HRP20110835A2 - Solar termal hydro electric powerplant for simultaneous production energy and drinking water - Google Patents

Solar termal hydro electric powerplant for simultaneous production energy and drinking water Download PDF

Info

Publication number
HRP20110835A2
HRP20110835A2 HRP20110835AA HRP20110835A HRP20110835A2 HR P20110835 A2 HRP20110835 A2 HR P20110835A2 HR P20110835A A HRP20110835A A HR P20110835AA HR P20110835 A HRP20110835 A HR P20110835A HR P20110835 A2 HRP20110835 A2 HR P20110835A2
Authority
HR
Croatia
Prior art keywords
energy
water
drinking water
power plant
solar
Prior art date
Application number
HRP20110835AA
Other languages
Croatian (hr)
Inventor
Zvonimir Glasnović
Marko Rogošić
Karmen MARGETA
Original Assignee
Zvonimir Glasnović
Marko Rogošić
Karmen MARGETA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zvonimir Glasnović, Marko Rogošić, Karmen MARGETA filed Critical Zvonimir Glasnović
Priority to HRP20110835AA priority Critical patent/HRPK20110835B3/en
Priority to PCT/HR2012/000024 priority patent/WO2013072709A2/en
Publication of HRP20110835A2 publication Critical patent/HRP20110835A2/en
Publication of HRPK20110835B3 publication Critical patent/HRPK20110835B3/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/065Devices for producing mechanical power from solar energy with solar energy concentrating means having a Rankine cycle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/0011Heating features
    • B01D1/0029Use of radiation
    • B01D1/0035Solar energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/0011Heating features
    • B01D1/0058Use of waste energy from other processes or sources, e.g. combustion gas
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/14Treatment of water, waste water, or sewage by heating by distillation or evaporation using solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/06Stations or aggregates of water-storage type, e.g. comprising a turbine and a pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/003Devices for producing mechanical power from solar energy having a Rankine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/62Application for desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/211Solar-powered water purification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/50Energy storage in industry with an added climate change mitigation effect

Abstract

Solarna termalna (ST) hidroelektrana za istovremenu proizvodnju energije i pitke vode, novi je tip elektrane koju čini modificirana reverzibilna hidroelektrana 12-14 spregnuta sa solarnom termalnom elektranom 4-8 koja koristi solarnu energiju 1 i energiju lokalnih vodnih resursa 3 te raspoloživost mora ili nečiste vode (rijeke, akvifera, itd.) 2 za istovremenu proizvodnju električne energije i pitke vode, tijekom cijele godine. Suština izuma se sastoji u tome da ST elektrana 4-8 ima otvoren termodinamički sustav 5 u koji ulazi para iz isparivača 6, dobivena isparavanjem morske vode ili druge nečiste vode pomoću toplinske energije iz solarnih termalnih kolektora 4, a izlazi pitka voda koja se skuplja u spremniku 9 ohlađena pomoću hladnjaka 10, pri čemu se istovremeno proizvodi i električna energija na generatoru 8. Kontinuitet proizvodnje električne energije omogućava rezervoar 13 koji može dnevno i sezonski skladištiti vodu, odnosno energiju, te na taj način, preko sklopa turbine i generatora 14, proizvoditi električnu energiju za potrebe nekog potrošača. Tako proizvedena električna energija koristi se i za napajanje vlastite potrošnje termodinamičkih sustava 5, ali i za napajanje električnog grijača 7 koji predaje toplinsku energiju isparivaču 6, a ovaj termodinamičkom sustavu 5, te se na taj način održava pogonska spremnost elektrane i u vrijeme prolaznih dnevnih naoblaka, ali se na taj način omogućava i proizvodnja vode i energije i u vrijeme oblačnih dana ili po noći. Novi sustav elektrana proizvodi isključivo zelenu energiju te je u cijelosti samoodrživ jer se proizvodnja energije bazira na obnovljivim resursima, odnosno solarnoj energiji 1, a proizvodnja pitke vode na raspoloživosti mora ili nečistog izvora vode 2.Solar thermal (ST) hydropower plant for simultaneous production of energy and drinking water, is a new type of power plant consisting of a modified reversible hydropower plant 12-14 coupled with solar thermal power plant 4-8 that uses solar energy 1 and local water resources 3 and the availability of sea or unclean water (rivers, aquifers, etc.) 2 for the simultaneous production of electricity and drinking water, throughout the year. The essence of the invention is that ST power plant 4-8 has an open thermodynamic system 5 which enters the steam from the evaporator 6, obtained by evaporation of seawater or other impure water by thermal energy from solar thermal collectors 4, and leaves drinking water collected in tank 9 cooled by a cooler 10, while simultaneously producing electricity on the generator 8. Continuity of electricity production allows the tank 13 which can daily and seasonally store water and energy, and thus, through the turbine and generator 14, to produce electricity for the needs of a consumer. The electricity thus produced is used to supply the own consumption of thermodynamic systems 5, but also to supply an electric heater 7 which transfers heat to the evaporator 6, and this to the thermodynamic system 5, thus maintaining the operational readiness of the power plant during passing daily clouds, but it also enables the production of water and energy during cloudy days or at night. The new power plant system produces exclusively green energy and is entirely self-sustainable because energy production is based on renewable resources, ie solar energy 1, and drinking water production is based on the availability of the sea or an unclean water source 2.

Description

Područje na koje se izum odnosi The field to which the invention relates

Ovaj izum se odnosi na novi samoodrživi i potpuno upravljivi izvor električne energije koji je sastavljen od solarne termalne elektrane i reverzibilne hidroelektrane u svrhu kontinuiranog istovremenog napajanja nekog konzuma (kuće, naselja, grada, otoka, regija, tvornica, itd.) električnom energijom iz obnovljivih izvora energije i pitkom vodom desalinizacijom ili pročišćavanjem vode koja nije za piće. Na taj način bi novi izvor energije (elektrana), koji koristi isključivo obnovljive izvore energije (solarnu energiju i energiju lokalnih vodnih resursa) i more ili nečiste izvore vode, mogao značajnije doprinijeti održivosti. This invention relates to a new self-sustaining and fully controllable source of electricity, which is composed of a solar thermal power plant and a reversible hydroelectric power plant for the purpose of continuous simultaneous supply of some consumer (house, village, city, island, region, factory, etc.) with electricity from renewable sources. energy sources and drinking water by desalination or purification of non-potable water. In this way, a new energy source (power plant), which uses exclusively renewable energy sources (solar energy and energy from local water resources) and the sea or impure water sources, could significantly contribute to sustainability.

Tehnički problem Technical problem

(za čije se rješenje traži patentna prijava) (for the solution of which a patent application is requested)

Voda i energija su temeljna dobra neophodna za nastanak života te za daljnji civilizacijski razvoj. Obzirom da preko 70% onečišćenja atmosfere ugljikovim dioksidom (i drugim stakleničkim plinovima) dolazi upravo od energetskog sektora, pri čemu to onečišćenje ima značajne negativne posljedice na klimu Zemlje (globalno zagrijavanje, itd.) te da po procjenama Svjetske zdravstvene organizacije više od milijarde ljudi nema pristup pitkoj vodi, logično je tražiti tehnološka rješenja koja bi istovremeno proizvodila i energiju i pitku vodu. Water and energy are basic goods necessary for the origin of life and for the further development of civilization. Given that over 70% of atmospheric pollution with carbon dioxide (and other greenhouse gases) comes precisely from the energy sector, whereby this pollution has significant negative consequences for the Earth's climate (global warming, etc.) and that, according to estimates by the World Health Organization, more than a billion people does not have access to drinking water, it is logical to look for technological solutions that would simultaneously produce energy and drinking water.

Korištenje solarne energije predstavlja izuzetno veliki potencijal za proizvodnju zelene energije, ali i osiguranje pitke vode postupkom desalinizacije, pri čemu je za ovaj izum interesantna pretvorba i skladištenje solarne energije u obliku gravitacijske potencijalne energije radi kontinuirane proizvodnje električne energije, kao i istovremenost proizvodnje pitke vode postpukom desalinizacije. The use of solar energy represents an extremely large potential for the production of green energy, but also for the provision of drinking water through the desalination process, while the conversion and storage of solar energy in the form of gravitational potential energy for the continuous production of electricity, as well as the simultaneous production of drinking water through the process, is of interest to this invention desalination.

