HRP20110536A2 - Solar thermal hydroelectric power plant with direct driven pump system - Google Patents

Solar thermal hydroelectric power plant with direct driven pump system Download PDF

Info

Publication number
HRP20110536A2
HRP20110536A2 HRP20110536AA HRP20110536A HRP20110536A2 HR P20110536 A2 HRP20110536 A2 HR P20110536A2 HR P20110536A A HRP20110536A A HR P20110536AA HR P20110536 A HRP20110536 A HR P20110536A HR P20110536 A2 HRP20110536 A2 HR P20110536A2
Authority
HR
Croatia
Prior art keywords
energy
power plant
solar thermal
solar
water
Prior art date
Application number
HRP20110536AA
Other languages
Croatian (hr)
Inventor
Zvonimir Glasnović
Jure Margeta
Original Assignee
Zvonimir Glasnović
Jure Margeta
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zvonimir Glasnović, Jure Margeta filed Critical Zvonimir Glasnović
Priority to HRP20110536AA priority Critical patent/HRP20110536A2/en
Priority to PCT/HR2012/000015 priority patent/WO2013011333A2/en
Publication of HRP20110536A2 publication Critical patent/HRP20110536A2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/0055Devices for producing mechanical power from solar energy having other power cycles, e.g. Stirling or transcritical, supercritical cycles; combined with other power sources, e.g. wind, gas or nuclear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/06Stations or aggregates of water-storage type, e.g. comprising a turbine and a pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/708Photoelectric means, i.e. photovoltaic or solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

Solarna termalna hidroelektrana s direktnim pogonom pumpnog sustava, novi je tip elektrane koju čini modificirana reverzibilna hidroelektrana (6-9) spregnuta sa solarnom termalnom elektranom (3-5). Takva elektrana zasniva se na korištenju raspoloživih lokalnih energetskih resursa, prije svega solarne energije (1), ali i lokalnih vodnih resursa (2), u svrhu kontinuiranog napajanja nekog konzumenta isključivo zelenom energijom, tijekom cijele godine. Pri tome je pumpni sustav (6), koji transportira vodu iz donjeg rezervoara ili nekog izvora vode (9) u gornji rezervoar (7), pogonjen mehaničkom energijom termodinamičkog sustava (4), dok se hibridizacija solarne termalne elektrane (3-5) izvodi električnim grijačem (5) koji se napaja električnom energijom koju proizvodi reverzibilna hidroelektrana (6-9).Solar thermal hydropower plant with direct drive of the pumping system, is a new type of power plant consisting of a modified reversible hydropower plant (6-9) coupled with a solar thermal power plant (3-5). Such a power plant is based on the use of available local energy resources, primarily solar energy (1), but also local water resources (2), for the purpose of continuous supply of a consumer exclusively with green energy, throughout the year. The pump system (6), which transports water from the lower tank or some water source (9) to the upper tank (7), is driven by the mechanical energy of the thermodynamic system (4), while the hybridization of the solar thermal power plant (3-5) is performed. an electric heater (5) powered by electricity produced by a reversible hydropower plant (6-9).

Description

Područje na koje se izum odnosi The field to which the invention relates

Ovaj izum se odnosi na novi samoodrživi izvor električne energije koji je sastavljen od solarne termalne elektrane čiji je termodinamički sustav direktno spojen s pumpnim sustavom koji transportira vodu iz donjeg u gornji rezervoar reverzibilne hidroelektrane, u svrhu kontinuiranog napajanja električnom energijom nekog konzumenta (kuće, naselja, grada, otoka, regija, tvornica, itd.). Na taj način bi novi tip izvora energije, koji koristi isključivo prirodne izvore energije (solarnu energiju i energiju vodnih resursa), mogao pouzdanije, korisnije i ekonomičnije doprinijeti primjeni obnovljivih izvora energije. This invention refers to a new self-sustainable source of electricity, which is composed of a solar thermal power plant whose thermodynamic system is directly connected to a pumping system that transports water from the lower to the upper reservoir of a reversible hydroelectric power plant, for the purpose of continuously supplying electricity to a consumer (houses, settlements, city, island, region, factory, etc.). In this way, a new type of energy source, which uses exclusively natural energy sources (solar energy and energy from water resources), could more reliably, more usefully and economically contribute to the application of renewable energy sources.

Tehnički problem Technical problem

(za čije se rješenje traži patentna prijava) (for the solution of which a patent application is requested)

Danas je evidentan problem osiguranja sve većih količina energije neophodne za gospodarski razvoj svake zemlje. S druge strane, preko 70% onečišćenja atmosfere ugljikovim dioksidom (i drugim stakleničkim plinovima) dolazi upravo od energetskog sektora, pri čemu to onečišćenje ima značajne negativne posljedice na klimu Zemlje (globalno zagrijavanje, itd.). Today, the problem of securing ever-increasing amounts of energy necessary for the economic development of every country is evident. On the other hand, over 70% of atmospheric pollution with carbon dioxide (and other greenhouse gases) comes precisely from the energy sector, whereby this pollution has significant negative consequences for the Earth's climate (global warming, etc.).

Od svih obnovljivih izvora energije, najveći potencijal korištenja ima upravo solarna energija, pri čemu je za ovaj izum interesantna pretvorba solarne energije u kinetičku i gravitacijsku potencijalnu energiju radi kontinuirane proizvodnje električne energije. Of all renewable energy sources, solar energy has the greatest potential for use, and the conversion of solar energy into kinetic and gravitational potential energy for the continuous production of electricity is interesting for this invention.

