可之后,UE可以确定调度参数(例如,时隙偏移K2)的值。隐式调度参数指示第二值(例如,K2=1)时,UE可以确定时域资源分配开始于在相同时隙(例如,时隙n)中PDCCH和UE处理时间(例如,N2)的组合结束之前。UE可以在分配的时域资源上执行上行链路传输。在场景402中,隐式调度参数可以指另一个时隙中的时域资源。例如,当隐式调度参数指示第二值(例如,K2=1)时,UE可以确定时域资源分配开始于下一个时隙(例如,时隙n+1)中在PDCCH和UE处理时间(例如,N2)的组合结束之前。UE可以在分配的时域资源上执行上行链路传输。
在另一示例中,为了减少DCI的时域资源分配字段中所需的比特数量,可以向UE隐式地指示时隙偏移K0的值。时隙偏移K0可以用于物理下行链路共享信道(physicaldownlink shared channel,PDSCH)配置。图5示出了根据本公开的实现方式的方案下的示例性场景500。场景500涉及UE和网络装置,其可以是无线通信网络的一部分。在PDCCH上接收下行链路(DL)许可之后,UE可以确定调度参数(例如,时隙偏移K0)的值。隐式调度参数指示第一值(例如,K0=0)时,UE可以确定在PDCCH之后开始时域资源分配或者从PDCCH开始时域资源分配。UE可以在分配的时域资源上执行下行链路传输。
图6示出了根据本公开的实现方式的方案下的示例性场景601和602。场景601和602涉及UE和网络装置,其可以是无线通信网络的一部分。在场景601中,在PDCCH上接收DL许可之后,UE可以确定调度参数(例如,时隙偏移K0)的值。隐式调度参数指示第二值(例如,K0=1)时,UE可以确定时域资源分配开始于相同时隙(例如,时隙n)中PDCCH之前。UE可以在分配的时域资源上执行下行链路传输。在场景602中,隐式调度参数可以通过另一个时隙中的时域资源确定。例如,隐式调度参数指示第二值(例如,K0=1)时,UE可以确定时域资源分配开始于下一个时隙(例如,时隙n+1)中PDCCH之前。UE可以在分配的时域资源上执行下行链路传输。
在另一示例中,为了减少DCI的时域资源分配字段中所需的比特数量,可以向UE隐式地指示时隙偏移K1的值。时隙偏移K1可以用于混合自动重传请求(hybrid automaticrepeat request,HARQ)回馈指示(例如,PDSCH到HARQ回馈定时指示)。图7示出了根据本公开的实现方式的方案下的示例性场景700。场景700涉及UE和网络装置,其可以是无线通信网络的一部分。UE可以接收PDCCH,其中PDCCH包括下行链路配置(例如,PDSCH)和物理上行链路控制信道(PUCCH)资源指示符。在接收PUCCH资源指示符之后,UE可以确定调度参数(例如,时隙偏移K1)的值。隐式调度参数指示第一值(例如,K1=0)时,UE可以确定时域资源分配开始于PDSCH之后。UE可以在分配的时域资源上执行上行链路传输。
图8示出了根据本公开的实现方式的方案下的示例性场景801和802。场景801和802涉及UE和网络装置,其可以是无线通信网络的一部分。在场景801中,UE可以接收PDCCH,其中PDCCH包括下行链路配置(例如,PDSCH)和PUCCH资源指示符。在接收PUCCH资源指示符之后,UE可以被配置为确定调度参数(例如,时隙偏移K1)的值。隐式调度参数指示第二值(例如,K1=1)时,UE可以确定时域资源分配开始于相同时隙(例如,时隙n)中在PDSCH结束之前。UE可以在分配的时域资源上执行上行链路传输。在场景802中,隐式调度参数可以通过另一时隙中的时域资源确定。例如,隐式调度参数指示第二值(例如,K1=1)时,UE可以确定时域资源分配开始于下一时隙(例如,时隙n+1)中的PDSCH结束之前。UE可以在分配的时域资源上执行上行链路传输。
或者,网络可以进一步考虑到UE处理时间(例如,PDSCH处理能力N1)。网络可以使用隐式调度参数来向UE指示考虑了UE处理时间的时域资源分配。图9示出了根据本公开的实现方式的方案下的示例性场景900。场景900涉及UE和网络装置,其可以是无线通信网络的一部分。UE可以接收PDCCH,其中PDCCH包括下行链路配置(例如,PDSCH)和PUCCH资源指示符。在接收PUCCH资源指示符之后,UE可以确定调度参数(例如,时隙偏移K1)的值。当隐式调度参数指示第一值(例如,K1=0)时,UE可以确定时域资源分配开始于PDSCH与处理时间(例如,N1)的组合之后。UE可以在分配的时域资源上执行上行链路传输。
