HRP20080132A2 - Photovoltaic power plant - Google Patents

Photovoltaic power plant Download PDF

Info

Publication number
HRP20080132A2
HRP20080132A2 HR20080132A HRP20080132A HRP20080132A2 HR P20080132 A2 HRP20080132 A2 HR P20080132A2 HR 20080132 A HR20080132 A HR 20080132A HR P20080132 A HRP20080132 A HR P20080132A HR P20080132 A2 HRP20080132 A2 HR P20080132A2
Authority
HR
Croatia
Prior art keywords
water
power plant
solar
energy
reservoir
Prior art date
Application number
HR20080132A
Other languages
Croatian (hr)
Inventor
Glasnović Zvonimir
Margeta Jure
Original Assignee
Glasnović Zvonimir
Margeta Jure
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Glasnović Zvonimir, Margeta Jure filed Critical Glasnović Zvonimir
Priority to HR20080132A priority Critical patent/HRPK20080132B3/en
Priority to PCT/HR2009/000007 priority patent/WO2009118572A1/en
Publication of HRP20080132A2 publication Critical patent/HRP20080132A2/en
Publication of HRPK20080132B3 publication Critical patent/HRPK20080132B3/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • F01K27/005Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for by means of hydraulic motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/06Stations or aggregates of water-storage type, e.g. comprising a turbine and a pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/708Photoelectric means, i.e. photovoltaic or solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

Solarna hidroelektrana je nova elektrana koju čini modificirana reverzibilna hidroelektrana (3-10) spregnuta s fotonaponskom elektranom (1). Takav sklop elektrana, nazvan Solarna hidroelektrana, zasniva se na korištenju solarne energije kao jedinim inputom za proizvodnju solarne i hidroenergije. Pri tome akumulacija vode (6) služi za dnevno i sezonsko skladištenje energije te je tako u suštini riješen najveći problem šireg korištenja solarne energije, a to je njeno skladištenje. Prikazana Solarna Hidroelektrana je za sada i jedini trajno održivi energetski izvor koji može kontinuirano napajati neki konzum električnom energijom, a da pri tome koristi isključivo prirodne i obnovljive izvore energije bez štetnog utjecaja na okoliš.Solar hydro is a new power plant consisting of a modified reversible hydroelectric power plant (3-10) coupled to a photovoltaic power plant (1). Such a power plant, called Solar Hydro Power, is based on the use of solar energy as the only input for solar and hydropower production. In doing so, water accumulation (6) serves for day and seasonal energy storage, thus essentially solving the biggest problem of widespread use of solar energy, namely its storage. The presented Solar Hydroelectric Power Plant is, for the time being, the only permanently sustainable energy source that can continually supply electricity to some consumers, using only natural and renewable energy sources without damaging the environment.

Description

PODRUČJE NA KOJE SE IZUM ODNOSI FIELD TO WHICH THE INVENTION RELETS

Ovaj izum se odnosi na novi samoodorživi izvor električne energije koji je sastavljen od solarne elektrane i hidroelektrane (odatle i naziv solarne hidroelektrane) u svrhu kontinuiranog napajanja električnom energijom nekog konzuma (kuće, naselja, grada, otoka, regija, tvornica, itd.) iz obnovljivih izvora energije. Na taj način bi novi izvor energije, koji koristi isključivo obnovljive izvore energije, mogao značajnije doprinijeti učešću u energetskim bilancama pojedinih zemalja. This invention relates to a new self-sustaining source of electricity which is composed of a solar power plant and a hydroelectric power plant (hence the name solar hydroelectric power plant) for the purpose of continuously supplying electricity to a consumer (house, village, city, island, region, factory, etc.) from renewable energy sources. In this way, a new source of energy, which uses exclusively renewable energy sources, could significantly contribute to the participation in the energy balances of individual countries.

2) TEHNIČKI PROBLEM 2) TECHNICAL PROBLEM

(za čije se rješenje traži patentna prijava) (for the solution of which a patent application is requested)

Danas je evidentan problem osiguranja sve većih količina energije neophodne za gospodarski razvoj svake zemlje. S druge strane, preko 70% onečišćenja atmosfere ugljikovim dioksidom (i drugim stakleničkim plinovima) dolazi upravo od energetskog sektora, pri čemu to onečišćenje ima nesagledive negativne posljedice na klimu Zemlje (globalno zagrijavanje, itd.). Today, the problem of securing ever-increasing amounts of energy necessary for the economic development of every country is evident. On the other hand, over 70% of atmospheric pollution with carbon dioxide (and other greenhouse gases) comes precisely from the energy sector, whereby this pollution has incalculable negative consequences for the Earth's climate (global warming, etc.).

Od svih obnovljivih izvora energije, najveći potencijal korištenja ima upravo solarna energija, pri čemu je za ovaj izum je interesantna pretvorba solarne u električnu energiju tzv. solarnim fotonaponskim sustavima, odnosno fotonaponskim generatorima. Of all renewable energy sources, solar energy has the greatest potential for use, and the conversion of solar energy into electricity, the so-called, is interesting for this invention. solar photovoltaic systems, i.e. photovoltaic generators.

Međutim, problemi većeg korištenja solarne energije su s jedne strane vezani za relativno visoku cijenu solarnih postrojenja, a s druge za interminiranost Sunčevog zračenja. I dok se cijene solarnih fotonaponskih sustava iz dana u dan sve više smanjuju (pogotovo s povećanjem proizvodnje i napretkom tehnologija), najveći problem ipak ostaje problem njenog skladištenja za periode kada nema dovoljno solarne energije. Naime, današnje solarne fotonaponske elektrane ne mogu samostalno napajati neki konzum, nego one rade tako da samo predaju električnu energiju elektroenergetskom sustavu u vrijeme kada je raspoloživa solarna energija. However, the problems of greater use of solar energy are, on the one hand, related to the relatively high cost of solar plants, and on the other, to the intermittency of solar radiation. And while the prices of solar photovoltaic systems are decreasing day by day (especially with the increase in production and technological progress), the biggest problem still remains the problem of its storage for periods when there is not enough solar energy. Namely, today's solar photovoltaic power plants cannot independently supply any consumption, but they work by only handing over electricity to the power system when solar energy is available.

Dakle, evidentan je problem nalaženja takvog tehničko-tehnološkog rješenja koji bi koristio obnovljive izvore energije u svrhu kontinuiranog napajanja potrošača nekog konzuma električnom energijom. Pri tome se pod konzumom može podrazumijevati i samo jedna stambena jedinica (kuća), ali i manja ili veća naselja, tvornice, otoci, gradovi pa sve do kompletnog napajanja cijele zemlje električnom energijom iz obnovljivih izvora energije. Therefore, the problem of finding such a technical-technological solution that would use renewable energy sources for the purpose of continuously supplying consumers with electricity is evident. At the same time, consumption can mean not only one residential unit (house), but also smaller or larger settlements, factories, islands, cities, and even the complete supply of the entire country with electricity from renewable energy sources.

3) STANJE TEHNIKE 3) STATE OF THE ART

(prikaz i analiza poznatih rješenja definiranog tehničkog problema) (presentation and analysis of known solutions to a defined technical problem)

Do sada nije bilo tehničko rješenja istog problema. Postoje solarne fotonaponske elektrane i postoje reverzibilne hidroelektrane. Until now, there was no technical solution to the same problem. There are solar photovoltaic power plants and there are reversible hydropower plants.

U ovoj su patentnoj prijavi one iskombinirane na originalni način u jedinstvenu cjelinu nazvanu Solarna hidroelektrana, a koja za razliku od navedenih (samo solarne fotonaponske i samo reverzibilne hidroelektrane) može samostalno i kontinuirano napajati neki konzum električnom energijom i snagom. In this patent application, they are combined in an original way into a unique entity called Solar hydroelectric power plant, which, unlike the above (only solar photovoltaic and only reversible hydroelectric power plants), can independently and continuously supply some consumer with electricity and power.

4) IZLAGANJE SUŠTINE IZUMA 4) PRESENTATION OF THE ESSENCE OF THE INVENTION

(tako da se tehnički problem i njegovo rješenje mogu razumjeti te navođenje tehničke novosti u odnosu na prethodno stanje tehnike) (so that the technical problem and its solution can be understood and the indication of technical innovation in relation to the previous state of the art)

Predložena održiva elektrana je po osnovnom konceptu reverzibilna hidroelektrana koja za pokretanje pumpi 4, umjesto električne energije iz mreže, koristi fotonaponsku elektranu 1, te koja, umjesto jednog, ima dva odvojena cjevovoda, jedan za prepumpavanje 5, a drugi za dovod vode na turbinu 7. Naime, fotonaponska elektrana pretvara solarnu u električnu energiju pomoću koje se onda voda pumpa iz raspoloživog izvora vode 10 u akumulaciju 6 koja se nalazi na višim kotama. Voda iz te akumulacije 6 se onda koristi u hidroelektrani 8 i 9 za proizvodnju električne energije. The basic concept of the proposed sustainable power plant is a reversible hydroelectric power plant that, instead of electricity from the grid, uses a photovoltaic power plant 1 to run the pumps 4, and which, instead of one, has two separate pipelines, one for pumping 5 and the other for supplying water to the turbine 7 Namely, the photovoltaic power plant converts solar energy into electricity, with which water is then pumped from the available water source 10 to the reservoir 6 located at higher elevations. The water from that reservoir 6 is then used in hydroelectric power plants 8 and 9 for the production of electricity.

S druge strane, voda u akumulaciji 6 se akumulira za periode kada nema Sunčevog zračenja kako bi se iz nje u tom periodu proizvodila električna energija na turbinama 8 koja se onda predaje elektrodistributivnoj mreži nekog naselja ili lokalnog konzuma. Na ovaj način akumulacija 6 služi za dnevno i sezonsko skladištenje energije dobivene tijekom sunčana vremena od strane fotonaponske elektrane 1 te je time u suštini riješen najveći problem šireg korištenja solarne energije, a to je njeno skladištenje. On the other hand, the water in the reservoir 6 is accumulated for periods when there is no solar radiation in order to produce electricity from it in that period on the turbines 8, which is then handed over to the electricity distribution network of a settlement or local consumer. In this way, the accumulation 6 is used for daily and seasonal storage of energy obtained during sunny weather by the photovoltaic power plant 1, and this essentially solves the biggest problem of the wider use of solar energy, namely its storage.

Rad ovog sustava podrazumijeva postizanje potpune neovisnosti opskrbe nekog korisnika električnom energijom koja se u osnovi dobiva iz solarne energije. Predložena elektrana-sustav je održiva na svakom lokalitetu i bez štetnog utjecaja na okoliš jer se zasniva isključivo na korištenju obnovljivih izvora energije i to upotrebom vode kao glavnog resursa za generiranje kontinuirane proizvodnje energije. Formirana akumulacija 6 i njoj pripadajuća hidroelektrana 8 i 9 vrlo su fleksibilne u radu i proizvodnji energije i zbog toga se lako prilagođavaju potrebama korisnika za razliku od fotonaponske elektrane 1 čiji je rad i proizvodnja energije ovisan o Sunčevom zračenju. Kombinacijom ovih dvaju elektrana dobiva se novi tip elektrane pogodan za trajnu proizvodnju električne energije. Bitna karakteristika ove nove Solarne elektrane je da ona nije ograničena veličinom tako da se može koristiti od najmanjih do najvećih jedinica, tj, od napajanja stambene jedinice reda veličine nekoliko kilowatta do snažnih elektrana reda veličine više desetaka ili čak više stotina megawatta. The operation of this system implies the achievement of complete independence of the supply of a user with electricity, which is basically obtained from solar energy. The proposed power plant-system is sustainable in every locality and without harmful impact on the environment because it is based exclusively on the use of renewable energy sources and the use of water as the main resource for generating continuous energy production. The formed reservoir 6 and the hydroelectric power plants 8 and 9 belonging to it are very flexible in their operation and energy production and are therefore easily adapted to the needs of users, in contrast to the photovoltaic power plant 1, whose operation and energy production is dependent on solar radiation. The combination of these two power plants results in a new type of power plant suitable for permanent production of electricity. The essential characteristic of this new solar power plant is that it is not limited by size, so it can be used from the smallest to the largest units, i.e. from powering a residential unit of the order of several kilowatts to powerful power plants of the order of dozens or even hundreds of megawatts.

