HRP970607A2 - Process for the preparation of benzyl-ethers by the use of a phase transfer - Google Patents

Process for the preparation of benzyl-ethers by the use of a phase transfer

Info

Publication number
HRP970607A2
HRP970607A2 HRP9603178A HRP970607A HRP970607A2 HR P970607 A2 HRP970607 A2 HR P970607A2 HR P9603178 A HRP9603178 A HR P9603178A HR P970607 A HRP970607 A HR P970607A HR P970607 A2 HRP970607 A2 HR P970607A2
Authority
HR
Croatia
Prior art keywords
group
reaction
halogen
alkyl
general formula
Prior art date
Application number
HRP9603178A
Other languages
Croatian (hr)
Inventor
Istvan Szekely
Original Assignee
Istvan Szekely
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Istvan Szekely filed Critical Istvan Szekely
Publication of HRP970607A2 publication Critical patent/HRP970607A2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/16Preparation of ethers by reaction of esters of mineral or organic acids with hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/44Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D317/46Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems condensed with one six-membered ring
    • C07D317/48Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring
    • C07D317/50Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to atoms of the carbocyclic ring
    • C07D317/54Radicals substituted by oxygen atoms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

The subject of the invention is the process for the preparation of mixed ethers of general formula (I), wherein Ar represents an alicyclic, aromatic or one or more heteroatom-containing heterocyclic moiety, optionally substituted by one or more C1-4 alkoxy, methylenedioxy, C1-4alkyl, halogen, C1-4haloalkyl or nitro-group, and/or condensed with a benzene ring; R<1> means hydrogen, C1-4 alkyl, C1-4 haloalkyl, C2-4 alkenyl, phenyl, substituted phenyl, C3-6cycloalkyl group; R<2> means C1-6alkyl, C3-6alkenyl, or C3-6alkinyl group, optionally mono- or poly-substituted by C1-6alkyl, C1-6alkoxy, C3-6alkenyl, C3-6alkinyl, C1-6haloalkyl group or by halogen atom; or a C1-4 alkyloxy-C1-4alkyl-oxy-C1-4alkyl group. n = 1,2 by the reaction of compounds of general formula (II), wherein R<1> and n have the same meaning as above; X means hydroxy, halogen or sulfonester leaving group, with the compounds of the general formula (III): R2-Y, wherein R<2> has the same meaning as above; Y means hydroxy, halogen or sulfonester leaving group, with the proviso that one of the reaction partners of general formulae (II) and (III) is an alcohol, characterized by, that the reaction is performed under heterogenous conditions in presence of an aqueous base and a phase transfer catalyst, and the resulting product is optionally stabilized by the addition of a base and/or anti-oxidant.

Description

Ovaj izum odnosi se na postupak priprave miješanih etera formule I u kojoj This invention relates to a process for the preparation of mixed ethers of formula I in which

Ar predstavlja neku alicikličku, aromatsku ili heterocikličku cjelinu koja sadrži jedan ili više heteroatoma, opcijski supstituiranu s jednom ili više skupina C1-4 alkoksi, metilendioksi, C1-4 alkil, halogen, C1-4 haloalkil ili nitro, i/ili kondenziranu s benzenskim prstenom, Ar represents an alicyclic, aromatic or heterocyclic unit containing one or more heteroatoms, optionally substituted with one or more C1-4 alkoxy, methylenedioxy, C1-4 alkyl, halogen, C1-4 haloalkyl or nitro groups, and/or fused with benzene ring,

R1 označuje vodik, C1-4 alkilnu, C1-4 haloalkilnu, C2-4 alkenilnu, fenilnu, supstituiranu fenilnu, C3-6 alkilnu skupinu, R1 denotes hydrogen, C1-4 alkyl, C1-4 haloalkyl, C2-4 alkenyl, phenyl, substituted phenyl, C3-6 alkyl group,

R2 označuje C1-6 alkilnu, C3-6 alkenilnu, ili C3-6 alkinilnu skupinu, opcijski mono- ili polisupstituiranu skupinama C1-6 alkil, C1-6 alkoksi, C3-6 alkenil, C3-6 alkinil, C1-6 haloalkil, ili halogenim atomom; ili skupinu C1-4 alkoksi-C1-4alkil-oksi-C1-4alkil, R2 denotes a C1-6 alkyl, C3-6 alkenyl, or C3-6 alkynyl group, optionally mono- or polysubstituted by C1-6 alkyl, C1-6 alkoxy, C3-6 alkenyl, C3-6 alkynyl, C1-6 haloalkyl, or a halogen atom; or the group C1-4 alkoxy-C1-4alkyl-oxy-C1-4alkyl,

N= 1,2, N= 1.2,

pod uvjetima faznog prijenosa, reakcijom spojeva općenite formule II, u kojoj under phase transfer conditions, by the reaction of compounds of the general formula II, in which

R1 i n imaju ranije navedeno značenje, R1 and n have the previously stated meaning,

X označuje hidroksilnu, halogenu ili sulfonestersku odpuštajuću skupinu, X denotes a hydroxyl, halogen or sulfonester leaving group,

sa spojevima općenite formule III, u kojoj with compounds of the general formula III, in which

R2ima ranije navedeno značenje, R2 has the previously stated meaning,

Y označuje hidroksilnu, halogenu ili sulfonestersku odpuštajuću skupinu, Y denotes a hydroxyl, halogen or sulfonester leaving group,

uz uvjet da je jedan od reakcijskih sastojaka alkohol. with the condition that one of the reaction ingredients is alcohol.

U oznaci Ar, aromatska skupina je ponajprije fenilna ili naftilna skupina, a Ar kao heterociklička cjelina može sadržavati jedan ili više heteroatoma, te može ponajprije predstavljati benzodioksolnu, benzodioksansku, 2-benzofuransku, 7-benzofuransku cjelinu. Aliciklička skupina može ponajprije biti kondenzirana s benzenskim prstenom, te može primjerice predstavljati indansku skupinu, ili l,2,3,4-tetrahidronaftilnu skupinu. Karboksimidna skupina može ponajprije predstavljati ftalimidnu cjelinu. Aromatske, heterocikličke i alicikličke skupine opcijski su supstituirane skupinama C1-4 alkoksi, metilendioksi, C1-4 alkil, halogen ili nitro. In the designation Ar, the aromatic group is preferably a phenyl or naphthyl group, and Ar as a heterocyclic unit may contain one or more heteroatoms, and may preferably represent a benzodioxole, benzodioxane, 2-benzofuran, 7-benzofuran unit. The alicyclic group can preferably be condensed with a benzene ring, and can for example represent an indane group or a 1,2,3,4-tetrahydronaphthyl group. The carboximide group can preferably represent a phthalimide group. Aromatic, heterocyclic and alicyclic groups are optionally substituted with C1-4 alkoxy, methylenedioxy, C1-4 alkyl, halogen or nitro groups.

Eteri općenite formule I potencijalni su ishodni materijali ili aktivni sastojci niza kemijskih produkata. Nekoliko njihovih predstavnika su artrpodicidni sinergisti izvanredne djelotvornosti (Mađarska patentna prijava No 3318/95). Uz iznimku metilendioksidnih sinergista (MDP) sa zasićenim pokrajnjim lancem (kao što je PBO, tj. 5-[2-(2-butoksietoksi)etoksimetil]-6-propil-l,3-benzodioksol), koji su bili poznati, spojevi su novi, bez obzira na njihove jednostavne strukture. S obzirom na njihovo izvanredno značenje, njihova priprava i ekonomična sinteza od velike je važnosti. Ethers of the general formula I are potential starting materials or active ingredients of a number of chemical products. Several of their representatives are arthropodicidal synergists of extraordinary efficacy (Hungarian patent application No 3318/95). With the exception of methylenedioxide synergists (MDP) with a saturated side chain (such as PBO, i.e. 5-[2-(2-butoxyethoxy)ethoxymethyl]-6-propyl-1,3-benzodioxole), which were known, the compounds new, regardless of their simple structures. Given their extraordinary importance, their preparation and economical synthesis is of great importance.

Gore spomenuti eteri mogu se pripraviti općenitim metodama poznatima za sintezu etera (Gy. Matolcsy, M. Nadasdy, V. Andriska; Pesticide Chemistry, Akadémia (1988); Mađarska patentna prijava No 3318/95). Temeljno je u ovim metodama reagiranje alkalijske soli alkoholne komponente s partnerom, prema pravilima nukleofilne supstitucije. Partner sadrži odpuštajuću skupinu koja je obično halogeni atom, ponajprije bromov atom. Reakcija može biti provedena na dva načina, ovisno o tome koji je dio molekule nastao od nukleofilnog partnera. Zbog veće reaktivnosti benzilnog halogenida, u praksi obično reagiraju alkoholat pokrajnjeg lanca i benzilni bromid. Ta je metoda ipak ograničena, u slučaju kada je alkoholat iz nekog razloga teško pripraviti. U takvim slučajevima obrnuta metoda može biti rješenje, ali se tada obično mogu očekivati slabije reakcije. Ovaj način priprave etera u organskoj je kemiji poznat kao klasična Williamsonova sinteza (B.P. Mundy, M.G. Ellerd, Name Reactions and Reagents in Organic Synthesis, Wiley (1988)). Međutim, ta reakcija ima nekoliko nedostataka. Nastajanje alkoholata preskupo je za industriju, zahtijeva skupe reagense i profinjenu tehnologiju uz zajamčene bezvodne uvjete, ili uz primjenu koraka sušenja (Mađarske patentne specifikacije No. 180500, 190842). The above-mentioned ethers can be prepared by general methods known for the synthesis of ethers (Gy. Matolcsy, M. Nadasdy, V. Andriska; Pesticide Chemistry, Akadémia (1988); Hungarian Patent Application No 3318/95). Fundamental in these methods is the reaction of the alkaline salt of the alcohol component with the partner, according to the rules of nucleophilic substitution. The partner contains a leaving group which is usually a halogen atom, preferably a bromine atom. The reaction can be carried out in two ways, depending on which part of the molecule was formed from the nucleophilic partner. Due to the greater reactivity of benzyl halide, in practice the side chain alcoholate and benzyl bromide usually react. However, this method is limited, in the case when the alcoholate is difficult to prepare for some reason. In such cases, the reverse method may be the solution, but usually weaker reactions can then be expected. This method of ether preparation in organic chemistry is known as the classic Williamson synthesis (B.P. Mundy, M.G. Ellerd, Name Reactions and Reagents in Organic Synthesis, Wiley (1988)). However, this reaction has several drawbacks. The formation of alcoholates is too expensive for industry, requiring expensive reagents and refined technology with guaranteed anhydrous conditions, or with the application of a drying step (Hungarian patent specifications No. 180500, 190842).