图10示出了根据本公开的实现方式的方案下的示例性场景1001和1002。场景1001和1002涉及UE和网络装置,其可以是无线通信网络的一部分。在场景1001中,UE可以接收PDCCH,其中PDCCH包括下行链路配置(例如,PDSCH)和PUCCH资源指示符。在接收PUCCH资源指示符之后,UE可以确定调度参数(例如,时隙偏移K1)的值。当隐式调度参数指示第二值(例如,K1=1)时,UE可以确定时域资源分配开始于在相同时隙(例如,时隙n)中PDSCH和处理时间(例如,N1)的组合结束之前。UE可以在分配的时域资源上执行上行链路传输。在场景1002中,隐式调度参数可以通过另一个时隙中的时域资源确定。例如,当隐式调度参数指示第二值(例如,K1=1)时,UE可以确定时域资源分配开始于下一个时隙(例如,时隙n+1)中PDSCH和处理时间(例如,N1)的组合结束之前。UE可以在分配的时域资源上执行上行链路传输。
在另一示例中,为了减少DCI的时域资源分配字段中所需的比特数量,可以向UE隐式地指示PUSCH映射类型。UE可以被配置为根据隐式调度参数来确定PUSCH映射类型。隐式调度参数可以包括为PUSCH指示的符号索引。当用于PUSCH的时域资源分配指示时隙中的第一符号索引(例如,符号索引0)(例如,时隙中的第一符号)作为起始符号时,UE可以确定PUSCH映射类型是第一类型(例如,类型A)。当用于PUSCH的时域资源分配指示时隙中的第二符号索引(例如,符号索引1-13)(例如,时隙中除第一符号之外的符号)作为起始符号时,UE可以确定PUSCH映射类型是第二类型(例如,类型B)。UE可以根据确定的PUSCH映射类型执行上行链路传输。
类似地,隐式调度参数可以包括指示的用于PDSCH的符号索引。当用于PDSCH的时域资源分配指示时隙中的第一符号索引(例如,时隙中的前X个符号之一)作为起始符号时,UE可以确定PUSCH映射类型是第一类型(例如,类型A)。当用于PUSCH的时域资源分配指示时隙中的第二符号索引(例如,时隙中的最后14-X个符号之一)作为起始符号的情况下,UE可以确定PUSCH映射类型是第二类型(例如,类型B)。例如但不限于,X可以等于4。UE可以根据确定的PUSCH映射类型执行上行链路传输。
在一些实现方式中,针对用于PUSCH和/或PDSCH的时域资源分配,网络可以为UE配置一个表格。UE可以根据该表格确定时域资源分配的起始时间。该表格可以与用于其他调度DCI格式的表格部分或完全不同。对于类型B,PUSCH和/或PDSCH的资源分配的开始时间的参考点可以与用于其他调度DCI格式的参考点不同。例如,调度PDCCH的最后一个符号可以用作类型B的PUSCH和/或PDSCH的资源分配的开始时间的参考点。
例示性实现方式
图11示出了根据本公开的实现方式的示例通信装置1110和示例网络装置1120。通信装置1110和网络装置1120中的每一个可以执行各种功能以实现本文描述的关于无线通信中用户设备和网络装置的紧凑DCI设计和操作的时域资源分配的方案、技术、过程和方法,包括上述场景以及下面描述的过程1000。
通信装置1110可以是电子装置的一部分,该电子装置可以是诸如便携式或行动装置的UE、可穿戴装置、无线通信装置或计算装置。例如,通信装置1110可以在智能手机、智能手表、个人数字助理、数字相机或诸如平板计算机、膝上型计算机或笔记本电脑的计算设备中实现。通信装置1110还可以是机器型装置的一部分,机器型装置可以是诸如不可移动或固定装置的IoT或NB-IoT装置、家庭装置、有线通信装置或计算装置。例如,通信装置1110可以在智能恒温器、智慧冰箱、智慧门锁、无线扬声器或家庭控制中心中实现。或者,通信装置1110可以以一个或多个集成电路(integrated-circuit,IC)芯片的形式实现,例如但不限于,一个或多个单核处理器、一个或多个多核处理器、一个或多个精简指令集计算(reduced-instruction-set-computing,RISC)处理器或一个或多个复杂指令集计算(complex-instruction-set-computing,CISC)处理器。通信装置1110可以包括图11中所示的那些组件中的至少一些,例如,处理器1112等。通信装置1110还可以包括与本公开的提出的方案无关的一个或多个其他组件(例如,内部电源、显示设备和/或用户接口设备),并且因此,为了简单和简洁起见,下面图11中并未描述通信装置1110的这些组件。