Ovim izumom se objašnjava novi koncept iskorištavanja solarne i hidroenergije na jedan originalni način koji uvažava prednosti svakog od njih. Hidroelektrana 6 i 9 koristi se za trajnu proizvodnju energije, a solarna energija prioritetno za stvaranje hidropotencijala, odnosno skladištenje vode za proizvodnju hidroenergije. Solarna energija (fotonaponski generator 1) se koristi da bi se voda s niže razine 10 (akumulacije, akvifera, mora, jezera, rijeke) prepumpala na višu razinu na kojoj se skladišti u akumulaciji 6. Uskladištena voda se koristi za proizvodnju hidroenergije u skladu sa formiranim hidropotencijalom (visinskom razlikom) na turbini 8 iz koje se voda ispušta u vodni resurs, a iz kojeg se pumpala pumpama 4 koje pokreće fotonaponski generator 1 (slika 1). Na ovaj način omogućava se trajno korištenje iste vode koja kruži unutar umjetno stvorenog i zatvorenog hidrološkog ciklusa. Raspoloživa gornja akumulacija 6 je zapravo uskladištena solarna energija raspoloživa za trajno korištenje na turbini 8 (danju i noću) u skladu s potrebama potrošača. This invention explains the new concept of using solar and hydropower in an original way that respects the advantages of each of them. Hydropower plants 6 and 9 are used for permanent energy production, and solar energy is primarily used for creating hydro potential, i.e. storing water for hydropower production. Solar energy (photovoltaic generator 1) is used to pump water from a lower level 10 (reservoirs, aquifers, seas, lakes, rivers) to a higher level where it is stored in reservoir 6. The stored water is used to produce hydropower in accordance with formed by the hydropotential (height difference) on the turbine 8 from which the water is discharged into the water resource, and from which it was pumped by pumps 4 driven by the photovoltaic generator 1 (picture 1). In this way, it is possible to permanently use the same water that circulates within an artificially created and closed hydrological cycle. The available upper accumulation 6 is actually stored solar energy available for permanent use on the turbine 8 (day and night) in accordance with the needs of consumers.

Predložena elektrana je lokalni izvor energije koji se može graditi neposredno uz mjesto potrošnje ako za to postoje svi preduvjeti, što je jako povoljno jer se energija ne treba transportirati. Preduvjet za rad ove elektrane je povremena insolacija, voda i visinska razlika između donje i gorenje vode na kojoj se iskroštava djelovanje sile gravitacije-hidropotencijala. Hidropotencijal se može formirati u skladu s topografskim značajkama terena gdje god postoji visinska razlika terena-brijeg. Međutim, može se bilo gdje izgraditi i umjetni hidropotencijal stvaranjem odgovarajuće građevne konstrukcije sa visinskom razlikom između donje i gornje vode. To znači da se manji ili veći hidropotencijal može stvoriti bilo gdje, uz naravno različite troškove. Uz nužnu visinsku razliku na kojoj se može iskorititi djelovanje sile gravitacije nužna je voda za pokretanje turbina. The proposed power plant is a local source of energy that can be built right next to the place of consumption if all the prerequisites are in place, which is very advantageous because the energy does not need to be transported. The prerequisite for the operation of this power plant is occasional insolation, water and the height difference between the lower and burning water, on which the action of gravity-hydropotential force is exploited. Hydropotential can be formed in accordance with the topographic features of the terrain wherever there is a height difference between the terrain and the hill. However, an artificial hydro potential can be built anywhere by creating an appropriate building structure with a height difference between the lower and upper water. This means that a smaller or larger hydro potential can be created anywhere, with of course different costs. In addition to the necessary height difference where the action of gravity can be used, water is also necessary to start the turbines.

Sustav može biti manji ili veći, otvoren (slika 1) ili zatvoren (slika 2), odnosno s manjim ili većim gubicima vode. Transportni dio sustava 5 i 7 je uvijek zatvoren. To su tlačne cijevi za transport vode s donje kote na gornju kotu 5, te tlačni cjevovod hidroelektrane 7. Vodospreme pak mogu biti zatvorene ili otvorene. Svi veliki sustavi u pravilu su otvoreni dok se mali sustavi mogu graditi kao zatvoreni. Teoretski, voda je nužna samo za punjenje sustava i nadoknadu gubitaka vode iz sustava. Najbolja situacija je ako se punjenje i nadoknada gubitaka može postići iz prirodnih resursa, kišom ili korištenjem kiše s lokalnog slivnog područja, ili vodom iz lokalnog vodotoka, podzemnih voda i mora. Gubici se odnose na isparavanje i procijeđivanje vode iz rezervoara (gornjeg 6 i donjeg 10). Odgovarajućim inženjerskim mjerama, isparavanje, a posebno istjecanje iz rezervoara, može se značajno smanjiti ili eliminirati. The system can be smaller or larger, open (picture 1) or closed (picture 2), or with smaller or larger water losses. The transport part of systems 5 and 7 is always closed. These are the pressure pipes for transporting water from the lower level to the upper level 5, and the pressure pipeline of the hydroelectric power plant 7. The reservoirs can be closed or open. As a rule, all large systems are open, while small systems can be built as closed. Theoretically, water is only necessary to fill the system and compensate for water losses from the system. The best situation is if recharge and replenishment of losses can be achieved from natural resources, by rain or using rain from the local catchment area, or water from local watercourses, groundwater and the sea. Losses refer to evaporation and seepage of water from the reservoir (upper 6 and lower 10). With appropriate engineering measures, evaporation, and especially leakage from reservoirs, can be significantly reduced or eliminated.

Lokalne prirodne značajke, klima, vodni resursi, topografija, geologija i drugo su okvir za realizaciju elektrane i njenu produktivnost. Ono što je važno naglasiti je da je elektrana održiva i dok god postoji Sunčevo zračenje i sila gravitacije, elektrana može proizvoditi električnu energiju. Cijena energije ovisi o cijelom nizu elementa, a isplativost ovisi o cijeni konkurentnih klasičnih izvora. U sadašnjem trenutku još uvijek je za očekivati da su klasični izvori energije (termoelektrane i nuklearne elektrane) konkurentniji bez obzira što se radi o čistoj i obnovljivoj energiji. Međutim, dugoročno gledano za očekivati je da će klasični izvori biti sve skuplji tako da će predložena elektrana vjerojatno biti sve konkurentnija i isplativija. U slučaju kada se traži dugoročna održivost proizvodnje energije isključivo uz korištenje obnovljivih, čistih prirodnih resursa, predložena Solarna hidroelelektrana nema konkurencije. Local natural features, climate, water resources, topography, geology and others are the framework for the realization of the power plant and its productivity. What is important to emphasize is that the power plant is sustainable and as long as there is solar radiation and the force of gravity, the power plant can produce electricity. The price of energy depends on a whole range of elements, and profitability depends on the price of competitive classical sources. At the present moment, it is still to be expected that classic sources of energy (thermal power plants and nuclear power plants) are more competitive, regardless of whether it is clean and renewable energy. However, in the long term, it is to be expected that conventional sources will be more and more expensive, so that the proposed power plant will probably be more and more competitive and profitable. In the case where the long-term sustainability of energy production is sought exclusively with the use of renewable, clean natural resources, the proposed Solar hydroelectric power plant has no competition.

Vrlo je važno da se kod Solarne hidroelektrane pravilno odredi snaga fotonaponskog generatora 1, čija je cijena i najveća. Glavnu ulogu u tome ima gornji rezervoar 6 (akumulacija). Gornji rezervoar 6 omogućava akumuliranje vode u duljem vremenskom periodu i time proizvodnju hidroenergije što omogućava premoštenje vremenskog perioda kada je ulaz fotonaponskog generatora 1 manji ili ga nema. Na taj način fotonaponski generator 1 se bira u skladu s kritičnim jednogodišinjim periodom iz niza godina tako da se odabere njegova minimalna od maksimalnih snaga nužna za osiguranje kontinuiteta proizvodnje hidroenergije u kritičnom periodu (potrebni volumen vode) i odabrane razine sigurnosti rada (dodatnog volumena vode u rezervoaru za incidentne ili nepredviđene situacije). Ukoliko uzvodno od gornjeg rezervoara 6 postoji voda koja se može koristiti, odnosno skrenuti u rezervoar, tada je sustav učinkovitiji jer se punjenje vodom rezervoara 6 odvija i prirodnim putem, a ne samo pumpama pa bi kapacitet solarne fotonaponske elektrane 1 za odgovarajući iznos bio manji. Sustav će biti i učinkovitiji ako se dio proizvedene solarne energije u periodima kada je jako Sunčevo zračenje, direktno koristi od strane korisnika jer će tada volumen rezervoara 6, kapacitet pumpnog sustava 3 i 4 i fotonaponskih generatora 1 biti manji. It is very important that the power of photovoltaic generator 1, whose price is the highest, is correctly determined at the Solar Hydropower Plant. The main role in this is played by the upper reservoir 6 (reservoir). The upper reservoir 6 enables the accumulation of water for a longer period of time and thus the production of hydropower, which enables the bridging of the time period when the input of the photovoltaic generator 1 is less or absent. In this way, the photovoltaic generator 1 is selected in accordance with the critical one-year period from a series of years, so that its minimum and maximum powers necessary to ensure the continuity of hydropower production in the critical period (required volume of water) and the selected level of operational safety (additional volume of water in reservoir for incident or unforeseen situations). If there is water upstream of the upper reservoir 6 that can be used, that is, diverted into the reservoir, then the system is more efficient because the water filling of the reservoir 6 takes place naturally and not only with pumps, so the capacity of the solar photovoltaic power plant 1 would be smaller by the corresponding amount. The system will be more efficient if part of the produced solar energy in periods of strong solar radiation is directly used by the user, because then the volume of reservoir 6, the capacity of pumping system 3 and 4 and photovoltaic generator 1 will be smaller.

Na ukupnu cijenu izgradnje utječu i troškovi izgradnje akumulacije (gornje 6 i donje 10). Pri tome su moguće razne kombinacije. Najpovoljnije je kada donju akumulaciju 10 nije potrebno posebno graditi, a što je prisutno u slučaju kada je kapacitet vodnih resursa, koji se koristi za zahvaćanje vode, veći od potreba (npr. kad je donja akumulacija 10 predstavljena morem, velikom rijekom ili aqviferom) te kada je izgradnja gornje akumulacije 6 jednostavna i jeftina, ili ako takav rezervoar-jezero već postoji. Hidroelektrana 8 i 9 je u principu ekonomičnija što je raspoloživi pad (potencijana energija) veća. Međutim, tada je potrebna i veća snaga fotonaponskih generatora 1 da bi se prepumpala voda u akumulaciju 6. The total cost of construction is also affected by the costs of building the reservoir (top 6 and bottom 10). Various combinations are possible. It is most favorable when the lower reservoir 10 does not need to be built separately, which is present in the case when the capacity of water resources, which is used for capturing water, is greater than the needs (e.g. when the lower reservoir 10 is represented by the sea, a large river or an aquifer) and when the construction of the upper reservoir 6 is simple and cheap, or if such a reservoir-lake already exists. Hydropower plants 8 and 9 are in principle more economical the higher the available drop (potential energy). However, then a higher power of the photovoltaic generators 1 is needed to pump the water into the reservoir 6.