Međutim, problemi većeg korištenja solarne energije su s jedne strane još uvijek vezani za relativno visoku cijenu solarnih sustava, a s druge za interminiranost Sunčevog zračenja. I dok se cijene solarnih termalnih sustava sve više smanjuju (pogotovo s povećanjem proizvodnje i napretkom tehnologija), najveći problem ipak ostaje problem kontinuirane proizvodnje energije, odnosno njenog skladištenja za periode kada nema dovoljno solarne energije. Naime, današnje solarne termalne elektrane ne mogu samostalno kontinuirano napajati neki konzument, nego one rade tako da samo predaju električnu energiju elektroenergetskom sustavu u vrijeme kada je raspoloživa solarna energija, dok se proizvodnja energije, u vrijeme kada nema solarnog zračenja, koriste fosilna goriva (tzv. hibridizacija). Znači, električna energija se mora koristiti kada se i proizvodi. However, the problems of greater use of solar energy are, on the one hand, still related to the relatively high cost of solar systems, and on the other, to the intermittency of solar radiation. And while the prices of solar thermal systems are decreasing more and more (especially with the increase in production and technological progress), the biggest problem still remains the problem of continuous energy production, i.e. its storage for periods when there is not enough solar energy. Namely, today's solar thermal power plants cannot independently continuously supply a consumer, but they only work by handing over electricity to the power system when solar energy is available, while energy production, when there is no solar radiation, uses fossil fuels (so-called .hybridization). So, electricity must be used when it is produced.

Dakle, evidentan je problem nalaženja takvog tehničko-tehnološkog rješenja koje bi nadomjestilo fosilna goriva te osiguralo kontinuiranu proizvodnju energije iz ST elektrane tijekom dana i cijele godine, ali tako da ona bude isključivo iz obnovljivih izvora energije. Pri tome se pod konzumentom može podrazumijevati samo jedna stambena jedinica (kuća), manja ili veća naselja, tvornice, otoci, gradovi pa sve do kompletnog napajanja cijelih zemalja i regija električnom energijom iz obnovljivih izvora energije. So, the problem of finding such a technical-technological solution that would replace fossil fuels and ensure continuous energy production from the ST power plant during the day and throughout the year, but so that it is exclusively from renewable energy sources, is evident. At the same time, a consumer can mean only one residential unit (house), smaller or larger settlements, factories, islands, cities, and even the complete supply of entire countries and regions with electricity from renewable energy sources.

Stanje tehnike State of the art

(prikaz i analiza poznatih rješenja definiranog tehničkog problema) (presentation and analysis of known solutions to a defined technical problem)

Do sada je postojalo samo jedno tehničko rješenje koje združuje u jedan tehnološki sustav solarnu fotonaponsku elektranu i reverzibilnu hidroelektranu (WO2009118572), ali nije postojalo rješenje koje u takav sustav združuje solarnu termalnu elektranu i reverzibilnu hidroelektranu. Until now, there was only one technical solution that combines a solar photovoltaic power plant and a reversible hydroelectric power plant into one technological system (WO2009118572), but there was no solution that combines a solar thermal power plant and a reversible hydroelectric power plant into such a system.

Da bi solarne termalne (ST) elektrane mogle kontinuirano napajati neki konzument energijom, one se kombiniraju, odnosno hibridiziraju s elektranama na fosilna goriva ili s dnevnim skladištima toplinske energije. Fosilna goriva osiguravaju toplinsku energiju koja je potrebna za rad elektrane tijekom noći i oblačnih dana tijekom cijele godine. Međutim, problem tog rješenja je da ono ne osigurava isključivo zelenu energiju iz ST elektrane te time i dalje predstavlja izvor onečišćenja atmosfere. Dnevna skladištenja toplinske energije s fazno promjenjivim materijalima služe za održavanje pogonske spremnosti solarne termalne elektrane uglavnom za relativno kratko vrijeme, odnosno najčešće za premošćivanje jedne noći i oblačnosti tijekom jednog dana. Dakle, dnevna skladištenja toplinske energije produžavaju rad ST elektrane, ali zbog njihovog relativno malog kapaciteta, ona ne mogu uravnotežiti višednevne nedostatke solarnog zračenja, a posebno ne sezonske viškove i manjkove solarne energije te stoga ne mogu osigurati kontinuitet napajanja isključivo zelenom energijom i snagom, tijekom cijele godine. In order for solar thermal (ST) power plants to be able to continuously supply a consumer with energy, they are combined or hybridized with fossil fuel power plants or with daily thermal energy storage. Fossil fuels provide the thermal energy needed to operate the power plant during nights and cloudy days throughout the year. However, the problem with this solution is that it does not exclusively provide green energy from the ST power plant and thus continues to be a source of atmospheric pollution. Daily storage of thermal energy with phase-changing materials is used to maintain the operational readiness of the solar thermal power plant mainly for a relatively short time, i.e. most often to bridge one night and cloud cover during one day. Thus, daily storage of thermal energy prolongs the operation of the ST power plant, but due to their relatively small capacity, they cannot balance multi-day deficiencies of solar radiation, and especially not seasonal surpluses and deficits of solar energy, and therefore cannot ensure the continuity of supply exclusively with green energy and power, during whole year.

Uz to, hibridizacija solarne termalne elektrane pomoću uskladištene električne energije ili iz nekog izvora električne energije kako se to predviđa u ovom rješenju, dosad nije korišteno rješenje, nego se ta hibridizacija izvodila fosilnim gorivima (uglavnom ugljenom i prirodnim plinom). In addition, the hybridization of a solar thermal power plant using stored electricity or from some source of electricity as foreseen in this solution has not been used so far, but this hybridization was performed with fossil fuels (mainly coal and natural gas).