网络装置1120可以是电子装置的一部分,电子装置可以是诸如基地台、小型小区(cell)、路由器或网关的网络节点。例如,网络装置1120可以在LTE、LTE-A或LTE-A Pro网络中的eNodeB中实现,或者在5G、NR、IoT或NB-IoT网络中的gNB中实现。或者,网络装置1120可以以一个或多个IC芯片的形式实现,例如但不限于,一个或多个单核处理器、一个或多个多核处理器、一个或多个RISC处理器、或者一个或更多CISC处理器。网络装置1120可以包括图11中所示的组件中的至少一部分,例如,处理器1122等。网络装置1120还可以包括与本公开的提出的方案不相关的一个或多个其他组件(例如,内部电源、显示设备和/或用户接口设备),并且为了简单和简洁起见,下面图11中并未描述网络装置1120的这些组件。
在一个方面,处理器1112和处理器1122中的每一个可以以一个或多个单核处理器、一个或多个多核处理器、一个或多个RISC处理器、或者一个或更多CISC处理器的形式实现。也就是说,即使这里使用单数术语“处理器”来指代处理器1112和处理器1122,但是根据本公开处理器1112和处理器1122中的每一个在一些实现方式中可以包括多个处理器并且在其他实现方式中可以包括单个处理器。在另一方面,处理器1112和处理器1122中的每一个均可以以硬件(以及可选地,韧体)的形式实现,硬件具有的电子组件包括例如但不限于一个或多个晶体管、一个或多个二极管、一个或多个电容器、一个或多个电阻器、一个或多个电感器、被配置和布置成实现特定目的的一个或多个忆阻器(memristors)和/或一个或多个变容二极管。换句话说,在至少一些实施方式中,处理器1112和处理器1122中的每一个可以是专用器件,其被专门设计、布置和配置成根据本公开的各种实施方式在设备(例如,如通信装置1110所示)和网络(例如,如网络装置1120所示)中执行特定任务(包括功耗降低)。
在一些实现方式中,通信装置1110还可以包括耦接到处理器1112并且能够无线地发送和接收数据的收发器1116。在一些实现方式中,通信装置1110还可以包括存储器1114,存储器1114耦接到处理器1112并且能够由处理器1112存取其中数据。在一些实现方式中,网络装置1120还可以包括耦接到处理器1122并且能够无线地发送和接收数据的收发器1126。在一些实现方式中,网络装置1120还可以包括存储器1124,存储器1124耦接到处理器1122并且能够由处理器1122存取其中数据。因此,通信装置1110和网络装置1120可以分别经由收发器1116和收发器1126彼此无线通信。为了帮助更好地理解,以下对通信装置1110和网络装置1120中的每一个的操作、功能和性能的下述描述是基于移动通信环境,其中通信装置1110在通信装置或UE中实现或者被实现为通信装置或者UE,网络装置1120在通信网络的网络节点中实现或者被实现为通信网络的网络节点。
在一些实现方式中,处理器1112可以被配置为经由收发器1116在PDCCH上接收紧凑DCI。处理器1112可以从紧凑DCI提取隐式调度参数。处理器1112可以被配置为根据隐式调度参数确定时域资源分配。处理器1112可以根据时域资源分配经由收发器1116执行下行链路或上行链路传输。隐式调度参数可以包括时隙偏移K0、时隙偏移K1、时隙偏移K2、映射类型和表格中的至少一个。
在一些实现方式中,在PDCCH上接收UL许可之后,处理器1112可以被配置为确定调度参数(例如,时隙偏移K2)的值。隐式调度参数指示第一值(例如,K2=0)时,UE可以确定时域资源分配开始于PDCCH之后。处理器1112可以在分配的时域资源上执行上行链路传输。