Za pripravu etera općenito, poznate su i sljedeće metode. Najstarija i najpoznatija od njih je kiselinski katalizirana dimerizacija alkohola (Houben Weyl 6/3 11-19). Prema literaturi, reakcija obično zahtijeva visoku temperaturu, a da bi se izbjegla razgradnja, produkt se mora konstantno uklanjati iz reakcijske smjese. Oksonijev kation nastao djelovanjem kiseline može lako sudjelovati u reakcijama pregradnje ili se može stabilizirati pomoću tzv. β-eliminacije vodikovog atoma sa susjednog ugljikovog atoma, čime nastaje odgovarajući olefin. To prouzrokuje nastanak znatne količine produkata razgradnje, a komplicira se činjenicom da voda dobivena reakcijom usporava proces. Posljedica je slaba provedba reakcije (iskorištenje, čistoća). Stoga je razumljivo da se na ovu metodu ne računa pri planiranju sinteze. Promatra ju se kao sporednu reakciju kiselinski kataliziranih procesa (J. Am. Chem. Soc., 107, 1340, (1985)). For the preparation of ether in general, the following methods are also known. The oldest and most famous of them is the acid-catalyzed dimerization of alcohol (Houben Weyl 6/3 11-19). According to the literature, the reaction usually requires a high temperature, and to avoid decomposition, the product must be constantly removed from the reaction mixture. The oxonium cation formed by the action of the acid can easily participate in partitioning reactions or can be stabilized using the so-called β-elimination of the hydrogen atom from the neighboring carbon atom, resulting in the corresponding olefin. This causes the formation of a considerable amount of decomposition products, and is complicated by the fact that the water obtained by the reaction slows down the process. The result is a poor implementation of the reaction (utilization, purity). Therefore, it is understandable that this method is not counted on when planning the synthesis. It is observed as a side reaction of acid-catalyzed processes (J. Am. Chem. Soc., 107, 1340, (1985)).

U slučaju dibenzilnih etera razrađena je metoda dimerizacije inducirane metilsulfoksidom s ciljem eliminiranja nedostataka (J. Org. Chem., 42, 2012, (1977)). Međutim, zbog uporabljenog reagensa i visoke temperature (175°C), metoda se ipak ne može biti uporabiti na industrijskoj razini. In the case of dibenzyl ethers, a methylsulfoxide-induced dimerization method was developed with the aim of eliminating defects (J. Org. Chem., 42, 2012, (1977)). However, due to the reagent used and the high temperature (175°C), the method cannot be used on an industrial scale.

Proizvodnja etera je u industriji izrazito težak zadatak. Ne samo zbog skupih reagenasa i mogućih sporednih reakcija, nego i zbog toga što početni alkoholi, baš kao i rezultirajući eteri, lako tvore perokside i potencijalni su eksplozivi. Nadalje, alkinilni su spojevi zbog trostruke veze osjetljivi na toplinu. Ether production is an extremely difficult task in industry. Not only because of the expensive reagents and possible side reactions, but also because the initial alcohols, just like the resulting ethers, easily form peroxides and are potential explosives. Furthermore, alkynyl compounds are sensitive to heat due to the triple bond.

U velikim količinama (1000 t/godina) sigurna proizvodnja moguća je samo ako se reakcija provodi pod blagim uvjetima, a konačni se produkt koji je u većini slučajeva tekućina, ne treba dalje pročišćavati, destilirati. In large quantities (1000 t/year), safe production is only possible if the reaction is carried out under mild conditions, and the final product, which is in most cases a liquid, does not need further purification, distillation.

U svjetlu gore navedenih činjenica, detaljno smo istražili mogućnosti priprave asimetričnih etera općenite formule I. Suština naše metode koju smo razradili na temelju naših eksperimentnih rezultata, je u tome da se miješani eteri općenite formule I, gdje su značenja supstituenata ista kao što je gore opisano, mogu vrlo povoljno pripraviti reagiranjem spojeva općenite formule II, gdje X označava hidroksilnu, halogenu ili sulfonestersku odpuštajuću skupinu, sa spojevima općenite formule III gdje Y znači hidroksilnu, halogenu ili sulfonestersku odpuštajuću skupinu, u prisutnosti katalizatora faznog prijenosa u vodenoj sredini, uz uvjet da je jedan od reaktanata alkohol. Rezultirajući eter općenite formule I je izoliran, i prema želji, stabiliziran dodatkom baze i/ili antioksidansa. In light of the above-mentioned facts, we investigated in detail the possibilities of preparing asymmetric ethers of the general formula I. The essence of our method, which we elaborated on the basis of our experimental results, is that mixed ethers of the general formula I, where the meanings of the substituents are the same as described above , can be very conveniently prepared by reacting compounds of the general formula II, where X denotes a hydroxyl, halogen or sulfonester releasing group, with compounds of the general formula III where Y means a hydroxyl, halogen or sulfonester releasing group, in the presence of a phase transfer catalyst in an aqueous medium, provided that is one of the reactants alcohol. The resulting ether of general formula I is isolated and, if desired, stabilized by the addition of a base and/or an antioxidant.

U općenitim formulama I, II i III značenja Ar, R1 i R2 jednaka su onima gore navedenima. In the general formulas I, II and III, the meanings of Ar, R1 and R2 are the same as those mentioned above.

U povoljnom okruženju procesa spojevi općenitih formula I, II i III uporabljeni su u molnim omjerima od 0.4 - 2.5, baza je uporabljena u količini od 1.0 - 10.0 molnih ekvivalenata, a katalizator faznog prijenosa u količini od 0.01 - 1.0 molnih ekvivalenata, ponajprije u količini od 0. l molnog ekvivalenta. In a favorable process environment, compounds of general formulas I, II and III are used in molar ratios of 0.4 - 2.5, the base is used in an amount of 1.0 - 10.0 molar equivalents, and the phase transfer catalyst in an amount of 0.01 - 1.0 molar equivalents, preferably in the amount of 0. l molar equivalent.

Kao baze uporabljeni su hidroksidi alkalijskih ili zemnoalkalijskih metala, ponajprije 2 molna ekvivalenta kalijevog hidroksida ili natrijevog hidroksida u 0 - 40 %-tnim (w/w) vodenim otopinama, a kao katalizatori faznog prijenosa uporabljene su različite amonijeve soli ili hidroksidi, ponajprije tetrabutilamonijev bromid ili jodid. Alkali or alkaline earth metal hydroxides were used as bases, preferably 2 molar equivalents of potassium hydroxide or sodium hydroxide in 0-40% (w/w) aqueous solutions, and various ammonium salts or hydroxides were used as phase transfer catalysts, preferably tetrabutylammonium bromide or iodide.

Reakcija može biti provedena bez otapala ili u nepolarnom aprotičnom otapalu, pri temperaturama u području od -10 do +100 °C, ponajprije pri sobnoj temperaturi. The reaction can be carried out without a solvent or in a non-polar aprotic solvent, at temperatures in the range from -10 to +100 °C, preferably at room temperature.

Reakcija može biti izvedena reagiranjem aktiviranog benzilnog derivata i alkohola općenite formule III, ili obrnuto, reagiranjem aktiviranog derivata općenite formule III s benzilnim alkoholom općenite formule II. The reaction can be performed by reacting an activated benzyl derivative and an alcohol of the general formula III, or vice versa, by reacting an activated derivative of the general formula III with a benzyl alcohol of the general formula II.

U principu je povoljno uporabiti način u kojem je otpuštajuća skupina (X ili Y) u pokretljivom položaju, na pr. u benzilnom ili alilnom položaju; ili gdje eliminacijski sporedni procesi s bazom nisu mogući. Takav je primjer, primjerice, reagiranje aktiviranog benzilnog derivata u kojem R1 označuje vodik ili supstituent veći od vodika, a molekula ne sadrži u beta položaju vodik koji je moguće ukloniti. U praksi se međutim metoda često odabire prema pristupačnosti i cijeni početnih materijala. Stvaranje etera pod uvjetima faznog prijenosa, uspoređeno s drugim rješenjima, u prednosti je i zbog niske polarnosti sredine, gore spomenuta eliminacijska sporedna reakcija dolazi znatno manje do izražaja, te se i uz uporabu jeftinih reagenasa dobiva produkt visoke kakvoće. In principle, it is advantageous to use a method in which the releasing group (X or Y) is in a movable position, e.g. in the benzylic or allylic position; or where elimination side processes with the base are not possible. Such an example is, for example, the reaction of an activated benzyl derivative in which R1 denotes hydrogen or a substituent greater than hydrogen, and the molecule does not contain hydrogen in the beta position that can be removed. In practice, however, the method is often chosen according to the accessibility and cost of the starting materials. The creation of ether under phase transfer conditions, compared to other solutions, is advantageous and due to the low polarity of the environment, the above-mentioned elimination side reaction is much less prominent, and even with the use of cheap reagents, a high-quality product is obtained.

Skupina R2 može biti različitih vrsta, ovisno o stabilnosti R2Y pod reakcijskim uvjetima. Može varirati od jednostavne alkilne skupine preko alkenilne i alkinilne skupine do njihovih različitih supstituiranih, primjerice halogeniranih, alkoksiliranih derivata, ravnolančanih ili razgranatih struktura. Metoda se može povoljno uporabiti za reakciju 3,3-diklor-butanilnih derivata u kojih istodobno sa stvaranjem etera dolazi i do uklanjanja vodikovog halogenida, čime u jednom koraku nastaje odgovarajući eter s nezasićenim, primjerice 3-klor-2-butenilnim pokrajnjim lancem, koji daljnjom eliminacijom može biti pretvoren u alkinilni eter. The group R2 can be of different types, depending on the stability of R2Y under the reaction conditions. It can vary from a simple alkyl group through alkenyl and alkynyl groups to their various substituted, for example halogenated, alkylated derivatives, straight-chain or branched structures. The method can be advantageously used for the reaction of 3,3-dichloro-butanyl derivatives in which, simultaneously with the formation of the ether, the hydrogen halide is also removed, which results in the formation of the corresponding ether with an unsaturated, for example 3-chloro-2-butenyl side chain, in one step, which by further elimination it can be converted into an alkynyl ether.

Reakcija se ponajprije provodi u emulziji koja se sastoji od vodene alkalijske otopine i organskog otapala koje se ne miješa s vodom; ili bez otapala, u emulziji početnih materijala i rezultirajućeg produkta. Ova posljednja metoda, koja dovodi do brže reakcije, posebice je prikladna za industrijsku uporabu. The reaction is preferably carried out in an emulsion consisting of an aqueous alkaline solution and an organic solvent that is immiscible with water; or without solvent, in an emulsion of the starting materials and the resulting product. This last method, which leads to a faster reaction, is particularly suitable for industrial use.

Kao baze primijenjeni su jaki hidroksidi alkalijskih ili zemnoalkalijskih metala u malom suvišku. Strong alkali or alkaline earth metal hydroxides were used as bases in a small excess.

Kao organska otapala mogu se uporabiti nepolarna aprotična, primjerice halogenirana otapala, među kojima ponajprije dikloretan. As organic solvents, non-polar aprotic, for example halogenated solvents can be used, among which dichloroethane is the first.