Međutim, problemi većeg korištenja solarne energije su s jedne strane još uvijek vezani za relativno visoku cijenu solarnih sustava, a s druge strane za interminiranost Sunčevog zračenja. I dok se cijene solarnih termalnih sustava sve više smanjuju (pogotovo s povećanjem proizvodnje i napretkom tehnologija), najveći problem ipak ostaje problem kontinuirane proizvodnje energije, odnosno njenog skladištenja za periode kada nema dovoljno solarne energije. Naime, današnje solarne termalne (ST) elektrane ne mogu samostalno kontinuirano napajati neki konzum, nego one rade tako da samo predaju električnu energiju elektroenergetskom sustavu u vrijeme kada je raspoloživa solarna energija, dok se za proizvodnju energije, u vrijeme kada nema solarnog zračenja, koriste fosilna goriva (tzv. hibridizacija). To zapravo znači da se električna energija iz ST elektrane mora koristiti kada se i proizvodi. However, the problems of greater use of solar energy are, on the one hand, still related to the relatively high cost of solar systems, and on the other hand, to the intermittency of solar radiation. And while the prices of solar thermal systems are decreasing more and more (especially with the increase in production and technological progress), the biggest problem still remains the problem of continuous energy production, i.e. its storage for periods when there is not enough solar energy. Namely, today's solar thermal (ST) power plants cannot continuously supply a consumer on their own, but they only work by handing over electricity to the power system when solar energy is available, while for energy production, when there is no solar radiation, they are used fossil fuels (so-called hybridization). This actually means that electricity from the ST power plant must be used when it is produced.

S druge strane, ako se za pogon tehnologija za desalinizaciju koristi solarna energija, zbog spomenutog problema interminiranosti Sunčevog zračenja, također se ne može osigurati ni kontinuitet proizvodnje pitke vode. On the other hand, if solar energy is used to power the desalination technology, due to the aforementioned problem of intermittent solar radiation, the continuity of drinking water production cannot be ensured either.

Dakle, evidentan je problem nalaženja takvog tehničko-tehnološkog rješenja koje bi nadomjestilo fosilna goriva te osiguralo kontinuiranu proizodnju energije iz ST elektrane tijekom dana i cijele godine, ali tako da ona bude isključivo iz obnovljivih izvora energije te istovremenu proizvodnju pitke vode desalinizacijom ili pročišćavanjem vode koja nije za piće. Pri tome se pod konzumom može podrazumijevati samo jedna stambena jedinica (kuća), manja ili veća naselja, tvornice, otoci i gradovi koji mogu postati potpuno održivi. Therefore, the problem of finding such a technical-technological solution that would replace fossil fuels and ensure the continuous production of energy from the ST power plant during the day and throughout the year, but in such a way that it is exclusively from renewable energy sources and the simultaneous production of drinking water by desalination or purification of water that not for drinking. At the same time, consumption can mean only one housing unit (house), smaller or larger settlements, factories, islands and cities that can become fully sustainable.

Stanje tehnike State of the art

(prikaz i analiza poznatih rješenja definiranog tehničkog problema) (presentation and analysis of known solutions to a defined technical problem)

Dosadašnja patentna rješenja su uglavnom separatno rješavali problem osiguranja energije i vode, korištenjem obnovljivih izvora energije. Previous patent solutions mostly solved the problem of energy and water supply separately, using renewable energy sources.

U patentu Meuleman, 2002 (DE 101 23 240 A1), solarna energija se koristi za proizvodnju električne energije koja pumpa vodu iz donjeg u gornji spremnik, dok se ispuštanjem vode iz gornjeg u donji spremnik proizvodi električna energija, ali takvo rješenje nema nikakvu vezu s okolišem (npr. iskorištavanjem lokalnih vodnih resursa) i potpuno je neovisno o veličini potrošača. Također, u njemu se ne koristi energija iz solarnog termalnog generatora, nego energija iz fotonaposnkog generatora. In the Meuleman patent, 2002 (DE 101 23 240 A1), solar energy is used to produce electricity that pumps water from the lower to the upper tank, while draining water from the upper to the lower tank produces electricity, but such a solution has no connection with environment (e.g. using local water resources) and is completely independent of the size of the consumer. Also, it does not use energy from a solar thermal generator, but energy from a photovoltaic generator.

U patentu Charlton, 2002 (U.S. Pat. No. 6434942 B1), koristi se solarna energija za zagrijavanje vode i njeno kruženje, proizvodeći tako električnu energiju, ali je to zatvoreni termodinamički sustav koji nema nikakvo dnevno i/ili sezonsko skadištenje energije. In the Charlton patent, 2002 (U.S. Pat. No. 6434942 B1), solar energy is used to heat water and circulate it, thus producing electricity, but it is a closed thermodynamic system that does not have any daily and/or seasonal energy storage.

U patentu Van Malderen, 2007 (WO2007009196), koristi se električna energija za desalinizaciju postupkom reverzne osmoze. Međutim, ta energija je iz električne mreže, dok se solarna energija koristi za zagrijavanje ulazne morske vode. In the Van Malderen patent, 2007 (WO2007009196), electricity is used for reverse osmosis desalination. However, this energy is from the electricity grid, while solar energy is used to heat the incoming seawater.

U patentu Glasnović, Margeta, 2009 (WO2009118572), riješen je problem dnevnog i sezonskog skladištenja energije, odnosno kontinuiranog napajanja nekog konzuma energijom, ali se u njemu ne koristi solarna termalna, nego fotonaponska elektrana. In the patent Glasnović, Margeta, 2009 (WO2009118572), the problem of daily and seasonal energy storage, i.e. continuous supply of energy to a consumer, is solved, but it does not use a solar thermal, but a photovoltaic power plant.

U patentu Forslund, 2009 (WO2009113954), solarna termalna elektrana ima mogućnost skladištenja toplinske energije, ali ona ipak ne omogućava kontinuiran rad solarne elektrane u duljem periodu, a pogotovo ne tijekom cijele godine. In the Forslund patent, 2009 (WO2009113954), the solar thermal power plant has the possibility of storing thermal energy, but it still does not enable the continuous operation of the solar power plant for a long period, and especially not throughout the year.

U patentu Brenmiller, Schaal, Yossefi, 2010 (WO2010032238), solarna termalna elektrana se hibridizira s drugom elektranom koja nije solarna, pri čemu elektrana ima i spremište otpadne topline. Međutim, takvo rješenje ne može samostalno kontinuirano napajati neki konzum energijom bez te elektrane koja nije solarna. Također, ono ima klasičan zatvoreni termodiamički sustav, tako da u njemu nema mogućnosti za proizvodnju pitke vode. In the Brenmiller, Schaal, Yossefi, 2010 patent (WO2010032238), a solar thermal power plant is hybridized with another non-solar power plant, where the power plant also has waste heat storage. However, such a solution cannot independently continuously supply a consumer with energy without that non-solar power plant. Also, it has a classic closed thermodiamic system, so there is no possibility to produce drinking water in it.

U patentu Frolov, Cyrus, Bruce, 2011 (WO2011137149), solarni termalni kolektori se koriste za dobivanje pitke vode, ali taj sustav ne osigurava i potrebnu energiju potrošačima. In the patent Frolov, Cyrus, Bruce, 2011 (WO2011137149), solar thermal collectors are used to obtain drinking water, but this system does not provide the necessary energy to consumers.

U patentu Samson, Al-Mazeedi, 2011 (WO2011053925), koristi se solarna termalna elektrana koja daje energiju i koja može dati pitku vodu postupkom desalinizacije. Međutim, u tom patentnom rješenju se solarna termalna elektrana hibridizira s elektranom na konvencionalna goriva (za osiguranje kontinuiranog rada kada nema solarnog zračenja), dok se za desalinizaciju koristi otpadna toplina iz termoelektrane, odnosno energija njenog zatvorenog termodinamičkog sustava. In the Samson, Al-Mazeedi, 2011 patent (WO2011053925), a solar thermal power plant is used that provides energy and can provide potable water through a desalination process. However, in this patent solution, the solar thermal power plant is hybridized with a conventional fuel power plant (to ensure continuous operation when there is no solar radiation), while waste heat from the thermal power plant, i.e. the energy of its closed thermodynamic system, is used for desalination.