在一些实现方式中,在PDCCH上接收到UL许可之后,处理器1112可以被配置为确定调度参数(例如,时隙偏移K2)的值。隐式调度参数指示第二值(例如,K2=1)时,处理器1112可以被配置为确定时域资源分配开始于相同时隙(例如,时隙n)或者下一个时隙(例如,时隙n+1)中PDCCH结束之前。处理器1112可以在分配的时域资源上执行上行链路传输。
在一些实现方式中,在PDCCH上接收到UL许可之后,处理器1112可以被配置为确定调度参数(例如,时隙偏移K2)的值。隐式调度参数指示第一值(例如,K2=0)时,处理器1112可以被配置为确定时域资源分配开始于在PDCCH与处理时间(例如,N2)的组合之后。处理器1112可以在分配的时域资源上执行上行链路传输。
在一些实现方式中,在PDCCH上接收UL许可之后,处理器1112可以被配置为确定调度参数(例如,时隙偏移K2)的值。隐式调度参数指示第二值(例如,K2=1)时,处理器1112可以被配置为确定时域资源分配开始于相同时隙(例如,时隙n)或者下一个时隙(例如,时隙n+1)中在PDCCH与处理时间(例如,N2)的组合结束之前。处理器1112可以在分配的时域资源上执行上行链路传输。
在一些实现方式中,在PDCCH上接收DL许可之后,处理器1112可以被配置为确定调度参数(例如,时隙偏移K0)的值。隐式调度参数指示第一值(例如,K0=0)时,处理器1112可以被配置为确定在PDCCH之后开始时域资源分配或者从PDCCH开始时域资源分配。处理器1112可以在分配的时域资源上执行下行链路传输。
在一些实现方式中,在PDCCH上接收DL许可之后,处理器1112可以被配置为确定调度参数(例如,时隙偏移K0)的值。隐式调度参数指示第二值(例如,K0=1)时,处理器1112可以被配置为确定时域资源分配开始于在相同时隙(例如,时隙n)或者下一个时隙(例如,时隙n+1)中PDCCH之前。处理器1112可以在分配的时域资源上执行下行链路传输。
在一些实现方式中,处理器1112可以经由收发器1116接收包括下行链路配置(例如,PDSCH)和PUCCH资源指示符的PDCCH。在接收PUCCH资源指示符之后,处理器1112可以被配置为确定调度参数(例如,时隙偏移K1)的值。隐式调度参数指示第一值(例如,K1=0)时,处理器1112可以被配置为确定时域资源分配开始于PDSCH之后。处理器1112可以在分配的时域资源上执行上行链路传输。
在一些实现方式中,处理器1112可以经由收发器1116接收包括下行链路配置(例如,PDSCH)和PUCCH资源指示符的PDCCH。在接收PUCCH资源指示符之后,处理器1112可以被配置为确定调度参数(例如,时隙偏移K1)的值。隐式调度参数指示第二值(例如,K1=1)时,处理器1112可以被配置为确定时域资源分配开始于在相同时隙(例如,时隙n)或者下一个时隙(例如,时隙n+1)中PDSCH结束之前。处理器1112可以在分配的时域资源上执行上行链路传输。
在一些实现方式中,处理器1112可以经由收发器1116接收包括下行链路配置(例如,PDSCH)和PUCCH资源指示符的PDCCH。在接收PUCCH资源指示符之后,处理器1112可以被配置为确定调度参数(例如,时隙偏移K1)的值。隐式调度参数指示第一值(例如,K1=0)时,处理器1112可以被配置为确定时域资源分配开始于PDSCH与处理时间(例如,N1)的组合之后。处理器1112可以在分配的时域资源上执行上行链路传输。
在一些实现方式中,处理器1112可以经由收发器1116接收包括下行链路配置(例如,PDSCH)和PUCCH资源指示符的PDCCH。在接收PUCCH资源指示符之后,处理器1112可以被配置为确定调度参数(例如,时隙偏移K1)的值。隐式调度参数指示第二值(例如,K1=1)时,处理器1112可以被配置为确定时域资源分配开始于相同时隙(例如,时隙n)或者下一个时隙(例如,时隙n+1)中PDSCH与处理时间(例如,N1)的组合结束之前。处理器1112可以在分配的时域资源上执行上行链路传输。