Kao katalizatori faznog prijenosa mogu se ponajprije uporabiti različite tetrasupstituirane amonijeve soli ili hidroksidi. Dovoljna je katalitička količina. Various tetrasubstituted ammonium salts or hydroxides can primarily be used as phase transfer catalysts. The catalytic amount is sufficient.

Reakcija se ponajprije provodi pri sobnoj temperaturi uz snažno miješanje. Eter brzo nastaje čak i pri niskoj temperaturi, te se na taj način mogu potisnuti nepoželjni sporedni procesi. Vrijeme reakcije može se skratiti uporabom male količine manje skupog partnera. Produkt se može izolirati iz reakcijske smjese jednostavnom sedimentacijom. The reaction is preferably carried out at room temperature with vigorous stirring. Ether is formed quickly even at a low temperature, and in this way undesirable side processes can be suppressed. The reaction time can be shortened by using a small amount of a less expensive partner. The product can be isolated from the reaction mixture by simple sedimentation.

Sirovi produkt dobiven na taj način dobre je kakvoće. Čistoća mu je 93-95%. Može se, naravno, dalje pročistiti destilacijom, ili ako je moguće kristalizacijom, ali se može i izravno uporabiti. Za povećanje stabilnosti i sprječavanje kiselinske hidrolize, prikladno je produkt isprati do neutralne reakcije i puferirati ga u lužnato područje pH. Preporučljivo je zbog sigurnijeg rukovanja dodati različite antioksidanse. The raw product obtained in this way is of good quality. Its purity is 93-95%. It can, of course, be further purified by distillation, or if possible by crystallization, but it can also be used directly. To increase stability and prevent acid hydrolysis, it is convenient to wash the product to a neutral reaction and buffer it in the alkaline pH range. It is recommended to add different antioxidants for safer handling.

Kao antioksidansi mogu se uporabiti primjerice TMQ; BHT; hidrokinon; hidrokinon monometileter; 2,2,6,6-tetrametil-4-piperidinol-N-oksid. For example, TMQ can be used as antioxidants; BHT; hydroquinone; hydroquinone monomethylether; 2,2,6,6-tetramethyl-4-piperidinol-N-oxide.

Za prikaz našeg postupka opisujemo slijedeće primjere koji ne ograničuju izum, bez namjere da bude u potpunosti prikazan: To illustrate our process, we describe the following non-limiting examples of the invention, without the intention of being fully illustrated:

Primjeri Examples

1. 5-(2-butiniloksimetil)-6-propil-1,3-benzodioksol 1. 5-(2-Butynyloxymethyl)-6-propyl-1,3-benzodioxole

U 10 ml 40 %-tne (w/v) otopine kalijevog hidroksida uz snažno je miješanje dodano 1.6 g (0.0225 mola) 2-butin-1-ola otopljenog u 5 ml diklormetana, a potom 3.2 g (0.015 ml) klormetildihidrosafrola otopljenog u 10 ml diklormetana i 0.5 g tetrabutilamonijevog jodida. Smjesa je miješana pri sobnoj temperaturi kroz 4 sata. Reakcija je praćena metodom TLC (eluens heksan-EtAc 15:1). Nakon odvajanja faza, vodeni je sloj ispran sa 2x5 ml diklormetana, a kombinirane organske faze isprane su do blizine neutralnog područja sa 2x5 ml zasićene otopine amonijevog klorida. Nakon sušenja i uparavanja rezultirajuće ulje je čišćeno kolonskom kromatografijom (eluens heksan-EtAc 15:1). Iskorištenje 3.0 g (0.01219 mola, 81.3 %). 1.6 g (0.0225 mol) of 2-butyn-1-ol dissolved in 5 ml of dichloromethane and then 3.2 g (0.015 ml) of chloromethyldihydrosafrole dissolved in 10 ml of a 40% (w/v) potassium hydroxide solution were added with vigorous stirring. 10 ml of dichloromethane and 0.5 g of tetrabutylammonium iodide. The mixture was stirred at room temperature for 4 hours. The reaction was monitored by the TLC method (eluent hexane-EtAc 15:1). After separating the phases, the aqueous layer was washed with 2x5 ml of dichloromethane, and the combined organic phases were washed to near neutral with 2x5 ml of saturated ammonium chloride solution. After drying and evaporation, the resulting oil was purified by column chromatography (eluent hexane-EtAc 15:1). Yield 3.0 g (0.01219 mol, 81.3 %).

TLC (eluens heksan-EtAc 15:1) Rf = 0.43. TLC (eluent hexane-EtAc 15:1) Rf = 0.43.

GC (CP 9000, CP-SIL-5CB, 60 m x 0.53 mm, 5 ml/min N2, FID, 220 °C) tR = 9.7 min, približno 94.5 %. GC (CP 9000, CP-SIL-5CB, 60 m x 0.53 mm, 5 ml/min N2, FID, 220 °C) tR = 9.7 min, approximately 94.5 %.

IR(CHC13, cm-1) ν: 2950, 2867, 1602,1502, 1485, 1355, IR(CHC13, cm-1) ν: 2950, 2867, 1602, 1502, 1485, 1355,

1260, 1068, 937, 866. 1260, 1068, 937, 866.

1H NMR (200 MHz, CDCl3) δ: 0.96 (3H, t, J = 7.3 Hz, CH3), 1.69 1H NMR (200 MHz, CDCl3) δ: 0.96 (3H, t, J = 7.3 Hz, CH3), 1.69

(2H, sekstet, J = 7.3 Hz, CH2=CH3), (2H, sextet, J = 7.3 Hz, CH2=CH3),

1.87 (3H, t, J = 2.3 Hz, C≡C-CH3), 1.87 (3H, t, J = 2.3 Hz, C≡C-CH3),

2.56 (2H, t, J = 7.6 Hz, aril-CH2), 2.56 (2H, t, J = 7.6 Hz, aryl-CH2),

4.10 (2H, q, J = 2.3 Hz, OCH2C≡C-), 4.10 (2H, q, J = 2.3 Hz, OCH2C≡C-),

4.48 (2H, s, CH2O), 5.89 (2H, s, OCH2O), 4.48 (2H, s, CH2O), 5.89 (2H, s, OCH2O),

6.66 i 6.83 (zajedno 2 H, s, aromatski). 6.66 and 6.83 (together 2 H, s, aromatic).

13C NMR (40 MHz, CDC13) δ: 3.56 (C≡C-CH3), 14.02 (CH3), 24.66 13C NMR (40 MHz, CDCl3) δ: 3.56 (C≡C-CH3), 14.02 (CH3), 24.66

(CH2-CH3), 34.37 (aril-CH2), 57.49 (CH2-CH3), 34.37 (aryl-CH2), 57.49

(OCH2C≡C-), 68.86 (CH2O), 75.21 (OCH2C≡C-), 68.86 (CH2O), 75.21

(C≡C-CH3), 82.51 (C≡C-CH3), 100.77 (C≡C-CH3), 82.51 (C≡C-CH3), 100.77

(OCH2O), 109.49, (OCH2O), 109.49,

09.80 (C-4 i C-7), 128.26 (C-6), 09.80 (C-4 and C-7), 128.26 (C-6),

135.53 (C-5), 145.44 (C-7a), 147.18 135.53 (C-5), 145.44 (C-7a), 147.18

(C-3a). (C-3a).

2. 1 –(2-butiniloksimetil)-3,4-dimetoksi-6-propilbenzen 2. 1 -(2-Butynyloxymethyl)-3,4-dimethoxy-6-propylbenzene

U 15 ml diklormetana otopljeno je 1.5 g (0.021 mol) 2-butin-l-ola i 3.0 g (0.0131 mol) l,2-dimetoksi-4-klormetil-5-propilbenzena, te je otopini dodano uz snažno miješanje 10 ml 40 %-tne (w/v) otopine kalijevog hidroksida i 0.4 g tetrabutilamonijevog jodida. Smjesa je miješana pri sobnoj temperaturi kroz 2 sata. Reakcija je praćena metodom TLC (eluens heksan-EtAc 15:1). Nakon odvajanja faza, vodeni je sloj ispran sa 2x5 ml diklormetana, a kombinirane organske faze isprane su do blizine neutralnog područja sa 2x5 ml zasićene otopine amonijevog klorida. Nakon sušenja i uparavanja rezultirajuće ulje je čišćeno kolonskom kromatografijom (eluens heksan-EtAc 15:1). Iskorištenje 3.1 g (0.0118 mola, 90.3 %). 1.5 g (0.021 mol) of 2-butyn-l-ol and 3.0 g (0.0131 mol) of 1,2-dimethoxy-4-chloromethyl-5-propylbenzene were dissolved in 15 ml of dichloromethane, and 10 ml of 40 % (w/v) solution of potassium hydroxide and 0.4 g of tetrabutylammonium iodide. The mixture was stirred at room temperature for 2 hours. The reaction was monitored by the TLC method (eluent hexane-EtAc 15:1). After separating the phases, the aqueous layer was washed with 2x5 ml of dichloromethane, and the combined organic phases were washed to near neutral with 2x5 ml of saturated ammonium chloride solution. After drying and evaporation, the resulting oil was purified by column chromatography (eluent hexane-EtAc 15:1). Yield 3.1 g (0.0118 mol, 90.3 %).

TLC (heksan-EtAc 4:1) Rf = 0.44 (PMA, UV). TLC (hexane-EtAc 4:1) Rf = 0.44 (PMA, UV).

GC (CP 9000, CP-SIL-5CB, 60 m x 0.53 mm, 5 ml/min N2, FID, 250 °C) tR = 7.9 min, približno 93.8 %. GC (CP 9000, CP-SIL-5CB, 60 m x 0.53 mm, 5 ml/min N2, FID, 250 °C) tR = 7.9 min, approximately 93.8 %.

IR (CHC13, cm-1) ν: 2957, 2932, 2866, 2290, 2220, IR (CHC13, cm-1) ν: 2957, 2932, 2866, 2290, 2220,

1610, 1589, 1511, 1465, 1354, 1610, 1589, 1511, 1465, 1354,

1272, 1136, 1065, 997, 864. 1272, 1136, 1065, 997, 864.

1H NMR (200 MHz, CDC13) δ: 0.98 (3H, t, J = 7.3 Hz, CH3), 1.60 1H NMR (200 MHz, CDCl3) δ: 0.98 (3H, t, J = 7.3 Hz, CH3), 1.60

(2H, sekstet, J = 7.3 Hz, CH2≡CH3, (2H, sextet, J = 7.3 Hz, CH2≡CH3,

1.88 (3H, t, J = 2.3 Hz, C≡C-CH3), 1.88 (3H, t, J = 2.3 Hz, C≡C-CH3),

2.59 (2H, t, J = 7.6 Hz, aril-CH2), 2.59 (2H, t, J = 7.6 Hz, aryl-CH2),

3.86 (6H, s, OCH3), 4.12 (2H, q. J = 3.86 (6H, s, OCH3), 4.12 (2H, q. J =

2.3 Hz, OCH2C≡C-), 4.52 (2H, s, 2.3 Hz, OCH2C≡C-), 4.52 (2H, s,

CH2O), 6.69 i 6.88 (zajedno 2 H, s, CH2O), 6.69 and 6.88 (together 2 H, s,

aromatski). aromatic).