Izlaganje suštine izuma Presentation of the essence of the invention

(tako da se tehnički problem i njegovo rješenje mogu razumjeti te navođenje tehničke novosti u odnosu na prethodno stanje tehnike) (so that the technical problem and its solution can be understood and the indication of technical innovation in relation to the previous state of the art)

Predložena potpuno održiva solarna termalna hidroelektrana s direktnim pogonom pumpnog sustava, u osnovi se sastoji od solarne termoelektrane (ST) 3-5 i reverzibilne hidroelektrane (RHE) 6-9 koje su međusobno funkcionalno povezane tako da mogu kontinuirano opskrbljivati neki konzument električnom energijom i snagom tijekom cijele godine. U tu svrhu, ovakav hibridni sustav elektrana (ST-RHE) ima mogućnost dnevnog, ali i sezonskog skladištenja energije, odnosno izravnanja proizvodnje i potrošnje energije nekog konzumenta. Međutim, pored korištenja solarne energije ST-RHE sustav koristi i energiju vodnih resursa (oborine i površinske vode), što doprinosi njenoj održivosti, odnosno ekonomičnosti jer lokalni vodni resursi generiraju dodatnu masu vode u odnosu na prepumpanu, što znači i manje potrebno ulaganje u cijeli ST-RHE sustav za istu traženu proizvodnju energije. The proposed fully sustainable solar thermal hydroelectric power plant with direct pump system drive basically consists of solar thermal power plant (ST) 3-5 and reversible hydroelectric power plant (RHE) 6-9 which are functionally connected to each other so that they can continuously supply some consumer with electricity and power throughout the year. For this purpose, this type of hybrid power plant system (ST-RHE) has the possibility of daily and seasonal energy storage, i.e. balancing the production and energy consumption of a consumer. However, in addition to using solar energy, the ST-RHE system also uses the energy of water resources (precipitation and surface water), which contributes to its sustainability, i.e. economy, because local water resources generate an additional mass of water compared to pumped water, which means less necessary investment in the whole ST-RHE system for the same required energy production.

ST elektrana se sastoji od solarnih termalnih kolektora 3 koji mogu biti raznih tipova i koji pretvaraju solarno zračenje u toplinsku energiju, termodinamičkog sustava 4 koji pretvara toplinsku u mehaničku energiju i električnog grijača 5 kojim se održava pogonska spremnost termodinamičkog sustava 4 tijekom prolazne satne i dnevne naoblake. Bitna razlika u odnosu na prijašnje ST elektrane je u tome da se pogonska spremnost sustava i rad u vrijeme kada nije bilo solarnog zračenja, postizala energijom iz fosilnih goriva (uglavnom ugljen ili plin), tzv. hibridizacijom s klasičnim gorivima, dok se ovim patentnim rješenjem, u tu svrhu, koristi električna energija koju proizvodi reverzibilna hidroelektrana 6-9, a koju ona može davati tijekom cijelog dana i tijekom cijele godine. The ST power plant consists of solar thermal collectors 3, which can be of various types and which convert solar radiation into thermal energy, a thermodynamic system 4, which converts thermal energy into mechanical energy, and an electric heater 5, which maintains the operational readiness of the thermodynamic system 4 during transitory hourly and daily cloud cover. . The essential difference compared to previous ST power plants is that the operational readiness of the system and operation at a time when there was no solar radiation was achieved with energy from fossil fuels (mainly coal or gas), the so-called hybridization with classic fuels, while this patent solution, for this purpose, uses electricity produced by the reversible hydroelectric power plant 6-9, which it can provide throughout the day and throughout the year.

Međutim, suštinska razlika u odnosu na dosadašnje sustave je u tome da solarna termalna elektrana 3-5 ne pretvara mehaničku u električnu energiju, kao što se to do sada radilo, nego se mehanička energija termodinamičkog sustava 4 koristi direktno za pogon pumpnog sustava (P) 6 koji transportira vodu iz donjeg rezervoara ili izvora vode (more, rijeka, akvifer, itd.) 9 u gornji rezervoar 7 koji se nalazi na višim kotama terena i koji onda služi kao spremište vode, odnosno energije koju daje ST sustav. However, the essential difference compared to the previous systems is that the solar thermal power plant 3-5 does not convert mechanical energy into electrical energy, as was done until now, but the mechanical energy of the thermodynamic system 4 is used directly to drive the pumping system (P) 6 which transports water from the lower reservoir or water source (sea, river, aquifer, etc.) 9 to the upper reservoir 7 which is located at higher elevations of the terrain and which then serves as a reservoir of water, i.e. energy provided by the ST system.

Voda u rezervoaru 7 se akumulira radi kontinuirane proizvodnje energije na spregnutoj hidroelektrani (uključujući periode kada nema Sunčevog zračenja), odnosno na sklopu turbine i generatora (TG) 8 kojom se onda može kontinuirano napajati neki konzument električnom energijom. Na ovaj način rezervoar 7 služi za dnevno i sezonsko skladištenje energije dobivene tijekom sunčana vremena od strane ST elektrane 3-5. Water in the reservoir 7 is accumulated for continuous energy production at the coupled hydroelectric power plant (including periods when there is no solar radiation), i.e. at the turbine and generator assembly (TG) 8, which can then continuously supply a consumer with electricity. In this way, reservoir 7 serves for daily and seasonal storage of energy obtained during sunny weather by ST power plant 3-5.

Uz korištenje energije Sunca, patentno rješenje omogućava korištenje i raspoloživih vodnih resursa (površinskih voda, oborina, ali i prikupljanjem vode od umjetnih oborina). Naime, ST-PSH sustava omogućava paralelno korištenje energije Sunca i raspoloživih vodnih resursa, pri čemu veći dotoci vode u gornji rezervoar 7, mogu smanjiti veličinu ST elektrane za iste uvjete opskrbe energijom. In addition to the use of solar energy, the patented solution enables the use of available water resources (surface water, precipitation, but also by collecting water from artificial precipitation). Namely, the ST-PSH system enables the parallel use of solar energy and available water resources, whereby larger water inflows into the upper reservoir 7 can reduce the size of the ST power plant for the same energy supply conditions.