在一些实现方式中,处理器1112可以被配置为根据隐式调度参数确定PUSCH映射类型。隐式调度参数可以包括为PUSCH指示的符号索引。当用于PUSCH的时域资源分配指示时隙中的第一符号索引(例如,符号索引0)(例如,时隙中的第一符号)作为起始符号时,处理器1112可以确定PUSCH映射类型是第一类型(例如,类型A)。当用于PUSCH的时域资源分配指示时隙中的第二符号索引(例如,符号索引1-13)(例如,时隙中除第一符号之外的符号)作为起始符号时,处理器1112可以确定PUSCH映射类型是第二类型(例如,类型B)。处理器1112可以根据确定的PUSCH映射类型执行上行链路传输。
在一些实现方式中,隐式调度参数可以包括指示的用于PDSCH的符号索引。当用于PDSCH的时域资源分配指示时隙中的第一符号索引(例如,时隙中的前X个符号之一)作为起始符号时,处理器1112可以确定PUSCH映射类型是第一类型(例如,类型A)。当用于PUSCH的时域资源分配指示时隙中的第二符号索引(例如,时隙中最后14-X个符号之一)作为起始符号的情况下,处理器1112可以确定PUSCH映射类型是第二类型(例如,类型B)。例如但不限于,X可以等于4。处理器1112可以根据确定的PUSCH映射类型执行上行链路传输。
在一些实现方式中,针对用于PUSCH和/或PDSCH的时域资源分配,处理器1122可以为处理器1112配置一个表格。处理器1112可以根据该表格确定时域资源分配的起始时间。
例示性过程
图12示出了根据本公开的实现方式的示例过程1200。过程1200可以是与根据本公开的紧凑DCI设计和操作的时域资源分配相关的上述场景的示例实现方式,无论是部分的还是完全的。过程1200可以表示通信装置1110的多个特征的实现方式。过程1200可以包括如框1210、1220、1230和1240中的一个或多个所示的一个或多个操作、动作或功能。尽管被示出为离散的框,根据所需的实现方式,过程1200的各个框可以被划分为附加的框、组合成更少的框或者被取消。此外,过程1200的框可以按照图12中所示的顺序执行,或者,可以按照不同的顺序执行。过程1200可以由通信装置1110或任何合适的UE或机器类型的设备实现。仅出于说明性目的而非限制,下面以通信装置1110为背景描述过程1200。过程1200在框1210处开始。
在1210,过程1200可以涉及装置1110的处理器1112在PDCCH上接收紧凑DCI。过程1200可以从1210进行到1220。
在1220,过程1200可以涉及处理器1112从紧凑DCI中提取隐式调度参数。过程1200可以从1220进行到1230。
在1230,过程1200可以涉及处理器1112根据隐式调度参数确定时域资源分配。过程1200可以从1230进行到1240。
在1240,过程1200可以涉及处理器1112根据时域资源分配来执行下行链路或上行链路传输。
在一些实现方式中,隐式调度参数可以包括时隙偏移K0、时隙偏移K1、时隙偏移K2、映射类型和表格中的至少一个。
在一些实现方式中,隐式调度参数可以仅包括一个比特。
在一些实现方式中,过程1200可以涉及隐式调度参数指示第一值时,处理器1112确定时域资源分配开始于PDCCH之后。或者,过程1200可以涉及隐式调度参数指示第二值时,处理器1112确定时域资源分配开始于PDCCH结束之前。
在一些实现方式中,过程1200可以涉及隐式调度参数指示第一值时,处理器1112确定时域资源分配开始于PDCCH与处理时间的组合之后。或者,过程1200可以涉及隐式调度参数指示第二值时,处理器1112确定时域资源分配开始于PDCCH与处理时间的组合结束之前。
在一些实现方式中,过程1200可以涉及隐式调度参数指示第一值时,处理器1112确定从PDCCH开始时域资源分配。或者,过程1200可以涉及隐式调度参数指示第二值时,处理器1112确定时域资源分配开始于PDCCH之前。
在一些实现方式中,过程1200可以涉及隐式调度参数指示第一值时,处理器1112确定时域资源分配开始于PDSCH之后。或者,过程1200可以涉及隐式调度参数指示第二值时,处理器1112确定时域资源分配开始于PDSCH结束之前。