13C NMR (50 MHz, CDC13) δ: 3.52 (C≡C-CH3), 14.06 (CH3, 24.75 13C NMR (50 MHz, CDCl3) δ: 3.52 (C≡C-CH3), 14.06 (CH3, 24.75

(CH2-CH3), 34.21 (aril-CH2), 55.84 (CH2-CH3), 34.21 (aryl-CH2), 55.84

(OCH3) 57.54 (OCH2C≡C-), 68.81 (OCH3) 57.54 (OCH2C≡C-), 68.81

(CH2O), 75.22 (C≡C-CH3), 82.41 (C≡C- (CH2O), 75.22 (C≡C-CH3), 82.41 (C≡C-

CH3), 100.77(OCH20), 112.64, CH3), 100.77(OCH20), 112.64,

112.85 (C-3 i C-6), 127.15 (C-4), 112.85 (C-3 and C-6), 127.15 (C-4),

134.09 (C-5), 146.76 (C-2), 148.41 (C-1). 134.09 (C-5), 146.76 (C-2), 148.41 (C-1).

3. 5-(2-butiniloksimetil)-1 ,3-benzodioksol 3. 5-(2-Butynyloxymethyl)-1,3-benzodioxole

Dva stupnja su provedena bez čišćenja piperonilnog bromida. Piperonilni alkohol (45 g, 0.295 mola) otopljen je u benzenu (550 ml), otopina je ohlađena na 5 °C i dodano je 150 ml 48 %-tne vodene otopine bromovodika. Ohlađena smjesa snažno je miješana kroz 30 minuta, a reakcija je kroz to vrijeme praćena pomoću TLC (heksan-etilacetat 2:1). Na završetku reakcije faze su odvojene, kiselinski sloj ekstrahiran je sa 50 ml benzena, a kombinirani benzenski slojevi isprani su do neutralnoga ledeno hladnom 2.5 %-tnom otopinom natrijevog hidrogenkarbonata, te potom zasićenom otopinom natrijevog klorida. Otopina je zatim koncentrirana na rotavaporu, pri čemu je približno 350 ml benzena uklonjeno destilacijom. Pomoću TLC je pokazano da je tako dobiveni sirovi produkt sadržavao ishodni materijal samo u tragovima. U benzensku otopinu dodano je 31.5 g (0.45 mola) 2-butin-1-ola, 9 g tetrabutilamonijevog jodida i 90 ml 40 %-tne (w/v) vodene otopine kalijevog hidroksida. Smjesa je snažno miješana pri sobnoj temperaturi kroz 1.5 sati. Pomoću TLC (heksan-etilacetat 9:1) uočeno je nestajanje piperonilnog bromida i pojava samo jednog produkta. Dvije faze su odvojene, alkalična faza ekstrahirana je sa 2x30 ml benzena, kombinirani benzenski slojevi isprani su do neutralnoga sa 2x40 ml 20 %-tne otopine amonijevog klorida i destiliranom vodom, potom su osušeni i upareni. Suvišak butinola (vrel. 80 °C/60 torra) uklonjen je iz rezultirajućeg ulja uz vakuum vodene sisaljke. Sirovi produkt je čišćen destilacijom u vakuumu uz pomoć vakuumske pumpe. Prema GC analizi, frakcije (48.0 g) sakupljene između 110-120 °C (pri 0.2 torra) čistoće su 71.2 %. Potom je destilacija nastavljena primjenom Vigreux-kolone duljine 10 cm. Two steps were performed without piperonyl bromide purification. Piperonyl alcohol (45 g, 0.295 mol) was dissolved in benzene (550 ml), the solution was cooled to 5 °C and 150 ml of 48% aqueous hydrogen bromide solution was added. The cooled mixture was vigorously stirred for 30 minutes, and the reaction was monitored during this time by TLC (hexane-ethyl acetate 2:1). At the end of the reaction, the phases were separated, the acid layer was extracted with 50 ml of benzene, and the combined benzene layers were washed until neutral with an ice-cold 2.5% sodium bicarbonate solution, and then with a saturated sodium chloride solution. The solution was then concentrated on a rotavapor, with approximately 350 ml of benzene removed by distillation. Using TLC, it was shown that the crude product thus obtained contained only traces of the starting material. 31.5 g (0.45 mol) of 2-butyn-1-ol, 9 g of tetrabutylammonium iodide and 90 ml of a 40% (w/v) aqueous solution of potassium hydroxide were added to the benzene solution. The mixture was vigorously stirred at room temperature for 1.5 hours. By means of TLC (hexane-ethyl acetate 9:1), the disappearance of piperonyl bromide and the appearance of only one product was observed. The two phases were separated, the alkaline phase was extracted with 2x30 ml of benzene, the combined benzene layers were washed until neutral with 2x40 ml of 20% ammonium chloride solution and distilled water, then they were dried and evaporated. Excess butynol (bop. 80 °C/60 torr) was removed from the resulting oil with a water pump vacuum. The crude product was purified by vacuum distillation with the help of a vacuum pump. According to GC analysis, fractions (48.0 g) collected between 110-120 °C (at 0.2 torr) are 71.2 % pure. Distillation was then continued using a 10 cm long Vigreux column.

Prve frakcije: vrel. 90-108 °C/0.l torr, 19.8 g, GC pribl. 68 %. First fractions: hot. 90-108 °C/0.l torr, 19.8 g, GC approx. 68%.

Glavna frakcija: vrel. 108-110 °C/0.1 torr, 25.9 g, GC pribl. 98 %. Main fraction: hot. 108-110 °C/0.1 torr, 25.9 g, GC approx. 98%.

Ponovljenom destilacijom prvih frakcija može se dobiti dodatnih 13.4 g produkta. An additional 13.4 g of product can be obtained by repeated distillation of the first fractions.

Iskorištenje: 39.3 g (0.192 mola, 65.3 %). Yield: 39.3 g (0.192 mol, 65.3 %).

nD22 = 1.5408 nD22 = 1.5408

GC (CP 9000, CP-SIL-5CB, 60 m x 0.53 mm, 5 ml/min N2, FID, 250 °C): tR = 4.63 min, pribl. 97.7 %. Onečišćenje piperonilnim alkoholom tR = 3.0 min, 1.5%. GC (CP 9000, CP-SIL-5CB, 60 m x 0.53 mm, 5 ml/min N2, FID, 250 °C): tR = 4.63 min, approx. 97.7%. Contamination with piperonyl alcohol tR = 3.0 min, 1.5%.

TLC (heksan-etilacetat 9:1): Rf = 0.39. Onečišćenje piperonilnim alkoholom Rf = 0.05. TLC (hexane-ethyl acetate 9:1): Rf = 0.39. Contamination with piperonyl alcohol Rf = 0.05.

IR (CHC13, cm-1) ν: 2997, 2946, 2921, 2888, 2376, IR (CHC13, cm-1) ν: 2997, 2946, 2921, 2888, 2376,

1609, 1503, 1491, 1445, 1251, 1609, 1503, 1491, 1445, 1251,

1099, 1070, 1042, 937, 865, 810. 1099, 1070, 1042, 937, 865, 810.

1H NMR (400 MHz, CDC13) δ: 1.87 (3H, t, J = 2.3 Hz, Me), 4.10 1H NMR (400 MHz, CDCl3) δ: 1.87 (3H, t, J = 2.3 Hz, Me), 4.10

(2H, q, J = 2.3 Hz, O-CH2C≡), 4.47 (2H, q, J = 2.3 Hz, O-CH2C≡), 4.47

(2H, s, O-CH2-Ar), 5.94 (2H, s, O-CH2- (2H, s, O-CH2-Ar), 5.94 (2H, s, O-CH2-

O), 6.76 (1H, d, J = 8 Hz, H-7), 6.81 O), 6.76 (1H, d, J = 8 Hz, H-7), 6.81

(1H, dd, J = 8.15 Hz, H-6), 6.86 (1H, (1H, dd, J = 8.15 Hz, H-6), 6.86 (1H,

J = 1.5 Hz, H-4). J = 1.5 Hz, H-4).

13C NMR (100 MHz, CDC13) δ: 3.52 (Me), 57.29 (O-CH2-C≡), 71.15 13C NMR (100 MHz, CDCl3) δ: 3.52 (Me), 57.29 (O-CH2-C≡), 71.15

(OCH2Ar), 82.54 (CH3-C≡), 100.9 C-2, (OCH2Ar), 82.54 (CH3-C≡), 100.9 C-2,

107.95, 108.71 (C-4,7), 121.66 (C-6), 107.95, 108.71 (C-4,7), 121.66 (C-6),

131.39 (C-5), 147.15, 147.66 (C3a, C-7a). 131.39 (C-5), 147.15, 147.66 (C3a, C-7a).

4. 1 ,2-dimetoksi-4-[1-(Z-3-klorobut-2-eniloksi)etil]benzen 4. 1,2-dimethoxy-4-[1-(Z-3-chlorobut-2-enyloxy)ethyl]benzene

1.0. g (5.5 mmola) α-metilveratrilnog alkohola i 1.44 g (11 mmola) 1,3-diklorobut-2-ena (koji sadrži poglavito Z-izomer) otopljeno je u 10 ml benzena, smjesi je dodano 1.23 g (22 mmola) kalijevog hidroksida otopljenog u 5 ml vode i 1.95 g (5.5 mmola) benziltributilamonijevog bromida, te je smjesa miješana pri sobnoj temperaturi kroz dva dana. 1.0. g (5.5 mmol) of α-methylveratryl alcohol and 1.44 g (11 mmol) of 1,3-dichlorobut-2-ene (containing mainly the Z-isomer) were dissolved in 10 ml of benzene, 1.23 g (22 mmol) of potassium was added to the mixture hydroxide dissolved in 5 ml of water and 1.95 g (5.5 mmol) of benzyltributylammonium bromide, and the mixture was stirred at room temperature for two days.

Faze su odvojene, vodeni sloj je potpuno ekstrahiran benzenom. Kombinirani benzenski slojevi isprani su do neutralnoga razrijeđenom klorovodičnom kiselinom i destiliranom vodom, potom osušeni i upareni. Sirovi materijal je čišćen kolonskom kromatografijom. The phases are separated, the aqueous layer is completely extracted with benzene. The combined benzene layers were washed until neutral with dilute hydrochloric acid and distilled water, then dried and evaporated. The crude material was purified by column chromatography.