Da bi solarne termalne (ST) elektrane mogle kontinuirano napajati neki konzum energijom, one se kombiniraju, odnosno hibridiziraju s elektranama na fosilna goriva ili s dnevnim skladištima toplinske energije. Fosilna goriva osiguravaju toplinsku energiju koja je potrebna za rad elektrane tijekom noći i oblačnih dana tijekom cijele godine. Međutim, problem tog rješenja je da ono ne osigurava isključivo zelenu energiju iz ST elektrane te time i dalje predstavlja izvor onečišćenja atmosfere. Dnevna skladištenja toplinske energije s fazno promjenjivim materijalima služe za održavanje pogonske spremnosti solarne termalne elektrane uglavnom za relativno kratko vrijeme, odnosno najčešće za premošćivanje jedne noći i oblačnosti tijekom jednog dana. Dakle, dnevna skladištenja toplinske energije produžavaju rad ST elektrane, ali zbog njihovog relativno malog kapaciteta, ona ne mogu uravnotežiti višednevne nedostatke solarnog zračenja, a posebno ne sezonske viškove i manjkove solarne energije te stoga ne mogu osigurati kontinuitet napajanja isključivo zelenom energijom i snagom, tijekom cijele godine. Uz to, hibridizacija solarne termalne elektrane pomoću uskladištene električne energije, kako se to predviđa u ovom rješenju, dosad nije korišteno rješenje, nego se ta hibridizacija izvodila fosilnim gorivima (uglavnom ugljenom i prirodnim plinom). In order for solar thermal (ST) power plants to be able to continuously supply a consumer with energy, they are combined or hybridized with fossil fuel power plants or with daily thermal energy storage. Fossil fuels provide the thermal energy needed to operate the power plant during nights and cloudy days throughout the year. However, the problem with this solution is that it does not exclusively provide green energy from the ST power plant and thus continues to be a source of atmospheric pollution. Daily storage of thermal energy with phase-changing materials is used to maintain the operational readiness of the solar thermal power plant mainly for a relatively short time, i.e. most often to bridge one night and cloud cover during one day. Thus, daily storage of thermal energy prolongs the operation of the ST power plant, but due to their relatively small capacity, they cannot balance multi-day deficiencies of solar radiation, and especially not seasonal surpluses and deficits of solar energy, and therefore cannot ensure the continuity of supply exclusively with green energy and power, during whole year. In addition, the hybridization of the solar thermal power plant using stored electricity, as foreseen in this solution, has not been used so far, but this hybridization was performed with fossil fuels (mainly coal and natural gas).

S druge strane, dosadašnji postupci desalinizacije uglavnom su podrazumijevali i relativno složene i skupe tehnologije, a koje su tražile i relativno velike količine energije. Upravo je to razlog da je za desalinizaciju logično koristiti obnovljive izvore energije, odnosno solarnu energiju. On the other hand, the previous desalination processes mostly involved relatively complex and expensive technologies, which also required relatively large amounts of energy. This is precisely the reason why it is logical to use renewable energy sources, i.e. solar energy, for desalination.

Izlaganje suštine izuma Presentation of the essence of the invention

(tako da se tehnički problem i njegovo rješenje mogu razumjeti te navođenje tehničke novosti u odnosu na prethodno stanje tehnike) (so that the technical problem and its solution can be understood and the indication of technical innovation in relation to the previous state of the art)

Do sada su postojala tehnološka rješenja koja su osiguravala energiju iz obnovljivih izvora energije, kao i tehnološka rješenja za desalinizaciju. Međutim, ne postoje rješenja koja mogu tijekom dana, ili po potrebi (dakle, i po noći), istovremeno kontinuirano osiguravati i energiju iz obnovljivih izvora energije i pitku vodu postupkom desalinizacije. Until now, there were technological solutions that provided energy from renewable energy sources, as well as technological solutions for desalination. However, there are no solutions that can continuously provide both energy from renewable energy sources and drinking water through the desalination process during the day, or if necessary (therefore, also at night).

Predložena potpuno održiva Solarna termalna hidroelektrana za istovremenu proizvodnju energije i pitke vode, u osnovi se sastoji od solarne termoelektrane (ST) 4-8 i reverzibilne hidroelektrane (RHE) 12-14 koje su međusobno funkcionalno povezane tako da mogu kontinuirano opskrbljivati neki konzum električnom energijom i snagom tijekom cijele godine. U odnosu na prijašnja rješenja, ovakav hibridni sustav elektrana (ST-RHE) ima mogućnost dnevnog, ali i sezonskog skladištenja energije, odnosno izravnanja proizvodnje i potrošnje energije, ali i pitke vode za potrebe nekog konzuma. Također, pored korištenja solarne energije 1, ST-RHE sustav koristi i energiju raspoloživih vodnih resursa 3 (oborine i površinske vode), što doprinosi njenoj održivosti, odnosno ekonomičnosti jer lokalni vodni resursi generiraju dodatnu masu vode u odnosu na prepumpanu, što znači i manje potrebno ulaganje u cijeli ST-RHE sustav za istu traženu proizvodnju energije. The proposed fully sustainable Solar Thermal Hydroelectric Power Plant for the simultaneous production of energy and drinking water basically consists of a Solar Thermal Power Plant (ST) 4-8 and a Reversible Hydropower Plant (RHE) 12-14 that are functionally connected to each other so that they can continuously supply some consumer with electricity and strength throughout the year. Compared to previous solutions, this kind of hybrid power plant system (ST-RHE) has the possibility of daily and seasonal energy storage, i.e. equalizing energy production and consumption, as well as drinking water for the needs of some consumers. Also, in addition to using solar energy 1, the ST-RHE system also uses the energy of available water resources 3 (precipitation and surface water), which contributes to its sustainability, i.e. economy, because local water resources generate an additional mass of water compared to pumped water, which means less required investment in the entire ST-RHE system for the same required energy production.

ST elektrana se sastoji od solarnih termalnih kolektora 4 koji mogu biti raznih tipova i koji pretvaraju solarno zračenje 1 u toplinsku energiju koja se predaje radnom fluidu, odnosno pari ili otplinjenoj vodi termodinamičkog sustava 5 i koji onda tu toplinsku energiju najprije pretvara u mehaničku, a onda i električnu energiju na generatorima 8. The ST power plant consists of solar thermal collectors 4 which can be of various types and which convert solar radiation 1 into thermal energy which is transferred to the working fluid, i.e. steam or degassed water of the thermodynamic system 5 and which then first converts this thermal energy into mechanical, and then and electricity on generators 8.

Suštinska razlika u odnosu na dosadašnje ST elektrane je u tome da je njen termodinamički sustav 5 u ovom patentnom rješenju otvoren, a što znači da voda u njega dolazi iz mora (ili nečistog izvora vode) 2, u isparivaču 6 isparava pomoću toplinske energije solarnih kolektora 4, a zatim se ta para ili otplinjena voda pod visokim tlakom koristi u tom termidinamičkom sustavu 5 i zatim se na njegovom izlazu prikuplja u spremniku 9 te hladi u hladnjaku 10, uz pomoć morske vode 2. Voda iz spremnika 9 se onda predaje potrošačima. The essential difference compared to previous ST power plants is that its thermodynamic system 5 in this patent solution is open, which means that water comes into it from the sea (or an impure water source) 2, it evaporates in the evaporator 6 using the thermal energy of solar collectors 4, and then that steam or degassed water under high pressure is used in that thermodynamic system 5 and then at its outlet it is collected in the tank 9 and cooled in the refrigerator 10, with the help of sea water 2. The water from the tank 9 is then handed over to consumers.

