HUE034879T2 - Cellaközi interferencia koordináció vezeték nélüli hálózatokban - Google Patents
Cellaközi interferencia koordináció vezeték nélüli hálózatokban Download PDFInfo
- Publication number
- HUE034879T2 HUE034879T2 HUE12741454A HUE12741454A HUE034879T2 HU E034879 T2 HUE034879 T2 HU E034879T2 HU E12741454 A HUE12741454 A HU E12741454A HU E12741454 A HUE12741454 A HU E12741454A HU E034879 T2 HUE034879 T2 HU E034879T2
- Authority
- HU
- Hungary
- Prior art keywords
- sector
- vezeték
- sectors
- spectrum
- available bandwidth
- Prior art date
Links
- 238000000034 method Methods 0.000 claims description 25
- 238000001228 spectrum Methods 0.000 claims description 22
- 230000005540 biological transmission Effects 0.000 claims description 12
- 230000001413 cellular effect Effects 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 6
- 238000012512 characterization method Methods 0.000 claims description 4
- 230000003595 spectral effect Effects 0.000 claims description 4
- 230000002452 interceptive effect Effects 0.000 claims description 2
- 230000001934 delay Effects 0.000 claims 2
- 102100028707 Homeobox protein MSX-1 Human genes 0.000 claims 1
- 101000985653 Homo sapiens Homeobox protein MSX-1 Proteins 0.000 claims 1
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 claims 1
- 206010048232 Yawning Diseases 0.000 claims 1
- 210000001367 artery Anatomy 0.000 claims 1
- 235000013361 beverage Nutrition 0.000 claims 1
- 210000004556 brain Anatomy 0.000 claims 1
- 239000003795 chemical substances by application Substances 0.000 claims 1
- 239000004020 conductor Substances 0.000 claims 1
- 230000003111 delayed effect Effects 0.000 claims 1
- 239000011888 foil Substances 0.000 claims 1
- 230000008595 infiltration Effects 0.000 claims 1
- 238000001764 infiltration Methods 0.000 claims 1
- 239000004816 latex Substances 0.000 claims 1
- 229920000126 latex Polymers 0.000 claims 1
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 claims 1
- 238000004611 spectroscopical analysis Methods 0.000 claims 1
- 230000001629 suppression Effects 0.000 claims 1
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 claims 1
- 229960002675 xylitol Drugs 0.000 claims 1
- 235000010447 xylitol Nutrition 0.000 claims 1
- 239000000811 xylitol Substances 0.000 claims 1
- 238000004891 communication Methods 0.000 description 9
- 239000000969 carrier Substances 0.000 description 8
- 238000013459 approach Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 238000007726 management method Methods 0.000 description 6
- 108091028733 RNTP Proteins 0.000 description 5
- VJYFKVYYMZPMAB-UHFFFAOYSA-N ethoprophos Chemical compound CCCSP(=O)(OCC)SCCC VJYFKVYYMZPMAB-UHFFFAOYSA-N 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000000116 mitigating effect Effects 0.000 description 3
- 239000003607 modifier Substances 0.000 description 3
- 230000006855 networking Effects 0.000 description 3
- 230000011664 signaling Effects 0.000 description 3
- 230000003044 adaptive effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 241000760358 Enodes Species 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012804 iterative process Methods 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- NVLSIZITFJRWPY-ONEGZZNKSA-N n,n-dimethyl-4-[(e)-2-(4-nitrophenyl)ethenyl]aniline Chemical compound C1=CC(N(C)C)=CC=C1\C=C\C1=CC=C([N+]([O-])=O)C=C1 NVLSIZITFJRWPY-ONEGZZNKSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/02—Resource partitioning among network components, e.g. reuse partitioning
- H04W16/10—Dynamic resource partitioning
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/54—Allocation or scheduling criteria for wireless resources based on quality criteria
- H04W72/541—Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0037—Inter-user or inter-terminal allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/06—Testing, supervising or monitoring using simulated traffic
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/04—Error control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0473—Wireless resource allocation based on the type of the allocated resource the resource being transmission power
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0453—Resources in frequency domain, e.g. a carrier in FDMA
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
Description
(12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: H04W 16110<2009 01) H04L 5100 (2006 01> 20.09.2017 Bulletin 2017/38 (86) International application number: (21) Application number: 12741454.8 PCT/US2012/047893 (22) Date of filing: 23.07.2012 (87) International publication number: WO 2013/016301 (31.01.2013 Gazette 2013/05)
(54) INTER-CELL INTERFERENCE COORDINATION IN WIRELESS NETWORKS
INTERFERENZKOORDINIERUNG ZWISCHEN ZELLEN IN DRAHTLOSEN NETZWERKEN COORDINATION DU BROUILLAGE INTERCELLULAIRE DANS LES RESEAUX SANS FIL (84) Designated Contracting States: (56) References cited: ALATBEBGCHCYCZDEDKEEESFIFRGB EP-A2-2 211 584 US-A1- 2009 201 867
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR · SHARP: "Uplink Inter-cell Interference
Management for LTE", 3GPP DRAFT; R1-072714,
(30) Priority: 22.07.2011 US 201161510968 P 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, (43) Date of publication of application: ROUTE DES LUCIOLES ; F-06921
28.05.2014 Bulletin 2014/22 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Orlando, USA; 20070620,20 June 2007 (73) Proprietor: Intel Corporation (2007-06-20), XP050106401, [retrieved on
Santa Clara, CA 95054 (US) 2007-06-20] • HUAWEI: "Inter-cell Interference Mitigation",
(72) Inventors: 3GPP DRAFT; R1-050629 (INTER-CELL
• VENKATRAMAN, Shankarakrishnan INTERFERENCE MITIGATION), 3RD
Santa Ana, CA 92705 (US) GENERATION PARTNERSHIP PROJECT(3GPP),
• FAKOORIAN, Seyed AM, Akbar MOBILE COMPETENCE CENTRE ; 650, ROUTE
Santa Ana, CA 92705 (US) DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Sophia (74) Representative: Goddar, Heinz J. Antipolis, France; 20050616, 16 June 2005
Boehmert & Boehmert (2005-06-16), XP050111441, [retrieved on
Anwaltspartnerschaft mbB 2005-06-16]
Pettenkoferstrasse 22 · TEXAS INSTRUMENTS: "Signaling 80336 Miinchen (DE) Requirements to Support Semi-Static Frequency
Planning for Inter-Cell Interference Mitigation in EUTRA Downlink", 3GPP DRAFT; R1-060369, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Denver, USA; 20060209, 9 February 2006 (2006-02-09), XP050101315, [retrieved on 2006-02-09]
Description
BACKGROUND
[0001] Wireless networks generally include a numberof userdevices, often referred to as user equipment, that transmits information wirelessly with network infrastructure equipment, typically referred to as "base stations" or eNode B ("eNB") equipment. Generally, the interactions between user equipment and infrastructure equipment is defined in accordance with established, standardized air interface standards, such as second generation, third generation, fourth generation air interface standards.
[0002] Generally, infrastructure equipment configured with the appropriate hardware and software components to have larger geographic coverage area within a wireless network are typically referred to as macro cells. In a typical configuration, a wireless network service provider defines a planned distribution of macro cells within a geographic area to form the wireless network. A wireless network made primarily of macro cells (e.g., a homogeneous network) can be carefully designed prior to its implementation and can be further optimized based on the known performance characteristics of the macro cells.
[0003] In order to improve performance or rapacity of a wireless network, a wireless network service provider may implement a number of macro cells, in a manner similar to a homogeneous network, along with additional infrastructure equipment having different performance and operating characteristics than the macro cells, generally referred to as a heterogeneous network. Generally, the additional infrastructure equipment typically implement the same air interfaces as macro cells (e.g., eNBs), but often are much smaller in size and have smaller geographic coverage areas. Such additional infrastructure equipment can be referred to as a small cell, pico cell orfemto cell. For example, small cells may be used to provide additional wireless network coverage within buildings, in between geographic boundaries of macro cells, in geographic areas having a large numberof user devices (e.g., "hotspots"), and the like. In heterogeneous network implementations, signaling protocols, such as X2, have been implemented to facilitate handover decisions between the different eNBs such macro cell to macro cell handovers, macro cell to small cell handover, and small cell to small cell handovers.
[0004] As is generally known, in accordance with certain air interface standards, such as the long term evolution ("LTE") air interface standard, infrastructure equipment (macro cells and small cells) is configured to transmit information across the entire frequency bandwidth available for transmission. Unlike other air interface standards, such air interface standards, e.g., LTE, do not typically allocate portions of the available frequency bandwidth to eNBs in a wireless network. Rather every eNB in the wireless network attempts to utilize the entire frequency bandwidth to communicate information to user equipment in the geographic region served by the eNB. As such, without any type of adjustment to the configuration of eNBs implementing LTE, an LTE-based wireless network may experience heavy interference at overlapping portions of geographic boundaries of the eNBs. Such an implementation can be referred to as full frequency reuse and can be associated with degrading communications in geographic areas experiencing heavy interference.
[0005] In view of the potential for interference among cells in a homogeneous and heterogeneous network implementing air interfaces, such as LTE, various inter-cell interference coordination (ICIC) techniques have been developed to mitigate or minimize interference. One approach to ICIC, referred to as hard frequency reuse, relates to distribution of portions of the available frequencies among the cells in a heterogeneous network. As applied to the LTE air interface standard, for example, a hard frequency reuse approach would involve subdividing portions of the available frequency bandwidth, generally referred to as sub-carriers, into disjoint sets. The formed disjoin sets of subcarriers would be then assigned to the individual eNBs within a heterogeneous or homogeneous network in a manner that would attempt to avoid adjacent eNBs or cells being assigned to the same disjoint sets of sub-carriers. While hard frequency reuse approach can significantly mitigate interference between adjacent cells, the spectrum efficiency of the wireless network would like decrease significantly.