Iskorištenje: 0.47 g (1.7 mmola, 31.5 %), homogeno prema GC analizi. Yield: 0.47 g (1.7 mmol, 31.5 %), homogeneous according to GC analysis.

IR (CHCl3, cm-1) ν: 2973, 2931, 2862, 2839, 1659 IR (CHCl3, cm-1) ν: 2973, 2931, 2862, 2839, 1659

1606, 1595, 1511, 1465, 1261, 1606, 1595, 1511, 1465, 1261,

1164, 1141, 1093, 1028. 1164, 1141, 1093, 1028.

1H NMR (200 MHz, CDCl3) δ: 1.43 (3H, J = 6.5 Hz, CH-CH3), 1.97 1H NMR (200 MHz, CDCl3) δ: 1.43 (3H, J = 6.5 Hz, CH-CH3), 1.97

(3H, t, J = 0.5 Hz, =CCl-CH3), 3.80 (3H, t, J = 0.5 Hz, =CCl-CH3), 3.80

(2H, m, OCH2), 3.87 i 3.89 (zajedno (2H, m, OCH2), 3.87 and 3.89 (together

6H, svaki s, OCH3), 4.38 (2H, q, J = 6H, each with, OCH3), 4.38 (2H, q, J =

6.5 Hz, Ar-CHO), 5.78 (1H, m, CH= 6.5 Hz, Ar-CHO), 5.78 (1H, m, CH=

CCl), 6.83 (2H, d, Ar), 6.87 (1H, d, Ar). CCl), 6.83 (2H, d, Ar), 6.87 (1H, d, Ar).

13C NMR (50 MHz, CDC13) δ: 21.31 (=CCl-CH3), 24.08 (CH-CH3), 13C NMR (50 MHz, CDCl3) δ: 21.31 (=CCl-CH3), 24.08 (CH-CH3),

55.84 (OCH3), 64.10 (OCH2), 77.05 55.84 (OCH3), 64.10 (OCH2), 77.05

(Ar-CHO), 108.92 C-2, 110.91 (C-5), (Ar-CHO), 108.92 C-2, 110.91 (C-5),

118.74 (C-6), 124.43 (CH=CCl), 134.0 118.74 (C-6), 124.43 (CH=CCl), 134.0

(CH=CCl), 135.89 (C-1), 148.49 i (CH=CCl), 135.89 (C-1), 148.49 and

149.23 (C-3 i C-4). 149.23 (C-3 and C-4).

5. 1-[2-(2-butoksietoksi)etoksimetil]-3,4-dimetoksibenzen 5. 1-[2-(2-butoxyethoxy)ethoxymethyl]-3,4-dimethoxybenzene

U 3.0 g (17.83 mmola) veratrilnog alkohola otopljenog u 20.0 ml benzena i ohlađenog na 10°C, dodano je 15.0 ml 48 %-tnog bromovodika, te je smjesa miješana kroz 30 minuta. Faze su potom odvojene u lijevku za odjeljivanje, organski sloj je neutraliziran natrijevim hidrogenkarbonatom i uparavanjem koncentriran na 2/3 svog volumena. Toj otopini dodano je 4.33 g (26.7 mmol) dietilen-glikolnog monobutiletera, 4 ml 50 %-tne (w/v) otopine kalijevog hidroksida i 0.65 g (1.75 mmol) tetrabutilamonijevog jodida, te je smjesa kroz jednu noć snažno miješana pri sobnoj temperaturi. Faze su potom odvojene u lijevku za odjeljivanje, vodeni je sloj ekstrahiran benzenom, kombinirani organski sloj ispran je vodom do neutralnoga, sušen iznad magnezijevog sulfata i uparen. Rezultantni uljasti sirovi produkt čišćen je kromatografski (eluens: n-heksan-etilacetat, 2:1). Rf = 0.35. 15.0 ml of 48% hydrogen bromide was added to 3.0 g (17.83 mmol) of veratryl alcohol dissolved in 20.0 ml of benzene and cooled to 10°C, and the mixture was stirred for 30 minutes. The phases were then separated in a separatory funnel, the organic layer was neutralized with sodium bicarbonate and concentrated to 2/3 of its volume by evaporation. 4.33 g (26.7 mmol) of diethylene glycol monobutyl ether, 4 ml of a 50% (w/v) potassium hydroxide solution and 0.65 g (1.75 mmol) of tetrabutylammonium iodide were added to that solution, and the mixture was vigorously stirred overnight at room temperature. . The phases were then separated in a separatory funnel, the aqueous layer was extracted with benzene, the combined organic layer was washed with water until neutral, dried over magnesium sulfate and evaporated. The resulting oily crude product was purified by chromatography (eluent: n-hexane-ethyl acetate, 2:1). Rf = 0.35.

Iskorištenje: 3.62 g (11.59 mmol, 65.1%). Yield: 3.62 g (11.59 mmol, 65.1%).

IR (CHCl3, cm-1) ν: 2999, 2958, 2935, 2913, 2870, IR (CHCl3, cm-1) ν: 2999, 2958, 2935, 2913, 2870,

2448, 2371, 1722, 1680, 1595, 2448, 2371, 1722, 1680, 1595,

1513, 1466, 1443, 1420, 1353, 1513, 1466, 1443, 1420, 1353,

1328, 1265, 1239, 1157, 1140, 1328, 1265, 1239, 1157, 1140,

1094, 1029, 982, 951, 918, 889, 1094, 1029, 982, 951, 918, 889,

862, 809, 725, 640, 592, 477. 862, 809, 725, 640, 592, 477.

1H-NMR (200 MHz, CDCl3) δ: 0.91 (3H, t, j = 7.2 Hz, -O-CH2-CH2- 1H-NMR (200 MHz, CDCl3) δ: 0.91 (3H, t, j = 7.2 Hz, -O-CH2-CH2-

CH2-CH3), 1.36 (2H, m, -O-CH2-CH2- CH2-CH3), 1.36 (2H, m, -O-CH2-CH2-

CH2-CH3), 1.55 (2H, m, -O-CH2-CH2- CH2-CH3), 1.55 (2H, m, -O-CH2-CH2-

CH2-CH3), 3.46 (2H, t, -O-CH2-CH2- CH2-CH3), 3.46 (2H, t, -O-CH2-CH2-

CH2-CH3), 3.63 (8H, m, -O-CH2-CH2-O), CH2-CH3), 3.63 (8H, m, -O-CH2-CH2-O),

3.86 i 3.88 (6H, s, CH3O), 4.50 3.86 and 3.88 (6H, s, CH3O), 4.50

(2H, s, CH2-Ar), 6.79 - 6.91 (3H, m, Ar). (2H, s, CH2-Ar), 6.79 - 6.91 (3H, m, Ar).

13C-NMR (50 MHz, CDCl3) δ: 13.81 (-O-CH2-CH2-CH2-CH3), 19.4 13C-NMR (50 MHz, CDCl3) δ: 13.81 (-O-CH2-CH2-CH2-CH3), 19.4

(-O-CH2-CH2-CH2-CH3), 31.62 (-O- (-O-CH2-CH2-CH2-CH3), 31.62 (-O-

CH2-CH2-CH2-CH3), 55.71 i 55.81 CH2-CH2-CH2-CH3), 55.71 and 55.81

(OCH3), 69.06, 70.0, 70.58, 71.10 (OCH3), 69.06, 70.0, 70.58, 71.10

(-O-CH2), 73.02 (Ar-CH2-0), 110.81 (-O-CH2), 73.02 (Ar-CH2-0), 110.81

(Ar-C-2), 111.04 (Ar-C-4), 120.21 (Ar-C-2), 111.04 (Ar-C-4), 120.21

(Ar-C-6), 130.79 (Ar-C-1), 148.49 i (Ar-C-6), 130.79 (Ar-C-1), 148.49 and

148.94 (Ar-C-3 i Ar-C-4). 148.94 (Ar-C-3 and Ar-C-4).

6. 1-[2-(2-butoksietoksi)etoksimetil]-3,4-dimetoksi-6-propilbenzen 6. 1-[2-(2-butoxyethoxy)ethoxymethyl]-3,4-dimethoxy-6-propylbenzene

U 5.02 g (21.6 mmol) 1,2-dimetoksi-4-klormetil-5-propilbenzena otopljenog u 25 ml diklormetana dodano je 5.96 g (36.74 mmol) dietilenglikolnog monobutiletera, 0.4 g n-tributilamonijevog jodida i 17 ml 40 %-tne otopine natrijevog hidroksida. Smjesa je miješana pri sobnoj temperaturi kroz jednu noć, te su potom dvije faze odvojene u lijevku za odjeljivanje, vodena faza ekstrahirana je diklormetanom, kombinirani organski slojevi isprani su vodom do nealkaličnosti, osušeni iznad MgSO4 i upareni. Sirovi produkt pročišćen je kromatografijom (eluens: benzen-etilacetat 9:1) Rf= 0.32. 5.96 g (36.74 mmol) of diethylene glycol monobutyl ether, 0.4 g of n-tributylammonium iodide and 17 ml of a 40% solution were added to 5.02 g (21.6 mmol) of 1,2-dimethoxy-4-chloromethyl-5-propylbenzene dissolved in 25 ml of dichloromethane. sodium hydroxide. The mixture was stirred at room temperature overnight, and then the two phases were separated in a separatory funnel, the aqueous phase was extracted with dichloromethane, the combined organic layers were washed with water until non-alkaline, dried over MgSO4 and evaporated. The crude product was purified by chromatography (eluent: benzene-ethyl acetate 9:1) Rf= 0.32.

Iskorištenje: 5.63 g (15.88 mmol, 74.47 %). Yield: 5.63 g (15.88 mmol, 74.47 %).

IR (CHCl3, cm-1) ν: 3315, 2998, 2933, 2871, 2418, IR (CHCl3, cm-1) ν: 3315, 2998, 2933, 2871, 2418,

2374, 2035, 1617, 1350, 1272, 2374, 2035, 1617, 1350, 1272,

1224, 1112, 1035, 997, 893, 867, 1224, 1112, 1035, 997, 893, 867,

839, 641, 556. 839, 641, 556.