Daljnja suštinska razlika u odnosu na bilo koje dosadašnje rješenje se sastoji u tome da morska voda 2 u isparivaču 6 može isparavati i uz pomoć električnog grijača 7 te na taj način osiguravati pogonsku spremnost ST elektrane u vrijeme prolaznih dnevnih naoblaka. To naravno znači i da se za to vrijeme proizvodi i pitka voda na izlazu iz termodinamičkog sustava 5 koja se skuplja u spremniku pitke vode 9, a koja se hladi hladnjakom 10. Dakle, pitka voda se osigurava i tijekom dnevnih naoblaka jer cijeli sustav radi te proizvodi i energiju. Međutim, obzirom da se rezervoar 13 reverzibilne hidroelektrane 12-14 može dimenzionirati tako da on bude sezonski spremnik vode 13, odnosno energije, to znači i da u njemu može biti dovoljno vode, odnosno energije da može napajati grijač vode 7 po potrebi (dakle i po noći) ako je nužno tada osiguravati pitku vodu. No, to znači i da se i po noći, uz osiguranje vode, osigurava i električna energija na generatoru 8 koji tu energiju može predavati u elektroenergetski sustav, ako je na njega spojen, ili je preko invertera 11 predavati sklopu motora i turbine i ponovo je vraćati u rezervoar 13. Sve to naravno stvara određene gubitke energije u sustavu, ali ako je prioritet dobivanja pitke vode za određene potrošače, onda je njihov značaj manji, tim prije jer su oni relativno mali i jer rezervoar vode 13 može biti vrlo veliki. A further essential difference compared to any previous solution consists in the fact that seawater 2 in the evaporator 6 can also evaporate with the help of an electric heater 7 and in this way ensure the operational readiness of the ST power plant during passing daytime clouds. Of course, this also means that drinking water is also produced during this time at the output of the thermodynamic system 5, which is collected in the drinking water tank 9, and which is cooled by the refrigerator 10. Therefore, drinking water is also provided during daytime clouds because the entire system works and it also produces energy. However, given that the reservoir 13 of the reversible hydroelectric power plant 12-14 can be dimensioned so that it is a seasonal reservoir of water 13, i.e. energy, this also means that there can be enough water, i.e. energy in it to power the water heater 7 as needed (therefore at night) if it is necessary to provide drinking water. However, this also means that even at night, in addition to providing water, electricity is also provided by the generator 8, which can transfer that energy to the power system, if it is connected to it, or via the inverter 11 to the engine and turbine assembly and it is again return to reservoir 13. Of course, all this creates certain energy losses in the system, but if the priority is to obtain drinking water for certain consumers, then their importance is less, especially because they are relatively small and because water reservoir 13 can be very large.

Voda u rezervoaru 13 se akumulira radi kontinuirane proizvodnje energije na spregnutoj reverzibilnoj hidroelektrani (uključujući periode kada nema nema Sunčevog zračenja), odnosno na sklopu turbine i generatora (TG) 14 kojom se onda može kontinuirano napajati neki konzum električnom energijom. Na ovaj način rezervoar 13 služi za dnevno i sezonsko skladištenje energije dobivene tijekom sunčana vremena od strane ST elektrane 4-8. The water in the reservoir 13 is accumulated for the continuous production of energy at the coupled reversible hydroelectric power plant (including periods when there is no solar radiation), i.e. at the turbine and generator assembly (TG) 14, which can then continuously supply a consumer with electricity. In this way, reservoir 13 serves for daily and seasonal storage of energy obtained during sunny weather by ST power plant 4-8.

Uz korištenje energije Sunca, patentno rješenje omogućava korištenje i raspoloživih vodnih resursa (površinskih voda, oborina, ali i prikupljanjem vode od umjetnih oborina) 3. Naime, ST-RHE sustav omogućava paralelno korištenje energije Sunca i raspoloživih vodnih resursa 3, pri čemu veći dotoci vode u rezervoar 13, mogu smanjiti veličinu ST elektrane za iste uvjete opskrbe energijom. In addition to the use of solar energy, the patented solution enables the use of available water resources (surface water, precipitation, but also by collecting water from artificial precipitation) 3. Namely, the ST-RHE system enables the parallel use of solar energy and available water resources 3, with larger inflows of water into reservoir 13, can reduce the size of the ST power plant for the same energy supply conditions.

Predložena elektrana ima svoje velike prednosti jer se radi o lokalnom izvoru električne energije koji za svoj rad ne troši resurse, ne zahtjeva nikakav dovod sirovina niti značajniji prijenos energije do potrošača. To znači da se i energija i voda mogu istovremeno proizvoditi i trošiti na izoliranim, od prometnih i opskrbnih pravaca udaljnim lokacijama (otocima i slično). Na taj način su manji troškovi izgradnje prijenosnih sustava te gubici energije koji se dešavaju zbog prijenosa energije. Na tim lokacijama elektrana može biti već danas konkurentna klasičnim izvorima energije jer ne zahtjeva izgradnju i pogonske troškove vezane uz transporte, niti energije, a niti sirovina za proizvodnju energije i vode. Elektrana se može izgraditi na svim lokacijama na kojima postoje vodni resursi 3 koji dotječu u rezervoar 13, kao i vodni resursi koji se koriste za proizvodnju pitke vode (more, nečisti izvori vode) 2 te odgovarajući hidropotencijal. Korištenjem ST elektrane 4-8 i lokalne topografije terena, taj se potencijal može stvoriti na umjetni način. The proposed power plant has its great advantages because it is a local source of electricity that does not consume resources for its operation, does not require any supply of raw materials or significant energy transmission to consumers. This means that both energy and water can be simultaneously produced and consumed in remote locations isolated from traffic and supply routes (islands and the like). In this way, the costs of building transmission systems and the energy losses that occur due to energy transmission are lower. In these locations, the power plant can already be competitive with classic energy sources because it does not require construction and operating costs related to transportation, nor energy, nor raw materials for the production of energy and water. The power plant can be built in all locations where there are water resources 3 that flow into the reservoir 13, as well as water resources used for the production of drinking water (sea, impure water sources) 2 and the corresponding hydro potential. By using ST power plant 4-8 and the local topography of the terrain, this potential can be created artificially.

Kratak opis crteža Brief description of the drawing

Popratni crtež koji je uključen u opis i koji čini dio opisa izuma, ilustrira dosad razmatran najbolji način za izvedbu izuma i pomažu kod objašnjavanja osnovnih principa izuma. The accompanying drawings, which are included in the description and form part of the description of the invention, illustrate the best mode of carrying out the invention thus far considered and assist in explaining the basic principles of the invention.

Sl. 1. Shema Solarne termalne hidroelektrane za istovremenu proizvodnju energije i pitke vode. Sl. 1. Solar thermal hydropower plant scheme for simultaneous production of energy and drinking water.

Detaljan opis najmanje jednog od načina ostvarivanja izuma A detailed description of at least one way of realizing the invention

U ovom dijelu će se uputiti do u pojedinosti ovog pretpostavljenog ostvarenja izuma, čiji je osnovni primjer ilustriran pridruženim crtežom. In this part, we will refer to the details of this assumed embodiment of the invention, the basic example of which is illustrated in the attached drawing.

Solarna termalna hidroelektrana za istovremenu proizvodnju energije i pitke vode sastoji se od sljedećih elemenata: The solar thermal hydropower plant for the simultaneous production of energy and drinking water consists of the following elements:

1. Solarno zračenje; 1. Solar radiation;

2. More ili nečisti izvori vode (velika rijeka, aqvifer, itd.). 2. Sea or impure water sources (big river, aqvifer, etc.).

3. Raspoloživi prirodni vodni resursi gornjeg rezervoara; 3. Available natural water resources of the upper reservoir;

4. Solarni termalni kolektori; 4. Solar thermal collectors;

5. Termodinamički sustav; 5. Thermodynamic system;

6. Isparivač vode; 6. Water vaporizer;

7. Električni grijač 7. Electric heater

8. Generator; 8. Generator;

9. Spremnik pitke vode; 9. Potable water tank;

10. Hladnjak; 10. Refrigerator;

11. Inverter; 11. Inverter;

12. Sklop motora i pumpe (MP); 12. Motor and pump assembly (MP);

13. Rezervoar (novi ili postojeći) ili spremnik vode/energije; 13. Reservoir (new or existing) or water/energy tank;

14. Sklop turbine i generatora (TG) hidroelektrane. 14. Assembly of the turbine and generator (TG) of the hydroelectric power plant.