在一些实现方式中,过程1200可以涉及隐式调度参数指示第一值时,处理器1112确定时域资源分配开始于PDSCH与处理时间的组合之后。或者,过程1200可以涉及隐式调度参数指示第二值时,处理器1112确定时域资源分配开始于PDSCH与处理时间的组合结束之前。
在一些实现方式中,过程1200可以涉及当隐式调度参数指示第一符号索引时,处理器1112确定PUSCH/PDSCH映射类型是第一类型。或者,过程1200可以涉及当隐式调度参数指示第二符号索引时,处理器1112确定PUSCH/PDSCH映射类型是第二类型。
在一些实现方式中,过程1200可以涉及处理器1112根据表格确定时域资源分配的开始时间。
补充说明
本文中所描述之主题有时例示了包含在不同的其它部件之内或与其连接的不同部件。要理解的是,这些所描绘架构仅是示例,并且实际上能够实施实现相同功能的许多其它架构。在概念意义上,实现相同功能的部件的任意布置被有效地“关联”成使得期望之功能得以实现。因此,独立于架构或中间部件,本文中被组合为实现特定功能之任何两个部件能够被看作彼此“关联”成使得期望之功能得以实现。同样,如此关联的任何两个部件也能够被视为彼此“在操作上连接”或“在操作上耦接”,以实现期望功能,并且能够如此关联的任意两个部件还能够被视为彼此“在操作上可耦接”,以实现期望的功能。在操作在可耦接之特定示例包括但不限于实体上能配套和/或实体上交互的部件和/或可无线地交互和/或无线地交互的部件和/或逻辑上交互和/或逻辑上可交互的部件。
此外,关于本文中任何复数和/或单数术语的大量使用,本领域技术人员可针对上下文和/或应用按需从复数转化为单数和/或从单数转化为复数。为了清楚起见,本文中可以明确地阐述各种单数/复数互易。
另外,本领域技术人员将理解,通常,本文中所用术语且尤其是在所附权利要求(例如,所附权利要求的主体)中所使用的术语通常意为“开放”术语,例如,术语“包含”应被解释为“包含但不限于”,术语“具有”应被解释为“至少具有”,术语“包括”应解释为“包括但不限于”,等等。本领域权利要求还将理解,如果引入的权利要求列举的特定数目是有意的,则这种意图将在权利要求中明确地列举,并且在这种列举不存在时不存在这种意图。例如,为了便于理解,所附权利要求可以包含所使用的引入性短语“至少一个”和“一个或更多个”。然而,这种短语的使用不应该被解释为暗示权利要求列举透过“一”或“一个”的引入将包含这种所引入的权利要求列举的任何特定权利要求限制于只包含一个这种列举的实现方式,即使当同一申请专利范围包括引入性短语“一个或更多”或“至少一个”以及诸如“一”或“一个”这样的词语(例如,“一和/或一个”应被解释为意指“至少一个”或“一个或更多个”)时,这同样适用于用来引入权利要求列举之定冠词的使用。另外,即使明确地列举了特定数量的所引入的权利要求列举,本领域技术人员也将认识到,这种列举应被解释为意指至少所列举的数量(例如,在没有其它之修饰语的情况下,“两个列举”的无遮蔽列举意指至少两个列举或者两个或更多个列举)。此外,在使用类似于“A、B和C中之至少一个等”的情况下,在本领域技术人员将理解这个惯例的意义上,通常意指这种解释(例如,“具有A、B和C中至少一个的系统”将包括但不限于单独具有A、单独具有B、单独具有C、一同具有A和B、一同具有A和C、一同具有B和C和/或一同具有A、B和C等的系统)。在使用类似于“A、B或C等中至少一个”的惯例的那些情况下,在本领域技术人员将理解这个惯例的意义上,通常意指这样的解释(例如,“具有A、B或C中至少一个的系统”将包括但不限于单独具有A、单独具有B、单独具有C、一同具有A和B、一同具有A和C、一同具有B和C、和/或一同具有A、B和C等的系统)。本领域技术人员还将理解,无论在说明书、权利要求还是附图中,实际上呈现两个或更多个另选项的任何转折词语和/或短语应当被理解为构想包括这些项中的一个、这些项中的任一个或者这两项的可能性。例如,短语“A或B”将被理解为包括“A”或“B”或“A和B”的可能性。
根据上述内容,将领会的是,本文中已经为了例示的目的而描述了本公开的各种实现方式,并且可以在不脱离本公开的范围和精神的情况下进行各种修改。因此,本文中所公开的各种实现方式不旨在是限制性的,真正的范围和精神由所附的权利要求指示。