1H-NMR (200 MHz, CDCl3) δ: 0.91 i 0.96 (3H, t, J = 7.2 Hz, -O- 1H-NMR (200 MHz, CDCl3) δ: 0.91 and 0.96 (3H, t, J = 7.2 Hz, -O-

(CH2)3-CH3, i Ar-(CH2)2-CH3), 1.33- (CH2)3-CH3, and Ar-(CH2)2-CH3), 1.33-

1.61 (6H, m, -O-CH2-CH2-CH2-CH3, 1.61 (6H, m, -O-CH2-CH2-CH2-CH3,

-CH2-CH2-CH3), 2.57 (2H, m, Ar-CH2- -CH2-CH2-CH3), 2.57 (2H, m, Ar-CH2-

CH2-CH3), 3.45 (2H, m, -O-CH2), CH2-CH3), 3.45 (2H, m, -O-CH2),

3.57-3.67 (8H, m, 4 x H2C-O), 3.68 i 3.57-3.67 (8H, m, 4 x H2C-O), 3.68 and

3.86 (6H, s, CH3O), 4.52 (2H, m, Ar- 3.86 (6H, s, CH3O), 4.52 (2H, m, Ar-

CH2-O), 6.69 i 6.89 (2H, m, aromatski) CH2-O), 6.69 and 6.89 (2H, m, aromatic)

13C-NMR (50 MHz, CDCl3) δ: 13.82 (-CH2-CH2-CH3), 14.03 (-O-CH2- 13C-NMR (50 MHz, CDCl3) δ: 13.82 (-CH2-CH2-CH3), 14.03 (-O-CH2-

CH2-CH2-CH3), 19.18 (-O-CH2-CH2- CH2-CH2-CH3), 19.18 (-O-CH2-CH2-

CH2-CH3), 24.57 (-CH2-CH2-CH3), CH2-CH3), 24.57 (-CH2-CH2-CH3),

31.63 (-O-CH2-CH2-CH2-CH3), 34.15 31.63 (-O-CH2-CH2-CH2-CH3), 34.15

(-CH2-CH2-CH3), 55.83 (OCH3), 69.27, (-CH2-CH2-CH3), 55.83 (OCH3), 69.27,

70.02, 70.60 i 70.67 (-O-CH2), 71.12 70.02, 70.60 and 70.67 (-O-CH2), 71.12

(Ar-CH2-O), 112.51 (Ar-C-2), 112.64 (Ar-CH2-O), 112.51 (Ar-C-2), 112.64

(Ar-C-4), 127.74 (Ar-C-1), 133.69 (Ar- (Ar-C-4), 127.74 (Ar-C-1), 133.69 (Ar-

C-6), 146.75 i 148.22 (Ar-C-3 i Ar-C-4). C-6), 146.75 and 148.22 (Ar-C-3 and Ar-C-4).

7. 1-[1-(but-2-iniloksi)etil]-3,4-dimetoksibenzen 7. 1-[1-(but-2-ynyloxy)ethyl]-3,4-dimethoxybenzene

U 1.0 g (5.5 mmol) α-metilveratrilnog alkohola otopljenog u 10 ml diklormetana dodano je 1.09 g (8.2 mmol) 1-brom-2-butina, 0.2 g n-tributilamonijevog jodida i 10 ml 40%-tne otopine natrijevog hidroksida. Smjesa je miješana pri sobnoj temperaturi kroz jednu noć, te su potom dvije faze odvojene u lijevku za odjeljivanje. Organski sloj ekstrahiran je diklormetanom, kombinirani organski slojevi isprani su vodom do nealkaličnosti, osušeni iznad MgSO4 i upareni. Sirovi produkt pročišćen je kromatografijom. Iskorištenje: 0.8 g (3.42 mmol, 62.1 %). 1.09 g (8.2 mmol) of 1-bromo-2-butyne, 0.2 g of n-tributylammonium iodide and 10 ml of 40% sodium hydroxide solution were added to 1.0 g (5.5 mmol) of α-methylveratryl alcohol dissolved in 10 ml of dichloromethane. The mixture was stirred at room temperature overnight, and then the two phases were separated in a separatory funnel. The organic layer was extracted with dichloromethane, the combined organic layers were washed with water until non-alkaline, dried over MgSO4 and evaporated. The crude product was purified by chromatography. Yield: 0.8 g (3.42 mmol, 62.1 %).

ND20 1.5282. ND20 1.5282.

IR (CHCl3, cm-1) ν: 2976, 2855, 2837, 1605, 1595, IR (CHCl3, cm-1) ν: 2976, 2855, 2837, 1605, 1595,

1514, 1465, 1419, 1371, 1353, 1514, 1465, 1419, 1371, 1353,

1311, 1260, 1164, 1141, 1086, 1311, 1260, 1164, 1141, 1086,

1027, 864. 1027, 864.

1H-NMR (200 MHz, CDCl3) δ: 1.46 (3H, d, J = 6.5 Hz, CH-CH3), 1H-NMR (200 MHz, CDCl3) δ: 1.46 (3H, d, J = 6.5 Hz, CH-CH3),

1.85 (3H, t, J = 2.3 Hz, ≡C-CH3), 1.85 (3H, t, J = 2.3 Hz, ≡C-CH3),

3.83 i 4.01 (2H, ABX3, JAB = 15.0, 3.83 and 4.01 (2H, ABX3, JAB = 15.0,

JAX = JBX = 2.3 Hz, ≡C-CH2-O), 3.87 i JAX = JBX = 2.3 Hz, ≡C-CH2-O), 3.87 i

3.89 (zajedno 6 H, svaki s, O-CH3), 3.89 (total 6 H, each with, O-CH3),

4.55 (2H, q, J = 6.5 Hz, Ar-CH-O), 4.55 (2H, q, J = 6.5 Hz, Ar-CH-O),

6.80-6.89 (3H, m, aromatski). 6.80-6.89 (3H, m, aromatic).

13C-NMR (50 MHz, CDCl3) δ: 3.61 (≡C-CH3), 23.76 (CH-CH3), 55.87 13C-NMR (50 MHz, CDCl3) δ: 3.61 (≡C-CH3), 23.76 (CH-CH3), 55.87

(OCH3), 55.96 (≡C-CH2-O), 75.36 (≡C- (OCH3), 55.96 (≡C-CH2-O), 75.36 (≡C-

CH2), 76.0402 (Ar-CH-O), 81.91 (≡C- CH2), 76.0402 (Ar-CH-O), 81.91 (≡C-

CH3), 109.06 (C-2), 110.86 (C-5), CH3), 109.06 (C-2), 110.86 (C-5),

118.94 (C-6), 135.30 (C-1), 148.52 (C- 118.94 (C-6), 135.30 (C-1), 148.52 (C-

3), 149.19 (C-4). 3), 149.19 (C-4).

8. 1 -[1-(prop-2-eniloksi)etil]-3,4-dimetoksibenzen, (1-(3',4'-dimetoksifenil)etil-alilni eter) 8. 1-[1-(prop-2-enyloxy)ethyl]-3,4-dimethoxybenzene, (1-(3',4'-dimethoxyphenyl)ethyl-allyl ether)

Radi se prema postupku opisanom u primjeru 7, s tom razlikom što se uporabi 3.0 g, (0.0164 mol) α-metilveratrilnog alkohola i 1.38 g (0.018 mol) alilnog klorida. It is done according to the procedure described in example 7, with the difference that 3.0 g (0.0164 mol) of α-methylveratryl alcohol and 1.38 g (0.018 mol) of allyl chloride are used.

Iskorištenje: 2.5 g (68.6%) Yield: 2.5 g (68.6%)

GC (CP 9000, CP-SIL-5CB, 60 m x 0.53 mm, 5 ml/min N2, FID, 250°C) tR = 3.4 min (cca. 95%). GC (CP 9000, CP-SIL-5CB, 60 m x 0.53 mm, 5 ml/min N2, FID, 250°C) tR = 3.4 min (approx. 95%).

IR (CHCl3, cm-1) ν: 3079, 2996, 2973, 2933, 2860, IR (CHCl3, cm-1) ν: 3079, 2996, 2973, 2933, 2860,

2838, 1607, 1595, 1510, 1465, 2838, 1607, 1595, 1510, 1465,

1443, 1419, 1311, 1260, 1164, 1443, 1419, 1311, 1260, 1164,

1141, 1089, 1027, 996, 928, 860. 1141, 1089, 1027, 996, 928, 860.

1H-NMR (200 MHz, CDCl3) δ: 1.45 (3H, d, J = 6.4 Hz, CH3), 3.83 1H-NMR (200 MHz, CDCl3) δ: 1.45 (3H, d, J = 6.4 Hz, CH3), 3.83

AB mid. (2H, ABdt, JAB = 12.7 Hz, AB mid. (2H, ABdt, JAB = 12.7 Hz,

J = 1.3, 6.0 Hz, OCH2-CH=), 3-89 i J = 1.3, 6.0 Hz, OCH2-CH=), 3-89 i

3.87 (zajedno 6H, svaki s, CH3O), 4.41 (2H, 3.87 (together 6H, each with, CH3O), 4.41 (2H,

q, J = 6.4 Hz, CH-O), 5.11 - 5.29 (2H, m), q, J = 6.4 Hz, CH-O), 5.11 - 5.29 (2H, m),

5.81 - 6.0 (1H, m), 6.83 (2H, s), 6.89 (1H, s). 5.81 - 6.0 (1H, m), 6.83 (2H, s), 6.89 (1H, s).

13C-NMR (50 MHz, CDC13) δ: 24.0 (CH-CH3), 55.77 (OCH3), 69.17 13C-NMR (50 MHz, CDCl3) δ: 24.0 (CH-CH3), 55.77 (OCH3), 69.17

(OCH2=), 108.94 (C-2), 110.82 (C-5), (OCH2=), 108.94 (C-2), 110.82 (C-5),

116.58 (CH=CH2), 118.58 (C-6), 116.58 (CH=CH2), 118.58 (C-6),

135.0 (C-1), 136.26 (CH-CH2, 148.29 135.0 (C-1), 136.26 (CH-CH2, 148.29

i 149.11 (C-3 i C-4). and 149.11 (C-3 and C-4).

9. 1-[1-(2-butiniloksi)propil]-3,4-dimetoksibenzen 9. 1-[1-(2-Butynyloxy)propyl]-3,4-dimethoxybenzene

Radi se prema postupku opisanom u primjeru 7, s tom razlikom što se uporabi l-[l-hidroksipropil]-3,4-dimetoksibenzen. It is carried out according to the procedure described in example 7, with the difference that 1-[1-hydroxypropyl]-3,4-dimethoxybenzene is used.

Iskorištenje: 77 %. Utilization: 77%.

Čistoća (GC): CP 9000, CP-SIL-5CB, 60 m x 0.53 μm, 5 ml/min N2, FID, 220°C tR = 13.0 min, >95 %. Purity (GC): CP 9000, CP-SIL-5CB, 60 m x 0.53 μm, 5 ml/min N2, FID, 220°C tR = 13.0 min, >95 %.

IR (CHCl3, cm-1) ν: 2999, 2959, 2935, 2875, 2856, IR (CHCl3, cm-1) ν: 2999, 2959, 2935, 2875, 2856,

2839, 2240, 1608, 1595, 1513, 2839, 2240, 1608, 1595, 1513,

1465, 1261, 1234, 1162, 1142, 1465, 1261, 1234, 1162, 1142,

1061, 1028. 1061, 1028.