U slučaju korištenja postojeće hidroelektrane dijelovi 13 i 14 se ne grade već se koriste raspoloživi objekti postojeće hidroelektrane. In the case of using the existing hydroelectric power plant, parts 13 and 14 are not built, but the available facilities of the existing hydroelectric power plant are used.

Solarna termalna hidroelektrana radi tako da se solarna energija 1 iz okoliša, u solarnim termalnim kolektorima 4, prevara u toplinsku energiju koja se predaje radnom fluidu termodinamičkog sustava 5, a koji koristi paru iz isparivača vode 6 za svoj rad i čijom se kondenzacijom na izlazu iz tog sustava 5 dobiva čista, pitka voda koja se sprema u spremniku 9 i hladi hladnjakom 10. Termodinamički sustav 5 pokreće generator 8 koji proizvodi električnu energiju, a koja se preko invertera 11, prvenstveno koristi za pokretanje sklopa motora i pumpe (MP) 12, dok se viškovi električne energije iz generatora 8 direktno predaju regionalnom elektroenergetskom sustavu, ako je on na njega spojen. Sklop motora i pumpe (MP) 12 pumpa vodu iz mora (ili nečistog izvora vode) 2 u rezervoar 13 gdje se ona dnevno i sezonski skladišti te po potrebi koristi tako da se ispušta prema sklopu turbine i generatora 14, proizvodeći pri tome električnu energiju koja se predaje potrošačima nekog lokalnog konzuma. The solar thermal hydroelectric power plant works in such a way that solar energy 1 from the environment, in solar thermal collectors 4, is converted into heat energy that is transferred to the working fluid of the thermodynamic system 5, which uses steam from the water evaporator 6 for its work and whose condensation at the exit from this system 5 receives clean, potable water, which is stored in a tank 9 and cooled by a refrigerator 10. The thermodynamic system 5 drives a generator 8 that produces electricity, which is primarily used via the inverter 11 to start the motor and pump assembly (MP) 12, while surplus electricity from generator 8 is directly delivered to the regional power system, if it is connected to it. The motor and pump assembly (MP) 12 pumps water from the sea (or an impure water source) 2 into the reservoir 13, where it is stored daily and seasonally, and is used as needed so that it is discharged towards the turbine and generator assembly 14, thereby producing electricity that is handed over to consumers of a local consumer.

Nakon što se u sklopu turbine i generatora 14 proizvede električna energija, voda se ispušta do mora (ili nekog drugog nečistog izvora vode: velike rijeke, akvifera i sl.) 2. Električna energija koju proizvodi sklop turbine i generatora (TG) 14 koristi se za kontinuirano napajanje potrošača i vlastitu potrošnju termodinamičkog sustava 5. Međutim, ta električna energija se koristi i u svrhu održavanja pogonske spremnosti elektrane u vrijeme prolaznih dnevnih naoblaka jer se njome napaja električni grijač 7, uz pomoć kojega se u isparivaču 6 isparava morska voda, a tako razvijena vodena para prenosi toplinsku energiju u termodinamički sustav 5 koji onda može proizvoditi električnu energiju u generatoru 8. No, električna energija se može koristiti i u slučajevima da je i po noći ili za vrijeme oblačnog vremena potrebna pitka voda na isti način, tj, njome se napaja električni grijač 7 koji toplinsku energiju u isparivaču 6 koristi za isparavanje morske vode, a tako dobivena para onda ulazi u termodinamički sustav 5 na čijem izlazu se dobiva pitka voda koja se sprema u spremniku 9 (koju je naravno potrebno ohladiti hladnjakom 10), a na generatorima 8 električna enerija koja se može predati elektroenergetskom sustavu ako ne na njega spojen. After the turbine and generator assembly 14 produces electricity, the water is discharged to the sea (or some other impure water source: large rivers, aquifers, etc.) 2. The electrical energy produced by the turbine and generator assembly (TG) 14 is used for the continuous supply of consumers and self-consumption of the thermodynamic system 5. However, this electrical energy is also used for the purpose of maintaining the operational readiness of the power plant during temporary daytime clouds, because it powers the electric heater 7, with the help of which the seawater evaporates in the evaporator 6, and thus the developed water vapor transfers heat energy to the thermodynamic system 5, which can then produce electricity in the generator 8. However, electricity can also be used in cases where drinking water is needed at night or during cloudy weather in the same way, i.e. feeds the electric heater 7, which uses the thermal energy in the evaporator 6 to evaporate seawater, and the steam thus obtained then enters into the thermodynamic system 5, at the output of which drinking water is obtained, which is stored in the tank 9 (which of course needs to be cooled by a refrigerator 10), and at the generators 8, electrical energy that can be transferred to the power system if not connected to it.

Rad ovog sustava podrazumijeva postizanje potpune neovisnosti opskrbe nekog korisnika električnom energijom koja se najvećim dijelom dobiva iz solarne energije, ali i iz raspoloživih vodnih resursa (rijeka, oborina i sl.) 3, kao i opskrbu korisnika pitkom vodom desalinizacijom ili pročišćavanjem voda koje nisu za piće. Predložena hibridna ST-RHE elektrana je potpuno održiva i bez štetnog utjecaja na okoliš jer se zasniva isključivo na korištenju obnovljivih izvora energije i to upotrebom vode kao glavnog resursa za prijenos, spremanje i generiranje energije, ali istovremeno i vode za piće. RHE 12-14 vrlo je fleksibilna u radu i proizvodnji energije i zbog toga se lako prilagođava potrebama korisnika, za razliku od ST elektrane 4-8, čiji je rad i povremena proizvodnja energije ovisan o Sunčevom zračenju. Kombinacijom ovih dvaju elektrana, dobiva se novi tip vrlo ekonomične hibridne elektrane pogodan za trajnu i upravljivu proizvodnju električne energije, a otvaranjem termodinamičkog sustava te nove elektrane, istovremeno se dobiva i pitka voda. Bitna karakteristika ove nove Solarne termalne hibridne elektrane za istovremenu proizvodnju energije i vode je da ona nije ograničena veličinom, tako da se može koristiti od najmanjih do najvećih jedinica, tj, od napajanja stambene jedinice reda veličine nekoliko kilowatta do snažnih elektrana reda veličine više desetaka ili čak više stotina megawatta. The operation of this system implies the achievement of complete independence of the supply of a user with electricity, which is mostly obtained from solar energy, but also from available water resources (rivers, precipitation, etc.) 3, as well as the supply of drinking water to users by desalination or purification of water that is not for drink. The proposed hybrid ST-RHE power plant is completely sustainable and has no harmful impact on the environment because it is based exclusively on the use of renewable energy sources, using water as the main resource for energy transmission, storage and generation, but also drinking water. RHE 12-14 is very flexible in operation and energy production and therefore easily adapts to the needs of users, in contrast to ST power plant 4-8, whose operation and occasional energy production is dependent on solar radiation. By combining these two power plants, a new type of very economical hybrid power plant suitable for permanent and controllable electricity production is obtained, and by opening the thermodynamic system of this new power plant, drinking water is also obtained at the same time. The essential characteristic of this new Solar Thermal Hybrid Power Plant for the simultaneous production of energy and water is that it is not limited by size, so that it can be used from the smallest to the largest units, i.e. from powering a residential unit of the order of several kilowatts to powerful power plants of the order of dozens or even hundreds of megawatts.