Predložena elektrana ima svoje velike prednosti jer se radi o lokalnom izvoru električne energije koji za svoj rad ne troši resurse, ne zahtjeva nikakav dovod sirovina niti značajniji prijenos energije do potrošača. To znači da se energija može proizvoditi i trošiti na izoliranim, od prometnih i opskrbnih pravaca udaljenim lokacijama (otocima i slično). Na taj način su manji troškovi izgradnje prijenosnih sustava te gubici energije koji se dešavaju zbog prijenosa energije. Na tim lokacijama elektrana može biti već danas konkurentna klasičnim izvorima energije jer ne zahtjeva izgradnju i pogonske troškove vezane uz transporte, niti energije, a niti sirovina za proizvodnju energije. Elektrana se može izgraditi na svim lokacijama na kojima postoje vodni resursi i odgovarajući hidropotencijal. Korištenjem ST elektrane 3-5 i lokalne topografije terena taj potencijal se može na umjetni način stvoriti. The proposed power plant has its great advantages because it is a local source of electricity that does not consume resources for its operation, does not require any supply of raw materials or significant energy transmission to consumers. This means that energy can be produced and consumed in isolated locations (islands and the like) that are far from traffic and supply routes. In this way, the costs of building transmission systems and the energy losses that occur due to energy transmission are lower. In these locations, the power plant can already be competitive with classic energy sources, because it does not require construction and operating costs related to transportation, nor energy, nor raw materials for energy production. The power plant can be built in all locations where there are water resources and adequate hydro potential. By using the ST power plant 3-5 and the local topography of the terrain, this potential can be artificially created.

Ovakav tip elektrane je posebno povoljan za opskrbu posebnih potrošača kao što su izolirane vojne baze, važni strateški objekti na izoliranim lokacijama i slično jer je lokalno potpuno održiva. This type of power plant is particularly advantageous for the supply of special consumers such as isolated military bases, important strategic facilities in isolated locations and the like because it is completely sustainable locally.

Kratak opis crteža Brief description of the drawing

Popratni crtež koji je uključen u opis i koji čini dio opisa izuma, ilustrira dosad razmatran najbolji način za izvedbu izuma i pomažu kod objašnjavanja osnovnih principa izuma. The accompanying drawings, which are included in the description and form part of the description of the invention, illustrate the best mode of carrying out the invention thus far considered and assist in explaining the basic principles of the invention.

Sl. 1. Shema sSje energije nekog konzumao sutraken za placanje, pa mogu platiti tek sutra. Nisam im poslala nikakv mail za upit da li jeolarne termalne hidroelektrane s direktnim pogonom pumpnog sustava. Sl. 1. The scheme has consumed someone's energy the day before the payment, so they can only pay tomorrow. I did not send them any email to ask if there are solar thermal hydropower plants with direct pump system drive.

Detaljan opis najmanje jednog od načina ostvarivanja izuma A detailed description of at least one way of realizing the invention

U ovom dijelu će se uputiti do u pojedinosti ovog pretpostavljenog ostvarenja izuma, čiji je osnovni primjer ilustriran pridruženim crtežom. In this part, we will refer to the details of this assumed embodiment of the invention, the basic example of which is illustrated in the attached drawing.

Solarna termalna hidroelektrana s direktnim pogonom pumpnog sustava sastoji se od sljedećih elemenata: The solar thermal hydroelectric power plant with direct drive of the pumping system consists of the following elements:

1. Solarno zračenje; 1. Solar radiation;

2. Raspoloživi vodni resursi; 2. Available water resources;

3. Solarni termalni kolektori; 3. Solar thermal collectors;

4. Termodinamički sustav; 4. Thermodynamic system;

5. Električni grijač; 5. Electric heater;

6. Pumpni sustav (P); 6. Pump system (P);

7. Gornji rezervoar (novi ili postojeći); 7. Upper reservoir (new or existing);

8. Sklop turbine i generatora (TG) hidroelektrane; 8. Assembly of the turbine and generator (TG) of the hydroelectric power plant;

9. Donji rezervoar ili izvor vode (more, velika rijeka, akvifer itd.). 9. Lower reservoir or source of water (sea, large river, aquifer, etc.).

U slučaju korištenja postojeće hidroelektrane dijelovi 8 i 9 se ne grade već se koriste raspoloživi objekti postojeće hidroelektrane. In the case of using the existing hydroelectric power plant, parts 8 and 9 are not built, but the available facilities of the existing hydroelectric power plant are used.

Solarna termalna hidroelektrana s direktnim pogonom pumpnog sustava radi tako da se solarno zračenje 1 iz okoliša, u solarnim termalnim kolektorima 3, prevara u toplinsku energiju koja se predaje termodinamičkom sustavu 4, a koji generira mehaničku energiju koja se direktno predaje pumpnom sustavu (P) 6. Pumpni sustav (P) 6 transportira vodu u gornji rezervoar 7 gdje se ona dnevno i sezonski skladišti te po potrebi koristi tako da se ispušta prema sklopu turbine i generatora (TG) 8, proizvodeći pri tome električnu energiju koja se predaje potrošačima nekog lokalnog konzumenta. Pri tome se voda ispušta do donje akumulacije 9, odnosno mora, velike rijeke, akvifera i sl. Električna energija koju proizvodi sklop turbine i generatora (TG) 8 također se koristi i za napajanje električnog grijača 5 koji tu električnu energiju pretvara u toplinsku energiju i predaje je termodinamičkom sustavu 4 u periodima nedovoljnog Sunčevog zračenja. The solar thermal hydroelectric power plant with direct drive of the pumping system works in such a way that solar radiation 1 from the environment, in solar thermal collectors 3, is converted into thermal energy that is transferred to the thermodynamic system 4, which generates mechanical energy that is directly transferred to the pumping system (P) 6 The pumping system (P) 6 transports water to the upper reservoir 7, where it is stored daily and seasonally and, if necessary, is used so that it is discharged towards the assembly of the turbine and generator (TG) 8, thereby producing electricity that is delivered to the consumers of a local consumer. . In doing so, the water is discharged to the lower reservoir 9, i.e. the sea, a large river, aquifer, etc. The electrical energy produced by the turbine and generator assembly (TG) 8 is also used to power the electric heater 5, which converts this electrical energy into thermal energy and hands it over to thermodynamic system 4 in periods of insufficient solar radiation.