1H-NMR (200 MHz, CDCl3) δ: 0.84 (3H, t, J = 7.4 Hz, CH2CH3), 1H-NMR (200 MHz, CDCl3) δ: 0.84 (3H, t, J = 7.4 Hz, CH2CH3),

1.65 i 1.83 (zajedno 2H, svaki m, 1.65 and 1.83 (together 2H, each m,

CH2CH3), 1.82 (3H, t, J = 2.3 Hz, CH2CH3), 1.82 (3H, t, J = 2.3 Hz,

C≡C-CH3), 3.84 i 3.86 (zajedno 6H, s, C≡C-CH3), 3.84 and 3.86 (together 6H, s,

CH3O), 3.78 i 3.99 (zajedno 2H, ABX3, CH3O), 3.78 and 3.99 (together 2H, ABX3,

JAB = 15.0 Hz, JAX = JBX = 2.3 Hz, JAB = 15.0 Hz, JAX = JBX = 2.3 Hz,

OCH2) 4.22 (1H, t, J = 6.8 Hz, CH-O), OCH2) 4.22 (1H, t, J = 6.8 Hz, CH-O),

6.80 - 6.83 (3H, m, aromatski) 6.80 - 6.83 (3H, m, aromatic)

(signali etilacetata mogu se primijetiti (ethyl acetate signals can be observed

na 1.22 (t), 2.01 (s) i 4.08 (q) ppm). at 1.22 (t), 2.01 (s) and 4.08 (q) ppm).

13C-NMR (50 MHz, CDCl3) δ: 3.55 (C≡C-CH3), 10.23 (CH2CH3), 13C-NMR (50 MHz, CDCl3) δ: 3.55 (C≡C-CH3), 10.23 (CH2CH3),

30.58 (CH2CH3), 55.77 (OCH3), 56.03 30.58 (CH2CH3), 55.77 (OCH3), 56.03

(OCH2), 75.41 (C≡C-CH3), 81.71 (C≡C- (OCH2), 75.41 (C≡C-CH3), 81.71 (C≡C-

CH3), 82.24 (CH-O), 109.34, 110.64 CH3), 82.24 (CH-O), 109.34, 110.64

(C-2, C-5), 119.63 (C-6), 133.95 (C-1), (C-2, C-5), 119.63 (C-6), 133.95 (C-1),

148.44 i 149.09 (C-3, C-4). 148.44 and 149.09 (C-3, C-4).

10. 1-[1-(2-butiniloksi)-2-metilpropil]-3,4-dimetoksibenzen 10. 1-[1-(2-butynyloxy)-2-methylpropyl]-3,4-dimethoxybenzene

Radi se prema postupku opisanom u primjeru 7, s tom razlikom što se uporabi 1-(1-hidroksi-2-metilpropil)-3,4-dimetoksibenzen. It is done according to the procedure described in example 7, with the difference that 1-(1-hydroxy-2-methylpropyl)-3,4-dimethoxybenzene is used.

Iskorištenje: 65 %. Utilization: 65%.

Čistoća (GC): CP 9000, CP-SIL-5CB, 60 m x 0.53 μm, 5 ml/min N2, FID, 220°C tR = 14.0 min, >91 %. Purity (GC): CP 9000, CP-SIL-5CB, 60 m x 0.53 μm, 5 ml/min N2, FID, 220°C tR = 14.0 min, >91 %.

IR (CHCl3, cm-1) ν: 3029, 2995, 2958, 2937, 2871, IR (CHCl3, cm-1) ν: 3029, 2995, 2958, 2937, 2871,

2857, 2839, 2238, 1606, 1595, 2857, 2839, 2238, 1606, 1595,

1510, 1466, 1443, 1420, 1263, 1510, 1466, 1443, 1420, 1263,

1238, 1157, 1142, 1062, 1028. 1238, 1157, 1142, 1062, 1028.

1H-NMR (400 MHz, CDCl3) δ: 0.65 i 0.97 (zajedno 6H, svaki d, J = 1H-NMR (400 MHz, CDCl3) δ: 0.65 and 0.97 (together 6H, each d, J =

6.8 Hz, CH(CH3)2), 1.77 (3H, t, J = 6.8 Hz, CH(CH3)2), 1.77 (3H, t, J =

2.3 Hz, C≡C-CH3), 1.87 (1H, m, 2.3 Hz, C≡C-CH3), 1.87 (1H, m,

CH(CH3)2), 3.80 i 3.81 (zajedno 6H, s, CH(CH3)2), 3.80 and 3.81 (together 6H, s,

CH3O), 3.71 i 3.95 (zajedno 2H, ABX3, CH3O), 3.71 and 3.95 (together 2H, ABX3,

JAB = 15.0 Hz, JAX = JBX = 2.3 Hz, JAB = 15.0 Hz, JAX = JBX = 2.3 Hz,

OCH2) 3.90 (1H, d, J = 8.1 Hz, CH-O), OCH2) 3.90 (1H, d, J = 8.1 Hz, CH-O),

6.68 - 6.78 (3H, m, aromatski). 6.68 - 6.78 (3H, m, aromatic).

13C-NMR (100 MHz, CDCl3) δ: 3.39 (C≡C-CH3), 18.87 i 19.16 13C-NMR (100 MHz, CDCl3) δ: 3.39 (C≡C-CH3), 18.87 and 19.16

(CH(CH3)2), 34.32 (CH(CH3)2), 55.61 (CH(CH3)2), 34.32 (CH(CH3)2), 55.61

(OCH3), 56.11 (OCH2), 75.44 (C≡C- (OCH3), 56.11 (OCH2), 75.44 (C≡C-

CH3), 81.37 (C≡C-CH3), 86.25 (CH-O), CH3), 81.37 (C≡C-CH3), 86.25 (CH-O),

109.76 (C-5), 110.32 (C-2), 120.19 109.76 (C-5), 110.32 (C-2), 120.19

(C-6), 132.91 (C-1), 148.24 (C-4), 148.80 (C-3). (C-6), 132.91 (C-1), 148.24 (C-4), 148.80 (C-3).

11. 1-(but-2-iniloksimetil)naftalen. 11. 1-(but-2-ynyloxymethyl)naphthalene.

Otopini 1.50 g (21.4 mmol) 2-butin-1-ola u 10 ml diklormetana dodano je 3.71 g (21.0 mmol) l-klormetilnaftalena, 0.4 g n-tributilamonijevog jodida i 10 ml 40 %-tne otopine kalijevog hidroksida. Smjesa je miješana pri sobnoj temperaturi kroz jednu noć, potom su dvije faze odvojene u lijevku za odjeljivanje, kombinirani organski sloj ispran je vodom do nealkaličnosti, sušen na MgSO4 i uparen. Sirovi produkt 3.61 g (17.2 mmol, 81.8 %) je homogen, kako je pokazano GC analizom. To a solution of 1.50 g (21.4 mmol) of 2-butyn-1-ol in 10 ml of dichloromethane was added 3.71 g (21.0 mmol) of l-chloromethylnaphthalene, 0.4 g of n-tributylammonium iodide and 10 ml of a 40% potassium hydroxide solution. The mixture was stirred at room temperature overnight, then the two phases were separated in a separatory funnel, the combined organic layer was washed with water until non-alkaline, dried over MgSO4 and evaporated. The crude product 3.61 g (17.2 mmol, 81.8 %) is homogeneous, as shown by GC analysis.

IR (CHCl3, cm-1) ν: 3044, 3001, 2945, 2920, 2854, IR (CHCl3, cm-1) ν: 3044, 3001, 2945, 2920, 2854,

1598, 1509, 1356, 1166, 1086, 1598, 1509, 1356, 1166, 1086,

1067. 1067.

1H-NMR (400 MHz, CDCl3) δ: 1.93 (3H, t, J =2.3 Hz, C≡C-CH3), 1H-NMR (400 MHz, CDCl3) δ: 1.93 (3H, t, J =2.3 Hz, C≡C-CH3),

4.22 (2H, q, J =2.1 Hz, O-CH2-C≡C), 4.22 (2H, q, J =2.1 Hz, O-CH2-C≡C),

5.06 (2H, s, C10H7-CH2-O), 7.45 (1H, 5.06 (2H, s, C10H7-CH2-O), 7.45 (1H,

t, J = 8 Hz), 7.53 (3H, m) 7.84 (1H, d, t, J = 8 Hz), 7.53 (3H, m) 7.84 (1H, d,

J = 8.1 Hz), 7.88 (1H, d, J = 7.7 Hz), J = 8.1 Hz), 7.88 (1H, d, J = 7.7 Hz),

8.19 (1H, d, J = 8.2 Hz). 8.19 (1H, d, J = 8.2 Hz).

13C-NMR (100 MHz, CDCl3) δ: 3.6 (C≡C-CH3), 57.71 (O-CH2-C≡C), 13C-NMR (100 MHz, CDCl3) δ: 3.6 (C≡C-CH3), 57.71 (O-CH2-C≡C),

69.72 (C10H7-CH2-O), 75.10 (O-CH2- 69.72 (C10H7-CH2-O), 75.10 (O-CH2-

C≡C), 82.76 (O-CH2-C≡C), 124.03, C≡C), 82.76 (O-CH2-C≡C), 124.03,

125.10, 125.72, 126.19, 126.85, 125.10, 125.72, 126.19, 126.85,

128.43, 128.72, 131.79 (C-8a), 128.43, 128.72, 131.79 (C-8a),

133.06, 133.70. 133.06, 133.70.

12. 5-[2-(2-butoksietoksi)etoksimetil]-6-propil-1,3-benzodioksol, PBO 12. 5-[2-(2-butoxyethoxy)ethoxymethyl]-6-propyl-1,3-benzodioxole, PBO

U aparaturu opremljenu magnetnom miješalicom stavljeno je 2.98 g (14.02 mmol) 5-klormetildihidrosafrola, 2.72 g (16.82 mmol) dietilenglikolnog monobutiletera, 15 ml diklormetana, 10 ml 40 %-tne otopine kalijevog hidroksida i 0.51 g (1.38 mmol) tetrabutil-amonijevog jodida. Emulzija je reagirala uz snažno miješanje kroz 4 sata, dok je reakcija praćena TLC kromatografijom. Nakon nestanka početnog klormetilnog derivata smjesa je ostavljena dok se slegne, faze su odvojene, organski spoj je ispran vodom do nealkaličnosti osušen i uparen. Produkt je destiliran in vacuo. Vrelište: 180°C/1Hgmm. Materijal je identičan tržišno dobavljenom PBO. Iskorištenje: 4.0 g (90 %). Čistoća (GC) 98 %. 2.98 g (14.02 mmol) of 5-chloromethyldihydrosafrole, 2.72 g (16.82 mmol) of diethylene glycol monobutyl ether, 15 ml of dichloromethane, 10 ml of a 40% potassium hydroxide solution and 0.51 g (1.38 mmol) of tetrabutylammonium iodide were placed in an apparatus equipped with a magnetic stirrer. . The emulsion was reacted with vigorous stirring for 4 hours, while the reaction was monitored by TLC chromatography. After the disappearance of the initial chloromethyl derivative, the mixture was left to settle, the phases were separated, the organic compound was washed with water until non-alkalinity, dried and evaporated. The product is distilled in vacuo. Boiling point: 180°C/1Hgmm. The material is identical to commercially available PBO. Yield: 4.0 g (90 %). Purity (GC) 98%.