[0006] Another approach to ICIC corresponds to combination of aspects of full frequency reuse and hard frequency reuse and is referred to as fractional frequency reuse. In a typical fractional frequency reuse embodiment, the available frequency spectrum is divided into two parts that implement different frequency reuse approaches. A first portion of the frequency spectrum is used in all cells, akin to a full frequency reuse approach. A second portion of the frequency spectrum is divided among different adjacent cells, akin to hard frequency reuse approach. In a practical implementation, a wireless network implementing fractional frequency reuse would assign, or otherwise utilize the full frequency reuse portion of the frequency spectrum to communicate with equipment that are substantially within the coverage area of a single cell. Such devices are often referred to as center cell devices or UEs. Additionally, the wireless network would then assign, or otherwise utilize, the hard frequency reuse portion of the frequency spectrum to equipment within the borders of multiple cells. Such devices are often referred to as cell edge devices or UEs.
[0007] Yet another approach to ICIC, referred to as soft frequency reuse, relates to cells in a heterogeneous or homogeneous network transmitting across of the entire available frequency spectrum, similar to a hard frequency reuse approach. However, in a soft frequency reuse approach, each cell may be configured with varied power transmission levels across sub-carriers. More specifically, adjacent cells may coordinate such that adjacent cells do not transmit at the same power level for all the available sub-carriers. Accordingly, a cell with a higher power configuration for particular subcarriers would experience less interference from an adjacent cell with a lower power configuration for the same subcarriers.
[0008] Many ICIC techniques, such a hard frequency reuse, fractional frequency reuse and soft frequency reuse, can be implemented in a manner that is static in nature. Such static approaches are not well suited for user equipment, traffic loads that may be uneven or subject to change. For example, a heterogeneous network including multiple small cells may experience heavy traffic loads at one or more small cells, but only for a defined period of time (e.g., a small cell having a geographic area corresponding to a cafeteria). Current approaches to dynamic analysis of interference scenarios among cells are generally not efficient to analyze potential interference scenarios across an entire frequency spectrum.
[0009] US 2009/201867 discloses a method which allocates bandwidth from a radio frequency spectrum in a cellular network including a set of cells. Each cell includes a base station for serving a set of mobile stations in the cell. An area around each base station is partitioned into a center region and an edge region. In each base station, cell-center bandwidth for use by the mobile stations in the center region is reserved according to an inter-cell interference coordination (ICIC) protocol, and cell-edge bandwidth for use by the mobile stations in the edge region is reserved according to the ICIC protocol. The bandwidth can be fixed or adaptive to reduce the signaling overhead. The adaptive bandwidth can be further partitioned into reserved and the free bands. Mobile stations are classified as primary and secondary users, depending on whether they use or are assigned the fixed or adaptive band radio resources.
[0010] EP 2 211 584 A2 discloses a conventional OFDMA/SCFDMA communication scheme, in which frequency resource assignment information is exchanged between BSs via a wired interface and used for control of inter-cell interference or the like. When a BS performs assignments of frequency resources, taking the status of a neighbor BS signaled via the wired interface into account, it might be impossible to follow a change in the status of the assignments of frequency resources at the neighbor BS due to a delay occurring in the wired interface. BS selects and assigns distributed frequency resources or continuous frequency resources, depending on the position of an MS in the cell and the transmit power of the BS.
SUMMARY OF THE INVENTION
[0011] The present invention is defined in the independent claims. The dependent claims define embodiments of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
[0012] FIGURE 1 is a block diagram of an embodiment of a heterogeneous network including a plurality of small cells and macro cells; FIGURE 2 is a block diagram of illustrative components of an embodiment, of a small cell for implementation in a heterogeneous network of FIGURE 1; FIGURE 3 its a flow diagram illustrative of a subcarrier management routine implemented in a wireless network; and FIGURES 4A-4C are flow diagrams illustrative of sub-routines for characterizing user equipment in a wireless network.
DETAILED DESCRIPTION
[0013] Generally described, the present disclosure relates to communication networks and the management of configuration information for infrastructure equipment utilized in a wireless communication network. Specifically, aspects of the present disclosure relate to the allocation and optimization of sub-carriers by a plurality of cells based, at least in part, on aspects of user equipment utilizing the wireless communication network.
[0014] In an illustrative embodiment, a wireless network management component classifies user equipment with at least a portion of the wireless communication network as cell edge user equipment or cell central user equipment. Based on the classification of the user equipment, the management component determines resource requirements for sectors associated with the cells in the wireless network. The resource requirements can include the designation of sub-carriers as primary sub-carriers and associated power levels based on the designation for the group of cells in the wireless network. Additionally, each cell within the wireless network can utilize the designation of sub-carriers and association of power levels in configuring communications with user equipment and determining which sub-carriers are utilized.
[0015] Although one or more aspects of the present disclosure will be described with regard to illustrative embodiment or examples, one skilled in the relevant art will appreciate that each aspect of the present disclosure can be implemented separately or that various combination of aspects may be combined. Specifically, aspects of the present disclosure will be described with regard to heterogeneous wireless networks implementing orthogonal frequency division multiplexed ("OFDM") based air interface standards, such as LTE. One skilled in the relevant art will appreciate that the present disclosure is not necessarily limited to the illustrated heterogeneous wireless networks and can be applicable to alternative embodiments of heterogeneous wireless networks as well as various embodiments of homogeneous wireless networks. Still further, the present disclosure is not necessarily limited to implementation of any particular air interface, such as LTE. Accordingly, no particular combination of aspects of the present disclosure should be inferred.
[0016] FIGURE 1 is a blockdiagram of an embodiment of a heterogeneous network 100 including a plurality of small cells 102 in combination with network of macro cells 104. In accordance with traditional wireless infrastructure configurations, the small cells 102 and the macro cells 104 would be in communication with core network components, generally represented at block 106. The core network components 106 can include one or more Mobility Management Entity (MME) 108 through one or more serving gateways 110. The communication interface between the small cells 102 and the serving gateway 110 may be over a network interface, such as a S1 interface. Alternatively, the communication between the small cells 102 and the serving gateway 110 can be achieved via a public network, such as via S1 interface utilizing a tunneling protocol. In various embodiments, a common network management system (NMS) 114 (also referred to as network management device (NMD)) may be configured to oversee and unify the respective element management systems (EMS) for the macro network (EMS 114) and the small network (EMS 116). As will be explained in greater detail, the NMS 112 can function to implement one or more algorithms for allocating and configuring bandwidth.
[0017] In general, UEs 120 may correspond to any computing device having one or more telecommunication components capable of communicating with the small cells 102 and macro cells 104 in accordance with wireless air interface standards. The UE 120 can illustratively include mobile phones, personal data assistants (PDAs), smart phones, tablet PCs, personal computing devices, appliances, and the like. Additionally, the telecommunication components capable of communicating with the small cell 102 and macro cells 104 can integrated directly into the UE or provided as an addon component or supplemental component. Still further, the telecommunications components capable of communicating with the small cells 102 and macro cells 104 may be shared by two or more UEs. For example, two or more UEs may share communication components utilizing wired connections, often referred to as tethering, or via a wireless communication protocol, often referred to as a hotspot.
[0018] In general, a UE 120 may communicate with a number of macro cells 104 or small cells 102. In some instances, a UE 120 may sequentially communicate between two macro cells 104. In other instances, a UE 120 may sequentially communicate between a macro cell 104 and a small cell 102, or vice versa. In still further instances, a UE 120 may sequentially communicate between two small cells 102. Generally, a handover between, or an offload from, a first cell (e.g., a macro cell 104 orsmall cell 102) and a second cell in which communications between the UE and service provider correspond to the same air interface standard may be referred to as a horizontal handover or offload.
[0019] FIGURE 2 is a block diagram of illustrative components of an embodiment of a small cell 102 (FIGURE 1) for implementation in a heterogeneous network 100. FIGURE 2 illustrates an embodiment where two illustrative air interface standards, a longer range wireless air interface standard (e.g., the Long Term Evolution ("LTE") fourth generation air interface standard and a shorter ranger wireless air interface standard (e.g., the Wi-Fi air interface standard) are supported with the same device. Although FIGURE 2 is described with regard to a small cell 102, one skilled in the relevant art will appreciate that other cells in heterogeneous networks, such as macro cells 104, would have similar functionality or components.
[0020] Illustratively, the small cell 102 includes an integration of a set of components that facilitate transmission of data in accordance with the supported wireless air interface standards, including, but not limited to, antennas, filters, radios, base station control components, network interface components and power supplies. One skilled in the relevant art will appreciate that all such components that could be implemented in a small cell 102 are not illustrated for purposes of brevity and not limitation. Illustratively, the small cell 102 can include second components for receiving signals transmitted in accordance with one or more supported air interface standards.
[0021] As illustrated in FIGURE 2, one embodiment of a small cell 102 can be configured to facilitate communication in accordance with at least two air interface standards. In one embodiment, the first radio component can corresponds to an LTE radio 210 and the second radio component can corresponds to a Wi-Fi radio 220. The two radio components can be configured into a form factor that facilitates incorporation into the form factor desired for the small cell 102. In other embodiments, the radios may be configured to support other technologies, or more or less radios may be present in the small cell. As also illustrated in FIGURE 2, the small cell 102 can also include an additional radio component 230 for receiving signals in accordance with a third interface standard. The additional radio component 230 can be configured to receive signals in a manner redundant to either the first or second radio components 210,220 or in a manner additional to the first and second radio components [0022] In various embodiments, the LTE radio component 110 may support frequencies from 700MHz to 2600 MHz in frequency division duplex (FDD) and/or time division duplex (TDD) modes. In FDD embodiments, the LTE radio component 210 may provide a single RF carrier with support of up to 20 MHz FDD channels. Illustratively, the LTE air interface standard can be considered a longer range air interface standard based on the likely geographic range of communications between devices communicating in accordance with the LTE air interface standard. In some embodiments, the Wi-Fi radio component 220 may support several frequency bands simultaneously using multiple radios. For example, the Wi-Fi radio component 220 may support communications in the 2.4 GHz and 5 GHz frequency range. Illustratively, the Wi-Fi radio 220 may be configured to have up to 40 MHz channels. Illustratively, the Wi-Fi air interface standard can be considered a shorter range air interface standard based on the likely geographic range of communications between devices communicating in accordance with the Wi-Fi air interface standard. However, the characterization of air interfaces as longer range or shorter range does not necessarily imply the definition of any specific geographic ranges. Rather, any interface standard may be considered a longer range or shorter range air interface standard relative to another air interface standard.