Solarno zračenje 1 se koristi da bi se voda s niže razine, odnosno mora ili nečiste vode (rezervoara, akvifera, jezera, rijeke) 2 transportirala na višu razinu na kojoj se skladišti u rezervoaru 13. Uskladištena voda se koristi za proizvodnju hidroenergije u skladu sa formiranim hidropotencijalom (visinskom razlikom) na sklopu turbine i generatora (TG) 14 iz kojeg se voda ispušta u vodni resurs 2, a iz kojeg se pumpa sklopom motora i pumpe 12 koji se preko invertera 11 napaja električnom energijom iz generatora 8 (slika 1). Na ovaj način omogućava se trajno kruženje vode unutar umjetno stvorenog i zatvorenog hidrološkog ciklusa. Raspoloživa energija rezervoara 13 zapravo je uskladištena solarna energija 1 i energija raspoloživih vodnih resursa 3, raspoloživa za trajno korištenje na sklopu turbine i generatora (TG) 14 (danju i noću) u skladu s potrebama potrošača. Solar radiation 1 is used to transport water from a lower level, i.e. the sea or impure water (reservoir, aquifer, lake, river) 2 to a higher level where it is stored in a reservoir 13. The stored water is used for hydropower production in accordance with formed by the hydropotential (height difference) on the turbine and generator assembly (TG) 14, from which water is discharged into the water resource 2, and from which it is pumped by the motor and pump assembly 12, which is supplied with electricity from the generator 8 via the inverter 11 (picture 1) . In this way, the permanent circulation of water within the artificially created and closed hydrological cycle is enabled. The available energy of the reservoir 13 is actually the stored solar energy 1 and the energy of the available water resources 3, available for permanent use on the turbine and generator assembly (TG) 14 (day and night) in accordance with the needs of consumers.

Predložena elektrana je izvor energije i pitke vode koji se može graditi neposredno uz mjesto njihove potrošnje ako za to postoje svi preduvjeti, što je jako povoljno jer se energija, ali i voda ne treba daleko transportirati. Preduvjet za rad ove elektrane je povremena insolacija, morska ili drugi izvor nečiste vode i visinska razlika između mora i gornjeg rezervoara, na kojoj se iskorištava djelovanje sile gravitacije-hidropotencijala. Hidropotencijal se može formirati u skladu s topografskim značajkama terena gdje god postoji odgovarajuća visinska razlika terena. Međutim, može se bilo gdje izgraditi i umjetni hidropotencijal stvaranjem odgovarajuće građevne konstrukcije sa visinskom razlikom između donje i gornje vode. To znači da se manji ili veći hidropotencijal može stvoriti bilo gdje, uz naravno različite troškove. The proposed power plant is a source of energy and drinking water that can be built right next to the place of their consumption if all the prerequisites exist, which is very advantageous because energy and water do not need to be transported far. The prerequisite for the operation of this power plant is occasional insolation, the sea or another source of impure water and the height difference between the sea and the upper reservoir, on which the action of gravity-hydropotential force is exploited. Hydropotential can be formed in accordance with the topographic features of the terrain wherever there is a corresponding height difference of the terrain. However, an artificial hydro potential can be built anywhere by creating an appropriate building structure with a height difference between the lower and upper water. This means that a smaller or larger hydro potential can be created anywhere, with of course different costs.

Sustav može biti manji ili veći. Rezervoar vode 13 može biti zatvoren ili otvoren. Svi veliki sustavi u pravilu imaju otvoren rezervoar 13, dok je kod malog sustava on uglavnom zatvoren. The system can be smaller or larger. The water tank 13 can be closed or open. As a rule, all large systems have an open tank 13, while in a small system it is mostly closed.

Lokalne prirodne značajke, klima, vodni resursi, topografija, geologija i drugo su okvir za realizaciju elektrane i njenu produktivnost. Ono što je važno naglasiti je da je elektrana održiva i dok god postoji Sunčevo zračenje i sila gravitacije te more ili nečisti vodi resurs, elektrana može kontinuirano istovremeno proizvoditi električnu energiju i pitku vodu. Cijena energije ovisi o cijelom nizu elementa, a isplativost ovisi o cijeni konkurentnih klasičnih izvora. U sadašnjem trenutku još uvijek je za očekivati da su klasični izvori energije (termoelektrane i nuklearne elektrane) konkurentniji bez obzira što se radi o čistoj i obnovljivoj energiji. Međutim, dugoročno gledano za očekivati je da će klasični izvori biti sve skuplji tako da će predložena elektrana vjerojatno biti sve konkurentnija i isplativija. Local natural features, climate, water resources, topography, geology and others are the framework for the realization of the power plant and its productivity. What is important to emphasize is that the power plant is sustainable and as long as there is solar radiation and the force of gravity and the sea or impure water resource, the power plant can continuously produce electricity and drinking water at the same time. The price of energy depends on a whole range of elements, and profitability depends on the price of competitive classical sources. At the present moment, it is still to be expected that classic sources of energy (thermal power plants and nuclear power plants) are more competitive, regardless of whether it is clean and renewable energy. However, in the long term, it is to be expected that conventional sources will be more and more expensive, so that the proposed power plant will probably be more and more competitive and profitable.

Vrlo je važno da se kod Solarne termalne hidroelektrane za istovremenu proizvodnju energije i pitke vode pravilno odredi snaga ST elektrane 4-8, čija je cijena i najveća. Glavnu ulogu u tome ima rezervoar 13. Rezervoar 13 omogućava akumuliranje vode u duljem vremenskom periodu i time kontinuiranu proizvodnju hidroenergije što omogućava premoštenje vremenskog perioda kada je ulaz iz ST elektrane manji ili ga nema. Na taj način se veličina ST elektrane 4-8 bira u skladu s kritičnim jednogodišinjim periodom iz niza godina tako da se odabere njegova minimalna od maksimalnih snaga nužna za osiguranje kontinuiteta proizvodnje hidroenergije u kritičnom periodu (potrebni volumen vode) i odabrane razine sigurnosti rada (dodatnog volumena vode u rezervoaru za incidentne ili nepredviđene situacije). Ukoliko uzvodno od rezervoara 13 postoji voda koja se može koristiti 3, odnosno skrenuti u rezervoar, tada je sustav učinkovitiji jer se punjenje vodom rezervoara 13 odvija i gravitacijom, tako da je snaga ST elektrane 4-8 za odgovarajući iznos bio manji. Sustav će biti i učinkovitiji ako se dio proizvedene solarne energije u periodima kada je jako Sunčevo zračenje 1, direktno koristi od strane korisnika jer će tada volumen rezervoara 13, kapacitet sklopa motora i pumpe 12 i ST elektrane 4-8 biti manji. It is very important that the power of the ST 4-8 power plant, which has the highest price, is correctly determined for the simultaneous production of energy and drinking water at the Solar Thermal Hydroelectric Power Plant. Reservoir 13 plays a major role in this. Reservoir 13 enables the accumulation of water over a longer period of time and thus the continuous production of hydropower, which enables bridging the time period when the input from the ST power plant is less or absent. In this way, the size of the ST power plant 4-8 is chosen in accordance with the critical one-year period from a series of years, so that its minimum and maximum powers necessary to ensure the continuity of hydropower production in the critical period (required volume of water) and the selected level of safety of operation (additional volume of water in the reservoir for incident or unforeseen situations). If there is water upstream from the reservoir 13 that can be used 3, that is, diverted into the reservoir, then the system is more efficient because the water filling of the reservoir 13 also takes place by gravity, so that the power of the ST power plant 4-8 was smaller by the corresponding amount. The system will be more efficient if part of the produced solar energy in periods when the solar radiation is strong 1 is directly used by the user, because then the volume of the reservoir 13, the capacity of the motor and pump assembly 12 and the ST power plant 4-8 will be smaller.

Na ukupnu cijenu izgradnje utječu i troškovi izgradnje rezervoara 13. Pri tome su moguće razne kombinacije. Najpovoljnije je kada je izgradnja rezervoara 13 jednostavna i jeftina, ili ako takav rezervoar-jezero već postoji. Hidroelektrana (sklop turbine i generatora (TG)) 14 je u principu ekonomičnija što je raspoloživi pad (potencijana energija) veća. Međutim, tada je potrebna i veća snaga ST elektrane 4-8 da bi se transportirala voda u rezervoar 13. Isto tako, predložerno rješenje može koristiti postojeće hidroelektrane, tako da nije potrebno graditi niti rezervoar 13, kao niti sklop turbine i generatora (TG) 14. The total cost of construction is also influenced by the costs of building the reservoir 13. Various combinations are possible. It is most favorable when the construction of the reservoir 13 is simple and cheap, or if such a reservoir-lake already exists. The hydropower plant (turbine and generator assembly (TG)) 14 is in principle more economical the higher the available drop (potential energy). However, then a greater power of ST power plant 4-8 is needed to transport water to reservoir 13. Likewise, the proposed solution can use existing hydroelectric power plants, so that neither reservoir 13 nor the turbine and generator assembly (TG) need to be built. 14.