Claims (20)

1.一种方法,包括:
由装置的处理器在物理下行链路控制信道PDCCH上接收紧凑下行链路控制信息DCI;
由所述处理器从所述紧凑DCI中提取隐式调度参数;
由所述处理器根据所述隐式调度参数确定时域资源分配;以及
由所述处理器根据所述时域资源分配执行下行链路或上行链路传输。
2.根据权利要求1所述的方法,其中,所述隐式调度参数包括时隙偏移K0、时隙偏移K1、时隙偏移K2、映射类型和表格中的至少一个。
3.根据权利要求1所述的方法,其中,所述隐式调度参数包括一个比特。
4.根据权利要求1所述的方法,其中,所述确定包括:
所述隐式调度参数指示第一值时,确定所述时域资源分配开始于所述PDCCH之后;或者
所述隐式调度参数指示第二值时,确定所述时域资源分配开始于所述PDCCH结束之前。
5.根据权利要求1所述的方法,其中,所述确定包括:
所述隐式调度参数指示第一值时,确定所述时域资源分配开始于所述PDCCH与处理时间的组合之后;或者
所述隐式调度参数指示第二值时,确定所述时域资源分配开始于所述PDCCH与处理时间的组合结束之前。
6.根据权利要求1所述的方法,其中,所述确定包括:
所述隐式调度参数指示第一值时,确定从所述PDCCH开始所述时域资源分配;或者
所述隐式调度参数指示第二值时,确定在所述PDCCH之前开始所述时域资源分配。
7.根据权利要求1所述的方法,其中,所述确定包括:
所述隐式调度参数指示第一值时,确定所述时域资源分配开始于物理下行链路共享信道PDSCH之后;或者
所述隐式调度参数指示第二值时,确定所述时域资源分配开始于所述PDSCH结束之前。
8.根据权利要求1所述的方法,其中,所述确定包括:
所述隐式调度参数指示第一值时,确定所述时域资源分配开始于物理下行链路共享信道PDSCH与处理时间的组合之后;或者
所述隐式调度参数指示第二值时,确定所述时域资源分配开始于PDSCH与处理时间的组合结束之前。
9.根据权利要求1所述的方法,其中,所述确定包括:
所述隐式调度参数指示第一符号索引时,确定物理上行链路共享信道PUSCH/物理下行链路共享信道PDSCH映射类型是第一类型;或者
所述隐式调度参数指示第二符号索引时,确定PUSCH/PDSCH映射类型是第二类型。
10.根据权利要求1所述的方法,其中,所述确定包括根据表格确定所述时域资源分配的开始时间。
11.一种装置,包括:
收发器,能够与无线网络的网络节点无线通信;以及
处理器,通信地耦接到所述收发器,所述处理器能够:
经由所述收发器在物理下行链路控制信道PDCCH上接收紧凑下行链路控制信息DCI;
从所述紧凑DCI中提取隐式调度参数;
根据所述隐式调度参数确定时域资源分配;以及
根据所述时域资源分配,通过所述收发器执行下行链路或上行链路传输。
12.根据权利要求11所述的装置,其中,所述隐式调度参数包括时隙偏移K0、时隙偏移K1、时隙偏移K2、映射类型和表格中的至少一个。
13.根据权利要求11所述的装置,其中,所述隐式调度参数包括一个比特。
14.根据权利要求11所述的装置,其中,在根据所述隐式调度参数确定所述时域资源分配时,所述处理器能够:
所述隐式调度参数指示第一值时,确定所述时域资源分配开始于所述PDCCH之后;或者
所述隐式调度参数指示第二值时,确定所述时域资源分配开始于所述PDCCH结束之前。
15.根据权利要求11所述的装置,其中,在根据所述隐式调度参数确定所述时域资源分配时,所述处理器能够:
所述隐式调度参数指示第一值时,确定所述时域资源分配开始于所述PDCCH与处理时间的组合之后;或者
所述隐式调度参数指示第二值时,确定所述时域资源分配开始于所述PDCCH与处理时间的组合结束之前。
16.根据权利要求11所述的装置,其中,在根据所述隐式调度参数确定所述时域资源分配时,所述处理器能够:
所述隐式调度参数指示第一值时,确定从所述PDCCH开始所述时域资源分配;或者
所述隐式调度参数指示第二值时,确定在所述PDCCH之前开始所述时域资源分配。
17.根据权利要求11所述的装置,其中,在根据所述隐式调度参数确定所述时域资源分配时,所述处理器能够:
所述隐式调度参数指示第一值时,确定所述时域资源分配开始于物理下行链路共享信道PDSCH之后;或者
所述隐式调度参数指示第二值时,确定所述时域资源分配开始于所述PDSCH结束之前。
18.根据权利要求11所述的装置,其中,在根据所述隐式调度参数确定所述时域资源分配时,所述处理器能够:
所述隐式调度参数指示第一值时,确定所述时域资源分配开始于物理下行链路共享信道PDSCH与处理时间的组合之后;或者
所述隐式调度参数指示第二值时,确定所述时域资源分配开始于PDSCH与处理时间的组合结束之前。
19.根据权利要求11所述的装置,其中,在根据所述隐式调度参数确定所述时域资源分配时,所述处理器能够:
所述隐式调度参数指示第一符号索引时,确定物理上行链路共享信道PUSCH/物理下行链路共享信道PDSCH映射类型是第一类型;或者
所述隐式调度参数指示第二符号索引时,确定PUSCH/PDSCH映射类型是第二类型。
20.根据权利要求11所述的装置,其中,在根据所述隐式调度参数确定所述时域资源分配时,所述处理器能够根据表格确定所述时域资源分配的开始时间。
CN201980025205.6A 2018-04-12 2019-04-12 移动通信中紧凑下行链路控制信息的时域资源分配 Pending CN111972022A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862656545P 2018-04-12 2018-04-12
US62/656,545 2018-04-12
PCT/CN2019/082559 WO2019196946A1 (en) 2018-04-12 2019-04-12 Time domain resource allocation for compact downlink control information in mobile communications