Rad ovog sustava podrazumijeva postizanje potpune neovisnosti opskrbe nekog korisnika električnom energijom koja se najvećim dijelom dobiva iz solarne energije, ali i iz raspoloživih vodnih resursa (rijeka, oborina i sl.). Predložena hibridna ST-RHE elektrana je potpuno održiva i bez štetnog utjecaja na okoliš jer se zasniva isključivo na korištenju obnovljivih izvora energije i to upotrebom vode kao glavnog resursa za prijenos, spremanje i generiranje energije. RHE 6-9 vrlo je fleksibilna u radu i proizvodnji energije i zbog toga se lako prilagođava potrebama korisnika za razliku od ST elektrane 3-5 čiji je rad i povremena proizvodnja energije ovisan o Sunčevom zračenju. Kombinacijom ovih dvaju elektrana, dobiva se novi tip vrlo ekonomične hibridne elektrane pogodan za trajnu i upravljivu proizvodnju električne energije. Bitna karakteristika ove nove solarne termalne hibridne elektrane je da ona nije ograničena veličinom, tako da se može koristiti od najmanjih do najvećih jedinica, tj. od napajanja stambene jedinice reda veličine nekoliko kW do snažnih elektrana reda veličine više desetaka ili čak više stotina MW. The operation of this system implies the achievement of complete independence in supplying a user with electricity, which is mostly obtained from solar energy, but also from available water resources (rivers, precipitation, etc.). The proposed hybrid ST-RHE power plant is completely sustainable and has no harmful impact on the environment because it is based exclusively on the use of renewable energy sources, using water as the main resource for transmission, storage and generation of energy. RHE 6-9 is very flexible in operation and energy production and therefore easily adapts to the needs of users, unlike ST power plant 3-5, whose operation and occasional energy production is dependent on solar radiation. By combining these two power plants, a new type of very economical hybrid power plant suitable for permanent and controllable electricity production is obtained. The essential characteristic of this new solar thermal hybrid power plant is that it is not limited by size, so it can be used from the smallest to the largest units, i.e. from powering a residential unit of the order of several kW to powerful power plants of the order of dozens or even hundreds of MW.

Solarno zračenje se koristi da bi se voda s niže razine 9 (rezervoara, akvifera, mora, jezera, rijeke) transportirala na višu razinu na kojoj se skladišti u rezervoaru 7. Uskladištena voda se koristi za proizvodnju hidroenergije u skladu sa formiranim hidropotencijalom (visinskom razlikom) na sklopu turbine i generatora (TG) 8 iz kojeg se voda ispušta u vodni resurs 9, a iz kojeg se pumpala pumpnim sustavom (P) 6 koju direktno pokreće termodinamički sustav 4 ST elektrane (slika 1). Na ovaj način omogućava se trajno korištenje iste vode koja kruži unutar umjetno stvorenog i zatvorenog hidrološkog ciklusa. Raspoloživa gornjeg rezervoara 7 je zapravo uskladištena solarna energija i energija raspoloživih vodnih resursa, raspoloživa za trajno korištenje na sklopu turbine i generatora (TG) 8 (danju i noću) u skladu s potrebama potrošača. Solar radiation is used to transport water from a lower level 9 (reservoir, aquifer, sea, lake, river) to a higher level where it is stored in a reservoir 7. The stored water is used to produce hydropower in accordance with the formed hydro potential (altitude difference ) on the assembly of the turbine and generator (TG) 8 from which the water is discharged into the water resource 9, and from which it was pumped by the pump system (P) 6, which is directly driven by the thermodynamic system 4 of the ST power plant (Figure 1). In this way, it is possible to permanently use the same water that circulates within an artificially created and closed hydrological cycle. The available upper reservoir 7 is actually stored solar energy and the energy of available water resources, available for permanent use on the turbine and generator (TG) 8 assembly (day and night) in accordance with consumer needs.

Predložena elektrana je izvor energije koji se može graditi neposredno uz mjesto potrošnje ako za to postoje svi preduvjeti, što je jako povoljno jer se energija ne treba daleko transportirati. Preduvjet za rad ove elektrane je povremena insolacija Sunca, voda i visinska razlika između donjeg i gornjeg rezervoara, na kojoj se iskorištava djelovanje sile gravitacije-hidropotencijala. Hidropotencijal se može formirati u skladu s topografskim značajkama terena gdje god postoji odgovarajuća visinska razlika terena. Međutim, može se bilo gdje izgraditi i umjetni hidropotencijal stvaranjem odgovarajuće građevne konstrukcije sa visinskom razlikom između donje i gornje vode. To znači da se manji ili veći hidropotencijal može stvoriti bilo gdje, uz naravno različite troškove. Uz nužnu visinsku razliku na kojoj se može iskoristiti djelovanje sile gravitacije nužna je voda za pokretanje turbina. The proposed power plant is a source of energy that can be built right next to the place of consumption if all the prerequisites exist, which is very advantageous because the energy does not need to be transported far. The prerequisite for the operation of this power plant is occasional insolation of the Sun, water and the height difference between the lower and upper reservoir, on which the action of gravity-hydropotential force is exploited. Hydropotential can be formed in accordance with the topographic features of the terrain wherever there is a corresponding height difference of the terrain. However, an artificial hydro potential can be built anywhere by creating an appropriate building structure with a height difference between the lower and upper water. This means that a smaller or larger hydro potential can be created anywhere, with of course different costs. In addition to the necessary height difference where the force of gravity can be used, water is also necessary to start the turbines.

Sustav može biti manji ili veći. Rezervoari pak mogu biti zatvoreni ili otvoreni. Svi veliki sustavi u pravilu su otvoreni, dok se mali sustavi mogu graditi kao zatvoreni. Teorijski, voda je nužna samo za punjenje sustava i nadoknadu gubitaka vode iz sustava. Najbolja situacija je ako se punjenje i nadoknada gubitaka može postići iz prirodnih resursa, oborina ili korištenjem oborina s lokalnog slivnog područja, ili vodom iz lokalnog vodotoka, podzemnih voda i mora. Gubici se odnose na isparavanje i procjeđivanje vode iz rezervoara (gornjeg 7 i donjeg 9). Odgovarajućim inženjerskim mjerama, isparavanje, a posebno istjecanje iz rezervoara, može se značajno smanjiti ili eliminirati. The system can be smaller or larger. Tanks can be closed or open. As a rule, all large systems are open, while small systems can be built as closed. Theoretically, water is only necessary to fill the system and compensate for water losses from the system. The best situation is if recharge and replenishment of losses can be achieved from natural resources, precipitation or using precipitation from the local catchment area, or water from the local watercourse, groundwater and sea. Losses refer to evaporation and seepage of water from the reservoir (upper 7 and lower 9). With appropriate engineering measures, evaporation, and especially leakage from reservoirs, can be significantly reduced or eliminated.