[0023] As illustrated in FIGURE 2, the LTE radio component 210 and the Wi-Fi radio component 220 are connected to a base station controller 240. The communication controller 240 includes common control software and provides operation and maintenance support for all technologies supported by the small cell 102. The communication controller 240 can include the same or variations similar controllers included in other infrastructure equipment, such as macro cells. The communication controller 240 is also connected to a backhaul interface 250 in the small cell 102. In various embodiments, the small cell 102 leverages a Small Form factor Pluggable (SFP) module as the backhaul interface 250. This allows flexibility to backhaul traffic with fiber, PicoEthernet or a large variety of wireless backhaul products. As indicated in FIGURE 2, the small cell 102 interfaces with various user equipment (UE) 120 through antennas 270, and also with a core network 106.
[0024] In the architecture, the radio components 210, 220 in the small cell 102 communicate with the carrier’s core network 180 using industry standard communication protocols. For example, the LTE radio component 110 can transmit information in accordance with the transfer control protocol ("TCP") and Internet Protocol ("IP") protocols.
[0025] Turning now to FIGURE 3, a flow diagram illustrative of a subcarrier management routine 300 implemented in a wireless network, such as heterogeneous network 100 will be described. In one aspect of routine 300, the resource assignment determines a number and set of resource blocks to be utilized for cell edge users in addition to appropriate power levels for assigned resource blocks (e.g., subcarriers). Illustratively, aspects of the routine 300 maybe implemented in a centralize component, such as NMS 114 (FIGURE 1), or similar component. Additionally, one or more aspects of routine 300 may be implemented within a cell, such as a small cell 102 or macro cell 104. Accordingly, routine 300 should not be interpreted as requiring implementation by any specific component.
[0026] With reference to FIGURE 3, at block 302, user equipment with the wireless network 100 is identified and characterized. Illustratively, the user equipment is characterized as either cell edge user equipment or cell central user equipment. Two illustrative sub-routines for characterizing user equipment will be described below with regard to FIGURES 4A and 4B. However, one skilled in the relevant art will appreciate that additional or alternative processes may be utilized in the characterization of user equipment.
[0027] At block 304, borrowing and lending metrics are respectively calculated for a set of cells in the wireless network 100. Illustratively, each cell is characterized in terms of two or more sectors. In this embodiment, the borrowing and lending metrics may be calculated on a per sector basis. By way of illustrative example, the borrowing and lending metrics may be defined as follows
where NumUES and NumCES represent total number of users and number of cell-edge users in sectors, respectively. Note that Bs represents number of RBGs that sector S needs to reserve or prioritize for its CE users, while Ls represents number of RBGs that can be used in low power in sector S to the favor of its neighbors. Thus each borrowing sector like S can be a lending sector for neighboring sectors, i.e., sectors that lie in the ordered list after sector S. As will be described in greater detail below, the initial borrowing and lending metrics may be utilized to make resource assignments for the cell sectors. In one embodiment, additional or alternative criteria may be utilized to determine whether updated resource assignments should be implemented in subsequent processing of routine 300.
[0028] At block 306, a power adjustment is determined. Illustratively, each sector determines how much each interfering sector should reduce its power on a specific subcarrier. To reach this decision, the current, or borrowing, sector calculates the average interference seen by all of its cell-edge UEs that see the neighboring sector. Additionally, the current sector also calculates the average signal reported by those CE users. The difference between these two is the amount that is told to N to shut down on the aforementioned subcarrier.
[0029] At block 308, after identifying the CE users and subcarrier demand which was described in the previous subsections, the EMS sorts sectors according to the descending order of cell-edge users at each sector. If two sectors have the same demand, the priority is given to the sector with more total number of UEs. This is done in order to favor sectors with greater fraction of cell edge users in requesting for and successfully obtaining resources. In the hybrid scheme, all eNBs need to be provided this sorted list to organize the order of RNTP changes.
[0030] At block 310, the NMS 114 transmits the resource metrics and ordering information to the set of cells. One skilled in the relevant art will appreciate that block 310 may be implemented in embodiments in which cells may be calculating resource assignments. In other embodiments in which the NMS 114, or other component, is determining resource assignments, block 310 may be omitted.
[0031] At block 312, one or more subcarriers are selected in accordance with the transmitted resource metrics and ordering information. Illustratively, for each sector, the "best" subcarriers are selected for a cell sector based on a determined the lowest interference with adjacent sectors. If a subcarrier has already been designated for use by an adjacent sector (i.e., sector S has already agreed to use it in low power), or if it is already being used in high power by an interfering sector to the current sector, then current sector would try to select that subcarrier. If the allocation of sectors is successful, the sector reserves those subcarrier, orRBD, by prioritizing cell edge users to be assigned in those selected subcarriers.
[0032] Illustratively, two algorithms may be implemented as part of the selection of subcarriers for cell sectors. For each algorithm, the subcarriers are selected based on the ordering or prioritization criteria selected in block 310. In one algorithm, a set of subcarriers is selected for a sector that minimizes interference while also minimizing the number of subcarriers that have to be lower or zero power in adjacent sectors (e.g., shut down). Illustratively, the cell attempts to identify a subcarrier that represents the best current subcarrier with the lowest seen interference, and without extra shut downs in adjacent sectors. Additionally, one or more constraints are calculated for the target subcarrier. Specifically, one constraint corresponds to: A~fotute_IoCs(i)- IoC8(RBGbest)< IoCGainthres [0033] where IoCGainthres is a system parameter, and fututeJoCs(i) represents the achievable loCs over subcarrier i. If the adjacent sectors which can lend (shutdown) subcarrier i, then it will do so. Define NumSDi to represent number of adjacent sectors that can shut down on RBG i. If different target subcarriers that meet the above constraint are available, the one with the minimum NumSDi is selected. If for two subcarriers, i and j which meet the above constraint, NumSDi = NumSDj, then RBG with smaller Δ is selected as the winner. Additionally, if there is no subcarrier that can meet the above constraint, RBGbest is chosen as the final winner which indeed needs no more shut downs.
[0034] In another algorithm, a set of subcarriers is selected for a sector that minimizes the lowest seen interference without consideration to the required number of shut down at the neighbors. Illustratively, the cell attempts to identify a subcarrier that represents the best current subcarrier with the lowest seen interference, and without extra shut downs in adjacent sectors. Additionally, one or more constraints are calculated for the target subcarrier. Specifically, one constraint corresponds to A-futuie IoCs(i)- IoCs(RBGbest)< IoCGainthres.
[0035] If we have different RBGs that meet the above constraint, the one with the minimum fututeJoCs(i) is selected. Again, if there is no subcarrier that can meet the above constraint, RBGbest is chosen as the final winner which indeed needs no more shut downs. Similar to the previous algorithm, after finding the final winner, denoted by i*, borrowing (shut down) request is sent to the adjacent sectors. Next list of loCS is updated and the selected RBG(s) in the last round(s) will not be considered for the next round. The above algorithm is repeated Bs times, for choosing all the required subcarriers.
[0036] If a sector S’ receives a shutdown (borrowing) request for a subcarrier i, it will consider this request if LS’>0. If this is the case, and moreover in sector S’, RNTP(i)=0, i.e., ith RBG is not already reserved for cell edge user equipment in S’, then S’ simply reduces its power by 3 dB over that subcarrier, and also reduces its LS’ by 1 unit LS’ = LS’-1). If S’ had already shut down over i (in response to the borrowing request from another sector rather than S) no more action regarding subcarrier i is required in sector S’.
[0037] Illustratively, an output of the resource assignment of block 312 is to set for each sector of a cell, such as a macro cell 104, a relatively narrowband transmit power ("RNTP") bit map and the target power map. More specifically, for each sector of a cell, RNTP and target power map correspond to a set of vectors based on the total number of subcarriers of the available bandwidth. Illustratively, the total number of subcarriers can correspond to the total number of resource block groups ("RBG"). With continued reference to an illustrative example, for each sector in a cell, array i of RNTP vector, RNTP(i), is either 0 or 1, where 1 is indicative of a higher power level while 0 is indicative of a lower power level.
[0038] Illustratively, the input parameters utilized to determine subcarrier selection may change overtime. For example, a migration of user equipment from a small cell 102 corresponding to a hotspot may be distributed to two or more macro cells 104, such as after an event. Accordingly, in one embodiment, routine 300 can include periodic updates to the resource assignments and subcarrier selections. With continued reference to FIGURE 3, at decision block 314, a test is conducted to determine whether the previously determined borrowing and lending metrics should be updated. In one embodiment, the determination of whether the previously determined borrowing and lending metrics can be associated with timing of reclassification of user equipment. In another embodiment, the determination of whether the previously determined borrowing and lending metrics can be associated with fixed time windows for determining updates (e.g., periodic, scheduled updates). In yet another embodiment, the determination of whether the previously determined borrowing and lending metrics can be associated with satisfaction of other set criteria such as cell sector performance information, user equipment feedback or reporting and the like. If not update is required (or the update time window has not been achieved), the routine 300 idles until the next update check or an update check is reached.