Claims (7)

1. Postupak priprave miješanih etera općenite formule I, u kojoj Ar označuje alicikličku, aromatsku ili heterocikličku cjelinu koja sadrži jedan ili više heteroatoma, opcijski supstituirane jednom ili više C1-4 alkoksi, metilendioksi, C1-4 alkil, halogen, C1-4 haloalkil ili nitro-skupinom, i/ili kondenzirane s benzenskim prstenom, R1 znači vodik, C1-4 alkilnu, C1-4 haloalkilnu, C2-4 alkenilnu, fenilnu, supstituiranu fenilnu, C3-6 cikloalkilnu skupinu, R2 znači C1-6 alkilnu, C3-6 alkenilnu, ili C3-6 alkinilnu skupinu, opcijski mono ili polisupstituiranu C1-6 alkilnom, C1-6 alkoksi, C3-6 alkenilnom, C3-6 alkinilnom, C1-6 haloalkilnom skupinom ili halogenim atomom; ili C1-4 alkiloksi-C1-4 alkil-oksi-C1-4 alkilnu skupinu, n = l, 2 reakcijom spojeva općenite formule II, u kojoj R1 i n imaju značenje navedeno ranije, X označuje hidroksilnu, halogenu ili sulfonestersku odpuštajuću skupinu, sa spojevima općenite formule III, u kojoj R2 ima značenje navedeno ranije, Y označuje hidroksilnu, halogenu ili sulfonestersku odpuštajuću skupinu, uz uvjet da je jedan od reakcijskih partnera općenitih formula II i HI neki alkohol, naznačen time, da se reakcija provodi pod heterogenim uvjetima u nazočnosti vodene otopine baze i katalizatora faznog prijenosa, a rezultirajući produkt se opcijski stabilizira dodatkom baze i/ili antioksidansa.1. Procedure for the preparation of mixed ethers of the general formula I, in which Ar denotes an alicyclic, aromatic or heterocyclic unit containing one or more heteroatoms, optionally substituted with one or more C1-4 alkoxy, methylenedioxy, C1-4 alkyl, halogen, C1-4 haloalkyl or nitro group, and/or fused with a benzene ring , R1 means hydrogen, C1-4 alkyl, C1-4 haloalkyl, C2-4 alkenyl, phenyl, substituted phenyl, C3-6 cycloalkyl group, R2 means a C1-6 alkyl, C3-6 alkenyl, or C3-6 alkynyl group, optionally mono- or polysubstituted by a C1-6 alkyl, C1-6 alkoxy, C3-6 alkenyl, C3-6 alkynyl, C1-6 haloalkyl group or halogen atom; or a C1-4 alkyloxy-C1-4 alkyl-oxy-C1-4 alkyl group, n = l, 2 by the reaction of compounds of the general formula II, in which R1 and n have the meaning given earlier, X denotes a hydroxyl, halogen or sulfonester leaving group, with compounds of the general formula III, in which R 2 has the meaning given earlier, Y denotes a hydroxyl, halogen or sulfonester leaving group, provided that one of the reaction partners of the general formulas II and HI is an alcohol, characterized by the fact that the reaction is carried out under heterogeneous conditions in the presence of an aqueous base solution and a phase transfer catalyst, and the resulting product is optionally stabilized by the addition of a base and/or an antioxidant. 2. Postupak prema zahtjevu l, naznačen time, da se spojevi općenitih formula II i III uporabe u molnim omjerima od 0.4 - 2.5.2. Process according to claim 1, characterized in that the compounds of general formulas II and III are used in molar ratios of 0.4 - 2.5. 3. Postupak prema zahtjevima 1-2, naznačen time, da se uporabi količina od 1.0 - 10.0 molnih ekvivalenata baze, ponajprije hidroksida alkalijskih ili zemnoalkalijskih metala, prije svega 2.0 molna ekvivalenta kalijevog hidroksida ili natrijevog hidroksida u 10 %-tnoj (w/v) vodenoj otopini.3. The method according to claims 1-2, characterized by using an amount of 1.0 - 10.0 molar equivalents of a base, preferably hydroxides of alkali or alkaline earth metals, primarily 2.0 molar equivalents of potassium hydroxide or sodium hydroxide in a 10% (w/v) ) to an aqueous solution. 4. Postupak prema zahtjevima 1-3, naznačen time, da se kao katalizatori faznog prijenosa uporabe različite amonijeve soli ili hidroksidi, ponajprije tetrabutilamonijev bromid ili jodid.4. The method according to claims 1-3, characterized in that different ammonium salts or hydroxides, preferably tetrabutylammonium bromide or iodide, are used as phase transfer catalysts. 5. Postupak prema zahtjevima 1-4, naznačen time, da se katalizator faznog prijenosa uporabi u količini od 0.01 - 1.0 molnih ekvivalenata, ponajprije u količini od 0.1 molnog ekvivalenta.5. The method according to claims 1-4, characterized in that the phase transfer catalyst is used in an amount of 0.01 - 1.0 molar equivalents, preferably in an amount of 0.1 molar equivalents. 6. Postupak prema zahtjevima 1-5, naznačen time, da se reakcija izvodi bez otapala, ili u nazočnosti nepolarnog aprotičnog otapala, ponajprije dikloretana.6. Process according to claims 1-5, characterized in that the reaction is carried out without a solvent, or in the presence of a non-polar aprotic solvent, preferably dichloroethane. 7. Postupak prema zahtjevima 1-6, naznačen time, da se reakcija izvodi pri temperaturama od -10 °C do + 100 °C, ponajprije pri sobnoj temperaturi.7. Process according to claims 1-6, characterized in that the reaction is carried out at temperatures from -10 °C to + 100 °C, preferably at room temperature.
HRP9603178A 1996-11-18 1997-11-13 Process for the preparation of benzyl-ethers by the use of a phase transfer HRP970607A2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
HU9603178A HU220961B1 (en) 1996-11-18 1996-11-18 Process for producing benzyl-ethers with phase transformation

Publications (1)

Publication Number Publication Date
HRP970607A2 true HRP970607A2 (en) 1998-08-31

Family

ID=89994453

Family Applications (1)

Application Number Title Priority Date Filing Date
HRP9603178A HRP970607A2 (en) 1996-11-18 1997-11-13 Process for the preparation of benzyl-ethers by the use of a phase transfer

Country Status (7)

Country Link
AR (1) AR008526A1 (en)
AU (1) AU5064498A (en)
HR (1) HRP970607A2 (en)
HU (1) HU220961B1 (en)
TW (1) TW434214B (en)
WO (1) WO1998022417A1 (en)
ZA (1) ZA9710317B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6596870B2 (en) 2000-07-13 2003-07-22 Brandeis University Asymmetric synthetic methods based on phase transfer catalysis
CN1124246C (en) * 2000-09-01 2003-10-15 中国科学院上海有机化学研究所 Process for preparing 4-(2-alkoxyethyl) phenol by phase-transfer catalysis
EP2289889A1 (en) 2009-08-18 2011-03-02 Endura S.p.a. Substituted alkynyl phenoxy compounds and their uses
GB201104156D0 (en) * 2011-03-11 2011-04-27 Rothamstead Res Ltd Compositions and methods for controlling pesticide resistant pests
GB2512112B (en) * 2013-03-21 2016-03-30 Rothamsted Res Ltd Compositions and methods for controlling herbicide resistant weeds

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4433179A (en) * 1980-08-25 1984-02-21 Ciba-Geigy Corporation Process for the preparation of di- and poly-allyl ethers
GB2198725B (en) * 1986-11-05 1991-01-16 Alter Sa Use of a series of quaternary ammonium salts as phase-transfer catalysts

Also Published As

Publication number Publication date
ZA9710317B (en) 1998-06-10
HU220961B1 (en) 2002-07-29
WO1998022417A1 (en) 1998-05-28
TW434214B (en) 2001-05-16
AU5064498A (en) 1998-06-10
HU9603178D0 (en) 1997-01-28
AR008526A1 (en) 2000-01-19
HUP9603178A3 (en) 1999-05-28
HUP9603178A2 (en) 1998-09-28

Similar Documents

Publication Publication Date Title
HRP970609A2 (en) Process for the preparation of benzyl-ethers
SU884567A3 (en) Method of preparing cyclohexane derivatives of their salts
Kazemi et al. Chemoselective and scalable preparation of alkyl tosylates under solvent-free conditions
KR20160105815A (en) Process for the preparation of substituted phenoxyphenyl ketones
Kirmse et al. Intramolecular generation of oxonium ylides from functionalized arylcarbenes
HRP970607A2 (en) Process for the preparation of benzyl-ethers by the use of a phase transfer
SK77398A3 (en) Process for making dihydropyrimidinones
SU552897A3 (en) The method of obtaining pyridine derivatives or their salts
SU1277897A3 (en) Method of producing 1,1-dioxo-6-brom(or-6,6-dibromine) penicillanoyloxymethyl ethers of 6-(2-azido-2-phenylacetamido)penicillanic acid
EP1013652A2 (en) Process for preparation of substituted chromanderivatives
US4499115A (en) Antioxidant benzodioxole compound
Mercier et al. Synthesis of 1-Methyl-tricyclo [5.2. 2.02, 6] undec-2 (6)-ene-8-one
US2873293A (en) Bis(alpha-chloro-isobutyrates) of dihydroxy-benzenes
US3988380A (en) Process for preparing 1,2-disubstituted-trans-olefins
US3862238A (en) 2-(2-butynyloxy)-phenol
IL43480A (en) Pyrocatechol mono-ethers and their production
Zhang et al. Reaction of Meldrum's acid with an aminomethylating agent and nitroalkanes
Kaye et al. Chromone Studies. Part 11.1 Synthesis and Electron-Impact Mass Spectrometric Study of Granulosin and Side-Chain Analogues
SU1331425A3 (en) Method of producing sulfonylhydroxyketoneacetals
MXPA99004473A (en) Process for the preparation of benzyl-ethers
SU440821A1 (en) METHOD OF OBTAINING OXY OR TIO-ETHER DERIVATIVES
DE10212303A1 (en) Production of aromatic alcohols, useful as chemical intermediates in combinatorial chemistry, pharmaceuticals and agrochemicals, comprises dehydration of dialcohol compounds in the presence of a base
JPS62205048A (en) Synthesis of optically active (-)-oudemansin b
KR20140030931A (en) First total synthesis of licochalcone d
HU194550B (en) Process for preparing isochromane derivatives

Legal Events

Date Code Title Description
A1OB Publication of a patent application
AIPI Request for the grant of a patent on the basis of a substantive examination of a patent application
ODBI Application refused