Lokalne prirodne značajke, klima, vodni resursi, topografija, geologija i drugo su okvir za realizaciju elektrane i njenu produktivnost. Ono što je važno naglasiti je da je elektrana održiva i dok god postoji Sunčevo zračenje i sila gravitacije, elektrana može proizvoditi električnu energiju. Cijena energije ovisi o cijelom nizu elementa, a isplativost ovisi o cijeni konkurentnih klasičnih izvora. U sadašnjem trenutku još uvijek je za očekivati da su klasični izvori energije (termoelektrane i nuklearne elektrane) konkurentniji bez obzira što se radi o čistoj i obnovljivoj energiji. Međutim, dugoročno gledano za očekivati je da će klasični izvori biti sve skuplji tako da će predložena elektrana vjerojatno biti sve konkurentnija i isplativija. Local natural features, climate, water resources, topography, geology and others are the framework for the realization of the power plant and its productivity. What is important to emphasize is that the power plant is sustainable and as long as there is solar radiation and the force of gravity, the power plant can produce electricity. The price of energy depends on a whole range of elements, and profitability depends on the price of competitive classical sources. At the present moment, it is still to be expected that classic sources of energy (thermal power plants and nuclear power plants) are more competitive, regardless of whether it is clean and renewable energy. However, in the long term, it is to be expected that conventional sources will be more and more expensive, so that the proposed power plant will probably be more and more competitive and profitable.

Vrlo je važno da se kod solarne termalne hidroelektrane pravilno odredi snaga ST elektrane 3-5, čija je cijena i najveća. Glavnu ulogu u tome ima gornji rezervoar 7 (akumulacija). Gornji rezervoar 7 omogućava akumuliranje vode u duljem vremenskom periodu i time kontinuiranu proizvodnju hidroenergije što omogućava premoštenje vremenskog perioda kada je ulaz iz ST elektrane manji ili ga nema. Na taj način se veličina ST elektrane 3-5 bira u skladu s kritičnim jednogodišnjim periodom iz niza godina tako da se odabere njegova minimalna od maksimalnih snaga nužna za osiguranje kontinuiteta proizvodnje hidroenergije u kritičnom periodu (potrebni volumen vode) i odabrane razine sigurnosti rada (dodatnog volumena vode u rezervoaru za incidentne ili nepredviđene situacije). Ukoliko uzvodno od gornjeg rezervoara 7 postoji voda koja se može koristiti, odnosno skrenuti u rezervoar, tada je sustav učinkovitiji jer se punjenje vodom rezervoara 7 odvija i gravitacijom, tako da je snaga ST elektrane 3-5 za odgovarajući iznos manja. Sustav će biti i učinkovitiji ako se dio proizvedene solarne energije u periodima kada je jako Sunčevo zračenje, direktno koristi od strane korisnika jer će tada volumen rezervoara 7, kapacitet pumpnog sustava 6 i ST elektrane 3-5 biti manji. It is very important that the power of the ST 3-5 power plant, whose price is the highest, is correctly determined for the solar thermal hydroelectric power plant. The main role in this is played by the upper reservoir 7 (reservoir). The upper reservoir 7 enables the accumulation of water for a longer period of time and thus the continuous production of hydropower, which enables the bridging of the period of time when the input from the ST power plant is less or absent. In this way, the size of the ST power plant 3-5 is chosen in accordance with the critical one-year period from a series of years, so that its minimum and maximum powers necessary to ensure the continuity of hydropower production in the critical period (required volume of water) and the selected level of operational safety (additional volume of water in the reservoir for incident or unforeseen situations). If there is water upstream from the upper reservoir 7 that can be used, that is, diverted into the reservoir, then the system is more efficient because the filling of reservoir 7 with water also takes place by gravity, so the power of the ST power plant 3-5 is smaller by the corresponding amount. The system will be more efficient if part of the produced solar energy in periods of strong solar radiation is directly used by the user, because then the volume of the reservoir 7, the capacity of the pumping system 6 and the ST power plant 3-5 will be smaller.

Na ukupnu cijenu izgradnje utječu i troškovi izgradnje rezervoara (gornjeg 7 i donjeg 9). Pri tome su moguće razne kombinacije. Najpovoljnije je kada donji rezervoar 9 nije potrebno posebno graditi, a što je prisutno u slučaju kada je kapacitet vodnih resursa, koji se koristi za zahvaćanje vode, veći od potreba (npr. kad je donji rezervoar 9 predstavljen morem, velikom rijekom ili akviferom) te kada je izgradnja gornjeg rezervoara 7 jednostavna i jeftina, ili ako takav rezervoar-jezero već postoji. Hidroelektrana (sklop turbine i generatora (TG)) 8 je u principu ekonomičnija što je raspoloživi pad (potencijalna energija) veća. Međutim, tada je potrebna i veća snaga ST elektrane 3-5 da bi se transportirala voda u rezervoar 7. Isto tako, predloženo rješenje može koristiti postojeće hidroelektrane, tako da nije potrebno graditi niti gornji rezervoar 7, kao niti sklop turbine i generatora (TG) 8. The total cost of construction is also affected by the costs of building the reservoir (upper 7 and lower 9). Various combinations are possible. It is most favorable when the lower reservoir 9 does not need to be built separately, which is present in the case when the capacity of water resources, which is used for capturing water, is greater than the needs (e.g. when the lower reservoir 9 is represented by the sea, a large river or an aquifer) and when the construction of the upper reservoir 7 is simple and cheap, or if such a reservoir-lake already exists. The hydroelectric power plant (turbine and generator assembly (TG)) 8 is generally more economical the higher the available drop (potential energy). However, then a greater power of ST power plant 3-5 is needed to transport water to reservoir 7. Likewise, the proposed solution can use existing hydroelectric power plants, so it is not necessary to build either the upper reservoir 7 or the turbine and generator assembly (TG ) 8.

Obzirom da se radi o tehnološkom rješenju koje združuje u jedinstven tehnološki sustav već razvijene ST elektrane (na čijim osovinama nisu postavljeni generatori, nego se mehanička energija koristi direktno za pogon pumpnog sustava) te reverzibilnim elektranama, njihova kombinacija na prikazani način se može realizirati. Na taj je način kreiran trajni, koristan i vrlo ekonomičan sustav koji može pouzdano napajati energijom neki konzument, tijekom cijele godine. Considering that it is a technological solution that combines into a single technological system the already developed ST power plant (on the shafts of which generators are not installed, but mechanical energy is used directly to drive the pumping system) and reversible power plants, their combination in the way shown can be realized. In this way, a permanent, useful and very economical system was created that can reliably supply energy to a consumer throughout the year.

Stručnjacima će biti očigledno da bi se mogle napraviti još brojne preinake i nadogradnje na takvom sustavu elektrana, bez napuštanja opsega duha ovog izuma. It will be obvious to those skilled in the art that many more modifications and upgrades could be made to such a power plant system without departing from the scope of the spirit of this invention.

Način primjene izuma Method of application of the invention

Rješavanjem problema dnevnog i sezonskog skladištenja energije hidropotencijalom, direktnim korištenjem mehaničke energije iz ST elektrane za stvaranje hidropotencijala te električne energije iz reverzibilne hidroelektrane za održavanje pogonske sigurnosti tijekom prolaznih dnevnih naoblaka, ovim izumom su otvorene brojne mogućnosti za primjenu ovakvih sustava, a što bi moglo snažno potaknuti industriju solarnih termalnih elektrana i njenih komponenti 3-5, ali i reverzibilnih hidroelektrana, kao i raznovrsnog iskorištavanja raspoloživih lokalnih vodnih resursa. By solving the problem of daily and seasonal energy storage with hydro potential, direct use of mechanical energy from the ST power plant to create hydro potential and electrical energy from the reversible hydro power plant to maintain operational safety during transient daytime clouds, this invention opens up numerous possibilities for the application of such systems, which could strongly encourage the industry of solar thermal power plants and its components 3-5, but also of reversible hydropower plants, as well as the diverse utilization of available local water resources.

To dalje znači i da bi ovakvi samoodrživi sustavi, kojima bi se osiguravala potpuna energetska neovisnost opskrbe nekog konzumenta električnom energijom, odnosno maksimalno iskorištavala raspoloživa solarna energija i hidropotencijal na nekoj lokaciji, uz što manji utjecaj na okoliš, mogli imati sigurnu budućnost. This further means that such self-sustaining systems, which would ensure the complete energy independence of a consumer's electricity supply, i.e. make maximum use of the available solar energy and hydro potential in a location, with as little impact on the environment as possible, could have a secure future.

Popis pozivnih oznaka i simbola List of callsigns and symbols

1 Solarno zračenje; 1 Solar radiation;

2 Raspoloživi vodni resursi; 2 Available water resources;

3 Solarni termalni kolektori; 3 Solar thermal collectors;

4 Termodinamički sustav; 4 Thermodynamic system;

5 Električni grijač; 5 Electric heater;

6 Pumpni sustav (P); 6 Pump system (P);

7 Gornji rezervoar (novi ili postojeći); 7 Upper reservoir (new or existing);

8 Sklop turbine i generatora (TG) hidroelektrane; 8 Assembly of the turbine and generator (TG) of the hydroelectric power plant;

9 Donji rezervoar ili izvor vode (more, velika rijeka, akvifer itd.). 9 Lower reservoir or source of water (sea, large river, aquifer, etc.).

Claims (6)

1. Solarna termalna hidroelektrana s direktnim pogonom pumpnog sustava koja se sastoji od solarnih termalnih kolektora 3, termodinamičkog sustava 4, električnog grijača 5, pumpnog sustava 6, gornjeg rezervoara 7, sklopa turbine generatora 8, donjeg rezervoara ili izvora vode 9, karakterizirana time, da paralelno koristi solarnu energiju 1 i raspoložive vodne resurse 2 za kontinuiranu proizvodnju energije za potrebe nekog konzumenta, tijekom cijele godine.1. Solar thermal hydroelectric power plant with direct drive pumping system consisting of solar thermal collectors 3, thermodynamic system 4, electric heater 5, pumping system 6, upper reservoir 7, generator turbine assembly 8, lower reservoir or water source 9, characterized by, to use solar energy 1 and available water resources 2 in parallel for the continuous production of energy for the needs of a consumer, throughout the year. 2. Solarna termalna hidroelektrana s direktnim pogonom pumpnog sustava, prema zahtjevu 1, karakterizirana time, da ima direktan pogon pumpnog sustava 6 od strane termodinamičkog sustava 4.2. Solar thermal hydroelectric power plant with direct drive of the pumping system, according to claim 1, characterized by the direct drive of the pumping system 6 by the thermodynamic system 4. 3. Solarna termalna hidroelektrana s direktnim pogonom pumpnog sustava, prema zahtjevu 1-2, karakterizirana time, da ima dnevno i sezonsko spremište električne energije uskladištenom u obliku hidrauličke energije vode u gornjem rezervoaru 7, nužnom za upravljanje planiranom proizvodnjom energije.3. Solar thermal hydropower plant with direct pump system drive, according to requirement 1-2, characterized by having a daily and seasonal store of electricity stored in the form of hydraulic water energy in the upper reservoir 7, necessary for managing the planned energy production. 4. Solarna termalna hidroelektrana s direktnim pogonom pumpnog sustava, prema zahtjevu 1-3, karakterizirana time, da ima električni grijač 5, kojim se održava dnevna pogonska spremnost termodinamičkog sustava 4, a koji se napaja električnom energijom proizvedenom sklopom turbine i generatora 8.4. Solar thermal hydropower plant with direct drive of the pumping system, according to claim 1-3, characterized by the fact that it has an electric heater 5, which maintains the daily operational readiness of the thermodynamic system 4, and which is powered by electricity produced by the turbine and generator assembly 8. 5. Solarna termalna hidroelektrana s direktnim pogonom pumpnog sustava, prema zahtjevu 1-4, karakterizirana time, da veličine termodinamičkog sustava 4 i gornjeg rezervoara 7 moraju biti tako dimenzionirane da one zajedno sakupe toliko solarne i hidro energije iz okoliša za planirano kontinuirano napajanje nekog izoliranog konzumenta električnom energijom, tijekom cijele godine, u skladu s režimom potrošnje energije.5. Solar thermal hydropower plant with direct drive of the pumping system, according to requirements 1-4, characterized by the fact that the sizes of the thermodynamic system 4 and the upper reservoir 7 must be so dimensioned that they together collect enough solar and hydro energy from the environment for the planned continuous supply of an isolated electricity consumer, throughout the year, in accordance with the energy consumption regime. 6. Solarna termalna hidroelektrana s direktnim pogonom pumpnog sustava prema zahtjevu 1-5, karakterizirana time, da se način njene izvedbe i korištenja prilagođava lokalnim klimatskim i topografskim i hidrološkim značajkama kao i potrebama potrošača električne energije.6. Solar thermal hydroelectric power plant with direct pump system drive according to requirement 1-5, characterized by the fact that the method of its implementation and use is adapted to local climatic, topographical and hydrological features as well as to the needs of electricity consumers.
HRP20110536AA 2011-07-19 2011-07-19 Solar thermal hydroelectric power plant with direct driven pump system HRP20110536A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
HRP20110536AA HRP20110536A2 (en) 2011-07-19 2011-07-19 Solar thermal hydroelectric power plant with direct driven pump system
PCT/HR2012/000015 WO2013011333A2 (en) 2011-07-19 2012-07-19 Solar thermal hydro electric power plant with direct pumping system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
HRP20110536AA HRP20110536A2 (en) 2011-07-19 2011-07-19 Solar thermal hydroelectric power plant with direct driven pump system

Publications (1)

Publication Number Publication Date
HRP20110536A2 true HRP20110536A2 (en) 2013-01-31

Family

ID=47143950

Family Applications (1)

Application Number Title Priority Date Filing Date
HRP20110536AA HRP20110536A2 (en) 2011-07-19 2011-07-19 Solar thermal hydroelectric power plant with direct driven pump system

Country Status (2)

Country Link
HR (1) HRP20110536A2 (en)
WO (1) WO2013011333A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105569975B (en) * 2015-12-01 2017-11-24 光泽县和新设备技术有限公司 A kind of pneumatic pumping system of solar supercharging
CN105569974B (en) * 2015-12-01 2017-12-12 邵作权 A kind of energy storage type micro head fluid energy pumping system using solar supercharging

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3892433A (en) * 1973-09-21 1975-07-01 Martin Marietta Corp Direct solar hydro-electric integrated system and concentrating heliostat for same
US3903700A (en) * 1973-12-20 1975-09-09 Leonard Glickman Sunshine hydro electricity
US4206608A (en) * 1978-06-21 1980-06-10 Bell Thomas J Natural energy conversion, storage and electricity generation system
US4280328A (en) * 1979-09-28 1981-07-28 Falconer Claude J Utilization of solar energy
US5047654A (en) * 1990-02-05 1991-09-10 Edwin Newman Solar powered electricity mine system
HRPK20080132B3 (en) 2008-03-25 2010-12-31 Glasnović Zvonimir Photovoltaic power plant
US8596060B2 (en) * 2009-05-29 2013-12-03 Toyota Motor Engineering & Manufacturing North America, Inc. Systems and method for producing mechanical energy

Also Published As

Publication number Publication date
WO2013011333A3 (en) 2013-05-02
WO2013011333A2 (en) 2013-01-24

Similar Documents

Publication Publication Date Title
Wang et al. Optimal planning of a 100% renewable energy island supply system based on the integration of a concentrating solar power plant and desalination units
Bueno et al. Wind powered pumped hydro storage systems, a means of increasing the penetration of renewable energy in the Canary Islands
HRP20110835A2 (en) Solar termal hydro electric powerplant for simultaneous production energy and drinking water
HRP20080132A2 (en) Photovoltaic power plant
US20090230687A1 (en) Electrical generation from water power
WO2012053988A2 (en) Device for producing and accumulating electricity
Hunt et al. Pumped hydro storage (PHS)
Suman et al. Electricity generation through water supply pipes in high rise buildings
Poulose et al. Power storage using sand and engineered materials as an alternative for existing energy storage technologies
Irshad et al. Integration and performance analysis of optimal large-scale hybrid PV and pump hydro storage system based upon floating PV for practical application
Oprisan et al. Potential for electricity generation from emerging renewable sources in Canada
Goodall Ten technologies to fix energy and climate
Ess et al. The significance of international hydropower storage for the energy transition
Alkeaid Study of NEOM city renewable energy mix and balance problem
HRP20110536A2 (en) Solar thermal hydroelectric power plant with direct driven pump system
Margeta et al. Innovative approach for achieving sustainable urban water supply system by using solar photovoltaic energy
Nikolić et al. Practical Example Of Solar And Hydro Energy Hybrid System-The Need For A Reversible Power Plant
Obaid Seasonal-water dams: a great potential for hydropower generation in Saudi Arabia
Ushakov et al. Electric power engineering on the basis of renewable energy sources
Wakulchik Integrating renewable energy with the grid
Wagner et al. Introduction and status of hydropower
HRP20110544A2 (en) Solar thermal hydroelectric power plant
Løvseth The renewable energy potential of Norway and strategies for its development
Behal Hydropower Generation: Overcoming System Limitations [In My View]
Diakonova et al. Application of renewable and alternative sources of energy in agricultural construction projects

Legal Events

Date Code Title Description
A1OB Publication of a patent application
ODRP Renewal fee for the maintenance of a patent

Payment date: 20130719

Year of fee payment: 3

OBST Application withdrawn