HRP20100151A2 - Swing wing like the drive for windgenerator - Google Patents

Swing wing like the drive for windgenerator Download PDF

Info

Publication number
HRP20100151A2
HRP20100151A2 HR20100151A HRP20100151A HRP20100151A2 HR P20100151 A2 HRP20100151 A2 HR P20100151A2 HR 20100151 A HR20100151 A HR 20100151A HR P20100151 A HRP20100151 A HR P20100151A HR P20100151 A2 HRP20100151 A2 HR P20100151A2
Authority
HR
Croatia
Prior art keywords
wing
wind
wind turbine
wings
drive
Prior art date
Application number
HR20100151A
Other languages
Croatian (hr)
Inventor
Ivković Ivo
Jukić Marinko
Original Assignee
St-Arc D.O.O.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by St-Arc D.O.O. filed Critical St-Arc D.O.O.
Priority to HR20100151A priority Critical patent/HRP20100151A2/en
Publication of HRP20100151A2 publication Critical patent/HRP20100151A2/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy

Landscapes

  • Wind Motors (AREA)

Abstract

Njihajuće krilo kao pogon vjetrogeneratora pripada grupi alternativnih izvora energije. Kroz prirodu svog translatornog kretanja, a koje ostvaruje uz pomoć paralelograma (2) cijelo vrijeme ima optimalni prikloni kut a po čitavoj dužini krila. Kako ne postoji obodna brzina izbjegnuto je geometrijsko vitoperenje krila, a time i razlaganje uzgonske sile Fu na tangencijalnu i aksijalnu. Na taj način uzgonska sila Fu se u cijelosti koristi u zakretnom momentu što povećava iskoristivost cijelog sistema. Iskoristivost također raste, jer njihajuće krilo kao pogon vjetrogeneratora može raditi i prilikom olujnih vjetrova, naime otpornih sila koja bi mogla prouzročiti lom konstrukcije računa se samo za krilo prema: FO=1/2 p ko,v2 A. Izvedbeno, a poslije i prilikom održavanja njihajuće krilo ima prednost što se multiplikator broja okretaja sa generatorom i ostalim pratećim uređajima nalazi montiran na tlu.The swinging wing as a wind turbine drive belongs to a group of alternative energy sources. Due to the nature of its translational movement, which it accomplishes with the help of parallelograms (2), it has an optimum angled angle a throughout the entire length of its wings. As there is no circumferential velocity, geometric vitoperation of the wings is avoided, and thus the expansion of the buoyancy force Fu into tangential and axial ones is avoided. In this way, the buoyancy force Fu is fully utilized in the torque, which increases the usability of the entire system. The utilization is also increasing, because the swinging wing can act as a wind turbine propulsion even during stormy winds, namely the resisting forces that could cause the structure to break only for the wing according to: FO = 1/2 p ko, v2 A. Performing and later Maintaining the swinging wing has the advantage that the speed multiplier with the generator and other accessories is mounted on the ground.

Description

Područje izuma Field of invention

Ovaj izum pripada području alternativnih izvora energije i to energije vjetra. Kinetička energija vjetra se uz pomoć aerodinamičkih profila pretvara u mehanički rad, drugim riječima izum pripada području aerodinamike. This invention belongs to the field of alternative sources of energy, namely wind energy. The kinetic energy of the wind is converted into mechanical work with the help of aerodynamic profiles, in other words the invention belongs to the field of aerodynamics.