Predložena elektrana ima svoje velike prednosti jer se radi o lokalnom izvoru električne energije koji ne zahtjeva nikakav dovod sirovina niti značajniji prijenos energije do potrošača. To znači da se energija može proizvoditi i trošiti na izoliranim, od prometnih i opskrbnih pravaca udaljnim lokacijama (otocima i slično). Na taj način su manji troškovi izgradnje prijenosnih sustava te gubici energije koji se dešavaju zbog prijenosa energije. Na tim lokacijama elektrana može biti već danas konkurentna klasičnim izvorima energije jer ne zahtjeva izgradnju i pogonske troškove vezane uz transporte, niti energije, a niti sirovina za proizvodnju energije. Elektrana se može izgraditi na svim lokacijama na kojima postoje vodni resursi, ali ne i odgovarajući hidropotencijal. Korištenjem fotonaponskog generatora 1 i lokalne topografije terena taj potencijal se može na umjetni način stvoriti. The proposed power plant has its great advantages because it is a local source of electricity that does not require any supply of raw materials or significant energy transmission to consumers. This means that energy can be produced and consumed in remote locations isolated from traffic and supply routes (islands and the like). In this way, the costs of building transmission systems and the energy losses that occur due to energy transmission are lower. In these locations, the power plant can already be competitive with classic energy sources, because it does not require construction and operating costs related to transportation, nor energy, nor raw materials for energy production. A power plant can be built in all locations where there are water resources, but not adequate hydro potential. By using the photovoltaic generator 1 and the local topography of the terrain, this potential can be artificially created.

Ovakav tip elektrane je posebno povoljan za opskrbu posebnih potrošača kao što su izolirane vojne baze, važni strateški objekti na izoliranim lokacijama i slično jer je lokalno potpuno održiva. This type of power plant is particularly advantageous for the supply of special consumers such as isolated military bases, important strategic facilities in isolated locations and the like because it is completely sustainable locally.

Solarna Hidroelektrana je za sada i jedini trajno održivi energetski izvor koji može kontinuirano napajati neki konzum električnom energijom, a da pri tome koristi isključivo prirodne i obnovljive izvore energije bez štetnog utjecaja na okoliš. For now, the Solar Hydroelectric Power Plant is the only permanently sustainable energy source that can continuously supply a consumer with electricity, while using only natural and renewable energy sources without harmful impact on the environment.

KRATAK OPIS CRTEŽA BRIEF DESCRIPTION OF THE DRAWINGS

Popratni crteži koji su uključeni u opis i koji čine dio opisa izuma, ilustriraju dosad razmatran najbolji način za izvedbu izuma i pomažu kod objašnjavanja osnovnih principa izuma. The accompanying drawings, which are included in the description and form part of the description of the invention, illustrate the best mode of carrying out the invention thus far considered and help to explain the basic principles of the invention.

Sl. 1. Shema Solarne hidroelektrane (otvoreni tip). Sl. 1. Scheme of the Solar hydroelectric power plant (open type).

Sl. 2. Shema Solarne hidroelektrane (zatvoreni tip). Sl. 2. Scheme of the Solar hydroelectric power plant (closed type).

DETALJAN OPIS NAJMANJE JEDNOG OD NAČINA OSTVARIVANJA IZUMA DETAILED DESCRIPTION OF AT LEAST ONE OF THE METHODS OF IMPLEMENTING THE INVENTION

U ovom dijelu će se uputiti do u pojedinosti ovog pretpostavljenog ostvarenja izuma, čiji je osnovni primjer ilustriran pridruženim crtežom. In this part, we will refer to the details of this assumed embodiment of the invention, the basic example of which is illustrated in the attached drawing.

Solarna hidroelektrana se sastoji od sljedećih elemenata: The solar hydropower plant consists of the following elements:

1) Solarna fotonaponska elektrana (fotonaponski generatori), 1) Solar photovoltaic power plant (photovoltaic generators),

2) Inverteri (pretvarači istosmjerne u izmjeničnu struju združeni s tzv. tragačima maksimalne snage), 2) Inverters (direct current to alternating current converters combined with so-called maximum power trackers),

3) Elektromotor, 3) Electric motor,

4) Pumpa, 4) Pump,

5) Cjevovod kojim se voda s gornje kote donje vode diže u gornju akumulaciju, 5) Pipeline through which water rises from the upper level of the lower water to the upper reservoir,

6) Gornja akumulacija, 6) Upper reservoir,

7) Cjevovod kojim se voda iz gornje akumulacije spušta prema gornjoj koti donje vode, 7) The pipeline through which the water from the upper reservoir descends towards the upper level of the lower water,

8) Turbina, 8) Turbine,

9) Generator, 9) Generator,

10) Donja akumulacija (more, velika rijeka, aqvifer itd.), 10) Lower reservoir (sea, large river, aquifer, etc.),

Solarna hidroelektrana radi tako da se solarna energija uz pomoć solarnih fotonaponskih generatora 1 pretvara u električnu energiju potrebnu za napajanje elektromotora 3. Međutim, ukoliko je taj elektromotor izmjenični, onda se električna energija iz fotonaponske elektrane koja je istosmjerna putem invertera 2 pretvara u izmjeničnu. U sklopu invertera 2 je uključen i tzv. tragač maksimalne snage kojim se snaga tereta (elektromotora 3) prilagođava snazi fotonaponske elektrane 1. Elektromotor 3 pokreće pumpu 4 koja pumpa vodu s gornje kote donje vode na gornju kotu gornje akumulacije 6. Taj transport se odvija pomoću cjevovoda 5. Voda se iz gornje akumulacije putem cjevovoda 7 transportira na turbinu 8 koja pokreće generator 9. Nakon turbina 8, voda se ispušta prema donjoj akumulaciji 10, odnosno moru, velikoj rijeci, aqviferu i sl. The solar hydropower plant works in such a way that solar energy is converted with the help of solar photovoltaic generators 1 into the electricity needed to power the electric motor 3. However, if that electric motor is alternating current, then the direct current electricity from the photovoltaic power plant is converted into alternating current via the inverter 2. As part of inverter 2, the so-called the maximum power tracker, which adjusts the power of the load (electric motor 3) to the power of the photovoltaic power plant 1. The electric motor 3 drives the pump 4, which pumps water from the upper level of the lower water to the upper level of the upper reservoir 6. This transport takes place using the pipeline 5. The water from the upper reservoir through the pipeline 7, it is transported to the turbine 8, which drives the generator 9. After the turbines 8, the water is discharged towards the lower reservoir 10, i.e. the sea, a large river, an aquifer, etc.

Dva elementa predloženog rješenja su najvažnija, a to su: fotonaponski generator 1, jer bez njega nema stvaranja hidropotencijala, i rezervoar – akumulacija 6, u kojoj se skladišti voda - solarna energija za proizvodnju hidroenergije kada je fotonaponski generator 1 izvan funkcije. Pri tome je najskuplji element još uvijek fotonaponski generator 1 te je interes smanjiti njegovu veličinu na mogući minimum. Dakle, uz tehnološko rješenje Solarne hidroelektrane, vrlo je važno pravilno dimenzionirati sustav da on u potpunosti zadovolji potrebe potrošača za električnom energijom tijekom cijele godine. U tom smislu je potrebno koristiti proračune kako slijede. Two elements of the proposed solution are the most important, namely: photovoltaic generator 1, because without it there is no generation of hydro potential, and reservoir - accumulation 6, in which water is stored - solar energy for hydropower production when photovoltaic generator 1 is out of order. At the same time, the most expensive element is still the photovoltaic generator 1, and the interest is to reduce its size to the minimum possible. Therefore, in addition to the technological solution of the Solar Hydroelectric Power Plant, it is very important to correctly dimension the system so that it fully meets the needs of consumers for electricity throughout the year. In this sense, it is necessary to use the calculations as follows.

A) Električna snaga hidroelektrane 8 i 9 A) Electric power of hydropower plants 8 and 9

Hidro energija koju generira neka akumulacija, može se računati prema: Hydro energy generated by a reservoir can be calculated according to:

[image] (J, Ws) (1) [image] (J, Ws) (1)

a snaga hidroakumulacije: and hydroaccumulation power:

[image] (J/s, W) (2) [image] (J/s, W) (2)

gdje je V (m3) volumen vode u akumulaciji, H (m) visinska razlika između donje i gornje vode, g (m/s2) ubrzanje sile teže, ρ (kg/m3) gustoća vode, a Q (m3/s) protoka. where V (m3) is the volume of water in the reservoir, H (m) is the height difference between the lower and upper water, g (m/s2) is the acceleration of gravity, ρ (kg/m3) is the water density, and Q (m3/s) is the flow .

Prema tome, akumulirana voda, odnosno veličina akumulacije V (m3) i raspoloživa visinska razlika H(m) određuju veličinu proizvodnje energije, a instalirani kapacitet turbine Q (m3/s) snagu. Što je veća akumulacija i veći pad, veća je i proizvodnja energije. Lokalni uvjeti vezani za izgradnju akumulacije (volumen i visinski položaj) će odrediti koja kombinacija visinske razlike H i volumena vode V je bolje rješenje za planirano zadovoljavanje potreba potrošača-proizvodnju energije. Uz to, odabrani pad H i protoka Q će odrediti koji tip turbine je najučinkvitiji. Neto električna energija koju će proizvesti hidroelektrana je: Therefore, the accumulated water, i.e. the size of the accumulation V (m3) and the available height difference H(m) determine the size of the energy production, and the installed capacity of the turbine Q (m3/s) the power. The greater the accumulation and the greater the fall, the greater the energy production. Local conditions related to the construction of the reservoir (volume and height position) will determine which combination of height difference H and water volume V is a better solution for the planned satisfaction of consumer needs - energy production. In addition, the selected drop H and flow rate Q will determine which type of turbine is most efficient. The net electricity that will be produced by the hydroelectric plant is:

[image] (J, Ws) (3) [image] (J, Ws) (3)

gdje je Hn neto raspoloživi pad, a ηTGukupni korisni učinak turbine i generatora (0,75 – 0,92). where Hn is the net available drop, and ηT is the total useful effect of the turbine and generator (0.75 – 0.92).

B) Električna snaga fotonaponske elektrane 1 B) Electric power of photovoltaic power station 1

Odabrani volumen akumulacije 6 (potrebna energija), visinska razlika (manometarska visina dizanja vode) i raspoloživo vrijeme za pumpanje vode u akumulaciju 6, određuje potrebnu snagu fotonaponskog generatora 1. The selected volume of the reservoir 6 (required energy), height difference (manometric height of water rise) and available time for pumping water into the reservoir 6 determines the required power of the photovoltaic generator 1.

Uvrštavanjem gustoće vode ρ i gravitacijske konstante g u jednadžbu (1), zatim pretvaranjem jedinica i umjesto volumena V korištenjem oznake QPV, kao i HTE umjesto manometarske visine H, može se dobiti i ukupna dnevna hidraulička energija koju fotonaponska elektrana 1 može proizvesti na izlazu iz pumpnog agregata: By including the water density ρ and the gravity constant g in equation (1), then converting the units and instead of the volume V by using the symbol QPV, as well as HTE instead of the manometric height H, the total daily hydraulic energy that the photovoltaic power plant 1 can produce at the output of the pumping station can be obtained aggregates:

[image] (kWh) (4) [image] (kWh) (4)

u kojoj je QPV srednja vrijednost protoke volumena vode (m3/dan) koji se ispumpava iz donje u gornju akumulaciju, a HTE srednja manometarska visina dizanja vode (razlika visina od nivoa vode u gornjoj i donjoj akumulaciji + gubici) (m). in which QPV is the mean value of the water volume flow (m3/day) that is pumped from the lower to the upper reservoir, and HTE is the mean manometric height of the water rise (the difference in height from the water level in the upper and lower reservoir + losses) (m).

Polazna jednadžba za proračun potrebne snage fotonaponskog generatora 1, Pel izražene u (W), pod referentnim uvjetima (Standard Test Condition STC - intenzitet Sunčevog zračenja 1000 W/m2, relativna optička masa zraka AM1.5 i temperatura fotonaponskog generatora 250C), koja uspostavlja odnos izlazne hidrauličke energije i dozračene solarne energije, na osnovi Kenna and Gillett, 1985, ima oblik: Initial equation for calculating the required power of photovoltaic generator 1, Pel expressed in (W), under reference conditions (Standard Test Condition STC - intensity of solar radiation 1000 W/m2, relative optical air mass AM1.5 and temperature of photovoltaic generator 250C), which establishes the relationship between output hydraulic energy and aerated solar energy, based on Kenna and Gillett, 1985, has the form:

[image] (W) (5) [image] (W) (5)

gdje je EH (kWh/dan) izlazna hidraulička energija iz fotonaponskog pumpnog sustava (1-4), Eel (kWh/dan) električna energija na ulazu u pumpni agregat, fm koeficijent neprilagođenja tereta karakteristikama fotonaponskog generatora, αc koeficijent promjene efikasnosti s temperaturom (0C-1), T0 referentna temperatura fotonaponskog generatora (1) (250 C), efikasnost pumpnog agregata (3 i 4) ηMP. where EH (kWh/day) is the output hydraulic energy from the photovoltaic pumping system (1-4), Eel (kWh/day) is the electrical energy at the input to the pumping unit, fm is the load mismatch coefficient to the characteristics of the photovoltaic generator, αc is the efficiency change coefficient with temperature ( 0C-1), T0 reference temperature of the photovoltaic generator (1) (250 C), efficiency of the pump unit (3 and 4) ηMP.

Dakle, nazivna električna snaga fotonaponskog generatora 1, računa se na osnovi poznate potražnje za hidrauličkom energijom EH te raspoložive vrijednosti dozračene Sunčeve energije ES u kritičnom periodu i poznate efikasnosti crpnog agregata (3 i 4) ηMP pod referentnim uvjetima pogona, pri čemu se uzima u obzir i utjecaj vanjske temperature na efikasnost fotonaponskog generatora 1. So, the nominal electric power of photovoltaic generator 1 is calculated on the basis of the known demand for hydraulic energy EH and the available value of aerated solar energy ES in the critical period and the known efficiency of the pumping unit (3 and 4) ηMP under the reference conditions of operation, where it is taken in consideration and influence of external temperature on the efficiency of the photovoltaic generator 1.

Uvrštavanjem jednadžbe (4) u jednadžbu (5), dobiva se izraz za električnu snagu fotonaponskog generatora 1: By inserting equation (4) into equation (5), the expression for the electric power of photovoltaic generator 1 is obtained:

[image] (W) (6) [image] (W) (6)

a koja će se u ovom patentnom rješenju koristiti za proračun električne snage fotonaponskog elektrane 1. and which will be used in this patent solution to calculate the electric power of photovoltaic power plant 1.

C) Bilanca voda i energije C) Water and energy balance

Volumen akumulacije i proizvodnja hidroenergije te snaga fotonaponskog generatora 1 i hidroelektrane 8 i 9 određeni su s jedne strane prirodnim značajkama terena, a s druge potrebama potrošača energije. Sve se gradi da bi se zadovoljile potrebe nekog konzuma tako da je režim potrošnje energije ključna varijabla za dimenzioniranje i rad sustava Solarne hidroelektrane. U ovom se izumu predmetni problem rješava na razini sustava kao tehnološke cjeline koja obuhvaća ravnopravno sve dijelove sustava uključujući i prirodne (klima, hidrologija, akumulacija 6, hidrogeneratori 9 i fotonaponski generatori 1), potrebe potrošača energije, te procese u sustavu i to tijekom cijelog perioda rada sustava. The volume of accumulation and production of hydropower and the power of photovoltaic generator 1 and hydropower plants 8 and 9 are determined on the one hand by the natural features of the terrain, and on the other by the needs of energy consumers. Everything is built to meet the needs of some consumer, so the energy consumption regime is a key variable for the sizing and operation of the Solar Hydroelectric Power Plant system. In this invention, the problem in question is solved at the level of the system as a technological unit that includes equally all parts of the system, including natural ones (climate, hydrology, reservoir 6, hydrogen generators 9 and photovoltaic generators 1), the needs of energy consumers, and processes in the system throughout period of system operation.

Znači sustav se analizira kao cjelina i to dinamički u cijelom periodu rada uvažavajući sve promjene koje se dešavaju u odnosu na raspoložive resurse (kapacitete i potrebe) i potrebe proizvodnje energije. This means that the system is analyzed as a whole and dynamically throughout the entire period of operation, taking into account all the changes that occur in relation to the available resources (capacity and needs) and energy production needs.

Ključne komponente koje određuju vodne resurse su klima i hidrologija. Klima određuje, s jedne strane input vode u hidroakumulaciji 6, a s druge strane raspoloživost solarne energije. Klimatski inputi su stohastičkog karaktera te se stoga trebaju odgovarajuće i tretirati u cijelom periodu. The key components that determine water resources are climate and hydrology. The climate determines, on the one hand, the input of water in the hydroaccumulation 6, and on the other hand, the availability of solar energy. Climatic inputs are of a stochastic character and therefore need to be treated appropriately throughout the period.

Na slici 1 se vide i svi ulazi (QNAT(i), R(i), QPV(i) i INF(i),) i svi izlazi vode (INF(i), EV(i) i QTG(i)) iz gornje akumulacije 6 volumena V(i), zatim temperatura zraka Ta(i), maksimalna visina gornje akumulacije 6 HU(i), razlika donjeg nivoa gornje akumulacije 6 i gornjeg nivoa donje akumulacije 10 (mora) HDIF(i) i ukupna visina na koju fotonaponska elektrana 1 treba podići vodu u gornju akumulaciju 6 HTE(i). Figure 1 shows all inputs (QNAT(i), R(i), QPV(i) and INF(i),) and all water outputs (INF(i), EV(i) and QTG(i)) from the upper accumulation 6 volume V(i), then the air temperature Ta(i), the maximum height of the upper accumulation 6 HU(i), the difference between the lower level of the upper accumulation 6 and the upper level of the lower accumulation 10 (sea) HDIF(i) and the total height on which the photovoltaic plant 1 should raise water to the upper reservoir 6 HTE(s).

Za sustav su karakteristične bilanca voda i bilanca energije. Water balance and energy balance are characteristic of the system.

C1) Blanca voda C1) Blanca water

Bilanca vode u sustavu koji ima samo gornju akumulaciju 6 za određeni vremenski period je: The water balance in the system that has only the upper reservoir 6 for a certain period of time is:

Vin = Vout + Vlosses (7) Vin = Vout + Vlosses (7)

gdje je Vin volumen vode koji ulazi u gornju akumulaciju 6, Vout volumen vode koji odlazi iz akumulacije 6, a Vlosses predstavlja ukupne gubitke vode u gornjoj akumulaciji 6. where Vin is the volume of water entering the upper reservoir 6, Vout is the volume of water leaving the reservoir 6, and Vlosses represents the total water losses in the upper reservoir 6.

Cilj je smanjiti gubitke što više jer se time utječe na učinkovitost sustava, odnosno na potrebnu snagu fotonaponske elektrane 1. The goal is to reduce losses as much as possible, because this affects the efficiency of the system, that is, the required power of photovoltaic power plant 1.

U slučaju kada se koristi i donja akumulacija 10 tada se moraju uzeti u obzir i gubici vode u donjoj akumulaciji 10 pa je bilanca vode u sustavu: In the case when the lower reservoir 10 is also used, then water losses in the lower reservoir 10 must also be taken into account, so the water balance in the system is:

Vin - Vlosses,intake = Vout + Vlosses,accumulation (8) Vin - Vlosses, intake = Vout + Vlosses, accumulation (8)

gdje su Vlosses,intake gubici vode prilikom zahvata vode, a Vlosses,accumulation gubici vode u gornjoj akumulaciji 6. where Vlosses, intake are water losses during water intake, and Vlosses, accumulation are water losses in the upper accumulation 6.

Ako se radi o cirkulacionom sustavu s otvorenim akumulacijama 6 i 10, tada je u razmatranom periodu t potrebno nadoknaditi količinu vode od: If it is a circulation system with open reservoirs 6 and 10, then in the considered period t it is necessary to compensate the amount of water from:

Vlosses = Vlosses,intake + Vlosses,accumulation (9) Vlosses = Vlosses, intake + Vlosses, accumulation (9)

U slučaju ograničenih vodnih resursa gubitke treba smanjiti na minimum. U slučaju zatvorenog sustava vrijedi: Vlosses ≈ 0. In the case of limited water resources, losses should be reduced to a minimum. In the case of a closed system, the following applies: Vlosses ≈ 0.

Promjene u sustavu se opisuju jednadžbom stanja sustava. Jednadžba stanja sustava za gornju akumulaciju 6 je: Changes in the system are described by the equation of state of the system. The equation of state of the system for the upper reservoir 6 is:

V(i) = V(i-l) +Q PV(i) +Q NAT(i) + R(i) – Q TG(i) + INF (i) (10) V(i) = V(i-l) +Q PV(i) +Q NAT(i) + R(i) – Q TG(i) + INF (i) (10)

u kojoj inkrement i poprima vrijednosti i=1 do N (N predstavlja ukupan broj vremenskih koraka – npr. mjeseci, dekada ili dana); V(i-1) i V(i) su volumeni akumulacije 6 u (i-1)-tom i i-tom periodu respektivno (m3); QPV(i) voda koju ispumpa fotonaponska elektrana 1 u i-tom vremenskom periodu (m3/dan); R(i) ukupne oborine koje stignu u akumualciju u i-tom periodu; QNAT(i) prirodni dotok iz pripadajućeg sliva u i-tom periodu; EV(i) količina vode utrošena na evaporaciju iz akumulacije 6 u i-tom periodu (m3); QTG(i) voda koja se iz gornje akumulacije 6 ispušta prema postrojenju turbina/generator 8 i 9 radi proizvodnje električne energije u i-tom periodu (m3/dan) i INF(i) infiltracija u i-tom periodu (m3). in which the increment i takes the values i=1 to N (N represents the total number of time steps – eg months, decades or days); V(i-1) and V(i) are the volumes of accumulation 6 in the (i-1)-th and i-th periods, respectively (m3); QPV(i) water pumped out by photovoltaic power plant 1 in the i-th time period (m3/day); R(i) total precipitation that reaches the accumulation in the i-th period; QNAT(i) natural inflow from the associated basin in the i-th period; EV(i) amount of water used for evaporation from reservoir 6 in the i-th period (m3); QTG(i) water that is discharged from the upper reservoir 6 towards the turbine/generator plant 8 and 9 for the production of electricity in the i-th period (m3/day) and INF(i) infiltration in the i-th period (m3).

Jednadžba stanja na zahvatu vode je: The equation of state at the water catchment is:

W(i) = W(i-1) – QPV(i) – V(losses,intake)(i) + Qinflow (i) (11) W(i) = W(i-1) – QPV(i) – V(losses,intake)(i) + Qinflow (i) (11)

gdje su W(i-1) i W(i) volumeni vode donje akumulacije 10 u periodima i-1 i i respektivno, V(losses,intake)(i) svi gubici na zahvatu vode 10 u i-tom periodu, a Qinflow(i) svi dotjecaji vode na zahvat 10 u i-tom periodu. Koje varijable će opisivati ove procese ovisi o tipu i značajkama zahvata. U slučaju recimo zahvaćanja mora 10, obje ove varijable, kao i promjene volumena, su zanemarive. Međutim, u slučaju korištenja akumulacije 10, jednadžba je ista kao za gornju akumulaciju 6. where W(i-1) and W(i) are the water volumes of the lower reservoir 10 in periods i-1 and i respectively, V(losses,intake)(i) are all losses in the intake of water 10 in the i-th period, and Qinflow( i) all inflows lead to intervention 10 in the i-th period. Which variables will describe these processes depends on the type and characteristics of the intervention. In the case of, say, sea capture of 10, both of these variables, as well as volume changes, are negligible. However, in the case of using accumulation 10, the equation is the same as for accumulation 6 above.

Ukupna bilanca vode u sustavu obuhvaća i vodu u cjevovodima 5 i 7 koja je u principu vrlo mala u odnosu na volumen vode u akumulaciji 6. The total water balance in the system also includes water in pipelines 5 and 7, which is in principle very small compared to the volume of water in reservoir 6.

C2) Bilanca energije C2) Energy balance

Na osnovi navedenog, ukupna bilanca energije za neki period (npr. godinu dana) u sustavu Solarne hidroelektrane može se prikazati formulama od (a) do (i), tj,: On the basis of the above, the total energy balance for a certain period (e.g. a year) in the Solar hydropower plant system can be shown by formulas (a) to (i), i.e.:

(a) Ukupna električne energija, koja se proizvede u fotonaponskoj elektrani 1 iz dozračene solarne energije se može računati po formuli: (a) The total electrical energy, which is produced in the photovoltaic power plant 1 from irradiated solar energy, can be calculated according to the formula:

[image] (12) [image] (12)

gdje je ηc efikasnost fotonaponskog generatora 1, ηI efikasnost invertera 2 (kao i kompletnog elektroničkog sustava prilagođavanja snage fotonaponske elektrane 1 snazi tereta), Ac površina fotonaponskog generatora 1 i ES dozračena sunčeva energija. where ηc is the efficiency of photovoltaic generator 1, ηI is the efficiency of inverter 2 (as well as the complete electronic system for adjusting the power of photovoltaic power plant 1 to the power of the load), Ac is the surface of photovoltaic generator 1 and ES is the irradiated solar energy.

(b) Ova električna energija se dijeli na: (b) This electrical energy is divided into:

[image] (13) [image] (13)

gdje je Eel(PV) ukupna električna energija koju proizvede fotonaponska elektrana 1, Eel(MP) je električna energija koja odlazi na pogon pumpnog agregata 3 i 4, a Eel(overhead) je višak električne energije koji se predaje električnoj mreži ako je sustav Solarne hidroelektrane priključen na nju. Naravno, taj višak električne energije nije potreban za postizanje energetske neovisnosti nekog konzuma, nego on nastaje zbog toga što nije moguće odabrati takvu veličinu fotonaponske elektrane 1 koja će u svim vremenskim periodima davati točno onoliko energije koliko je potrebno tom konzumu, nego će se nužno dogoditi da će se u nekim periodima pojaviti ovi viškovi, a koje ne može prihvatiti gornja akumulacija 1. where Eel(PV) is the total electrical energy produced by photovoltaic power plant 1, Eel(MP) is the electrical energy that goes to drive the pump aggregates 3 and 4, and Eel(overhead) is the excess electrical energy that is delivered to the electrical grid if the system is Solarna hydroelectric power plant connected to it. Of course, this surplus of electricity is not necessary to achieve the energy independence of a consumer, but it arises because it is not possible to choose such a size of the photovoltaic power plant 1 that will provide exactly as much energy as that consumer needs in all time periods, but it will necessarily happen that in some periods these surpluses will appear, which cannot be accommodated by the above accumulation 1.

(c) Ukupna raspoloživa hidraulička energija EH(accumulation) u gornjoj akumulaciji 6 je: (c) The total available hydraulic energy EH(accumulation) in the upper reservoir 6 is:

[image] (14) [image] (14)

gdje je EH(MP) hidraulička energija iz pumpnog agregata 3 i 4 (motor/pumpa), EH(IN) predstavlja hidrauličku energiju dotoka vode, a sa EH(losses) su označeni gubici hidrauličike energije u sustavu koji se mogu računati po jednadžbi: where EH(MP) is the hydraulic energy from pump units 3 and 4 (motor/pump), EH(IN) represents the hydraulic energy of the water inflow, and EH(losses) indicates the losses of hydraulic energy in the system, which can be calculated according to the equation:

EH(losses) = EH(losses,intake) + EH(losses,accumulation) (15) EH(losses) = EH(losses, intake) + EH(losses, accumulation) (15)

gdje EH(losses,intake) predstavljaju gubitke hidrauličke energije prilikom zahvata vode, a EH(losses,accumulation) gubitke hidrauličke energije u gornjoj akumulaciji 6. where EH(losses, intake) represent losses of hydraulic energy during water intake, and EH(losses, accumulation) represent losses of hydraulic energy in the upper accumulation 6.

(d) Veza između hidrauličke i električne energije pumpnog agregata 3 i 4 može se napisati: (d) The connection between the hydraulic and electrical energy of pump units 3 and 4 can be written:

[image] (16) [image] (16)

gdje je ηMP efikasnost pumpnog agregata (motor/pumpa 3 i 4). where ηMP is the efficiency of the pump unit (motor/pump 3 and 4).

(e) Veza između električne i hidrauličke energije sklopa turbina/generator 8 i 9 može se napisati sa: (e) The relationship between the electrical and hydraulic energy of the turbine/generator assembly 8 and 9 can be written as:

[image] (17) [image] (17)

pri čemu je ηTG efikasnost sklopa turbina/generator 8 i 9, a Eel(HE) ukupna električna energija koju proizvede hidroelektrana 8 i 9. where ηTG is the efficiency of the turbine/generator assembly 8 and 9, and Eel(HE) is the total electrical energy produced by the hydroelectric plant 8 and 9.

(f) Ako se najprije Eel(MP) iz jed.(13) izrazi eksplicitno i onda uvrsti u jed.(16), dobiva se : (f) If first Eel(MP) from sub.(13) is expressed explicitly and then included in sub.(16), we get:

[image] (18) [image] (18)

(g) Ako se jed.(18) onda uvrsti u jed.(14), dobiva se: (g) If unit (18) is included in unit (14), we get:

[image] (19) [image] (19)

(h) I ako se ova jed.(19) uvrsti u jed.(17), dobiva se: (h) And if this unit (19) is included in unit (17), we get:

[image] (20) [image] (20)

(i) Uvrštenjem jed. (12) u jed.(20) dobiva se konačno: (i) By including unit (12) in equation (20) finally yields:

[image] (21) [image] (21)

Ako se radi o zatvorenom sustavu (slika 2), u kojem se gubici energije mogu zanemariti, zatim ako Solarna Hidroelektrana nije priključena na vanjsku električnu mrežu, nego samo osigurava potpunu energetsku neovisnost nekog lokalnog konzuma i ako u gornju akumulaciju 6 nema vodotoka, ta se jednadžba svodi samo na odnos: If it is a closed system (Figure 2), in which energy losses can be ignored, then if the Solar Hydropower Plant is not connected to the external power grid, but only ensures the complete energy independence of a local consumer and if there is no water flow into the upper reservoir 6, then the equation reduces only to the relation:

[image] (22) [image] (22)

u kojoj ηS predstavlja efikasnost iskorištavanja solarne energije od strane pumpnog agregata 3 i 4 koju je nužno uvesti ako se zanemari ona količina energije koja se predaje mreži (tj, za Eel(overhead)=0). in which ηS represents the efficiency of solar energy utilization by pump units 3 and 4, which must be introduced if the amount of energy delivered to the grid is ignored (ie, for Eel(overhead)=0).

Ukoliko se jed. (22) želi izraziti u ovisnosti o ukupnoj električnoj energiji koju daje fotonaponska elektrana 1, dobiva se: If one (22) wants to express depending on the total electrical energy provided by photovoltaic power plant 1, we get:

[image] (23) [image] (23)

U ovakvoj aproksimaciji, jednadžba (22) govori o tome da je električna energija Eel(HE) koju Solarna hidroelektrana proizvede i preda potrošačima lokalnog konzuma radi njihove potpune opskrbe električnom energijom u nekom vremenskom periodu, direktno ovisna o ukupno dozračenoj Sunčevoj energiji ES u istom vremenskom periodu. Jed.(23) prikazuje ovisnost proizvedene električne energije hidroelektrane 8 i 9 o ukupnoj električnoj energiji koja je proizvedena u fotonaponskoj elektrani 1. In this approximation, equation (22) indicates that the electrical energy Eel (HE) produced by the Solar Hydroelectric Power Plant and handed over to local consumers for the purpose of their complete supply of electrical energy in a certain period of time is directly dependent on the total radiated solar energy ES in the same period of time. period. Eq. (23) shows the dependence of the produced electricity of hydroelectric power plants 8 and 9 on the total electricity produced in photovoltaic power plant 1.

D) Ukupna manometarska visina dizanja vode D) Total manometric height of water rise

Poželjno je da je neto raspoloživi pad hidroelektrane 8 i 9 Hn veći od manometarske visine dizanja pumpnog agregata 3 i 4 fotonaponske elektrane 1, HTE (Hn > HTE), naravno ako to lokalni uvjeti dozvoljavaju. Očito je da pozitivna razlika između neto raspoloživog pada hidroelektrane 8 i 9 i manometarske visine dizanja fotonaponskog pumpnog agregata 3 i 4, ΔH (ΔH = Hn – HTE), najdirektnije utječe na smanjenje snage fotonaponske elektrane 1. Zbog toga se dobrim izborom lokacije zahvata vode 10 i hidroelektrane 8 i 9 značajno mogu umanjiti troškovi izgradnje Solarne hidroelektrane, a posebno fotonaponske elektrane 1. Normalno, to znači da se ispuštena voda iz hidroelektrane 8 i 9 ne zahvaća za prepumpavanje u gornju akumulaciju 6, već se za te namjene koristi neki drugi zahvat vode koji se nalazi na višim kotama terena. Ako se koristi isti zahvat vode 10, tada je uvijek: It is desirable that the net available drop of the hydroelectric power plant 8 and 9 Hn is greater than the manometric head of the pumping unit 3 and 4 of the photovoltaic power plant 1, HTE (Hn > HTE), of course if local conditions allow it. It is obvious that the positive difference between the net available drop of the hydroelectric power plant 8 and 9 and the manometric height of the lifting of the photovoltaic pumping unit 3 and 4, ΔH (ΔH = Hn – HTE), most directly affects the reduction of the power of the photovoltaic power plant 1. Therefore, a good choice of the water intake location 10 and hydropower plants 8 and 9 can significantly reduce the construction costs of the Solar Hydropower Plant, and especially the photovoltaic power plant 1. Normally, this means that the discharged water from the hydropower plants 8 and 9 is not used for pumping into the upper reservoir 6, but is used for these purposes by another water catchment located at higher elevations of the terrain. If the same intake of water 10 is used, then it is always:

[image] (24) [image] (24)

Kako je ukupna manometarska visina dizanja vode u akumulaciju 6 HTE(i) ovisna o količini vode QPV(i) koja se dovodi iz donje akumulacije 10 (mora, akvifera, vodotoka, itd.), zatim količini vode koja se odvodi na turbine (8) QTG(i) i volumena (odnosno razine vode) gornje akumualcije 6 V(i), može se definirati ovisnost: As the total manometric height of the water rise in the reservoir 6 HTE(i) depends on the amount of water QPV(i) that is supplied from the lower reservoir 10 (sea, aquifer, watercourse, etc.), then the amount of water that is drained to the turbines (8 ) QTG(s) and the volume (ie water level) of the upper accumulation 6 V(s), the dependence can be defined:

[image] (25) [image] (25)

koja u osnovi predstavlja funkcionalno ograničenje, a koje se aproksimativno može pisati u obliku: which basically represents a functional limitation, which can be approximately written in the form:

[image] (26) [image] (26)

gdje su HU(V(i-1)) i HU(V(i)) kote gornje vode u funkciji volumena vode gornje akumulacije 6 respektivno te HL(W(i-1)) i HL(W(i)) kote gornje vode u funkciji volumena vode (W(i-1) i W(i)) donje akumulacije 10 respektivno, a HF predstavlja linijske i lokalne hidrodinamičke gubitke u sustavu 5 i 7. where HU(V(i-1)) and HU(V(i)) are the elevations of the upper water as a function of the water volume of the upper reservoir 6, respectively, and HL(W(i-1)) and HL(W(i)) are the elevations of the upper of water as a function of water volume (W(i-1) and W(i)) of lower reservoir 10 respectively, and HF represents linear and local hydrodynamic losses in system 5 and 7.

E) Određivanje nazivne električne snage fotonaponske elektrane 1 E) Determination of the nominal electric power of the photovoltaic power plant 1

U sustavnom pristupu problemu određivanja optimalne nazivne električne snage fotonaponske elektrane 1, potrebno je preoblikovati jed. (5) u jed. (6), kako bi se njome iskazala neposredna ovisnost o količini vode koja se pumpa. Međutim, da bi se povezale i obuhvatile i karakteristike ostalih komponenti u sustavu potrebno je najprije uvrstiti jednadžbu (26) u jed. (6), zatim se umjesto faktora neprilagođenja fm u jed. (6) može koristiti efikasnost invertera 2, ηI , kojom se može obuhvatiti efikasnost kompletnog elektroničkog sustava za prilagođenje snage tereta karakteristikama fotonaponskog generatora 1, te združivanjem te efikasnosti s efikasnošću pumpnog agregata 3 i ), ηMP , u jednu efikasnost ηMPI i njenim uvrštavanjem u jednadžbu (6), može se dobiti konačna relacija za proračun nazivne električne snage fotonaponske elektrane 1: In a systematic approach to the problem of determining the optimal nominal electrical power of photovoltaic power plant 1, it is necessary to reformulate Eq. (5) in Eq. (6), in order to express the direct dependence on the amount of water being pumped. However, in order to connect and include the characteristics of other components in the system, it is necessary to first include equation (26) in Eq. (6), then instead of the non-adjustment factor fm in Eq. (6) can use the efficiency of the inverter 2, ηI , which can include the efficiency of the complete electronic system for adapting the load power to the characteristics of the photovoltaic generator 1, and by combining that efficiency with the efficiency of the pump unit 3 i ), ηMP , into one efficiency ηMPI and including it in equation (6), the final relation can be obtained for the calculation of the nominal electric power of photovoltaic power plant 1:

[image] (27) [image] (27)

u kojoj su sve veličine već opisane. in which all sizes are already described.

U ovakvom pristupu se za zadane izlazne količine vode QPV(i) (diskretizirane vrijednosti kontrolne varijable), jednadžbom (27) proračunavaju vrijednosti nazivne električne snage. In this approach, for given water output quantities QPV(i) (discretized values of the control variable), the nominal electric power values are calculated using equation (27).

Navedenim načinom su preko QPV(i), koja predstavlja izlaznu količinu vode iz fotonaponske elektrane 1, a ujedno i ulaznu količinu vode u gornju akumulaciju 6, povezane potrebe za vodom (električnom energijom) u onim peridima kada je nema dovoljno u akumulaciji 6 i mogućnosti njihovog pokrivanja fotonaponskom elektranom 1. Naime, QPV(i) je jednadžbom vodne bilance (10) za gornju akumulaciju 6 povezana s karakteristikama akumulacije 6, stanja volumena vode V(i) i V(i-1) te elementima lokalne klime (dotoka QNAT(i) , oborina R(i) i evaporacije EV(i) i infiltracije INF(i)) koje determiniraju deficite vode u akumulaciji 6 i koje onda treba pokriti fotonaponskom elektranom 1. In the above way, the need for water (electricity) in those periods when there is not enough of it in the reservoir 6 and the possibility their coverage by photovoltaic power station 1. Namely, QPV(i) is connected by the water balance equation (10) for the upper reservoir 6 to the characteristics of reservoir 6, the state of the water volume V(i) and V(i-1) and the elements of the local climate (inflow QNAT (i) , precipitation R(i) and evaporation EV(i) and infiltration INF(i)) which determine water deficits in reservoir 6 and which should then be covered by photovoltaic power plant 1.

F) Matematički model F) Mathematical model

Metodologija proračuna zasniva se na dinamičkom programiranju pri čemu se koristi složena funkcija minimiziranja maksimalne električne snage fotonaponske elektrane 1. The calculation methodology is based on dynamic programming, where the complex function of minimizing the maximum electrical power of photovoltaic power plant 1 is used.

Rekurzivne formule optimizacijskog procesa putem dinamičkog programiranja, za slučaj minimiziranja maksimalne funkcije cilja, uz računanje prema naprijed, jer su poznati početni uvjeti, mogu se prikazati u obliku: Recursive formulas of the optimization process through dynamic programming, for the case of minimizing the maximum objective function, with forward calculation, because the initial conditions are known, can be presented in the form:

U konkretnom slučaju optimiranja nazivne električne snage fotonaponske elektrane 1 koja radi s hidroelektranom 8 i 9, u kojima su varijable stanja predstavljene volumenima vode u akumulaciji (6) V(i) u koraku i, odnosno V(i-1) u koraku i-1, a kontrolne varijable QPV(i) srednjim vrijednostima volumena vode koju pumpa fotonaponska elektrana 1 u koraku i, rekurzivne formule se mogu napisati u obliku: In the specific case of optimizing the rated electric power of the photovoltaic power plant 1 that works with the hydroelectric power plant 8 and 9, in which the state variables are represented by the volumes of water in the reservoir (6) V(i) in step i, or V(i-1) in step i- 1, and the control variables QPV(i) are the mean values of the volume of water pumped by photovoltaic power plant 1 in step i, the recursive formulas can be written in the form:

f(i) (V(i)) = MIN { MAX [Pel(i)( QPV(i)), f(i-1)(V(i-1)) ] } , (28) f(i) (V(i)) = MIN { MAX [Pel(i)( QPV(i)), f(i-1)(V(i-1)) ] } , (28)

QPV(i) QPV(s)

pod uvjetom jednadžbe transformacije stanja (10), proračuna nazivne električne snage Pel(i) po jednadžbi (27) koja predstavlja veličinu povrata, te uz sva spomenuta ograničenja i definirani vremenski korak i, odnosno te uz već navedene uvjete: under the condition of the state transformation equation (10), the calculation of the nominal electric power Pel(i) according to the equation (27) which represents the size of the return, and with all the mentioned restrictions and the defined time step i, that is, with the already mentioned conditions:

[image] [image]

Vrijednosti varijable stanja u promatranim vremenskim koracima V(i) i prethodnim vremenskim koracima V(i-1), te vrijednosti kontrolne varijable QPV(i), kao i povrati po pojedinim koracima Pel(i), proračunavaju se tijekom procesa. Kao izlazni rezultat dobiva se optimalna vrijednost električne snage fotonaponske elektrane 1 koja radi zajedno s hidroelektranom 8 i 9, osiguravajući tako neovisnost opskrbe određenog konzuma tijekom promatranog perioda. Skup jednadžbi (29) predstavljaju matematički model određivanja optimalne nazivne snage fotonaponske elektrane 1 koja radi zajedno s hidroakumulacijom 6. The values of the state variable in the observed time steps V(i) and previous time steps V(i-1), and the values of the control variable QPV(i), as well as the returns per individual steps Pel(i), are calculated during the process. As an output result, the optimal value of the electrical power of photovoltaic power plant 1 is obtained, which works together with hydropower plants 8 and 9, thus ensuring the independence of the supply of a certain consumer during the observed period. The set of equations (29) represent a mathematical model for determining the optimal nominal power of the photovoltaic power plant 1 working together with the hydro storage 6.

G) Realizacija izuma G) Realization of the invention

U svrhu detaljnog opisa konkretnog načina ostvarivanja ovog izuma Solarne hidroelektrane model je primijenjen na napajanje Otoka Visa i susjednih manjih otoka. Pri tome su korišteni ulazni podaci o potrošnji električne energije tijekom jedne godine (2007), a koji su dobiveni od strane Elektrodalmacije Split (godišnja suma iznosi 18047.48 MVAh). Ukupna manometarska visina dizanja je uzeta u iznosu od HTE = 215 m. Također, uzeti su i klimatološki podaci, tj, podaci o Sunčevom zračenju ES (kW/m2dan), temperaturi zraka Ta (0C/dan), oborinama R (mm/dan) i evaporaciji EV (mm/dan). Svi ovi podaci dobiveni su od Državnog hidrometeorološkog zavoda Hrvatske, za mjerenja od 1995 – 2006. godine (dok je za oborine taj podatak od 1981). Obzirom da na Otoku Visu nema ulaznih prirodnih dotoka pripadajućeg sliva u akumulaciju, ta veličina nije uzeta u razmatranje (QNAT=0). Zbog pretpostavke da će se graditi akumulacija 6 s nepropusnim folijama, veličina infiltracije također nije uzeta u račun (INF=0). For the purpose of a detailed description of the concrete way of realizing this invention of the Solar Hydroelectric Power Plant, the model was applied to the power supply of the Island of Vis and neighboring smaller islands. In doing so, input data on electricity consumption during one year (2007) were used, which were obtained by Elektrodalmacija Split (annual sum is 18047.48 MVAh). The total manometric lifting height was taken in the amount of HTE = 215 m. Also, climatological data was taken, i.e. data on solar radiation ES (kW/m2day), air temperature Ta (0C/day), precipitation R (mm/day ) and evaporation EV (mm/day). All these data were obtained from the Croatian Hydrometeorological Institute, for measurements from 1995 - 2006 (while for precipitation, this data is from 1981). Given that there are no natural inflows of the associated watershed into the reservoir on the island of Vis, this size was not taken into consideration (QNAT=0). Due to the assumption that reservoir 6 will be built with impermeable foils, the size of infiltration is also not taken into account (INF=0).

Uz navedeno, važan podatak je i volumen akumulacije vode 6. Ona je za potrebe potpune energetske neovisnosti (kontinuiranog napajanja konzuma kroz cijelu godinu) određuje na osnovi vršne potrošnje energije i najdužeg vremena koje se očekuje da će fotonaponska elektrana 1 biti izvan pogona. Na osnovi podataka da bi najveća (vršna) potrošnja vode (energije) iz akumulacije 6 mogla iznositi 166.233 m3/dan te nesmetano napajanje potrošača električnom energijom u duljini od 3 do 4 mjeseca, dobiva se vrijednost ukupnog volumena akumulacije 6 od oko 20.000.000 m3, ili 20 hm3. Dakle, u modelu se računalo s akumulacijom 6 prosječne površine 1500x700 m (oko 100 ha, što je važan podatak za proračun količine oborina i evaporacije) te prosječnom dubinom od 20 m. Radi se o plitkoj akumulaciji 6 u kojoj promjene razine vode značajno ne utječu na veličinu vodne površine. In addition to the above, the volume of water accumulation 6 is also important. For the purposes of complete energy independence (continuous supply of consumers throughout the year), it is determined on the basis of peak energy consumption and the longest time that photovoltaic power plant 1 is expected to be out of operation. Based on data that the highest (peak) consumption of water (energy) from reservoir 6 could amount to 166,233 m3/day and uninterrupted supply of electricity to consumers for 3 to 4 months, the value of the total volume of reservoir 6 is about 20,000,000 m3 , or 20 hm3. So, in the model, reservoir 6 was calculated with an average surface of 1500x700 m (about 100 ha, which is important information for calculating the amount of precipitation and evaporation) and an average depth of 20 m. It is a shallow reservoir 6 in which changes in the water level do not significantly affect on the size of the water surface.

Također, važan podatak je i ukupna manometarska visina dizanja vode koja u tzv. pumpnom radu (kada fotonaponska elektrana 1 ispumpava vodu iz mora ili podzemne vode 10 u akumulaciju 6), za konkretan slučaj iznosi oko 235 m. Also, important information is the total manometric height of the water rise, which in the so-called pumping operation (when the photovoltaic power plant 1 pumps water from the sea or underground water 10 into the reservoir 6), for a specific case it is about 235 m.

Dakle, Solarna hidroelektrana za potrebe kontinuiranog napajanja Otoka Visa bi trebala biti vršne snage Pel* = 41 MWp. Za snagu PV elektrane od 41 MWp (41×100 kWp), uz efikasnost fotonaponskog generatora 1 od ηoc=16% u referentnim uvjetima, potrebno je predvidjeti polje kolektora od 250.000 m2 (≈ 25 ha), odnosno oko 1250x200 m2. Therefore, the Solar hydropower plant for the continuous power supply of the Island of Vis should have a peak power of Pel* = 41 MWp. For the power of the PV power plant of 41 MWp (41×100 kWp), with the efficiency of photovoltaic generator 1 of ηoc=16% in reference conditions, it is necessary to foresee a collector field of 250,000 m2 (≈ 25 ha), i.e. about 1250x200 m2.

NAČIN PRIMJENE IZUMA METHOD OF APPLICATION OF THE INVENTION

Rješavanjem problema dnevnog i sezonskog skladištenja energije hidropotencijalom, ovim izumom su otvorene brojne mogućnosti za primjenu ovakvih sustava, a što bi moglo snažno potaknuti industriju fotonaponskih generatora 1 te značajnije doprinijeti učešću solarne energije u energetskim bilancama pojedinih zemalja. By solving the problem of daily and seasonal energy storage with hydro potential, this invention opens up numerous possibilities for the application of such systems, which could strongly stimulate the industry of photovoltaic generators 1 and significantly contribute to the participation of solar energy in the energy balances of individual countries.

To dalje znači i da bi ovakvi samoodorživi sustavi, kojima bi se osiguravala potpuna energetska neovisnost opskrbe nekog konzuma električnom energijom, odnosno maksimalno iskorištavala raspoloživa solarna energija i hidropotencijal na nekoj lokaciji, uz što manji utjecaj na okoliš, mogli imati sigurnu budućnost. This further means that such self-sustainable systems, which would ensure complete energy independence of the supply of electricity to a consumer, i.e. make maximum use of the available solar energy and hydro potential in a certain location, with as little impact on the environment as possible, could have a secure future.

POPIS POZIVNIH OZNAKA I SIMBOLA LIST OF CALL SIGNS AND SYMBOLS

1) Solarna fotonaponska elektrana (fotonaponski generatori), 1) Solar photovoltaic power plant (photovoltaic generators),

2) Inverteri (pretvarači istosmjerne u izmjeničnu struju združeni s tzv. tragačima maksimalne snage), 2) Inverters (direct current to alternating current converters combined with so-called maximum power trackers),

3) Elektromotor, 3) Electric motor,

4) Pumpa, 4) Pump,

5) Cjevovod kojim se voda s gornje kote donje vode diže u gornju akumulaciju, 5) Pipeline through which water rises from the upper level of the lower water to the upper reservoir,

6) Gornja akumulacija, 6) Upper reservoir,

7) Cjevovod kojim se voda iz gornje akumulacije spušta prema gornjoj koti donje vode, 7) The pipeline through which the water from the upper reservoir descends towards the upper level of the lower water,

8) Turbina, 8) Turbine,

9) Generator, 9) Generator,

10) Donja akumulacija (more, velika rijeka, aqvifer itd.), 10) Lower reservoir (sea, large river, aquifer, etc.),

LISTA SIMBOLA LIST OF SYMBOLS

• :Eel(HE) – neto električna energija koju proizvodi HE (VAs); • :Eel(HE) – net electrical energy produced by HE (VAs);

• Eel(MP) – električna energija koju fotonaponska elektrana predaje pumpnom agregatu (Ws); • Eel(MP) – electrical energy that the photovoltaic power plant delivers to the pumping unit (Ws);

• Eel(overhead) – električna energija koju hidroelektrana predaje u električnu mrežu (Ws); • Eel (overhead) – electrical energy that the hydroelectric power plant delivers to the electrical network (Ws);

• Eel(PV) – ukupna električna energija koju fotonaponska elektrana proizvodi (Ws); • Eel(PV) – total electrical energy produced by the photovoltaic power plant (Ws);

• EH – hidraulička energija (Ws), • EH – hydraulic energy (Ws),

• EH(accumulation) – raspoloživa hidraulička energija u gornjoj akumulaciji (Ws); • EH(accumulation) – available hydraulic energy in the upper accumulation (Ws);

• EH(brutto) – ukupna hidroenergija koju generira neka akumulacija (Ws); • EH (gross) – total hydropower generated by some reservoir (Ws);

• EH(IN) – hidraulička energija dotoka vode (Ws); • EH(IN) – hydraulic energy of water inflow (Ws);

• EH(losses) – gubici hidraulučke energije (Ws); • EH(losses) – losses of hydraulic energy (Ws);

• EH(losses,accumulated) – gubici hidrauličke energije u gornjoj akumulaciji (Ws); • EH(losses,accumulated) – losses of hydraulic energy in the upper accumulation (Ws);

• EH(losses,intake) – gubici hidrauličke energije prilikom zahvata vode (Ws); • EH(losses, intake) – losses of hydraulic energy during water intake (Ws);

• Es(i) – srednje vrijednosti Sunčevog zračenja na horizontalnu plohu u vremenskom periodu i (terestičko zračenje) (kWh/m2); • Es(i) – mean values of solar radiation on a horizontal surface in time period i (terrestrial radiation) (kWh/m2);

• EV(i) – evaporacija u vremenskom periodu i (mm); • EV(i) – evaporation in time period i (mm);

• fm – faktor prilagođenja fotonaponskog generatora karakteristikama tereta; • fm – adjustment factor of the photovoltaic generator to the characteristics of the load;

• g– gravitacijska konstanta (9.81 m/s2); • g – gravitational constant (9.81 m/s2);

• H – općenito visinska razlika između donje i gornje vode (m); • H – generally height difference between lower and upper water (m);

• HDIF – razlika donjeg nivoa gornje akumulacije i gornjeg nivoa donje akumulacije (m); • HDIF – difference between the lower level of the upper reservoir and the upper level of the lower reservoir (m);

• HF – linijski i lokalni hidrodinamički gubici u sustavu (m); • HF – linear and local hydrodynamic losses in the system (m);

• HL – kota gornje vode donje akumulacije (m); • HL – elevation of the upper water of the lower reservoir (m);

• Hn – netto raspoloživi pad (m); • Hn – net available drop (m);

• HTE – ukupna visina (m); • HTE – total height (m);

• HU – kota gornje vode (m); • HU – upper water level (m);

• i – vremenski period (inkrement); • i – time period (increment);

• INF(i) – infiltracija in time stage i (mm); • INF(i) – infiltration in time stage i (mm);

• N – total number of time stages i; • N – total number of time stages i;

• nd(i) – broj dana u vremenskom periodu i; • nd(i) – number of days in time period i;

• Pel(i) – nominalna električna snaga fotonaponskog generatora, tj, fotonaponske elektrane u vremenskom periodu i (W); • Pel(i) – nominal electric power of the photovoltaic generator, that is, the photovoltaic power plant in time period i (W);

• PH(brutto) – ukupna snaga hidroakumulacije (W); • PH (gross) – total hydroaccumulation power (W);

• Q - općenito protok vode (m3/s); • Q - general water flow (m3/s);

• Q(inflow) - svi dotjecaji vode na zahvat (m3); • Q(inflow) - all water inflows to the intake (m3);

• QMAX – maksimalna vrijednost vode koju može ispumpati postrojenje motor/pumpa u određenom periodu (m3); • QMAX – maximum value of water that can be pumped out by the engine/pump plant in a certain period (m3);

• QNAT(i) – prirodni dotok iz pripadajućeg sliva in time stage i (m3); • QNAT(i) – natural inflow from the associated watershed in time stage i (m3);

• QPV(i) – voda koju fotonaponska elektrana pumpa u gornju akumulaciju (varijabla odlučivanja u vremenskom periodu i) (m3); • QPV(i) – water pumped by the photovoltaic power plant into the upper reservoir (decision variable in time period i) (m3);

• QTG(i) – količina vode koja se odvodi na turbine in time stage i (m3); • QTG(i) – amount of water that is drained to turbines in time stage i (m3);

• R(i) – ukupne oborine u vremenskom periodu i (mm); • R(i) – total precipitation in time period i (mm);

• T0 – referentna temperatura fotonaponkskih ćelija (generatora) (250C); • T0 – reference temperature of photovoltaic cells (generator) (250C);

• Ta(i) – temperatura okoline u vremenskom periodu i (0C); • Ta(i) – ambient temperature in time period i (0C);

• Tcell(i) – temperatura fotonaponskog generatora u vremenskom periodu i (0C); • Tcell(i) – temperature of the photovoltaic generator in time period i (0C);

• V – općenito volumen vode u akumulaciji (m3); • V – general volume of water in the reservoir (m3);

• V(i) – volumen gornje akumulacije u vremenskom periodu i (m3); • V(i) – volume of the upper reservoir in time period i (m3);

• V(i-1) – volumen gornje akumualcije u vremenskom periodu i-1; • V(i-1) – upper accumulation volume in time period i-1;

• V(losses) – ukupni gubici vode u gornjoj akumulaciji (m3); • V(losses) – total water losses in the upper reservoir (m3);

• V(losses,accumulated) – gubici vode u gornjoj akumulaciji (m3); • V(losses,accumulated) – water losses in the upper reservoir (m3);

• V(losses,intake) – gubici vode prilikom zahvata vode (m3); • V(losses, intake) – water losses during water intake (m3);

• Vin – volumen vode koji ulazi u gornju akumulaciju (m3); • Vin – volume of water entering the upper reservoir (m3);

• VMAX – makismalni volumen gornje akumulacije (m3); • VMAX – maximum volume of the upper reservoir (m3);

• VMIN – minimalni volumen gornje akumulacije (m3); • VMIN – minimum volume of the upper reservoir (m3);

• VN – volumen gornje akumulacije u zadnjem koraku (m3); • VN – volume of the upper reservoir in the last step (m3);

• Vout – volumen vode koji odlazi iz gornje akumulacije(m3); • Vout – volume of water leaving the upper reservoir (m3);

• W(i) – volumen donje akumulacije u vremenskom periodu i (m3); • W(i) – volume of the lower reservoir in time period i (m3);

• W(i-1) – volumen donje akumulacije u vremenskom periodu i-1 (m3); • W(i-1) – volume of the lower reservoir in time period i-1 (m3);

• αc – temperaturni koeficijent PV ćelija (generatora) (0C-1); • αc – temperature coefficient of PV cells (generator) (0C-1);

• ηHE – efikasnost hidroelektrane (%); • ηHE – hydropower plant efficiency (%);

• ηI – efikasnost invertera (%); • ηI – inverter efficiency (%);

• ηMP – efikasnost sklopa motora i pumpe (%); • ηMP – efficiency of the motor and pump assembly (%);

• ηMPI – efikasnost motora, pumpe i invertera (%); • ηMPI – motor, pump and inverter efficiency (%);

• ηoc – nominalna efiksnost fotonaponskog generatora (%); • ηoc – nominal efficiency of the photovoltaic generator (%);

• ηS- efikasnost iskorištavanja solarne energije od strane pumpnog agregata (%); • ηS - efficiency of solar energy utilization by the pump unit (%);

• ηTG – ukupna efikasnost sklopa turbine i generatora (%); • ηTG – total efficiency of the turbine and generator assembly (%);

• ρ – gustoća vode (1000 kg/m3); • ρ – density of water (1000 kg/m3);

Claims (6)

1. Solarna hidroelektrana, karakterizirana time, sastoji se od fotonaponskog generatora (1), invertera (2), elektromotora (3), pumpe (4), jedne ili više akumulacija vode (6 i 10), cjevovoda (5) za prepumpavanje vode iz donje akumulacije (10) u gornju (6), cjevovoda (7) kojim se voda pušta iz gornje (6) u donju akumulaciju (10), turbine (8) i generatora (9).1. The solar hydroelectric power plant, characterized by it, consists of a photovoltaic generator (1), an inverter (2), an electric motor (3), a pump (4), one or more water reservoirs (6 and 10), pipelines (5) for water pumping from the lower reservoir (10) to the upper one (6), pipeline (7) through which water is released from the upper (6) to the lower reservoir (10), turbine (8) and generator (9). 2. Solarna hidroelektrana prema 1. zahtjevu, karakterizirana time, da služi za kontinuiranu opskrbu električnom energijom nekog konzuma. 2. Solar hydroelectric power plant according to the 1st requirement, characterized by the fact that it serves for the continuous supply of electricity to a consumer. 3. Solarna hidroelektrana prema zahtjevu 1 i 2, karakterizirana time, da ima gornju (6) i donju (10) akumulaciju otvorenima, predstavlja tzv. otvoreni tip Solarne hidroelektrane.3. The solar hydropower plant according to requirements 1 and 2, characterized by the fact that it has the upper (6) and lower (10) reservoirs open, represents the so-called open type Solar hydroelectric power plant. 4. Solarna hidroelektrana prema zahtjevu 1 i 2, karakterizirana time, da ima gornju (6) i donju (10) akumulaciju zatvorenima, predstavlja tzv. zatvoreni tip Solarne hidroelektrane.4. The solar hydropower plant according to claim 1 and 2, characterized by the fact that it has the upper (6) and lower (10) closed reservoirs, represents the so-called closed type Solar hydroelectric power plant. 5. Solarna hidroelektrana prema zahtjevu 1 i 2, karakterizirana time, da ima jednu otvorenu (6 ili 10), a jednu zatvorenu (6 ili 10) akumulaciju, predstavlja tzv. kombinirani tip Solarne hidroelektrane.5. The solar hydropower plant according to claim 1 and 2, characterized by having one open (6 or 10) and one closed (6 or 10) reservoir, represents the so-called combined type of Solar hydroelectric power plant. 6. Solarna hidroelektrana, prema zahtjevu 1-5, karakterizirane time, da se veličina fotonaponskog generatora (1) određuje na osnovi prikazanog matematičkog modela. 6. Solar hydroelectric power plant, according to claim 1-5, characterized by the fact that the size of the photovoltaic generator (1) is determined on the basis of the presented mathematical model.
HR20080132A 2008-03-25 2008-03-25 Photovoltaic power plant HRPK20080132B3 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
HR20080132A HRPK20080132B3 (en) 2008-03-25 2008-03-25 Photovoltaic power plant
PCT/HR2009/000007 WO2009118572A1 (en) 2008-03-25 2009-03-06 Solar hydro electric power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
HR20080132A HRPK20080132B3 (en) 2008-03-25 2008-03-25 Photovoltaic power plant

Publications (2)

Publication Number Publication Date
HRP20080132A2 true HRP20080132A2 (en) 2009-09-30
HRPK20080132B3 HRPK20080132B3 (en) 2010-12-31

Family

ID=40942387

Family Applications (1)

Application Number Title Priority Date Filing Date
HR20080132A HRPK20080132B3 (en) 2008-03-25 2008-03-25 Photovoltaic power plant

Country Status (2)

Country Link
HR (1) HRPK20080132B3 (en)
WO (1) WO2009118572A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012053988A2 (en) 2010-10-19 2012-04-26 Mitja Koprivsek Device for producing and accumulating electricity

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1403196B1 (en) 2010-12-03 2013-10-15 Colliva MULTIPURPOSE PLANT.
HRP20110536A2 (en) 2011-07-19 2013-01-31 Zvonimir Glasnović Solar thermal hydroelectric power plant with direct driven pump system
HRPK20110835B3 (en) 2011-11-14 2014-08-01 Zvonimir Glasnović Solar termal hydro electric powerplant for simultaneous production energy and drinking water
FR2994465A1 (en) * 2012-08-07 2014-02-14 Stephane Marius Faure Electrical energy storage device for use in residential building, has turbine coupled to electricity generator for forming watertight hydroelectric group established by drilling at bottom of electric pump
EP2696064A3 (en) * 2012-08-10 2015-10-07 Klaus Sixt Water supply system and method for operating a water supply system
CN103696593B (en) * 2013-12-30 2015-12-09 贵州绿卡能科技实业有限公司 A kind of mountain road maintenance station house
EP3146200B8 (en) * 2014-05-15 2018-12-19 Ghini, Gianfranco Multipurpose powerplant comprising tidal and solar energy generation
CN107002827B (en) * 2014-10-30 2019-08-30 尚帕提·罗摩·拉朱 A kind of instant energy resource system of KVSV
CN106245945A (en) * 2016-08-22 2016-12-21 安徽瑞宏信息科技有限公司 Intelligent unattended equipment room
DE102018104518A1 (en) 2018-02-28 2019-08-29 Voith Patent Gmbh Combined power plant and method of operation
AT17687U1 (en) * 2019-11-14 2022-11-15 Martin Puschl Dipl Ing Methods for generating and storing energy

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19720700A1 (en) * 1997-05-16 1998-11-19 Arno Hoeffken Electrical energy storage method using potential energy
DE10001618A1 (en) * 1999-11-16 2001-07-19 Andre Meuleman Compact power center has unit-type thermal power generator with rotating medium voltage transformer with adjacent medium and low voltage windings as generator and motor windings
DE10123240A1 (en) * 2000-01-22 2002-11-14 Andre Meuleman Compact power plant with water tower-like structure
US6434942B1 (en) * 2001-09-20 2002-08-20 Walter T. Charlton Building, or other self-supporting structure, incorporating multi-stage system for energy generation
WO2004094816A1 (en) * 2003-04-22 2004-11-04 Assad Beshara Assad Plant for generation of electricity from force of gravity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012053988A2 (en) 2010-10-19 2012-04-26 Mitja Koprivsek Device for producing and accumulating electricity

Also Published As

Publication number Publication date
HRPK20080132B3 (en) 2010-12-31
WO2009118572A1 (en) 2009-10-01

Similar Documents

Publication Publication Date Title
HRP20080132A2 (en) Photovoltaic power plant
Liu et al. Evaluating the benefits of integrating floating photovoltaic and pumped storage power system
Wang et al. Optimal planning of a 100% renewable energy island supply system based on the integration of a concentrating solar power plant and desalination units
Verma et al. Solar PV powered water pumping system–A review
Kusakana Optimal scheduling for distributed hybrid system with pumped hydro storage
Bueno et al. Wind powered pumped hydro storage systems, a means of increasing the penetration of renewable energy in the Canary Islands
Glasnovic et al. The features of sustainable solar hydroelectric power plant
Manfrida et al. Seawater pumping as an electricity storage solution for photovoltaic energy systems
Glasnović et al. A model for optimal sizing of solar thermal hydroelectric power plant
Margeta et al. Exploitation of temporary water flow by hybrid PV-hydroelectric plant
WO2012053988A2 (en) Device for producing and accumulating electricity
Diawuo et al. Characteristic features of pumped hydro energy storage systems
Nazir Coastal power plant: a hybrid solar-hydro renewable energy technology
Thi The Evolution of Floating Solar Photovoltaics
Naqash Assessment of renewable energy potential in a region based on climatic conditions
Sukmawan et al. Technical study of developing floating photovoltaic 145 MWac power plant project in Cirata reservoir
Margeta et al. Innovative approach for achieving sustainable urban water supply system by using solar photovoltaic energy
Irshad et al. Integration and performance analysis of optimal large-scale hybrid PV and pump hydro storage system based upon floating PV for practical application
Snehith et al. Techno-Economic analysis of proposed10 MW P Floating Solar PV plant at Nagarjuna Sagar, Telangana, India: Part-1
Ibraheam et al. Solar photovoltaic water pumping system approach for electricity generation and irrigation
HRP20110536A2 (en) Solar thermal hydroelectric power plant with direct driven pump system
Al-Lababneh Utilizing solar cell systems in remote desert areas in Jordan to exploit sustainable energy for irrigation and agriculture
Koffi et al. Study and Optimization of a Hybrid Power Generation System to Power Kalakala, a Remote Locality in Northern Côte d'Ivoire.
Abos et al. A case study of a procedure to optimize the renewable energy coverage in isolated systems: an astronomical center in the North of Chile
Kasu et al. Small Scale Solar-Photovoltaic and Wind Pump-Storage Hydroelectric System for Remote Residential Applications

Legal Events

Date Code Title Description
A1OB Publication of a patent application
AKOB Publication of a request for the grant of a patent not including a substantive examination of a patent application (a consensual patent)
PKB1 Consensual patent granted
NPPZ Continued processing
NPPU Continued processing adopted
ODRP Renewal fee for the maintenance of a patent

Payment date: 20140323

Year of fee payment: 7

PBKO Lapse due to non-payment of renewal fee for consensual patent

Effective date: 20150325