Obzirom da se radi o tehnološkom rješenju koje združuje u jedinstven tehnološki sustav već razvijene ST elektrane s reverzibilnim elektranama te da se u ovom rješenju koristi otvoreni termodinamički sustav i da se ulazna para u njega dobiva isparavanjem vode iz mora ili nečistih voda, tehnološka kombinacija na prikazani način se može realizirati. Na taj je način kreiran trajni, koristan i vrlo ekonomičan sustav koji može istovremeno pouzdano napajati neki konzum energijom i pitkom vodom, tijekom cijele godine. Given that it is a technological solution that combines already developed ST power plants with reversible power plants into a single technological system, and that this solution uses an open thermodynamic system and that the steam entering it is obtained by evaporating water from the sea or impure waters, the technological combination shown way can be realized. In this way, a permanent, useful and very economical system was created, which can simultaneously reliably supply some consumers with energy and drinking water, throughout the year.

Stručnjacima će biti očigledno da bi se mogle napraviti još brojne preinake i nadogradnje na takvom sustavu za proizvodnju energije i vode, bez napuštanja opsega duha ovog izuma. It will be apparent to those skilled in the art that numerous other modifications and upgrades could be made to such a power and water production system without departing from the scope of the spirit of this invention.

Način primjene izuma Method of application of the invention

Povezivanjem solarne termalne elektrane 4-8 koja ima otvoreni termodinamički sustav 5 s reverzibilnom hidroeletranom 12-14 u jedan tehnološki sustav za kontinuiranu istovremenu proizvodnju enerije i pitke vode, ovim izumom su otvorene brojne mogućnosti za primjenu ovakvih sustava, a što bi moglo snažno potaknuti industriju solarnih termalnih elektrana i njenih komponenti 4-8, a pogotovo sustava električnog zagrijavanja vode i njenog isparavanja. By connecting the solar thermal power plant 4-8, which has an open thermodynamic system 5, with the reversible hydroelectric power plant 12-14 into one technological system for the continuous simultaneous production of energy and drinking water, this invention opens up numerous possibilities for the application of such systems, which could strongly stimulate the industry solar thermal power plants and their components 4-8, especially the system of electric heating of water and its evaporation.

To dalje znači i da bi ovakvi samoodorživi sustavi, kojima bi se osiguravala potpuna energetska neovisnost opskrbe nekog konzuma električnom energijom i pitkom vodom, odnosno maksimalno iskorištavala raspoloživa solarna energija 1 i hidropotencijal 3 na nekoj lokaciji te more ili nečisti vodni resursi 2, uz što manji utjecaj na okoliš, mogli imati sigurnu budućnost. This further means that such self-sustainable systems, which would ensure the complete energy independence of a consumer's supply of electricity and drinking water, i.e. would make maximum use of the available solar energy 1 and hydro potential 3 in a certain location and the sea or impure water resources 2, with as little as possible impact on the environment, could have a secure future.

POPIS POZIVNIH OZNAKA I SIMBOLA LIST OF CALL SIGNS AND SYMBOLS

POZIVNE OZNAKE: CALL SIGNS:

1. Solarno zračenje; 1. Solar radiation;

2. More ili nečisti izvori vode (velika rijeka, aqvifer, itd.). 2. Sea or impure water sources (big river, aqvifer, etc.).

3. Raspoloživi prirodni vodni resursi gornjeg rezervoara; 3. Available natural water resources of the upper reservoir;

4. Solarni termalni kolektori; 4. Solar thermal collectors;

5. Termodinamički sustav; 5. Thermodynamic system;

6. Isparivač vode; 6. Water vaporizer;

7. Električni grijač 7. Electric heater

8. Generator; 8. Generator;

9. Spremnik pitke vode; 9. Potable water tank;

10. Hladnjak; 10. Refrigerator;

11. Inverter; 11. Inverter;

12. Sklop motora i pumpe (MP); 12. Motor and pump assembly (MP);

13. Rezervoar (novi ili postojeći) ili spremnik vode/energije; 13. Reservoir (new or existing) or water/energy tank;

14. Sklop turbine i generatora (TG) hidroelektrane. 14. Assembly of the turbine and generator (TG) of the hydroelectric power plant.

Claims (6)

1. Solarna termalna hidroelektrana za istovremenu proizvodnju energije i pitke vode koja se sastoji od solarnih termalnih kolektora (4), termodinamičkog sustava (5), isparivača vode (6), električnog grijača (7), generatora (8), spremnika pitke vode (9), hladnjaka (10), invertera (11), sklopa motora i pumpnog sustava (12), rezervoara (13), sklopa turbine i generatora (14), karakterizirana time, da paralelno koristi solarnu energiju (1) i raspoložive vodne resurse (3) te vodu iz mora ili nečistog izvora vode (2) za kontinuiranu istovremenu proizvodnju energije i pitke vode za potrebe nekog konzuma, tijekom cijele godine.1. Solar thermal hydropower plant for the simultaneous production of energy and drinking water, which consists of solar thermal collectors (4), thermodynamic system (5), water evaporator (6), electric heater (7), generator (8), drinking water tank ( 9), cooler (10), inverter (11), engine and pump system assembly (12), tank (13), turbine and generator assembly (14), characterized by parallel use of solar energy (1) and available water resources (3) and water from the sea or an impure water source (2) for the continuous simultaneous production of energy and drinking water for the needs of some consumption, throughout the year. 2. Solarna termalna hidroelektrana za istovremenu proizvodnju energije i pitke vode, prema zahtjevu 1, karakterizirana time, da ima otvoren termodinamički sustav (5) u koji ulazi voda iz mora ili nečistog izvora vode (2), a izlazi pitka voda koja se sprema u spremnik (9).2. Solar thermal hydropower plant for the simultaneous production of energy and drinking water, according to claim 1, characterized by the fact that it has an open thermodynamic system (5) into which water from the sea or an impure water source (2) enters, and drinking water that is stored in container (9). 3. Solarna termalna hidroelektrana za istovremenu proizvodnju energije i pitke vode, prema zahtjevu 1-2, karakterizirana time, da ima dnevno i sezonsko spremište električne energije uskladištenom u obliku hidrauličke energije vode u rezervoar (13), nužnom za upravljanje planiranom proizvodnjom energije i pitke vode, odnosno za njenu proizvodnju shodno potrebama potrošača energije i vode.3. Solar thermal hydroelectric power plant for the simultaneous production of energy and drinking water, according to requirement 1-2, characterized by the fact that it has daily and seasonal storage of electricity stored in the form of hydraulic water energy in the reservoir (13), necessary for managing the planned production of energy and drinking water water, that is, for its production according to the needs of energy and water consumers. 4. Solarna termalna hidroelektrana za istovremenu proizvodnju energije i pitke vode, prema zahtjevu 1-3, karakterizirana time, da ima isparivač vode (6) i električni grijač vode (7), kojima se održava dnevna pogonska spremnost termodinamičkog sustava (5) kada nema dovoljno solarnog zračenja (1), ali i da se tijekom noći može proizvoditi pitka voda i energija.4. Solar thermal hydropower plant for the simultaneous production of energy and drinking water, according to requirements 1-3, characterized by the fact that it has a water evaporator (6) and an electric water heater (7), which maintain the daily operational readiness of the thermodynamic system (5) when there is no enough solar radiation (1), but also that drinking water and energy can be produced during the night. 5. Solarna termalna hidroelektrana za istovremenu proizvodnju energije i pitke vode, prema zahtjevu 1-4, karakterizirana time, da veličine solarnih termalnih kolektora (4) i rezervoara (13) moraju biti tako dimenzionirane da one zajedno sakupe toliko solarne (1) i hidro (3) energije iz okoliša za planirano kontinuirano napajanje nekog izoliranog konzuma električnom energijom i pitkom vodom, tijekom cijele godine, u skladu s režimom potrošnje energije i pitke vode.5. Solar thermal hydropower plant for the simultaneous production of energy and drinking water, according to requirements 1-4, characterized by the fact that the sizes of solar thermal collectors (4) and reservoirs (13) must be so dimensioned that they together collect as much solar (1) and hydro (3) energy from the environment for the planned continuous supply of some isolated consumer with electricity and drinking water, throughout the year, in accordance with the energy and drinking water consumption regime. 6. Solarna termalna hidroelektrana za istovremenu proizvodnju energije i pitke vode, prema zahtjevu 1-5, karakterizirana time, da se način njene izvedbe odnosno elementi 4-14 i korištenja prilagođava lokalnim klimatskim i topografskim i hidrološkim značajkama kao i potrebama potrošača električne energije i pitke vode.6. Solar thermal hydroelectric power plant for the simultaneous production of energy and drinking water, according to requirement 1-5, characterized by the fact that the method of its implementation, i.e. elements 4-14 and use, is adapted to local climatic, topographical and hydrological features, as well as the needs of consumers of electricity and drinking water water.
HRP20110835AA 2011-11-14 2011-11-14 Solar termal hydro electric powerplant for simultaneous production energy and drinking water HRPK20110835B3 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
HRP20110835AA HRPK20110835B3 (en) 2011-11-14 2011-11-14 Solar termal hydro electric powerplant for simultaneous production energy and drinking water
PCT/HR2012/000024 WO2013072709A2 (en) 2011-11-14 2012-11-13 Solar thermal hydro electric power plant for simultaneously energy and drinking water production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
HRP20110835AA HRPK20110835B3 (en) 2011-11-14 2011-11-14 Solar termal hydro electric powerplant for simultaneous production energy and drinking water

Publications (2)

Publication Number Publication Date
HRP20110835A2 true HRP20110835A2 (en) 2013-05-31
HRPK20110835B3 HRPK20110835B3 (en) 2014-08-01

Family

ID=47681966

Family Applications (1)

Application Number Title Priority Date Filing Date
HRP20110835AA HRPK20110835B3 (en) 2011-11-14 2011-11-14 Solar termal hydro electric powerplant for simultaneous production energy and drinking water

Country Status (2)

Country Link
HR (1) HRPK20110835B3 (en)
WO (1) WO2013072709A2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9120033B2 (en) * 2013-06-12 2015-09-01 Massachusetts Institute Of Technology Multi-stage bubble column humidifier
CN105636661B (en) 2013-09-12 2018-02-23 格雷迪安特公司 Include the system of such as condensing unit of bubble column condenser
US10463985B2 (en) 2015-05-21 2019-11-05 Gradiant Corporation Mobile humidification-dehumidification desalination systems and methods
US10981082B2 (en) 2015-05-21 2021-04-20 Gradiant Corporation Humidification-dehumidification desalination systems and methods
US10143935B2 (en) 2015-05-21 2018-12-04 Gradiant Corporation Systems including an apparatus comprising both a humidification region and a dehumidification region
US10143936B2 (en) 2015-05-21 2018-12-04 Gradiant Corporation Systems including an apparatus comprising both a humidification region and a dehumidification region with heat recovery and/or intermediate injection
US10513445B2 (en) 2016-05-20 2019-12-24 Gradiant Corporation Control system and method for multiple parallel desalination systems
US10294123B2 (en) 2016-05-20 2019-05-21 Gradiant Corporation Humidification-dehumidification systems and methods at low top brine temperatures
JP6978161B2 (en) * 2017-12-13 2021-12-08 Ntn株式会社 Hydropower system and control method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4244189A (en) * 1978-10-10 1981-01-13 Emmanuel Bliamptis System for the multipurpose utilization of solar energy
US4253307A (en) * 1979-08-27 1981-03-03 Smith Derrick A Solar power generator and water purifier
DE10123240A1 (en) 2000-01-22 2002-11-14 Andre Meuleman Compact power plant with water tower-like structure
US6434942B1 (en) 2001-09-20 2002-08-20 Walter T. Charlton Building, or other self-supporting structure, incorporating multi-stage system for energy generation
EP1746680A1 (en) 2005-07-20 2007-01-24 Vlaamse Instelling Voor Technologisch Onderzoek (Vito) Combination of a desalination plant and a salinity gradient power reverse electrodialysis plant and use thereof
SE533122C2 (en) 2008-03-12 2010-06-29 Oerjan Forslund Converters of solar energy to electricity
HRPK20080132B3 (en) 2008-03-25 2010-12-31 Glasnović Zvonimir Photovoltaic power plant
CN102216613B (en) 2008-09-17 2014-06-25 西门子聚集太阳能有限公司 Solar thermal power plant
US8341961B2 (en) * 2009-05-01 2013-01-01 Kenergy Scientific, Inc. Solar desalination system
US20110100004A1 (en) 2009-10-30 2011-05-05 Wael Faisal Al-Mazeedi Adaptive control of a concentrated solar power-enabled power plant
US20100314238A1 (en) 2010-04-30 2010-12-16 Sunlight Photonics Inc. Hybrid solar desalination system

Also Published As

Publication number Publication date
WO2013072709A2 (en) 2013-05-23
HRPK20110835B3 (en) 2014-08-01
WO2013072709A3 (en) 2013-08-08

Similar Documents

Publication Publication Date Title
Khan et al. A hybrid renewable energy system as a potential energy source for water desalination using reverse osmosis: A review
Bundschuh et al. State-of-the-art of renewable energy sources used in water desalination: Present and future prospects
HRP20110835A2 (en) Solar termal hydro electric powerplant for simultaneous production energy and drinking water
Gude Energy storage for desalination processes powered by renewable energy and waste heat sources
US7178337B2 (en) Power plant system for utilizing the heat energy of geothermal reservoirs
Gorjian et al. Solar desalination: A sustainable solution to water crisis in Iran
Ghaffour et al. Renewable energy-driven desalination technologies: A comprehensive review on challenges and potential applications of integrated systems
Goosen et al. Today's and future challenges in applications of renewable energy technologies for desalination
Sayed et al. Recent progress in renewable energy based-desalination in the Middle East and North Africa MENA region
Gude et al. Renewable and sustainable approaches for desalination
Cherif et al. Large-scale time evaluation for energy estimation of stand-alone hybrid photovoltaic–wind system feeding a reverse osmosis desalination unit
KR101632713B1 (en) A system for electricity generation and water desalination
Darwish et al. PV and CSP solar technologies & desalination: economic analysis
Shinnar et al. Solar thermal energy: the forgotten energy source
US20180180034A1 (en) Osmosis energy storage & restoration system and indirect solar powerplant
Gude Energy storage for desalination
WO2012053988A2 (en) Device for producing and accumulating electricity
Kim et al. A feasibility study on thermal energy resource in deep ocean water
CN103288285A (en) Tower type concentrated solar photo-thermal energy storage, power generation, seawater desalination, salt preparation and beach culture system
Lodhi Helio-hydro and helio-thermal production of hydrogen
Zhao et al. Performance evaluation of a renewable driven standalone combined power and water supply system with cascade electricity and heat storage
Quteishat et al. Promotion of solar desalination in the MENA region
US20120160350A1 (en) Miniature hydroelectric power plant
Margeta et al. Innovative approach for achieving sustainable urban water supply system by using solar photovoltaic energy
Abdunnabi et al. Design of CSP plants for desalination in Libya

Legal Events

Date Code Title Description
A1OB Publication of a patent application
AKOB Publication of a request for the grant of a patent not including a substantive examination of a patent application (a consensual patent)
PKB1 Consensual patent granted
ODRP Renewal fee for the maintenance of a patent

Payment date: 20161114

Year of fee payment: 6

PBKO Lapse due to non-payment of renewal fee for consensual patent

Effective date: 20171114