[0039] If at decision block 314, a determination of an update is determined, at block 318, one or more update parameters are calculated. In one embodiment, the update parameters can include a determination of whetherthe number of assigned subcarriers is sufficient. Additionally, the update parameters can include a determination of whether one or more subcarriers previously assigned (or associated) with the cell sector can be utilized by adjacent sectors. More specifically, for each cell sector, a percentage of cell edge user equipment relative to total user equipment can be determined. If the percentage of cell edge user equipment exceeds a first threshold (e.g., a max user equipment threshold), the cell sector’s update parameters can be updated to reflect the need for additional subcarriers. If the percentage of cell edge user equipment does not exceed the first threshold, the calculated percentage of cell edge user equipment is compared to a second threshold (e.g., a minimum user equipment threshold). If the percentage of cell edge user equipment is above the second threshold, then the cell sector cannot release any assigned or associated subcarriers. Alternatively, if the percentage of cell edge user equipment is below the second threshold, the cell sector can release assigned or associated subcarriers to be used by adjacent sectors. Once the update parameters are determined, the updated parameters are utilized to repeat the characterization and processing routine previously described with regard to blocks 306-312. As previously discussed, the utilization of the updated parameters facilitates the potential allocation of different resources (e.g., subcarriers) based on feedback provided as part of the implemented of the wireless network 100.
[0040] Turning now to FIGURES 4A-4C, two embodiments of a sub-routine for characterizing user equipment 120. Such a subroutine may be utilized in accordance with block 302 (FIGURE 3). In one embodiment, a sub-routine 400 (FIGURE 4A) will be described in which user equipment is characterized based on ordering criteria. In another embodiment, a sub-routine 450 (FIGURE 4B) will be described in which user equipment is characterized base on threshold criteria.
[0041] With reference to FIGURE 4A, the sub-routine 400 begins with the identification of all user equipment 120 in a set of sectors at block 402. At block 404, the identified user equipment is sorted based on characteristics of the user equipment. For example, user equipment 120 may be sorted according to operational criteria relative to the location of the eNB components sometimes referred to as geometric criteria or geometric characteristics. Illustratively, the sorting order may be such that user equipment having larger operational criteria is prioritized over user equipment having smaller operational criteria. One skilled in the relevant art will appreciate that the determination of operational criteria can be implemented in a variety of ways. For example, operational criteria can correspond to a measured signal to noise ratio ("SNR"), signal quality measurements/parameters, and the like. Additionally, other sorting may be utilized in conjunction with the operational criteria or in place of the operational criteria. More specifically, in some embodiments, routine 400 may be repeated as part of a recharacterization of user equipment 120. In such embodiments, the organizational criteria utilized to characterize the user equipment may be based on current, or substantially current, performance measurements, such as channel quality indicator ("CQI") parameters, spectral efficiency parameters, SNR parameter, and the like.
[0042] At block 406, a first subset of user equipment is characterized as cell edge user equipment based on the ordered list of user equipment. Illustratively, the selection of cell edge user equipment can be based on a percentage of the ordered list of user equipment. Additional statistical analysis may also be performed. At block 408, a second subset of user equipment is characterized as cell central user equipment based on the ordered list of user equipment. Illustratively, the remaining portion of the user equipment that has not been designated as cell edge user equipment can meet characterized as cell central user equipment. However, additional or alternative criteria may also be considered if additional or alternative characterizations are utilized. At block 408, the sub-routine 400 returns.
[0043] With reference to FIGURES 4B and 4C, the sub-routine 450 begins with the identification of all user equipment 120 in a set of sectors at block 452. At block 454, the identified user equipment power information for the identified user equipment is collected. For example, user equipment 120 may periodically transmit reference signal received power ("RSRP") or reference signal receiving quality ("RSRQ") information measured from reference signals transmitted by the eNB.
[0044] With continued reference to FIGURE 4B, the sub-routine 450 enters into an iterative process to process the power information for each identified user equipment 120 (block 452). At block 456, the first user equipment from the set of identified user equipment is set as a current user equipment. At decision block 458, a test is conducted to determine whether the power information for the current user equipment exceeds a threshold. If so, at block 460, the user equipment is characterized as cell central user equipment based on exceeding the threshold. Alternatively, if the power information for the current user equipment does not exceed the threshold, at block 462, the user equipment is characterized as cell edge user equipment based on exceeding the threshold.
[0045] At decision block 464, a test is conducted to determine whether the threshold should be modified. Illustratively, the threshold utilized to characterize the user equipment may be dynamic in nature. For example, in one embodiment, the threshold may be increased or decreased based on the number of user equipment characterized as cell central or cell edge user equipment. Accordingly, the threshold can be modified to generate new characterizations. If at decision block 464, the threshold should be modified, at block 466, the threshold is modified and the sub-routine 450 returns to block 456 to restart the process in accordance with the updated threshold.
[0046] As previously described with regard to FIGURE 4A, in some embodiments, routine 450 may be repeated as part of a recharacterization of user equipment 120. In such embodiments, the power information utilized to compare against thresholds and to characterize the user equipment may also incorporate or include performance measurement information, such as channel quality indicator ("CQI") parameters, spectral efficiency parameters, SNR parameter, and the like.
[0047] With reference to FIGURE 4C, alternatively at decision block 462, if the threshold is not modified, at decision block 468, a test is conducted to determine whether there are still unclassified user equipment. If so, the next identified user equipment is selected at block 470. If no additional user equipment remains, the sub-routine 450 returns at block 472.
[0048] While illustrative embodiments have been disclosed and discussed, one skilled in the relevant art will appreciate that additional or alternative embodiments may be implemented within the spirit and scope of the present disclosure.
Additionally, although many embodiments have been indicated as illustrative, one skilled in the relevant art will appreciate that the illustrative embodiments do not need to be combined or implemented together. As such, some illustrative embodiments do not need to be utilized or implemented in accordance with the scope of variations to the present disclosure.
[0049] Conditional language, such as, among others, "can," "could," "might," or "may," unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements or steps. Thus, such conditional language is not generally intended to imply that features, elements or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements or steps are included or are to be performed in any particular embodiment. Moreover, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey utilization of the conjunction "or" in enumerating a list of elements does not limit the selection of only a single element and can include the combination of two or more elements.
[0050] Any process descriptions, elements, or blocks in the flow diagrams described herein and/or depicted in the attached figures should be understood as potentially representing modules, segments, or portions of code which include one or more executable instructions for implementing specific logical functions or steps in the process. Alternate implementations are included within the scope of the embodiments described herein in which elements or functions may be deleted, executed out of order from that shown or discussed, including substantially concurrently or in reverse order, depending on the functionality involved, as would be understood by those skilled in the art. It will further be appreciated that the data and/or components described above may be stored on a computer-readable medium and loaded into memory of the computing device using a drive mechanism associated with a computer-readable medium storing the computer executable components, such as a CD-ROM, DVD-ROM, or network interface. Further, the component and/or data can be included in a single device or distributed in any manner. Accordingly, general purpose computing devices may be configured to implement the processes, algorithms and methodology of the present disclosure with the processing and/or execution of the various data and/or components described above. Alternatively, some or all of the methods described herein may alternatively be embodied in specialized computer hardware. In addition, the components referred to herein may be implemented in hardware, software, firmware or a combination thereof.
[0051] It should be emphasized that many variations and modifications may be made to the above-described embodiments, the elements of which are to be understood as being among other acceptable examples. All such modifications and variations are intended to be included herein within the scope of this disclosure and protected by the following claims.
Claims 1. A method of managing wireless components of a wireless network, wherein the wireless network components include a set of cells (102, 104), wherein each cell (102, 104) comprises two or more sectors and wherein the wireless network comprises a set of sectors based on the two or more sectors in the set of cells (102, 104), the method comprising: characterizing a plurality of user equipment (120) in the set of sectors as either cell edge user equipment or cell central user equipment; determining for each of the set of sectors a set or power metrics for subcarriers associated with a spectrum of available bandwidth, the set of power metrics determined, at least in part, on the characterization of each of the plurality of user equipment (120) either cell edge user equipment or cell central user equipment; modifying the set of power metrics for each of the set of sectors based on interference associated with adjacent other ones of the set of sectors; and characterized by prioritizing for wireless transmission each of the set of sectors based on the number of cell edge user equipment attributed to each of the set of sectors such that priority is assigned to those sectors with a greater number of cell edge user equipment; and for each sector in the set of sectors, dynamically assigning the subcarriers associated with the spectrum of available bandwidth based on the wireless transmission priority, the determined power metrics and interference information for subcarriers previously associated with adjacent other ones of the set of sectors. 2. The method as recited in claim 1, wherein the step of characterizing the user equipment (120) is based on organizational criteria. 3. The method as recited in claim 1, wherein the step of characterizing the user equipment (120) is based on threshold criteria. 4. The method as recited in claim 1 .wherein the set of power metrics corresponds to a number of subcarriers associated with the spectrum of available bandwidth set at a first power level higher than a second power level. 5. The method as recited in claim 1 wherein the set of power metrics corresponds to a number of subcarriers associated with the spectrum of available bandwidth set at a second power level lower than a first power level. 6. The method as recited in claim 1, wherein the step of determining for each of the set of sectors a set of power metrics forsubcarriers associated with a spectrum of available bandwidth includes generating a vector corresponding to power levels for one or more subcarriers associated with the spectrum of available bandwidth. 7. The method as recited in claim 1, wherein the step of modifying the set of power metrics for each of the set of sectors based on interference associated with adjacent other ones of the set of sectors includes modifying the set of power metrics based on a difference between a determined signal and an average interference. 8. The method as recited in claim 1, wherein the step of dynamically assigning the subcarriers associated with the spectrum of available bandwidth based on wireless transmission priority and interference information forsubcarriers previously associated with adjacent other ones of the sectors includes dynamically assigning subcarriers associated with the spectrum of available bandwidth based on minimizing interference between adjacent ones of the set of sectors. 9. A system comprising: a set of cells (102,104) for communication with user equipment (120) in a wireless network in accordance with wireless air interface standards, wherein each cell (102, 104) of the set of cells (102, 104) comprises two or more sectors and wherein the wireless network comprises a set of sectors based on the two or more sectors in the set of cells (102, 104), wherein there is a plurality of user equipment (120) in the set of sectors of the wireless network and each of the plurality of user equipment (120) is characterized as either cell edge user equipment or cell central user equipment; and a management component (112) for assigning subcarriers associated with a spectrum of available bandwidth, the management component comprising: means adapted to determine for each of the set of sectors a set of power metrics associated the subcarriers associated with a spectrum of available bandwidth, wherein the set of power metrics is determined, at least in part, on a characterization of each of the plurality of user equipment (120) associated with the wireless network as either cell edge user equipment or cell central user equipment means adapted to modify the set of power metrics for each of the set of sectors based on interference associated with adjacent other ones of the set of sectors; and characterized by further comprising means adapted to prioritize for wireless transmission each of the set of sectors based on the number of cell edge user equipment attributed to each of the set of sectors such that priority is assigned to those sectors with a greater number of cell edge user equipment; and dynamically assign, for each sector in the set of sectors, subcarriers associated with the spectrum of available bandwidth based on the wireless transmission priority, determined power metrics and interference information for subcarriers previously associated with adjacent other ones of the set of sectors. 10. The system as recited in claim 9, wherein the management component (112) further comprises means adapted to characterize each of the plurality of user equipment. 11. The system as recited in claim 9, wherein the set of power metrics corresponds to a number of subcarriers associated with the spectrum of available bandwidth set at a first power level higher than a second power level. 12. The system as recited in claim 9. wherein the set of power metrics corresponds to a number of subcarriers associated with the spectrum of available bandwidth set at a second power level lower than a first power level. 13. The system as recited in claim 9, wherein the dynamic assignment of the subcarriers associated with the spectrum of available bandwidth based subcarriers associated with adjacent other ones of the set of sectors includes the dynamic assignment of subcarriers associated with the spectrum of available bandwidth based on minimizing interference between adjacent sectors. 14. The system as recited in claim 9, wherein the dynamic assignment of the subcarriers associated with the spectrum of available bandwidth based subcarriers associated with adjacent other ones of the set of sectors further includes the dynamic assignment of subcarriers based on minimizing a number of subcarriers that are not utilized in adjacent sectors.
Patentansprüche 1. Verfahren zum Verwalten von drahtlosen Komponenten eines drahtlosen Netzwerks, wobei die drahtlosen Netzwerkkomponenten einen Satz von Zellen (102,104) umfassen, wobei jede Zelle (102,104) zwei oder mehr Sektoren umfasst und wobei das drahtlose Netzwerk einen Satz von Sektoren umfasst, die auf den zwei oder mehr Sektoren im Satz von Zellen (102, 104) basieren, das Verfahren umfassend:
Charakterisieren einer Vielzahl von Benutzergeräten (120) im Satz von Sektoren entweder als Zellenrandbenutzergerät oder Zellenzentrumsbenutzergerät;
Bestimmen für jeden des Satzes von Sektoren von einem Satz von Leistungsmetriken für Subträger, die mit einem Spektrum der verfügbaren Bandbreite assoziiert sind, wobei der Satz von Leistungsmetriken wenigstens teilweise basierend auf der Charakterisierung jedes der Vielzahl von Benutzergeräten (120) entweder als Zellenrandbenutzergerät oder Zellenzentrumsbenutzergerät bestimmt wird;
Modifizieren des Satzes von Leistungsmetriken für jeden des Satzes von Sektoren basierend auf Interferenz, die mit benachbarten anderen des Satzes von Sektoren assoziiert ist; und gekennzeichnet durch Priorisieren für die drahtlose Übertragung von jedem des Satzes von Sektoren basierend auf der Anzahl von Zellenrandbenutzergeräten, die jedem des Satzes von Sektoren zugeschrieben wird, so dass Priorität denjenigen Sektoren mit einer größeren Anzahl von Zellenrandbenutzergeräten zugeordnet wird; und für jeden Sektor im Satz von Sektoren dynamisches Zuordnen der Subträger, die mit dem Spektrum der verfügbaren Bandbreite assoziiert sind, basierend auf der Priorität der drahtlosen Übertragung, den bestimmten Leistungsmetriken und den Interferenzinformationen für Subträger, die zuvor mit benachbarten anderen des Satzes von Sektoren assoziiert waren. 2. Verfahren nach Anspruch 1, wobei der Schritt des Charakterisierensdes Benutzergeräts (120) auf organisatorischen Kriterien basiert. 3. Verfahren nach Anspruch 1, wobei der Schritt des Charakterisierens des Benutzergeräts (120) auf Schwellenwertkriterien basiert. 4. Verfahren nach Anspruch 1, wobei der Satz von Leistungsmetriken einer Anzahl von Subträgern entspricht, die mit dem Spektrum der verfügbaren Bandbreite assoziiert sind, die auf einen ersten Leistungspegel festgelegt ist, der höher als ein zweiter Leistungspegel ist. 5. Verfahren nach Anspruch 1, wobei der Satz von Leistungsmetriken einer Anzahl von Subträgern entspricht, die mit dem Spektrum der verfügbaren Bandbreite assoziiert sind, die auf einen zweiten Leistungspegel festgelegt ist, der niedriger als ein erster Leistungspegel ist. 6. Verfahren nach Anspruch 1, wobei der Schritt des Bestimmens für jeden des Satzes von Sektoren von einem Satz von Leistungsmetriken für Subträger, die mit einem Spektrum der verfügbaren Bandbreite assoziiert sind, Erzeugen eines Vektors umfasst, der den Leistungspegeln für einen oder mehrere Subträger entspricht, die mit dem Spektrum der verfügbaren Bandbreite assoziiert sind. 7. Verfahren nach Anspruch 1, wobei der Schritt des Modifizierens des Satzes von Leistungsmetriken für jeden des Satzes von Sektoren basierend auf Interferenz, die mit benachbarten anderen des Satzes von Sektoren assoziiert ist, Modifizieren des Satzes von Leistungsmetriken basierend auf einer Differenz zwischen einem bestimmten Signal und einer durchschnittlichen Interferenz umfasst. 8. Verfahren nach Anspruch 1, wobei der Schritt des dynamischen Zuordnens der Subträger, die mit dem Spektrum der verfügbaren Bandbreite assoziiert sind, basierend auf der Priorität der drahtlosen Übertragung und Interferenzinformationen für Subträger, die zuvor mit benachbarten anderen der Sektoren assoziiert waren, dynamisches Zuordnen von Subträgern, die mit dem Spektrum der verfügbaren Bandbreite assoziiert sind, basierend auf dem
Minimieren von Interferenz zwischen benachbarten des Satzes von Sektoren umfasst. 9. System, umfassend: einen Satz von Zellen (102, 104) zum Kommunizieren mit Benutzergeräten (120) in einem drahtlosen Netzwerk gemäß drahtlosen Luftschnittstellenstandards, wobei jede Zelle (102, 104) des Satzes von Zellen (102, 104) zwei oder mehr Sektoren umfasst und wobei das drahtlose Netzwerk einen Satz von Sektoren umfasst, die auf den zwei oder mehr Sektoren im Satz von Zellen (102,104) basieren, wobei es eine Vielzahl von Benutzergeräten (120) im Satz von Sektoren des drahtlosen Netzwerks gibt und jedes der Vielzahl von Benutzergeräten (120) entweder als Zellenrandbenutzergerät oder Zellenzentrumsbenutzergerät charakterisiert ist; und eine Verwaltungskomponente (112) zum Zuordnen von Subträgern, die mit einem Spektrum der verfügbaren Bandbreite assoziiert sind, die Verwaltungskomponente umfassend:
Mittel, die angepasst sind zum Bestimmen für jeden des Satzes von Sektoren von einem Satz von Leistungsmetriken, die mit den Subträgern assoziiert sind, die mit einem Spektrum der verfügbaren Bandbreite assoziiert sind, wobei der Satz von Leistungsmetriken wenigstens teilweise basierend auf einer Charakterisierung jedes der Vielzahl von Benutzergeräten (120), die mit dem drahtlosen Netzwerk assoziiert sind, entweder als Zellenrandbenutzergerät oder Zellenzentrumsbenutzergerät bestimmt wird;
Mittel, die angepasst sind zum Modifizieren des Satzes von Leistungsmetriken für jeden des Satzes von Sektoren basierend auf Interferenz, die mit benachbarten anderen des Satzes von Sektoren assoziiert ist; und gekennzeichnet durch weiteres Umfassen von Mitteln, die angepasst sind zum Priorisieren für die drahtlose Übertragung von jedem des Satzes von Sektoren basierend auf der Anzahl von Zellenrandbenutzergeräten, die jedem des Satzes von Sektoren zugeschrieben wird, so dass Priorität denjenigen Sektoren mit einer größeren Anzahl von Zellenrandbenutzergeräten zugeordnet wird; und dynamisches Zuordnen, für jeden Sektor im Satz von Sektoren, von Subträgern, die mit dem Spektrum der verfügbaren Bandbreite assoziiert sind, basierend auf der Priorität der drahtlosen Übertragung, den bestimmten Leistungsmetriken und den Interferenzinformationen für Subträger, die zuvor mit benachbarten anderen des Satzes von Sektoren assoziiert waren. 10. System nach Anspruch 9, wobei die Verwaltungskomponente (112) ferner Mittel umfasst, die angepasst sind zum Charakterisieren jeder der Vielzahl von Benutzergeräten. 11. System nach Anspruch 9, wobei der Satz von Leistungsmetriken einer Anzahl von Subträgern entspricht, die mit dem Spektrum der verfügbaren Bandbreite assoziiert sind, die auf einen ersten Leistungspegel festgelegt ist, der höher als ein zweiter Leistungspegel ist. 12. System nach Anspruch 9, wobei der Satz von Leistungsmetriken einer Anzahl von Subträgern entspricht, die mit dem Spektrum der verfügbaren Bandbreite assoziiert sind, die auf einen zweiten Leistungspegel festgelegt ist, der niedriger als ein erster Leistungspegel ist. 13. System nach Anspruch 9, wobei das dynamische Zuordnen der Subträger, die mit dem Spektrum der verfügbaren bandbreitenbasierten Subträger assoziiert sind, die mit benachbarten anderen des Satzes von Sektoren assoziiert sind, das dynamische Zuordnen von Subträgern, die mit dem Spektrum der verfügbaren Bandbreite assoziiert sind, basierend auf dem Minimieren von Interferenz zwischen benachbarten Sektoren umfasst. 14. System nach Anspruch 9, wobei das dynamische Zuordnen der Subträger, die mit dem Spektrum der verfügbaren bandbreitenbasierten Subträger assoziiert sind, die mit benachbarten anderen des Satzes von Sektoren assoziiert sind, ferner das dynamische Zuordnen von Subträgern basierend auf dem Minimieren einer Anzahl von Subträgern umfasst, die nicht in benachbarten Sektoren verwendet werden.
Revendications 1. Procédé de gestion de composants sans fil d’un réseau sans fil, les composants de réseau sans fil comprenant un ensemble de cellules (102, 104), chaque cellule (102, 104) comprenant au moins deux secteurs, et le réseau sans fil comprenant un ensemble de secteurs basés sur les au moins deux secteurs de l’ensemble de cellules (102,104), le procédé consistant à : caractériser une pluralité d’équipements d’utilisateur (120) dans l’ensemble de secteurs en guise d’équipement d’utilisateur de périphérie de cellule ou d’équipement d’utilisateur central de cellule ; déterminer, pour chaque secteur de l’ensemble de secteurs, un ensemble d’indicateurs de puissance pour des sous-porteuses associées à un spectre de bande passante disponible, l’ensemble d’indicateurs de puissance étant déterminé, au moins en partie, selon la caractérisation de chaque équipement d’utilisateur de la pluralité d’équipements d’utilisateur (120) en guise d’équipement d’utilisateur de périphérie de cellule ou d’équipement d’utilisateur central de cellule ; modifier l’ensemble d’indicateurs de puissance pour chaque secteur de l’ensemble de secteurs sur la base d’une interférence associée à d’autres secteurs adjacents de l’ensemble de secteurs ; et caractérisé par les étapes consistant à : prioriser, en vue d’une transmission sans fil, chaque secteur de l’ensemble de secteurs sur la base du nombre d’équipements d’utilisateur de périphérie de cellule attribués à chaque secteur de l’ensemble de secteurs, de sorte qu’une priorité soit attribuée aux secteurs ayant un plus grand nombre d’équipements d’utilisateur de périphérie de cellule ; et pour chaque secteur de l’ensemble de secteurs, affecter dynamiquement les sous-porteuses associées au spectre de bande passante disponible sur la base de la priorité de transmission sans fil, des indicateurs de puissance déterminés et d’une information d’interférence pour des sous-porteuses associées précédemment à d’autres secteurs adjacents de l’ensemble de secteurs. 2. Procédé selon la revendication 1, dans lequel l’étape de caractérisation de l’équipement d’utilisateur (120) est basée sur des critères d’organisation. 3. Procédé selon la revendication 1, dans lequel l’étape de caractérisation de l’équipement d’utilisateur (120) est basée sur des critères de seuil. 4. Procédé selon la revendication 1, dans lequel l’ensemble d’indicateurs de puissance correspond à un nombre de sous-porteuses associées au spectre de bande passante disponible réglée à un premier niveau de puissance supérieur à un second niveau de puissance. 5. Procédé selon la revendication 1, dans lequel l’ensemble d’indicateurs de puissance correspond à un nombre de sous-porteuses associées au spectre de bande passante disponible réglée à un second niveau de puissance inférieur à un premier niveau de puissance. 6. Procédé selon la revendication 1, dans lequel l’étape de détermination, pour chaque secteur de l’ensemble de secteurs, d’un ensemble d’indicateurs de puissance pour des sous-porteuses associées à un spectre de bande passante disponible consiste à générer un vecteur correspondant à des niveaux de puissance pour une ou plusieurs sous-porteuses associées au spectre de bande passante disponible. 7. Procédé selon la revendication 1, dans lequel l’étape de modification de l’ensemble d’indicateurs de puissance pour chaque secteur de l’ensemble de secteurs sur la base d’une interférence associée à d’autres secteurs adjacents de l’ensemble de secteurs consiste à modifier l’ensemble d’indicateurs de puissance sur la base d’une différence entre un signal déterminé et une interférence moyenne. 8. Procédé selon la revendication 1, dans lequel l’étape d’affectation dynamique des sous-porteuses associées au spectre de bande passante disponible sur la base d’une priorité de transmission sans fil et d’une information d’interférence pour des sous-porteuses associées précédemment à d’autres secteurs adjacents des secteurs consiste à affecter dynamiquement des sous-porteuses associées au spectre de bande passante disponible sur la base d’une minimisation d’une interférence entre des secteurs adjacents de l’ensemble de secteurs. 9. Système comprenant : un ensemble de cellules (102, 104) destinées à communiquer avec un équipement d’utilisateur (120) dans un réseau sans fil selon des normes d’interface radio sans fil, chaque cellule (102,104) de l’ensemble de cellules (102, 104) comprenant au moins deux secteurs, et le réseau sans fil comprenant un ensemble de secteurs basés sur les au moins deux secteurs de l’ensemble de cellules (102, 104), une pluralité d’équipements d’utilisateur (120) étant comprise dans l’ensemble de secteurs du réseau sans fil, et chaque équipement d’utilisateur de la pluralité d’équipements d’utilisateur (120) étant caractérisé en guise d’équipement d’utilisateur de péri- phérie de cellule ou d’équipement d’utilisateur central de cellule ; et un composant de gestion (112) permettant d’affecter des sous-porteuses associées à un spectre de bande passante disponible, le composant de gestion comprenant : un moyen conçu pour déterminer, pour chaque secteur de l’ensemble de secteurs, un ensemble d’indicateurs de puissance associés aux sous-porteuses associées à un spectre de bande passante disponible, l’ensemble d’indicateurs de puissance étant déterminé, au moins en partie, selon une caractérisation de chaque équipement d’utilisateur de la pluralité d’équipements d’utilisateur (120) associés au réseau sans fil en guise d’équipement d’utilisateur de périphérie de cellule ou d’équipement d’utilisateur central de cellule ; un moyen conçu pour modifier l’ensemble d’indicateurs de puissance pour chaque secteur de l’ensemble de secteurs sur la base d’une interférence associée à d’autres secteurs adjacents de l’ensemble de secteurs ; et caractérisé en ce qu’il comprend en outre un moyen conçu pour prioriser, en vue d’une transmission sans fil, chaque secteur de l’ensemble de secteurs sur la base du nombre d’équipements d’utilisateur de périphérie de cellule attribués à chaque secteur de l’ensemble de secteurs, de sorte qu’une priorité soit attribuée aux secteurs ayant un plus grand nombre d’équipements d’utilisateur de périphérie de cellule ; et affecter dynamiquement, pour chaque secteur de l’ensemble de secteurs, les sous-porteuses associées au spectre de bande passante disponible sur la base de la priorité de transmission sans fil, des indicateurs de puissance déterminés et d’une information d’interférence pour des sous-porteuses associées précédemment à d’autres secteurs adjacents de l’ensemble de secteurs. 10. Système selon la revendication 9, dans lequel le composant de gestion (112) comprend en outre un moyen conçu pour caractériser chaque équipement d’utilisateur de la pluralité d’équipements d’utilisateur. 11. Système selon la revendication 9, dans lequel l’ensemble d’indicateurs de puissance correspond à un nombre de sous-porteuses associées au spectre de bande passante disponible réglée à un premier niveau de puissance supérieur à un second niveau de puissance. 12. Système selon la revendication 9, dans lequel l’ensemble d’indicateurs de puissance correspond à un nombre de sous-porteuses associées au spectre de bande passante disponible réglée à un second niveau de puissance inférieur à un premier niveau de puissance. 13. Système selon la revendication 9, dans lequel l’affectation dynamique des sous-porteuses associées au spectre de bande passante disponible sur la base de sous-porteuses associées à d’autres secteurs adjacents de l’ensemble de secteurs comprend l’affectation dynamique de sous-porteuses associées au spectre de bande passante disponible sur la base d’une minimisation d’une interférence entre des secteurs adjacents. 14. Système selon la revendication 9, dans lequel l’affectation dynamique des sous-porteuses associées au spectre de bande passante disponible sur la base de sous-porteuses associées à d’autres secteurs adjacents de l’ensemble de secteurs comprend en outre l’affectation dynamique de sous-porteuses sur la base d’une minimisation d’un nombre de sous-porteuses qui ne sont pas utilisées dans des secteurs adjacents.
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.
Patent documents cited in the description • US 2009201867 A [0009] · EP 2211584 A2 [0010]
Claims (2)
- keordíedsiő vezeték nélküli hálózatokban |i BSíÍPllÍUP|P | j| SxsfeadsimS igéfjypeMsife 'TMH X, kijárás egy vezeíék nélküli hallxat vezéléfenlíköíi összetevőinek: menedzselésire, iózati Összetevők egy cella (102. 104} készletet foglalnak rtvsgukfesp, ahol minden egyes celte (202, 204} két vagy több szektori isrtalmaz, és ahol a vezeték nélküli hálósat egy szektor készletet tartalmaz a cella {102,104} készletben levő két vagy több szektorsisfpn. az eljárás tartsimazzaí á szektor MsXiétbee^léy# fo^ késziíék {120} vagy ceílaszéíi felhasználói készülékként, vagy ceks· közép! fóiOeaKéalól: késxalskkéot való jellemzését; mindegyik szektor készlet vonatkozásában egy a rendelkezésre álló sávszélesség spektrumával társított: rdvivokhö? tartozó teljesítmény metrika készlet meghatározását, a teljesítmény metrika készíthet legalább részben mindegyik ieihasználói készülék {120} azon jellemzése alapján határozzuk meg, hogy cellásról! felhasználó· készülékről vagy ceüakdzépi foíhasznáiöi készülékről van szó; mindegyik szektor Msziét vcmáfkozásiban a teljesítmény metrika % mÉ®t készlet: többi Szomszédos xzektőráYá:|társított interferencia -haplán; ezzál jéliemézve, hegy tartaimáxzá mindegyik szektor Mstjét fontosság! sorrendbe állítását: vezeték ftélfciíi it> vitelhez szón eeílsszéii felhasználói készöiikszsm alapján, amelyek mindegyik szektor készlethez hozzá vannak rendelve, úgy, hogy s nagyobb számú ceiiaszéíí felhasználói készüléket magokban foglaló szektorokhoz prioritást rendelőnk, és: a szektor készlet minden egyes szektora vonatkozásában a rendelkezésre álló sávszélesség spektrumával társított ehevők dinamikus hozzárendeléséi a vezeték nélküli áfvStéirgfioólis, a ka és az előzőleg a szektor készletek közéi a többi szomszédos szektor készlettel társított: áívivőkre vonatkozó interferencia· Információ aksplán. S> AZ X, igénypont: Szerinti sí}ár3%:shöí a feínssznélőtkészdíék: (MÖjjéiiémzési lépése szervezési kfiíétíMe-sökön alapéi JU M t> igénypontlszerlnfl el]árásy:áhoia felhsszoáiőr készülék (120} jellemzési lépése küszöbérték kfiíériumo-kon alapúi. 4» Az 2, igénypont szerinti eljárás, ahol á téljésiimlny metrika készlet illőbb áiviyőhőz tartozik, amelyek a ree:-deikézési-e álló sávszélesség késziét spektrumává! vannak társliva egy, egy második feijeshmépy színidéi eg-gyobb első teljesítmény szinten, & Azi. igényíjonfiszerlntl eljárás, ahol addijésltmény metrika: késziéttőbb aivlyőhöz tartozik^ amelyek: a rendelkezésre álló sávszélesség készlet xgéktrómáVSi vsnn&l társítvís egy, egy első: teljesítmény· szintnél kíséhfe második teljesítmény szinten. g,: Az 1 igénypont szerinti eljárás, áh#i:;ii^}Rlte]|y|j< fcésadbí számárs a rendelkezésre Illő sávszélesség spekt r« mává I tá f sítótt aivívő k t é vonat kozó teljesít meny: m etri ka: készlet meghatározás l lépése magábáh foglak |S egy, a fenöajkeáésra bPftPt égy y&$y több aiyivqbdz táftöab tbb^SÖ'bbby- 'siltáektom fa rtozé st&ktm alöáilö ásá t '?> -M£,. Igénypont: szedni) eljárás, ahol mindegyik széksor készlet xtimára 3 teljesítmény mewika készlet mó* dosltásí lépése: a szakföt készlet többi szomszédos sgfitpéséllársllött iotsrfer endá alsóié'· magában foglalja 3 iejjeshmépy rn^tHks késciát mödosítását egy magbátérpkotbiei éSágy átlagos interfeKmda közötti különb* Ségajapjárn 8«. -M. i. igénypont xzertosliíeljáráx. ahét: »*; rendelkezésre álló Sávszélesség ypekífymáyaihlifsífötb alylyák dlná* mikas tozárenáeíésl lépés®í! vezetéki nélküli átviteli prioritás és előzőleg a többi szomseásios szektorral: íázsö y'máúm® ínförbtácitk alapján magában foglalja a rendelkezésre áilő ily szélessé! Spektrumávaltársított alolvök dinamíkös hozzárendelését a szektor készlet szomszédos szektorai: közötti interferencia minimalizálása alapján. S, Rendszer, amely tartalmaz; ágy céllá jtöfo ÍŰfo késslötfeb féf^aSKí^ói k^Külékks'l {itO} agy Vázoték nélküli hálőzatban vezeték Piköií in* prfész szabványok szerint folytatott kommunikációra, ahol ® eslfs ÍÍ02, 1G4) késest mindéi* ágyas daliája 1182, 104) kát vagy több száktöri tárt3ÜP§& és áboi a yazeték oélhüu háiöest: egy szektor ké88lét;rt tartalmaz a cella (182, 104) Peréiben lévő két vagy ;dbb szektor alapján., ahol a vezeték nélküli hálózat szektor készleté-ben: több és mindegyik félhasznáibi kés2ülékeb:#k8) eeHaszéil Mhasaná>· Ibi késtilékkérit yagy cellapxéöí folhásznaléi késxöiikként:Mn)ellenie?ve; és ágy menedaaeléál össsPevét: (112)» randglksíésre álló sávszélesség spektrumával ; társftöli aívivök hozzárendelésére, ahol a menedzselést Pszétevő tartalmaz: eszközt, amely alkalmassá van téve arra. hogy mindegyik szektor késeiét vonatkozásában meghatározzon agy a tsndeSkepsre ép sávszélesség spáktftiöiával társprt alyivökhöz tariozé teljesítmény metrika káydátéö ahol a teljesítmény metrtksi késxiet legalább résxbán mIndegyik felhasznátői készülék 1120} azon jellemzése olaján van meghatározva, hogy: eeiSsskéjl felhasznf léi készülékről vagy eellaközépi felhasználót készülékről van yp;: eszközt, amely alkalmassá van téve: erre, pgy mindegyik Mákton készlet ynoátközásébarí módosítsa a teljesít-meny metrika készletet a szektor készlet: többi szomszédos szektoréval társított interferencia alapján; és azzal jellemezve, hogy timalmsz töváhy eszközt, amely alkalmassá van téve arra., hogy a vezeték néMii átvitelhez;mindegyik:saakforíkladétét fönfössági sorrendbe éUltsataton cellsszéii felhasználói készülék szám alapjáig djjftpi^ék: folnisg# spfcfcp: ké$»l«th©2 hozzá vannak podélve, sgphögy s: nagyobb számú eeiisszéii felhasználöl készüléket magukban föglájö szektorok nagyobb prioritás vad hozzárendelve; és a stektor késsiet nslndars agyas srektofa vonatkozásában a rendelkesésre álló sávstélasség soektronsával társított glviPkat öSnanéktiaan taxarenöeije a maghaíérozott tepsftmény met- NS* á lektor késhetek kötél s tsböi S2ém§#<ÉíS::S2^tQ^lktósttSÍ 41½¾¾¾ elvívőkre vénatkotö interferencia ínfermádé alapján. *8- &8> igénypont Síerín ti rendszer, shoí menedrseíésí összetevő (Itt; íartdmag itavébbá eszkörs, amely an kannássá ven téve 3fía; begy U. A 9. igénypont szerinti rendszer, ahol 3 teljesítmény méttska készlet készlet több aívlvöhöz. tartozik, amelyek a rendeteké®-® éllé sávszélesség késztet spektrumával: vonnak fámitvá égy, sgy második tsij&sítmény szintnél nagyobb első teljesítmény snnten.
- 11, Á l. igénypont szerinti rendszer, abot a teijesitmény mftrska készjet több sNvöhöí tgríp#; amelyek s rendeíkszésre áiió sávszélesség késiét spektruméval vannak társítva agy, egy aisö teljesítmény szintnél kisebb második teljesítmény szinten. SS. Á 9. igénypont szerinti rendszer, ahol a rendelkezésre álló sávszélesség spektrumával társított slvivök dinamikus hozzárendelése a vezeték nélküli átviteli prioritás és előzőleg a többi szomszédos szektorra! társított kivivőkre vonatkoző Interferenáiá információ alapján magában foglalja a rendelkezésre álló sávszélesség spektrumával társított alvivők dinamikus hozzárendelését a szektor készlet szomszédos szektorze közötti intérfsren' da min I ma I s r á Iá »3 a lapján. *4 9, Igénypont Szedet! rendszer, áhölá rendelkezésre álló sávszélesség spektrumával; társított kivivők db namikus hozzárendelése a szektor késlat többi szomszédos szektorával társított aivivők alapján magában fég* iáijá továbbá ás alvivők dinamikus bózzárehöéiésát a stomsaédéslsíoktérokbafi nem használt slvivök számának mi ni ma li tálé sa: s Is pjá zz
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161510968P | 2011-07-22 | 2011-07-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
HUE034879T2 true HUE034879T2 (hu) | 2018-03-28 |
Family
ID=46601933
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
HUE12741454A HUE034879T2 (hu) | 2011-07-22 | 2012-07-23 | Cellaközi interferencia koordináció vezeték nélüli hálózatokban |
Country Status (7)
Country | Link |
---|---|
US (2) | US8971901B2 (hu) |
EP (1) | EP2735190B1 (hu) |
JP (1) | JP6058663B2 (hu) |
CN (1) | CN104272794B (hu) |
ES (1) | ES2645918T3 (hu) |
HU (1) | HUE034879T2 (hu) |
WO (1) | WO2013016301A1 (hu) |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2735190B1 (en) | 2011-07-22 | 2017-09-20 | Intel Corporation | Inter-cell interference coordination in wireless networks |
GB2496908B (en) | 2011-11-28 | 2017-04-26 | Ubiquisys Ltd | Power management in a cellular system |
US20130252657A1 (en) * | 2012-03-23 | 2013-09-26 | Nokia Corporation | Method, apparatus, and computer program product for transmit power management and location information estimation |
EP2832150B1 (en) | 2012-03-25 | 2017-11-22 | Intucell Ltd. | Communication apparatus and method for optimizing performance of a communication network |
IL222709A (en) * | 2012-10-25 | 2016-02-29 | Intucell Ltd | A method and mechanism for coordinating interference between communications cells in solar systems |
US9167444B2 (en) | 2012-12-04 | 2015-10-20 | Cisco Technology, Inc. | Method for managing heterogeneous cellular networks |
US9172515B2 (en) * | 2013-02-05 | 2015-10-27 | Wipro Limited | Method and system for inter-cell interference coordination in wireless networks |
IL224926A0 (en) | 2013-02-26 | 2013-07-31 | Valdimir Yanover | A method and system for allocating resources in the @telecommunications@cellphone network |
GB2518584B (en) | 2013-07-09 | 2019-12-25 | Cisco Tech Inc | Power setting |
JP2015050575A (ja) * | 2013-08-30 | 2015-03-16 | 株式会社Nttドコモ | 無線基地局、ユーザ端末及び送信電力制御方法 |
EP2866509B1 (en) * | 2013-10-23 | 2018-12-05 | Mitsubishi Electric R & D Centre Europe B.V. | Method and device for determining transmission channel resources to be allocated for a communication |
WO2015140771A1 (en) * | 2014-03-21 | 2015-09-24 | Nokia Technologies Oy | Method, apparatus, and computer program product for facilitating load based changes of data offloading thresholds |
WO2016037641A1 (en) * | 2014-09-09 | 2016-03-17 | Nokia Solutions And Networks Oy | Optimized user equipment identifier retrieval procedure |
KR20160101440A (ko) * | 2015-02-17 | 2016-08-25 | 한국전자통신연구원 | 비면허대역에서 LTE-U와 WiFi 서비스간의 상호공존을 위한 장치 및 방법 |
US9918314B2 (en) | 2015-04-14 | 2018-03-13 | Cisco Technology, Inc. | System and method for providing uplink inter cell interference coordination in a network environment |
US9860852B2 (en) | 2015-07-25 | 2018-01-02 | Cisco Technology, Inc. | System and method to facilitate small cell uplink power control in a network environment |
CN106576317B (zh) * | 2015-07-29 | 2020-06-16 | 华为技术有限公司 | 一种小基站及其通信控制方法 |
US9820296B2 (en) | 2015-10-20 | 2017-11-14 | Cisco Technology, Inc. | System and method for frequency and time domain downlink inter-cell interference coordination |
US9954729B1 (en) * | 2015-11-20 | 2018-04-24 | T-Mobile Usa, Inc. | Provisioning and configuration of network infrastructure equipment |
US9826408B2 (en) | 2015-12-07 | 2017-11-21 | Cisco Technology, Inc. | System and method to provide uplink interference coordination in a network environment |
US10143002B2 (en) | 2016-01-12 | 2018-11-27 | Cisco Technology, Inc. | System and method to facilitate centralized radio resource management in a split radio access network environment |
US9813970B2 (en) | 2016-01-20 | 2017-11-07 | Cisco Technology, Inc. | System and method to provide small cell power control and load balancing for high mobility user equipment in a network environment |
US10091697B1 (en) | 2016-02-08 | 2018-10-02 | Cisco Technology, Inc. | Mitigation of uplink interference within heterogeneous wireless communications networks |
CN109075823B (zh) * | 2016-07-26 | 2021-04-23 | Oppo广东移动通信有限公司 | 信号传输方法和设备 |
JP7343200B2 (ja) * | 2021-05-24 | 2023-09-12 | Necプラットフォームズ株式会社 | 基地局装置、制御方法及びプログラム |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8068845B2 (en) * | 2003-11-06 | 2011-11-29 | Panasonic Corporation | Transmission power level setting during channel assignment for interference balancing in a cellular wireless communication system |
JP4726662B2 (ja) * | 2006-03-20 | 2011-07-20 | 株式会社エヌ・ティ・ティ・ドコモ | 無線アクセスネットワーク装置及び方法 |
US8165098B2 (en) * | 2008-02-11 | 2012-04-24 | Mitsubishi Electric Research Laboratories, Inc. | Method for allocating resources in cell-edge bands of OFDMA networks |
US8311005B2 (en) | 2008-11-13 | 2012-11-13 | Nec Laboratories America, Inc. | Methods and systems for allocation of macro cell resources in a distributed femto cell network and a distributed relay station network |
JP5422211B2 (ja) * | 2009-01-21 | 2014-02-19 | 株式会社日立製作所 | 無線通信システム、端末及び基地局 |
CN101795471B (zh) * | 2009-02-03 | 2013-01-09 | 电信科学技术研究院 | Icic参数传输方法及资源分配方法、装置和系统 |
US8886205B2 (en) | 2009-03-02 | 2014-11-11 | Qualcomm Incorporated | Timing adjustment for synchronous operation in a wireless network |
JP5222793B2 (ja) * | 2009-06-05 | 2013-06-26 | 株式会社日立製作所 | 無線通信システム、基地局及び端末 |
JP5504753B2 (ja) * | 2009-08-26 | 2014-05-28 | 富士通株式会社 | 基地局、通信システムおよび通信方法 |
US8447314B2 (en) | 2009-12-21 | 2013-05-21 | Cisco Technology, Inc. | System and method for providing resource management in a network environment |
CN102111775B (zh) * | 2009-12-29 | 2013-08-07 | 中兴通讯股份有限公司 | 实现小区间干扰协调的基站及小区间干扰协调的方法 |
CN102111883B (zh) * | 2009-12-29 | 2015-11-25 | 株式会社Ntt都科摩 | 家庭基站分配无线资源的方法及家庭基站 |
EP3226640B1 (en) | 2010-06-18 | 2018-12-12 | MediaTek Inc. | Method for coordinating transmissions between different communications apparatuses and communications apparatuses utilizing the same |
US9281929B2 (en) * | 2011-01-21 | 2016-03-08 | Blackberry Limited | Providing mobile-guided downlink interference management |
EP2735190B1 (en) | 2011-07-22 | 2017-09-20 | Intel Corporation | Inter-cell interference coordination in wireless networks |
-
2012
- 2012-07-23 EP EP12741454.8A patent/EP2735190B1/en not_active Not-in-force
- 2012-07-23 HU HUE12741454A patent/HUE034879T2/hu unknown
- 2012-07-23 JP JP2014522933A patent/JP6058663B2/ja not_active Expired - Fee Related
- 2012-07-23 ES ES12741454.8T patent/ES2645918T3/es active Active
- 2012-07-23 US US13/556,126 patent/US8971901B2/en not_active Expired - Fee Related
- 2012-07-23 CN CN201280046128.0A patent/CN104272794B/zh not_active Expired - Fee Related
- 2012-07-23 WO PCT/US2012/047893 patent/WO2013016301A1/en active Application Filing
-
2015
- 2015-02-13 US US14/621,775 patent/US9635676B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US8971901B2 (en) | 2015-03-03 |
US9635676B2 (en) | 2017-04-25 |
CN104272794A (zh) | 2015-01-07 |
CN104272794B (zh) | 2018-06-05 |
EP2735190A1 (en) | 2014-05-28 |
WO2013016301A1 (en) | 2013-01-31 |
JP6058663B2 (ja) | 2017-01-11 |
EP2735190B1 (en) | 2017-09-20 |
US20150237637A1 (en) | 2015-08-20 |
US20130090120A1 (en) | 2013-04-11 |
ES2645918T3 (es) | 2017-12-11 |
JP2014525206A (ja) | 2014-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
HUE034879T2 (hu) | Cellaközi interferencia koordináció vezeték nélüli hálózatokban | |
EP2494808B1 (en) | Radio resource scheduling for intra-system interference coordination in wireless communication systems | |
Liang et al. | Resource allocation with interference avoidance in OFDMA femtocell networks | |
EP2761797B1 (en) | Methods and apparatus for interference management | |
JP5169689B2 (ja) | 通信装置 | |
US20160286425A1 (en) | Method and system for wireless network optimization | |
CN102595616B (zh) | 蜂窝通信网络中的测量辅助的动态频率重用 | |
CN103210593B (zh) | 小区间干扰协调自组织网络的方法和装置 | |
EP2351448B1 (en) | Fractional frequency reuse in ofdma | |
CN106888510B (zh) | 实现资源分配的方法和系统,及集中控制器和基站 | |
EP3337218B1 (en) | Method and apparatus of mitigating interference in a heterogeneous network using an inter-cell interference coordination | |
EP3183932B1 (en) | Method and apparatus for determining clusters of access nodes | |
EP3669566B1 (en) | Community detection in radio access networks with constraints | |
JP6362150B2 (ja) | 無線通信システム内で無線リソースをミュートする方法およびシステム | |
Gerlach et al. | ICIC in DL and UL with network distributed and self‐organized resource assignment algorithms in LTE | |
Gu et al. | A resource allocation scheme for device-to-device communications using LTE-A uplink resources | |
Mitran et al. | On fractional frequency reuse in imperfect cellular grids | |
US8483167B2 (en) | Apparatus and method of dynamic downlink permutation assignment for use in a wireless communication system | |
JP2016523065A (ja) | セルラネットワークのセルに位置するユーザデバイスに無線リソースブロックを割り当てるためのコントローラ | |
Lee et al. | A resource allocation scheme for improving user fairness in device-to-device communication based on cellular networks | |
EP2894892B1 (en) | Frequency spectrum division methods, control device and base station | |
CN102186253B (zh) | 一种家庭基站的资源配置方法 | |
Hafez et al. | Resource Allocation in OFDMA Femtocell Based LTE and 5G Networks with QoS Guarantees | |
Boddu et al. | Bandwidth partitioning and SINR threshold analysis of fractional frequency reuse in OFDMA cellular networks for real time and best effort traffic | |
EP2566214B1 (en) | Apparatus, method, computer program and base station transceiver for selecting users |