Publications (1)

Publication Number Publication Date
CN111972022A true CN111972022A (zh) 2020-11-20

Family

ID=68162371

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980025205.6A Pending CN111972022A (zh) 2018-04-12 2019-04-12 移动通信中紧凑下行链路控制信息的时域资源分配

Country Status (4)

Country Link
US (1) US20190320422A1 (zh)
CN (1) CN111972022A (zh)
TW (1) TW201944830A (zh)
WO (1) WO2019196946A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111148190B (zh) * 2018-11-02 2021-09-14 华为技术有限公司 终端设备省电方法、装置、设备及存储介质
US11705995B2 (en) * 2018-12-28 2023-07-18 Samsung Electronics Co., Ltd. Method and device for transmitting uplink control information
WO2020227158A1 (en) 2019-05-03 2020-11-12 Apple Inc. Closed loop power control for pusch

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103931255A (zh) * 2011-11-16 2014-07-16 高通股份有限公司 针对低成本设备的下行链路控制信息

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9955465B2 (en) * 2014-10-03 2018-04-24 Intel IP Corporation Downlink control information (DCI) design for LTE devices
CN107005383B (zh) * 2014-12-22 2021-04-16 苹果公司 用于ca(载波聚合)和laa(授权辅助接入)的多个分量载波上的传输块的联合处理
WO2018063463A1 (en) * 2016-09-30 2018-04-05 Intel IP Corporation Dynamic resource allocation of scheduling requests
US10932282B2 (en) * 2017-10-11 2021-02-23 Qualcomm Incorporated Scheduling timeline in new radio-spectrum sharing (NR-SS)

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103931255A (zh) * 2011-11-16 2014-07-16 高通股份有限公司 针对低成本设备的下行链路控制信息

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Discussion on compact DCI format design", 3GPP TSG RAN WG1 MEETING #92 R1-1802226, pages 1 - 9 *
MEDIATEK INC.: "On Compact DCI Design for URLLC", 3GPP TSG RAN WG1 MEETING #92BIS R1-1804079, pages 1 - 4 *

Also Published As

Publication number Publication date
WO2019196946A1 (en) 2019-10-17
TW201944830A (zh) 2019-11-16
US20190320422A1 (en) 2019-10-17

Similar Documents

Publication Publication Date Title
CN110771247B (zh) 移动通信中对于不同服务类型报告混合自动重复请求-确认信息的方法和装置
CN111567098B (zh) 用于减少移动通信中的上行链路开销的方法和装置
CN110383750B (zh) 用于减少移动通信中上行链路开销的方法和装置
CN110692277B (zh) 在移动通信中报告混合自动重传请求-确认信息的方法和装置
US11233601B2 (en) Method and apparatus for downlink control information size alignment in mobile communications
US20200267749A1 (en) Method And Apparatus For Handling Out-Of-Order Uplink Scheduling In Mobile Communications
CN110839350B (zh) 用于增强移动通信中时域资源分配框架的方法和装置
CN110557972B (zh) 用于在移动通信中报告harq-ack信息的方法和装置
CN111418248B (zh) 增强移动通信中用于urllc的新无线电pusch
WO2019161804A1 (en) Compact downlink control information design and operations in mobile communications
US20200145143A1 (en) Methods And Apparatus For HARQ Procedure And PUCCH Resource Selection In Mobile Communications
CN110063079B (zh) 传输块大小确定方法及装置
CN111972022A (zh) 移动通信中紧凑下行链路控制信息的时域资源分配
CN110915281B (zh) 当跳频在移动通信中启用时的频域资源分配方法和装置
CN112005597B (zh) 移动通信中紧凑下行链路控制信息的频域资源分配
CN115553034A (zh) 用于无线通信中的ue内优先排序的方法
CN112787777B (zh) 移动通信中乱序的混合自动重复请求反馈的方法及其装置
WO2022012611A1 (en) Urllc enhancement on unlicensed spectrum in mobile communications
CN117941440A (zh) 用于支持移动通信中增强的类型3混合自动重复请求确认(harq-ack)码本的方法和设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination