HUE034388T2 - Eljárások kevert folyadék kondicionálására vízoldható kvaterner ammónium keményítõk alkalmazásával - Google Patents

Eljárások kevert folyadék kondicionálására vízoldható kvaterner ammónium keményítõk alkalmazásával Download PDF

Info

Publication number
HUE034388T2
HUE034388T2 HUE10848654A HUE10848654A HUE034388T2 HU E034388 T2 HUE034388 T2 HU E034388T2 HU E10848654 A HUE10848654 A HU E10848654A HU E10848654 A HUE10848654 A HU E10848654A HU E034388 T2 HUE034388 T2 HU E034388T2
Authority
HU
Hungary
Prior art keywords
starch
quaternary ammonium
mbr
quaternary
group
Prior art date
Application number
HUE10848654A
Other languages
English (en)
Inventor
Sijing Wang
Stephen R Vasconcellos
Original Assignee
Gen Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gen Electric filed Critical Gen Electric
Publication of HUE034388T2 publication Critical patent/HUE034388T2/hu

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5263Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using natural chemical compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

Description FIELD OF INVENTION
[0001] The present invention pertains to a method of conditioning microbial mixed liquorfor improving flux in membrane bioreactor (MBR) systems.
BACKGROUND
[0002] Biological treatment of wastewater for removal of dissolved organics is well known and is widely practiced in both municipal and industrial plants. This biological process is generally known as the "activated sludge" process in which micro-organisms consume organic compounds through their growth. The process necessarily includes sedimentation of the microorganisms or "biomass" to separate it from the water and complete the process of reducing Biological Oxygen Demand (BOD) and Total Suspension Solids (TSS) in the final effluent. The sedimentation step is typically done in a clarifier unit. Thus, the biological process is constrained by the need to produce biomass that has good settling properties. These conditions are especially difficult to maintain during intermittent periods of high organic loading and the appearance of contaminants that are toxic to the biomass.
[0003] Typically, an activated sludge treatment has a conversion ratio of organic materials to sludge of up to about 0.5 kg sludge/kg COD (chemical oxygen demand), thereby resulting in the generation of a considerable amount of excess sludge that must be disposed of. The expense for the excess sludge treatment has been estimated at 40 to 60 percent of the total expense of a wastewater treatment plant. Moreover, a conventional disposal method of landfilling sludge may cause secondary pollution problems. Therefore, interest in methods to reduce the volume and mass of excess sludge has been growing rapidly.
[0004] Membranes coupled with biological reactors for the treatment of wastewater are well known but are not widely used. In these systems, ultrafiltration (UF), microfiltration (MF), or nanofiltration (NF) membranes replace sedimentation of biomass for solids-liquid separation. A membrane can be installed in a bioreactor tank or in an adjacent tank where mixed liquor, continuously pumped from the bioreactortankand back, produces effluent with much lower total suspended solids (TSS), typically less than 5 mg /L, compared to 20 to 50 mg/L from a clarifier.
[0005] More importantly, membrane biological reactors (MBR) de-couple the biological process from the need to settle the biomass, since the membrane sieves the biomass from the water. This allows operation of the biological process at conditions that would not be desirable in a conventional system including: (1 ) high mixed liquorsuspended solids (bacteria loading) of 10 to 30 g/L; (2) extended sludge retention time; and (3) short hydraulic retention time. In a conventional system, such conditions may lead to sludge bulking and poor settleability.
[0006] The benefits of an MBR operation include low sludge production, complete solids removal from the effluent, effluent disinfection, combined COD, solids and nutrient removal in a single unit, high loading rate capability, and minimal problems with sludge bulking. Disadvantages include aeration limitations, membrane fouling, and membrane costs.
[0007] Membrane fouling can be attributed to surface deposition of suspended or dissolved substances. An MBR membrane interfaces with the biomass which contains aggregates of bacteria or "floes", free bacteria, protozoan, and various dissolved microbial products (SMP). The term SMP has been adopted to define the organic compounds that are related into the bulk microbial mixed liquor from substrate metabolism (usually biomass growth) and biomass decay.
[0008] In operation, the colloidal solids and SMP have the potential of depositing on the surface of the membrane. Colloidal particles form layers on the surface of the membrane, called a "cake layer". MBR processes are designed to use rising coarse air bubbles to provide a turbulent cross flow velocity over the surface of the membrane. This process helps to maintain the flux through the membrane, by reducing the buildup of a cake layer at the membrane surface.
[0009] Compared to a conventional activated sludge process, floe (particle) size is reportedly much smaller in typical MBR units. Small particles can plug the membrane pores, a fouling condition that may not be reversible. Since MBR membrane pore size varies from about 0.04 to about 0.4 micrometers, particles smaller than this can cause pore plugging. Pore plugging increases membrane resistance and decreases membrane flux.
[0010] Efficient and stable operation of MBR systems largely depends on the conditions and qualities of the biological populations of the biomass in the MBR system. The characteristics of the mixed liquor, including viscosity, extracellular polymeric substances (EPS), floe size, and colloidal and soluble organic substances, affect membrane filterability. While traditional approaches mostly rely on optimization of hydrodynamics and air scouring to reduce membrane fouling in MBR systems, new efforts are more devoted to coagulate and flocculate the activated sludge by adding chemicals and thereby to bind colloids and other mixed liquor components in floes. These filterability enhancement chemicals not only have a positive impact to decrease soluble foulants in the bulk phase, but also improve the hydraulic permeability of the cake formed on the surface of the membrane.
[0011] Recently, increasing efforts have been devoted to improving microbial mixed liquor filterability and enhance membrane flux in MBR systems. Options include use of inorganic coagulants such as ferric and aluminum salts and aluminum polymers, powdered activated carbon (PAC) and other types of inert particles (e.g., resins), and water soluble polymers. Use of inorganic coagulants will increase sludge generation and are only applicable to a narrow pH range. Addition of powdered activated carbon to MBR systems will not only increase sludge concentration, it may also cause irreversible permeability loss due to membrane pore plugging by PAC, and membrane wear due to the abrasiveness of the PAC. These problems will exaggerate, and additional fouling may develop when the added PAC concentration becomes higher (e.g., 600 mg/L or above).
[0012] The patents US2004/0168980 and US7611632 disclose examples of methods for enhancing the flux in a MBR system known from the prior art.
[0013] Accordingly, there is a need for effective treatment for membrane flux enhancement, MBR efficiency improvement, and mixed liquor filterability enhancement.
BRIEF DESCRIPTION OF THE INVENTION
[0014] The invention is defined by the claims, to which reference should now be made. In particular, the invention concerns a method of treating mixed liquor in a membrane bioreactor (MBR) system as described in claim 1.
BRIEF DESCRIPTION OF THE DRAWING
[0015] Fig. 1 is a schematic diagram of a typical example of an MBR in accordance with an embodiment of the invention. DETAILED DESCRIPTION
[0016] As used here, MBR means membrane bioreactor or membrane biological reactor.
[0017] "Mixed liquor" or "activated sludge" means a mixture of wastewater, microorganisms used to degrade organic materials in the wastewater, organic containing material derived from cellular species, cellular byproducts and/or waste products, or cellular debris. Mixed liquor can also contain colloidal and particulate material (i.e., biomass/biosolids) and/or soluble molecules or biopolymers (i.e., polysaccharides, proteins, etc.).
[0018] "Mixed liquor suspended solids" ("MLSS") means the concentration of biomass which is treating organic material in the mixed liquor.
[0019] "Excess activated sludge" refers to the activated sludge that is continuously pumped from the bioreactor in order to maintain a constant sludge age in the bioreactor.
[0020] The present invention pertains to a method of treating mixed liquor to condition the mixed liquor for improving the flux in membrane reactor systems (MBR) by adding to the mixed liquor a treatment composition comprising a water soluble cationic quaternary ammonium starch (I) or a cationic quaternary ammonium starch/gum blend (II) or a mixture of (I) and (II).
[0021] As to the cationic quaternary starches (CQS) (I) that may be employed, these are described in U.S. Patent 4,088,600. Basically, as is set forth in the U.S. Patent 4,088,600, the CQS consists mainly of two moieties, namely a starch group and a quaternary ammonium salt group. The starch group may be prepared from a host of starches and starch fractions including acid or enzyme modified corn or waxy starches. Exemplary starches include those prepared from corn, potato, tapioca, sago, rice, wheat, waxy maize, grain sorghum, grain starches in raw or modified forms such as those modified with acids, oxidizing agents and the like; to amylose and amylpectin and to the linear and branched components respectively, of cornstarch and also to dextrins.
[0022] The quaternary ammonium compound used to form the CQS is generally of the formula:
(Formula I) in which X- is any monovalent anion, e.g., chloride, bromide, iodide, or methyl sulfate; Y is from the group consisting of 2,3-epoxy propyl, 3-halo-2-hydroxy propyl, 2 haloethyl, o, p, or m (a hydroxy - ßhalo ethyl) benzyl; R^ R2, and R3 are from the group consisting of hydrogen, hydroxyl, alkyl, substituted alkyl, aryl and arallkyl; in which two of the R’s may be joined to form a hetercylic or homocyclic ring compound; in which the total number of carbons in all three of R1, R2, and R3 should not exceed about 14 carbons. If all three of R^ R2 and R3 are different, and R3 contains more than 3 carbon atoms but not more than 12, then R1 and R2 should preferably be from the group consisting of methyl and ethyl; and if R1 and R2 are joined to form a ring compound, R3 should preferably not be greater than ethyl.
[0023] The reaction to make the cationic starch involves the hydroxyl groups on the starch molecule and the reactive Y group of the quaternary ammonium reactant, so that the resulting cationic starch product has the formula
(Formula II) in which Y’ is the reaction residue of Y and X and the R->s are unaltered. Y’ would thus be (typically) 2 hydroxyl propyl, ethyl, or o, p or m (a hydroxy-ßhalo ethyl) benzyl.
[0024] In a typical case using N-(3-chloro-2-hydroxypropyl) trimethylammonium chloride, the reaction may proceed simplistically as
[0025] In one exemplary embodiment, a number of quaternary ammonium cationic starches may be prepared by reacting modified cornstarch with varying amounts of N- (3-chloro-2-hydroxy propyl) trimethyl ammonium chloride, with sodium hydroxide as catalyst. The degree of substitution (D.S.) of these products is calculated theoretically and is found to be in the range of 0.1 to 0.45. The degree of substitution is defined as a number of moles of quaternary ammonium substituent, in this case
per anhydroglucose unit.
[0026] Exemplary quaternary ammonium cationic starches include those wherein the degree of substitution can be within the range of about 0.01 to 0.75 quaternary units conforming to Formula II given above, per anhydroglucose unit in the starch group. Preferably, it is about 0.1-0.45. One preferred CQS is commercially available and sold by GE under the Kiaraid PC2710 designation. It is prepared via reaction of 3-chloro-2-hydroxpropyltrimethylammoniumchloride and "Melogel" corn starch. The corn starch is present in an amount of about 13.9% (by weight), and the polymer product contains about 31% actives (by weight). The quat component is present in an amount of about 18.2 wt%. Another exemplary CQS is commercially available and sold by GE under the Kláráid 2712 designation. It is prepared via reaction of 3-chloro-2-hydroxypropyltrimethyl ammonium chloride and a hydrolyzed starch. The acid hydrolyzed starch is present in an amount of about 16.6 wt%, and the product contains about 27% actives by weight. The "quat" is present in an amount of about 5.4 wt%.
[0027] In another aspect of the invention, the treatment composition is quaternary ammonium starch/gum mixture or blend (CQS & G), and this treatment is added to the mixed liquor. The CQS & G mixtures are described in U.S. Patent 5,248,449. These consist mainly of three components, namely: 1) a quaternary ammonium salt as described above; 2) a starch group as described above; and 3) a gum component. Generally, the CQS & G blends are prepared by reacting a mixture of starch and natural gum with the quaternary ammonium compound in the presence of an alkali catalyst at a pH in the range of about 12-13. One such exemplary CQS & G blend is commercially available from GE and is sold under the designation Kláráid PC 2716. It is a condensation product of 11.2% mixture of acid hydrolyzed starch/gum and 13.9 wt% 3-chloro-2-hydroxypropyl-trimethylammonium chloride. The starch: guar gum ratio is about 6.6 : 1 by weight.
[0028] The cationic quaternary ammonium starch and gum combinations contain between 0.7-3% preferably 1.0-2.1 % by weight gum, 7-30% preferably, 12-16% by weight starch and a sufficient amount of the quaternary compound to assure a cationic charge in the range of about 0.2-2.0 meq/g, which amount is typically achieved with a weight percent of 2-50%, preferably 7-33%.
[0029] Suitable natural gums for use in this invention include, but are not limited to, carboxymethyl cellulose, guar, locust bean, karaya, alginate including propylene glycol algienate and sodium alginate and xanthum gum and is preferably guar, carboxymethyl cellulose, or alginate gum.
[0030] The synthesis reactions to produce the cationic quaternary ammonium modified starch-gum compositions of the instant invention generally involve reacting the hydroxyl groups on the starch and gum molecules with the reactive Y group of the quaternary ammonium reactant. Thus, for example, in a typical case where the gum is guar gum, the quaternary ammonium compound is N-(3-chloro-2-hydroxypropyl) trimethylammonium chloride, and the alkali is sodium hydroxide; the simplified reaction may be expressed as:
[0031] Similarly, the simplified reaction for the cationic starch may be expressed as follows:
[0032] In order to form the water soluble quaternary ammonium starch/gum blends, the quaternary ammonium compound reactant is the same as set forth above. The starch and gum molecules are modified via the reaction so that the reactant bonds with the hydrogen atom available from the hydroxyl moiety on the gum or starch molecule. The ammonium modified starch therefore has the structure:
and the cationic quaternary ammonium modified gum has the formula:
wherein Y, X", R-|, R2, and R3 are all as previously defined. (See Formula I).
[0033] Exemplary CQS & G blends have a degree of substitution in the range of 0.1-1.8, preferably 0.2 to 1.2 wherein the degree of substitution (D.O.S.) is defined as the number of moles of quaternary ammonium substituent per anhy-droglucose unit contributed by the starch and gums.
[0034] Exemplary combinations of the guar gum and starch components of the CQS & G treatment composition include weight ratios of cornstarch : gum (guar gum) of between about 5-15 starch : 1 gum. Exemplary ranges by weight of gum and starch are as follows: 0.7-3% gum and 7 to about 30 wt% starch. The viscosity of the blend should preferably not exceed about 10,000 cps. As to the dosages that may be employed, the CQS and CQS & G blends may each be added in an amount of about 5 to about 1,000 ppm of the treatment composition in the mixed liquor.
[0035] In one embodiment, a method of conditioning mixed liquor in a membrane bioreactor (MBR) system comprises adding a treatment composition comprising an effective amount of either the CQS or CQS & G blend to the mixed liquor. In another embodiment, a method of improving flux in an MBR system comprises adding an effective amount of the CQS or CQS & G blend to mixed liquor of the MBR.
[0036] The treatment composition, i.e., CQS or CQS & G, is used to condition the biomass or activated sludge of MBR systems and adding an effective amount of the treatment composition can substantially improve filtering characteristics of sludge. Adding an effective amount of the treatment composition to the mixed liquor or activated sludge of an MBR can greatly improve sludge filterability, thereby reducing the risk to the MBR associated with handling peak flows, reducing membrane cleaning requirements, and the MBR systems can be designed at higher flux rate. Alternatively, adding an effective amount of the treatment composition allows for mixed liquor filterability enhancement in MBR systems. Adding an effective amount of the treatment composition can also improve filtering characteristics of sludge.
[0037] The treatment composition may be added to the system neat or in solution, either continuously or intermittently. The treatment composition should not be added directly in contact with the activated sludge at the membrane surface, but rather it should be added upstream of the membrane surface to ensure complete mixing with the activated sludge. An effective amount of the treatment composition is added to activated sludge of an MBR system. The treatment composition may be thoroughly mixed with the mixed liquor prior to being in direct contact with the membrane surface. Alternatively, the mixing may be accomplished by feeding the treatment composition into an area of the MBR where sufficient mixing time occurs, in proximity to a pumpstation, an aeration nozzle, or a sludge or mixed liquor recycling pipe.
[0038] The effective amount of the treatment composition depends on the filterability of the mixed liquor in the MBR system. The characteristics of the mixed liquor, including mixed liquor suspended solids (MLSS) concentration, viscosity, extracellular polymeric substance (EPS), floe size, and colloidal and soluble organic substances all may affect membrane filterability. The effective amount of the treatment composition may be from about 5 to about 1000 ppm active treatment composition in the MBR.
[0039] In a typical MBR unit, influent wastewater is pumped or allowed to flow via gravity into a bioreactor tank where it is brought into contact with the microorganisms which biodegrade organic material in the wastewater. Aeration means such as blowers provide oxygen to the biomass. The resulting mixed liquor contained in the bioreactor is filtered through membranes under pressure or is drawn through the membrane under vacuum. The membrane may be immersed in the bioreactor tank or contained in a separate membrane tank to which wastewater is continuously pumped from the bioreactor tank. Clarified water is discharged from the system and excess activated sludge is pumped out of the bioreactor tank into a sludge holding tank in order to maintain a constant sludge age (SRT). The filtration membrane is regularly cleaned by backwashing, chemical washing, or both.
[0040] An MBR can be configured in various ways. Turning now to Fig. 1, wastewater 10 is often pretreated to remove coarse solids, suspended solids, and various fiber materials before entering an MBR system. An MBR system may consist of an anoxic tank 20, an aerobic tank 30, and a membrane tank 40. Membrane filtrate 50 is separated from the activated sludge and exits the membrane. The activated sludge from membrane tank 40 is recycled to either an anoxic tank 60 or an aerobic tank 70. A portion of activated sludge 80 from the membrane tank 40 is drawn out for disposal in order to maintain an appropriate sludge retention time (SRT) in the MBR. The treatment composition may be added to the influent wastewater 10, the anoxic tank 20, the aerobic tank 30, or the membrane tank 40.
[0041] A MBR system may be comprised of a combination of at least two of the following types of reactors: anaerobic reactors, anoxic reactors, and aerobic reactors. A simplified MBR system may be comprised of just one aerobic tank, and the membrane module is submersed in the aerobic tank. Alternatively, the membrane bioreactor may comprise one or more aerobic reactors, one or more anaerobic digesters, or a combination of one or more anaerobic digesters and one or more aerobic reactors. An MBR system couples biological wastewater treatment and membrane filtration. The present invention applies to all MBR systems, whenever a membrane flux enhancement occurs.
[0042] Membranes used in the MBR unit include, but are not limited to, ultra-, micro-, and nanofiltration, inner and outer skin, hollow fibers, tubular, and flat, organic, metallic, ceramic, and the like. Membranes for commercial application include, but are not limited to, hollow fibers with an outer skin ultrafilters, flat sheet (in stacks) microfilter and hollow fiber with an outer skin microfilter.
[0043] Membrane materials may include, but are not limited to, chlorinated polyethylene (PVC), polyvinylidene fluoride (PVDF), polyacrylonitrile (PAN), polysulfone (PSF), polyethersulfone (PES), polyvinylalcohol (PVA), cellulose acetate (CA), regenerated cellulose (RC) as well as inorganics.
[0044] Adding an effective amount of the treatment composition allows for mixed liquor filterability enhancement in MBR systems. In addition, adding an effective amount of the treatment composition improves filtering characteristics of sludge. Adding an effective amount of the treatment composition greatly improves sludge filterability, reduces the risk to the MBR associated with handling peak flows, reduces membrane cleaning requirements, and provides for an MBR system that can be designed at a higher flux rate.
EXAMPLES
[0045] The invention will now be further described with reference to the following examples which are to be regarded solely as illustrative and not as restricting the scope of the invention.
Example 1 [0046] Mixed liquor samples for testing in Examples 1-2 were taken from a municipal Wastewater Treatment Plant. The samples were taken from the activated sludge recycling line where the MLSS concentration was above 10g/L.
[0047] A standard jar test with a Jar Tester (Phipps & Bird™) on each testing sample and control sample was conducted to ensure proper mixing. Four 500 ml aliquots of the mixed liquor were added to four jars. A treatment additive, in accordance with the invention, Polymer A, was quickly added to each sample, in the amounts shown in Table 1. A control sample was also prepared by adding 500 ml of the mixed liquor to a control jar without the addition of a treatment additive. All the samples were rapidly agitated at 200 rpm for 30 seconds and then at a slow agitation speed of 50 rpm for 15 minutes to thoroughly mix the samples.
[0048] The filterability of the mixed liquor for each sample including the Control Jar was evaluated by the Time-to-Filter (TTF) test method. The TTF test method was adapted from Standard Methods (APFIA, 1992), Method #2710H. A 9 cm filter paper (Whatman GF/C, Catalog No. 1822 090) was placed in a Buchner funnel and was wet to form a good seal. A 200 ml sample from each of the treated mixed liquor samples and the Control Jar was added to a separate Buchner funnel (as prepared above), A vacuum pressure of 51 kPa (15 inch Hg) was applied using a vacuum pump with a pressure regulator. The time required to filter 50 ml (or 25% of the initial sample volume (25%-TTF)) and 100 ml (or 50% of the initial sample volume (50%-TTF)) of each mixed liquor sample was measured, respectively, and is shown in Table 1.
[0049] The data show a very significant improvement in the filterability of the mixed liquor by adding the treatment additive of Polymer A. The experiments showed that up to more than a 90% reduction in TTF can be achieved by dosing an effective amount of the polymer for conditioning of the mixed liquor samples.
Example 2 [0050] A standard jar test with a Jar Tester (Phipps & Bird™) on each following testing sample and control sample was conducted to ensure proper mixing. Four 500 ml aliquots of the mixed liquor were added to four jars. A treatment additive, in accordance with the invention, Polymer B, as shown in Table 2 was added to each sample. A control sample was also prepared by adding 500 ml of the mixed liquor to a control jar without the addition of a treatment additive. All the samples were rapidly agitated at 200 rpm for 30 seconds and then at a slow agitation speed of 50 rpm for 15 minutes to thoroughly mix the samples.
[0051] The filterability of the mixed liquor for each sample including the Control Jar was evaluated by the TTF test method as described in Example 1. A 200 ml sample from each of the treated mixed liquor samples and the Control Jar was added to a separate Buchner funnel. A vacuum pressure of 51 kPa (15 inch Hg) was applied using a vacuum pump with a pressure regulator. The time required to filter 50 ml (or 25% of the initial sample volume (25%-TTF)) of each mixed liquor sample was measured and is shown in Table 2.
[0052] The data show that the treatment Polymer B also can enhance the filterability of the mixed liquor samples.
[0053] Polymer A = Cationic quaternary ammonium modified starch polymer - prepared via reaction of 3-chloro-2-hydroxypropyltrimethylammoniumchloride and "Melogel" corn starch. The corn starch is present in an amount of about 13.9% by weight, and the product contains about 31% actives by weight - available GE Kláráid PC 2710. The "quat" is present in an amount of about 18.2 wt%.
[0054] Polymer B = Cationic quaternary ammonium polymer modified with an acid-hydrolyzed starch - prepared via reaction of 3-chloro-2-hydroxypropyl-trimethylammonium chloride and a hydrolyzed starch. The acid-hydrolyzed starch is present in an amount of about 16.6% and the product contains about 27% actives by weight - available GE Kláráid PC2712. The "quat" is present in an amount of about 5.4 wt%.
[0055] While the present invention has been described with references to preferred embodiments, various changes or substitutions may be made to these embodiments by those ordinarily skilled in the art pertinent to the present invention without departing from the technical scope of the present invention. Therefore, the scope of the present invention encompasses not only those embodiments described above, but also all that fall within the scope of the appended claims.
Claims 1. A method of treating mixed liquor in a membrane bioreactor (MBR) system to increase the flux rate of the mixed liquor comprising adding an effective amount of a treatment composition to the mixed liquor, said treatment composition comprising a member selected from the group consisting of a 1) water soluble cationic quaternary ammonium starch and a 2) water soluble cationic quaternary ammonium starch/gum blend, the blend containing between 0.7 and 3% by weight gum and 7 to 30% by weight starch and having a sufficient amount of quaternary ammonium starch/gum to assure a cationic charge in the range of 0.2 to 2.0 meq/g, wherein the sufficient amount of water soluble cationic quaternary ammonium starch/gum is 2 to 50% by weight, and preferably 7 to 33% by weight, then passing said mixed liquor with said treatment composition therein through a membrane chosen from the group consisting of ultrafiltration, microfiltration and nanofiltration membranes, wherein said water soluble cationic quaternary ammonium starch has the formula:
wherein X is any monovalent anion including chloride, bromide, iodide, methyl sulfate; Y is selected from the group consisting of 2, 3 epoxy propyl, 3-halo-2-hydroxy propyl, 2 haloethyl, o, p or m (hydroxy-ß halo ethyl) benzyl; R2, and R3 are independently selected from the group consisting of hydrogen, hydroxyl, alkyl, substituted alkyl, aryl and alkaryl, and in which two of the Rs may be joined to form a heterocyclic ring compound or a homocyclic ring compound, further in which the total number of carbons in all three of R^ R2, and R3 should not exceed about 14 carbons, with the proviso that if all three of R·,, R2, and R3 are different and R3 contains more than 3 carbon atoms but not more than 12, then R1 and R2 are from the group consisting of methyl and ethyl; and if R1 and R2 are joined to form a ring compound, R3 is an alkyl group not greater than ethyl wherein the concentration of starch in the composition is in the range of 7 to 30 percent by weight. 2. A method according to claim 1 wherein the starch is selected from the group consisting of corn, potato, tapioca, sago, wheat, waxy maize, grain sorghum, grain starches, and dextrin. 3. A method according to claim 1 wherein the water soluble quaternary ammonium starch is mixed with the mixed liquor prior to being brought into direct contact with the membrane surface. 4. The method of claim 3 wherein the mixing is accomplished by feeding the water soluble cationic quaternary ammonium starch into an area of the MBR where an intensive mixing occurs. 5. The method of claim 3 wherein the mixing is accomplished by feeding the water soluble cationic quaternary ammonium starch into an area of the MBR where sufficient mixing time occurs. 6. The method of claim 1 wherein said treatment composition is fed to said mixed liquor in an amount of about 5 ppm to about 1,000 ppm. 7. A method according to claim 1 wherein said water soluble quaternary ammonium starch/gum blend is present, said cationic ammonium modified starch having the formula:
and said cationic quaternary ammonium modified gum has the formula:
wherein X is any monovalent anion including chloride, bromide, iodide, methyl sulfate; Y is selected from the group consisting of 2, 3 epoxy propyl, 3-halo-2-hydroxy propyl, 2 haloethyl, o, p or m (ahydroxy-ß halo ethyl) benzyl; R1, R2, and R3 are independently selected from the group consisting of hydrogen, hydroxyl, alkyl, substituted alkyl, aryl, and alkaryl, and in which two of the Rs may be joined to form a heterocyclic ring compound or a homocyclic ring compound further in which the total number of carbons in all three of R^ R2, and R3 should not exceed about 14. 8. A method according to claim 7 wherein the gum is selected from the group consisting of guar, carboxylmethyl cellulose, propylene glycol alginate, locust bean karaya, sodium alginate and xanthum. 9. A method according to claim 7 wherein the starch is selected from the group consisting of corn, potato, tapioca, sago, rice wheat, waxy maize, grain sorghum, grain starches, and dextrin. 10. A method according to claim 1 or 7 wherein the degree of substitution of the composition is in the range of 0.1 to 1.8 or 0.2 to 1.2. 11. A method according to claim 7 wherein the concentration of gum in the composition is in the range of 1.0 to 2.1 % by weight, and the concentration of starch is in the range 12 to 16% by weight. 12. The method of claim 7 wherein the water soluble quaternary ammonium starch/gum blend is mixed with the mixed liquor prior to being in direct contact with the membrane surface. 13. The method of claim 12 wherein the mixing is accomplished by feeding the water soluble quaternary ammonium starch/gum blend into an area of the MBR where an intensive mixing occurs. 14. The method of claim 12 wherein the mixing is accomplished by feeding the water soluble quaternary ammonium starch/gum blend into an area of the MBR where sufficient mixing time occurs. 15. The method of claim 1, wherein the degree of substitution of the starch is in the range of 0.01 to 0.75 quaternary units per an hydroglu cose unit in the starch group, and preferably in the range of 0.1 to 0.45 quaternary units per an hydroglu cose unit in the starch group, according to the formula
16. The method of claim 1, wherein the effective amount is from 5 to 1000 ppm active treatment in the membrane bioreactor.
Patentansprüche 1. Verfahren zur Behandlung von belebtem Schlamm in einem Membran-Bioreaktor(MBR)-System zur Steigerung der Flussgeschwindigkeit des belebten Schlamms, umfassend Zugeben einer wirksamen Menge einer Behandlungszusammensetzung zum belebten Schlamm, wobei die Behandlungszusammensetzung ein aus der aus einer 1) wasserlöslichen kationischen quartären Ammoniumstärke und einer 2) Wasserlösliche-kationische-quartäre-Am-moniumstärke/Gummi-Mischung bestehenden Gruppe ausgewähltes Glied umfasst, wobei die Mischung zwischen 0,7 und 3 Gew.-% Gummi und 7 bis 30 Gew.-% Stärke enthält und eine hinreichende Menge Quartäre-Ammoni-umstärke/Gummi aufweist, um eine kationische Ladung im Bereich von 0,2 bis 2,0 meq/g zu gewährleisten, wobei die hinreichende Menge Wasserlösliche-kationische-quartäre-Ammoniumstärke/Gummi bei 2 bis 50 Gew.-% und vorzugsweise 7 bis 33 Gew.-% liegt, danach Leitendes belebten Schlamms mit der Behandlungszusammensetzung darin über eine Membran, die aus der aus Ultrafiltrations-, Mikrofiltrations- und Nanofiltrationsmembranen bestehenden Gruppe gewählt ist, wobei die wasserlösliche kationische quartäre Ammoniumstärke die folgende Formel aufweist:
wobei X für ein beliebiges einwertiges Anion, einschließlich Chlorid, Bromid, lodid, Methylsulfat, steht; Y aus der aus 2,3-Epoxypropyl, 3-Halogen-2-hydroxypropyl, 2-Halogenethyl, o-, p- oder m-(a-Hydroxy-ß-halogenethyl)benzyl bestehenden Gruppe ausgewählt ist; R2 und R3 unabhängig aus der aus Wasserstoff, Hydroxyl, Alkyl, substituiertem Alkyl, Aryl und Alkaryl bestehenden Gruppe ausgewählt sind, wobei bei ihnen zwei der Rs unter Bildung einer heterocyclischen Ringverbindung odereiner homocyclischen Ringverbindung verbunden sein können, wobei bei ihnen ferner die Gesamtzahl an Kohlenstoffen in allen drei Resten R-j, R2 und R3 14 Kohlenstoffe nicht überschreiten sollte, mit der Maßgabe, dass, wenn alle drei Reste R^ R2 und R3 verschieden sind und R3 mehr als 3, aber nicht mehr als 12 Kohlenstoffatome enthält, R1 und R2dann aus der aus Methyl und Ethyl bestehenden Gruppe stammen; und wenn R1 und R2 unter Bildung einer Ringverbindung verbunden sind, R3 für eine Alkylgruppe steht, die nicht größer als Ethyl ist, wobei die Stärkekonzentration in der Zusammensetzung im Bereich von 7 bis 30 Gewichtsprozent liegt. 2. Verfahren nach Anspruch 1, wobei die Stärke aus der aus Mais-, Kartoffel-, Tapioka-, Sago-, Weizen-, Wachsmais-, Sorghumhirse-, Getreidestärken und Dextrin bestehenden Gruppe ausgewählt ist. 3. Verfahren nach Anspruch 1, wobei die wasserlösliche quartäre Ammoniumstärke mit dem belebten Schlamm vor dem direkten Inkontaktbringen davon mit der Membranoberfläche gemischt wird. 4. Verfahren gemäß Anspruch 3, wobei das Mischen bewerkstelligt wird, indem die wasserlösliche kationische quartäre Ammoniumstärke einer Zone des MBR zugeführt wird, wo ein intensives Mischen stattfindet. 5. Verfahren gemäß Anspruch 3, wobei das Mischen bewerkstelligt wird, indem die wasserlösliche kationische quartäre Ammoniumstärke einer Zone des MBR zugeführt wird, wo eine hinreichende Mischzeit vorliegt. 6. Verfahren gemäß Anspruch 1, wobei die Behandlungszusammensetzung dem belebten Schlamm in einer Menge von etwa 5 ppm bis etwa 1000 ppm zugeführt wird. 7. Verfahren nach Anspruch 1, wobei die Wasserlösliche-quartäre-Ammoniumstärke/Gummi-Mischung vorhanden ist, wobei die kationische ammoniummodifizierte Stärke die Formel
und das kationische quartäres-Ammonium-modifizierte Gummi die Formel
aufweist, wobei X für ein beliebiges einwertiges Anion, einschließlich Chlorid, Bromid, lodid, Methylsulfat, steht; Y aus der aus 2,3-Epoxypropyl, 3-Halogen-2-hydroxypropyl, 2-Halogenethyl, o-, p- oder m-(a-Hydroxy-ß-halogene-thyl)benzyl bestehenden Gruppe ausgewählt ist; R2 und R3 unabhängig aus der aus Wasserstoff, Hydroxyl, Alkyl, substituiertem Alkyl, Aryl und Alkaryl bestehenden Gruppe ausgewählt sind, wobei bei ihnen zwei der Rs unter Bildung einer heterocyclischen Ringverbindung oder einer homocyclischen Ringverbindung verbunden sein können, wobei bei ihnen ferner die Gesamtzahl an Kohlenstoffen in allen drei Resten R^ R2 und R3 14 nicht überschreiten sollte. 8. Verfahren nach Anspruch 7, wobei das Gummi aus der aus Guar, Carboxylmethylcellulose, Propylenglykolalginat, Carubin, Natriumalginat und Xanthan bestehenden Gruppe ausgewählt ist. 9. Verfahren nach Anspruch 7, wobei die Stärke aus der aus Mais-, Kartoffel-, Tapioka-, Sago-, Reis-, Weizen-, Wachsmais-, Sorghumhirse-, Getreidestärken und Dextrin bestehenden Gruppe ausgewählt ist. 10. Verfahren nach Anspruch 1 oder 7, wobei der Substitutionsgrad der Zusammensetzung im Bereich von 0,1 bis 1,8 oder 0,2 bis 1,2 liegt. 11. Verfahren nach Anspruch 7, wobei die Gummikonzentration in der Zusammensetzung im Bereich von 1,0 bis 2,1 Gew.-% und die Stärkekonzentration im Bereich 12 bis 16 Gew.-% liegt. 12. Verfahren gemäß Anspruch 7, wobei die Wasserlösliche-quartäre-Ammoniumstärke/Gummi-Mischung mit dem belebten Schlamm vor dem direkten Kontakt davon mit der Membranoberfläche gemischt wird. 13. Verfahren gemäß Anspruch 12, wobei das Mischen bewerkstelligt wird, indem die Wasserlöslichequartäre-Ammo-niumstärke/Gummi-Mischung einer Zone des MBR zugeführt wird, wo ein intensives Mischen stattfindet. 14. Verfahren gemäß Anspruch 12, wobei das Mischen bewerkstelligt wird, indem die Wasserlöslichequartäre-Ammo-niumstärke/Gummi-Mischung einer Zone des MBR zugeführt wird, wo eine hinreichende Mischzeit vorliegt. 15. Verfahren gemäß Anspruch 1, wobei der Substitutionsgrad der Stärke im Bereich von 0,01 bis 0,75 quartären Einheiten pro Anhydroglucose-Einheit in der Stärkegruppe und vorzugsweise im Bereich von 0,1 bis 0,45 quartären Einheiten pro Anhydroglucose-Einheit in der Stärkegruppe liegt, gemäß der Formel
16. Verfahren gemäß Anspruch 1, wobei die wirksame Menge 5 bis 1000 ppm aktive Behandlung im Membran-Bioreaktor beträgt.
Revendications 1. Méthode de traitement d’une liqueur mixte dans un système de bioréacteur à membrane (MBR) afin d’augmenter la vitesse d’écoulement de la liqueur mixte, comprenant l’addition d’une quantité efficace d’une composition de traitement à la liqueur mixte, ladite composition de traitement comprenant un membre choisi dans le groupe constitué pari) un amidon d’ammonium quaternaire cationique hydrosoluble et 2) un mélange de gomme/amidon d’ammonium quaternaire cationique hydrosoluble, le mélange contenant entre 0,7 et 3% en poids de gomme et de 7 à 30% en poids d’amidon et ayant une quantité suffisante de gomme/amidon d’ammonium quaternaire pour garantir une charge cationique dans la plage allant de 0,2 à 2,0 méq./g, où la quantité suffisante de gomme/amidon d’ammonium quaternaire cationique hydrosoluble va de 2 à 50% en poids, et préférablement de 7 à 33% en poids, puis le passage de ladite liqueur mixte contenant ladite composition de traitement à travers une membrane choisie dans le groupe constitué par les membranes d’ultrafiltration, de microfiltration et de nanofiltration, où ledit amidon d’ammonium quaternaire cationique hydrosoluble répond à la formule :
où X est un anion monovalent quelconque, y compris chlorure, bromure, iodure, méthylsulfate ; Y est choisi dans le groupe constitué par 2,3-époxypropyle, 3-halogéno-2-hydroxypropyle, 2-halogénoéthyle, o-, p- ou m-(a-hydroxy-p-halogénoéthyl)benzyle ; R2 et R3 sont choisis indépendamment dans le groupe constitué par hydrogène, hydroxyle, alkyle, alkyle substitué, aryle et alkaryle, et où deux parmi les R peuvent être reliés pour former un composé de cycle hétérocyclique ou un composé de cycle homocyclique, en outre où le nombre total de carbones dans l’ensemble des trois R^ R2 et R3 ne doit pas excéder environ 14 carbones, à condition que si l’ensemble des trois R^ R2 et R3 sont différents, et R3 contient plus de 3 atomes de carbone mais pas plus de 12, alors R1 et R2 sont choisis dans le groupe constitué par méthyle et éthyle ; et si R1 et R2 sont reliés pour former un composé de cycle, R3 est un groupement alkyle non supérieur à éthyle, où la concentration en amidon dans la composition se trouve dans la plage allant de 7 à 30% en poids. 2. Méthode selon la revendication 1, dans laquelle l’amidon est choisi dans le groupe constitué par le maïs, la pomme de terre, le tapioca, le sagou, le blé, le maïs cireux, les grains de sorgho, les amidons de grains, et les dextrines. 3. Méthode selon la revendication 1, dans laquelle l’amidon d’ammonium quaternaire hydrosoluble est mélangé avec la liqueur mixte préalablement à sa mise en contact directe avec la surface de la membrane. 4. Méthode selon la revendication 3, dans laquelle le mélange est effectué par l’alimentation de l’amidon d’ammonium quaternaire cationique hydrosoluble dans une zone de la MBR où a lieu un mélange vigoureux. 5. Méthode selon la revendication 3, dans laquelle le mélange est effectué par l’alimentation de l’amidon d’ammonium quaternaire cationique hydrosoluble dans une zone de la MBR où a lieu un temps de mélange suffisant. 6. Méthode selon la revendication 1, dans laquelle ladite composition de traitement est alimentée dans ladite liqueur mixte selon une quantité allant d’environ 5 ppm à environ 1000 ppm. 7. Méthode selon la revendication 1, dans laquelle ledit mélange de gomme/amidon d’ammonium quaternaire hydrosoluble est présent, ledit amidon modifié d’ammonium cationique répondant à la formule :
et ladite gomme modifiée d’ammonium quaternaire cationique répondant à la formule :
où X est un anion monovalent quelconque, y compris chlorure, bromure, iodure, méthylsulfate ; Y est choisi dans le groupe constitué par 2,3-époxypropyle, 3-halogéno-2-hydroxypropyle, 2-halogénoéthyle, o-, p- ou m-(a-hydroxy-p-halogénoéthyl)benzyle ; R-j, R2 et R3 sont choisis indépendamment dans le groupe constitué par hydrogène, hydroxyle, alkyle, alkyle substitué, aryle et alkaryle, et où deux parmi les R peuvent être reliés pour former un composé de cycle hétérocyclique ou un composé de cycle homocyclique, en outre où le nombre total de carbones dans l’ensemble des trois R^ R2 et R3 ne doit pas excéder environ 14. 8. Méthode selon la revendication 7, dans laquelle la gomme est choisie dans le groupe constitué par la gomme guar, la carboxyméthylcellulose, l’alginate de propylène glycol, la gomme de caroube, la gomme de karaya, l’alginate de sodium et la gomme xanthane. 9. Méthode selon la revendication 7, dans laquelle l’amidon est choisi dans le groupe constitué par le maïs, la pomme de terre, le tapioca, le sagou, le riz, le blé, le maïs cireux, les grains de sorgho, les amidons de grains, et les dextrines. 10. Méthode selon la revendication 1 ou 7, dans laquelle le degré de substitution de la composition se trouve dans la plage allant de 0,1 à 1,8 ou de 0,2 à 1,2. 11. Méthode selon la revendication 7, dans laquelle la concentration en gomme dans la composition se trouve dans la plage allant de 1,0 à 2,1 % en poids, et la concentration en amidon se trouve dans la plage allant de 12 à 16% en poids. 12. Méthode selon la revendication 7, dans laquelle le mélange gomme/amidon d’ammonium quaternaire hydrosoluble est mélangé avec la liqueur mixte préalablement à sa mise en contact directe avec la surface de la membrane. 13. Méthode selon la revendication 12, dans laquelle le mélange est effectué par l’alimentation du mélange gomme/amidon d’ammonium quaternaire hydrosoluble dans une zone de la MBR où a lieu un mélange vigoureux. 14. Méthode selon la revendication 12, dans laquelle le mélange est effectué par l’alimentation du mélange gomme/amidon d’ammonium quaternaire hydrosoluble dans une zone de la MBR où a lieu un temps de mélange suffisant. 15. Méthode selon la revendication 1, dans laquelle le degré de substitution de l’amidon se trouve dans la plage allant de 0,01 à 0,75 unité quaternaire par unité d’anhydroglucose dans le groupement amidon, et préférablement dans la plage allant de 0,1 à 0,45 unité quaternaire par unité d’an hydroglucose dans le groupement amidon, selon la formule
16. Méthode selon la revendication 1, dans laquelle la quantité efficace va de 5 à 1000 ppm de traitement actif dans le bioréacteur à membrane.
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.
Patent documents cited in the description • US 4088600 A [0021] • US 5248449 A [0027] • US 20040168980 A[0012] • US 7611632 B [0012]

Claims (7)

  1. Szabadalmi í. Eljárás, kevert hogy «dVéljik't:. kfvert folyadék áramlás!: sósságát, amely tambnazz» egy Imz&M kompozíció hatásos mennyiségének hozzáadását a kevert folyadékhoz, a kezelő kompozlosp iarhdmaz egy tagot m. alábbiak kőiéből választva: f) vlzoldhato katíosos kv&tsraer ampőmum keményítő ás 2} vüzoidhsió katlonos kvaierrser ammóniám keményitő/gumi elegy, az elegy tartalmaz 0,7 és 3 tömeg% közötti gumit és 7-30 tömeg% keményítőt, is elegendő mennyiségű kvaterner amrsóniuro keményltöí/gumh, Stogy 0,2-2.0 msq/g katioses töltést biztosítson, ahol az elegendő mennyiségű vízokihatő kationos kvaterner mwmmxm keményítő/gumi 2-5Ô töragpé ás előnyösen 7-33 íőmeg%> majd a kevert folyadék ás a benne lévő' "kezeli- %ompöz$$§- #|ptatäs#£ egy ttitmTîltràmôs, rníkrofrttrácfos és nanofíltráelös meafortuok köréből választott membránon. ahol a vízoldhatő kationos kvaíamer ammonium keményítő az alábbi képlet szerinti:
    ahol X jaláiüesh bármely égyártákü átdob, íbá leértve:klorid-, bromid-, Jodid-, metlksznllát-iont; Y 2,3-epoxi-propik 3-haio-2- hid roxőpropi k 2-haloeíik o-,: p- vagy m-(ahidroxs-jkbalo-ciii>· beozi!-csoport köréből választott; :RSs s||g,: és Rs egymástól tiggotlePl! hidrogénatom, htdroxik hlfeü-. hélyepesltei: aikii-, aril- ás afkatliasoprtMltdbol választod, és áltól az Rö-csopoítofc közül kettő összekapcsolódhat áy heterooiklnaos gyífoös: yegyöleiet vapltomöciklusös gyűrűs vegyüktet: alkothat,; továbbá ahol az Rs,: R2, és % teljes szénatoms zárna nem haladhatja üteg a 14 szénatomok, azzal a kikötéssel; hogy ha mind Rtmáatol eltérő és R;í több mint 3 de legfeljebb: 1:2 szénatöPóf tartalmaz, akkor R* ős;% metik és etUexopori köréből választott: és ha R» es % összekapcsolódik ős gyűnK vegyülnie: alkot, R:? jelentése ágy ctilcsoportnál nem nagyobb alkilcsoport, ahol a keményítő kor-ocntráclója akömpozlélóhah a 7-30 tömegké tartományban van, - kgy · · sgánypom szerinti ehárá^ ahöiía keminyitŐ knkorlea, burgonya, tápióka, szágó, búza, waxy kukorica, < nokmag, gaPnakeíííét^i^k^lgidesUsripiJkőrébőltíiáá^PIt,
  2. 3. Hgy 1. igénypont szerinti eljárás, ahol: a vízeldíiatő kvaterner aiumőniuut keményűör vegyi bük a kevert folyadékkal, mielőtt közvetlen érmíkezésbe hozzuk &amp; membrán felszínnel. 4. A 3, iptypmi MPtinîi ilôt a vegyi» #gy yègre. hogy a vi»Äaiö kaiipnos kw^^erÂmméÀ^m%Â#iî5Âtàplà{ittk az MIR egy Msziba, aboi mt^fV .kevesés:$brteA,. A S- igényjmnt portól eijà» ahoi a vegyítést igy ialpfe -végre, bogy a yízeldható; katimms kvateraer ttw«}« Xaméttyítöt i§íáplá||gk I4Í4R kti. A, Az; % S~í OtK) ppm mmfMçfan adjuk hozzá a kevert tblyadéllwz. ?, Egy i, igénypont szerint Äpr&amp;k Ä4 â yteoidhatô »tenter ammótilm»: :k«ptt«yft^pf«sï ^égy plsn ygäg a kaîiooos ammonium módosított köményt# »z #|Ä képíetsgenntl:
    4$ a kstíotsos kvitteméi- amiboÄ»n#dos;jtöS gs-srnl m allbbi képiek szerM:·
    ahol X jelentése bármely egsertékü anion, beleértve kíotkk bi\v{«í#vJö^$;^tt-szü!fát»lMt V 2 JmpöRópmpIk 3>ihalo4>4jid:rpyppmpil.·', iMiíloetih 0¾ p·· vagy pA»M#RsXÁp-lalP-etÍp benzit~çapppA tdféfoöl választott* % 1¼¾ # % egymástól fligptlénftl Ipdpágépaíom, M&amp;xiäik aíkik hsípttesiteü aikik aril- és alkarilesoport köréből välaszÄ, es ahol az R^msopóTtökkömt! kettő összekapcsolódhat és heterociklusos gyűrűs xegyöJetet vagy ho^c<ikmsfs:^ö^ye0#emt alkóthak továbbá aheíaz Rís R;>, és R* teljes szénatomöma nem haládha|smeg « 14-et. &amp; így f. igénypont szetiűtí á|áráss almi a gumi gnatgamg karbo^ímetiRceÚPIóz, propóliéngEkoR stigmái, szenjánöskeny ér. karaya-yumi, náirmm-aigmát és xantángarní köréből választott. 9. isp Ί, igénypont szerinti eprás, ahol a keményítő kukorica, burpnya, tápióka, szágó, rizs, búza., waxy kukorica: cirokmag. gahonakeményttök, és dextrin köréhői választón.
  3. 10. Egy i. vagy ?.. igénypont szermii eljárás, ahol a kompozíció szubszhtóeiős toka a Í.U-1.S vagy :%2- ! ,¾ tariömányósp yap,
  4. 11. Egy 1. igénypont a kpmpozfeíőhaa m 1,0-2,1 töMag%, es a keményítő koncentráciép a 12-16 iőmegóá taríöniányhan vart.
  5. 12. Ä t. Igénypontszerinti eljárás, áhol a '«WlNi fest«mers»^aMtpa keméayíi^gumí 4tegym vegyítjük a keveri folyadékkal mielőtt közvetlen érintkezésbe hozzak a nvembránEbszinnel 13. .A 12. igénypont szerinti eljárás, almi a vegyítést agy hajtják végre, hogy a vízoidható kvaterner ammonium keménykö/gumi eiegyet beíápiápk az MBR egy részébe, ahol íntepg?y kederés történik, 14. A 12. igénypont széinti eljárás, aboi a vegyítést ip Ittglok végre, hop a vizőliháte kvaterner ammonium keményilögumi de gun hetápláljuk az MBR egy- részébe, ahol elegendő a keverési idd.
  6. 15. Az 1, igénypom szerinti eljárás, ahol a keményítő sznbsziitúeiós foka a 0,01-0,75 kvaterner ©psógí'anbídrögiökőz «gység xmí>mmy&amp;m kán a ·* ß-j#>4ö kvaterner epség/anbidroglükóz egység tartományban vbb a keményltöesoportban, áz^ alábbi képlet Szerint:
  7. 16. Az 1, igénypont szerinti eljárás, ahol a Itatásos mennyiség 5-IÖÜ0 ppm akin kezeles a membflÁ bioreaktorhan.
HUE10848654A 2010-03-31 2010-03-31 Eljárások kevert folyadék kondicionálására vízoldható kvaterner ammónium keményítõk alkalmazásával HUE034388T2 (hu)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/000410 WO2011120192A1 (en) 2010-03-31 2010-03-31 Methods of conditioning mixed liquor using water soluble quaternary ammonium starches

Publications (1)

Publication Number Publication Date
HUE034388T2 true HUE034388T2 (hu) 2018-02-28

Family

ID=44711280

Family Applications (1)

Application Number Title Priority Date Filing Date
HUE10848654A HUE034388T2 (hu) 2010-03-31 2010-03-31 Eljárások kevert folyadék kondicionálására vízoldható kvaterner ammónium keményítõk alkalmazásával

Country Status (12)

Country Link
US (1) US8778185B2 (hu)
EP (1) EP2552837B1 (hu)
JP (1) JP2013523425A (hu)
CN (1) CN102892715A (hu)
AU (1) AU2010350184B2 (hu)
BR (1) BR112012024640A2 (hu)
CL (1) CL2012002651A1 (hu)
ES (1) ES2635129T3 (hu)
HU (1) HUE034388T2 (hu)
PT (1) PT2552837T (hu)
TW (1) TWI582049B (hu)
WO (1) WO2011120192A1 (hu)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2017012623A (es) * 2015-03-31 2017-12-20 Aquatech Int Llc Proceso de biorreactor de membrana mejorado para el tratamiento de agua residual.
NL2019171B1 (en) * 2017-07-04 2019-01-14 Stichting Wetsus European Centre Of Excellence For Sustainable Water Tech Method and system for production of natural polyelectrolytes such as microbial extracellular polymeric substances
NL2033537A (en) * 2021-11-15 2023-06-08 Martinus Van Opdorp Robert Membrane bioreactor, method of operating a membrane bioreactor, and use of a membrane bioreactor

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3606731A (en) * 1969-11-20 1971-09-21 Texaco Inc Water treating process
US4088600A (en) 1976-11-30 1978-05-09 Chemed Corporation Demulsification using cationic starches of the quaternary ammonium type
US5248449A (en) * 1990-03-27 1993-09-28 W. R. Grace & Co.-Conn. Emulsion breaking using cationic quaternary ammonium starch/gums
JPH0938415A (ja) * 1995-07-25 1997-02-10 Kurita Water Ind Ltd 泥水用凝集剤
JPH1076277A (ja) * 1996-09-04 1998-03-24 Lion Corp 水処理用薬剤組成物およびそれを用いた水処理方法
US6723245B1 (en) 2002-01-04 2004-04-20 Nalco Company Method of using water soluble cationic polymers in membrane biological reactors
US20040168980A1 (en) * 2002-01-04 2004-09-02 Musale Deepak A. Combination polymer treatment for flux enhancement in MBR
US6872312B1 (en) 2003-01-15 2005-03-29 Nalco Company Method of using high molecular weight water soluble polymers in membrane bioreactor systems
CN1253388C (zh) 2004-05-12 2006-04-26 东华大学 一种污染流体的处理方法及其设备
US8017014B2 (en) 2005-06-01 2011-09-13 Nalco Company Method for improving flux in a membrane bioreactor
US8357299B2 (en) 2005-07-12 2013-01-22 Zenon Technology Partnership Process control for an immersed membrane system
CN1990392B (zh) 2005-12-07 2011-04-06 中国科学院成都有机化学有限公司 一种高取代度季铵型阳离子淀粉絮凝剂及其合成方法
US7378023B2 (en) * 2006-09-13 2008-05-27 Nalco Company Method of improving membrane bioreactor performance
WO2008118228A2 (en) * 2006-12-05 2008-10-02 Stonybrook Water Purification Articles comprising a fibrous support
US9010547B2 (en) * 2007-05-26 2015-04-21 The Research Foundation Of State University Of New York High flux fluid separation membranes comprising a cellulose or cellulose derivative layer
US7611632B1 (en) 2008-11-07 2009-11-03 General Electric Company Method of conditioning mixed liquor using a tannin containing polymer
US9174883B2 (en) * 2009-04-16 2015-11-03 Feed Resource Recovery, Inc. Waste recovery, conversion, and utilization

Also Published As

Publication number Publication date
JP2013523425A (ja) 2013-06-17
EP2552837A1 (en) 2013-02-06
ES2635129T3 (es) 2017-10-02
US20130037483A1 (en) 2013-02-14
BR112012024640A2 (pt) 2016-06-07
TWI582049B (zh) 2017-05-11
PT2552837T (pt) 2017-08-18
WO2011120192A8 (en) 2012-11-01
CN102892715A (zh) 2013-01-23
AU2010350184A1 (en) 2012-10-25
EP2552837A4 (en) 2013-09-25
EP2552837B1 (en) 2017-06-21
CL2012002651A1 (es) 2013-02-22
TW201202148A (en) 2012-01-16
AU2010350184B2 (en) 2016-04-28
US8778185B2 (en) 2014-07-15
WO2011120192A1 (en) 2011-10-06

Similar Documents

Publication Publication Date Title
Ly et al. Effects of COD/N ratio on soluble microbial products in effluent from sequencing batch reactors and subsequent membrane fouling
US7611632B1 (en) Method of conditioning mixed liquor using a tannin containing polymer
Deng et al. Effects of hydraulic retention time and bioflocculant addition on membrane fouling in a sponge-submerged membrane bioreactor
Ma et al. Effect of different temperatures on performance and membrane fouling in high concentration PAC–MBR system treating micro-polluted surface water
Lee et al. Influence of sodium hypochlorite used for chemical enhanced backwashing on biophysical treatment in MBR
SK2682004A3 (sk) Spôsob použitia vo vode rozpustných polymérov v membránovom biologickom reaktore
US8889008B2 (en) Method of conditioning a mixed liquor containing nonionic polysaccharides and/or nonionic organic molecules
JP6326425B2 (ja) 水を飲用にするプロセス
Sun et al. Effect of biopolymer clusters on the fouling property of sludge from a membrane bioreactor (MBR) and its control by ozonation
HUE034388T2 (hu) Eljárások kevert folyadék kondicionálására vízoldható kvaterner ammónium keményítõk alkalmazásával
Shao et al. Characterization of membrane foulants in a pilot-scale powdered activated carbon–membrane bioreactor for drinking water treatment
Kim et al. Comparative studies on membrane fouling between two membrane-based biological nutrient removal systems
Delgado et al. Aerobic membrane bioreactor for wastewater treatment–Performance under substrate-limited conditions
Hasani Zonoozi et al. Operation of integrated sequencing batch membrane bioreactor treating dye-containing wastewater at different SRTs: study of overall performance and fouling behavior
CN102203018A (zh) 膜分离处理方法
JP6721288B2 (ja) 廃水処理方法および廃水処理システム
CN103717538B (zh) 可饮用化方法
KR20130096710A (ko) 종이의 제조방법
Iversen Comprehensive assessment of flux enhancers in membrane bioreactors for wastewater treatment
Vu et al. Recycling of Reverse Osmosis Concentrates to the Membrane Bioreactor in the MBR-RO Process for Water Reuse: effect on mbr performances
Kaleem et al. Membrane bioreactor as an advanced wastewater treatment technology
CN211999324U (zh) 一种头孢类医药中间体生产废水处理系统
Du Toit et al. The Performance and Kinetics of Biological Nitrogen and Phosphorus Removal with Ultra-Filtration Membranes for Solid-Liquid Separation
Aysel Determination of the Behavior of a Submerged Membrane Bioreactor Operated at Low Sludge Retention Time