Tehnički problem Technical problem

Potpuno novim konceptom pogonsko-uzgonskog principa sa translatornim kretanjem rješava se niz tehničkih problema. Više nema rotirajućih krilnih lopatica, nema obodne brzine, a time aerodinamična iskoristivost raste zbog povoljnijeg djelovanja sila na profilu. Iskoristivost nadalje raste jer sile otpora, a koje bi prilikom jakih vjetrova lomile konstrukciju, računaju se samo za otpore njihajućeg krila. Kod vjetrenih turbina računa se cijela površina koju opisuju krilne lopatice, zato se iste pri jačim vjetrovima zaustavljaju, jer otporna sila na visokom nosivom stupu ima jaki moment loma u korijenu stupa. Drugim riječima njihajuće krilo može raditi i na olujnim vjetrovima. Kako nema nosivog stupa i kako je generator sa multiplikatorom brzine vrtnje i sa ostalim sistemima smješten unutar postolja, tehnički problemi sa konstrukcijom, montažom i servisiranjem znatno su pojednostavljeni. A series of technical problems are solved with the completely new concept of the propulsion-buoyancy principle with translational movement. There are no longer rotating wing blades, there is no peripheral speed, and thus the aerodynamic efficiency increases due to the more favorable effect of forces on the airfoil. The usability further increases because the resistance forces, which would break the structure in case of strong winds, are calculated only for the resistance of the swinging wing. In the case of wind turbines, the entire surface described by the wing blades is counted, that's why they stop in strong winds, because the resisting force on the high load-bearing column has a strong breaking moment at the root of the column. In other words, the oscillating wing can work even in stormy winds. Since there is no supporting column and since the generator with the rotation speed multiplier and other systems is located inside the base, technical problems with construction, assembly and servicing are greatly simplified.

Sigurnosni tehnički problemi svedeni su na najniži nivo. Nema opasnosti od loma krilne lopatice niti cijele vjetrenjače, bez rotirajućih krilnih lopatica nema više nepoželjnih vibracija, dinamičke neuravnoteženosti, rezonancije sa nosivim stupom... Security technical problems have been reduced to the lowest level. There is no risk of breaking the wing blade or the entire windmill, without rotating wing blades there are no more unwanted vibrations, dynamic imbalance, resonance with the supporting column...

Pored tehničkih problema rješava se i ekološki. Perioda njihaja je dva do tri puta duža od jednog okreta vjetrenog kola. Kod promjera vjetrenog kola od 40 m, vrh krilne lopatice ima brzinu od 60 ms-1, ili 216 km/h što prouzrokuje stalan šum, a prilikom prolaska pored nosivog stupa i intermitentni šum. Zbog male brzine njihaja nema nikakve opasnosti za ptice. In addition to technical problems, environmental problems are also solved. The oscillation period is two to three times longer than one revolution of the windmill. With a diameter of the wind wheel of 40 m, the tip of the wing blade has a speed of 60 ms-1, or 216 km/h, which causes a constant noise, and when passing by the supporting column, an intermittent noise. Due to the low swing speed, there is no danger for the birds.

Stanje tehnike State of the art

Uslijed vrtnje krilnih lopatica imamo obodnu brzinu, ista je razmjerna sa polumjerom i kutnom brzinom, u=rω, porastom polumjera povećava se i lokalna obodna brzina. Zbog toga se mijenja kut dostrujavanja zraka na krilne lopatice, što zahtjeva geometrijsko vitoperenje iste. Međutim i pored toga efikasnost opada, ako analiziramo vektorski dijagram sila koje djeluju na segment krilne lopatice vidjet ćemo kako samo dio uzgonske sile Fu se pretvara u tangencijalnu T, sl. 2a. As a result of the rotation of the wing blades, we have a circumferential velocity, which is proportional to the radius and angular velocity, u=rω, as the radius increases, the local circumferential velocity also increases. Because of this, the angle of the air flow to the wing blades changes, which requires a geometric fanning of the same. However, despite this, the efficiency decreases, if we analyze the vector diagram of the forces acting on the segment of the wing blade, we will see that only part of the lift force Fu is converted into tangential T, Fig. 2a.

Tangencijalna komponenta stvara korisni zakretni moment. Ovaj segment krilne lopatice uzet je na otprilike 60%-tne udaljenosti od centra osovine rotora. Prema vrhovima krilnih lopatica situacija je još nepovoljnija, tangencijalna komponenta T se smanjuje, a aksijalna komponenta S se povećava. The tangential component creates useful torque. This segment of the wing blade was taken at approximately 60% distance from the center of the rotor axis. Towards the tips of the wing blades, the situation is even more unfavorable, the tangential component T decreases, and the axial component S increases.

Na slici 2a aerodinamične sile su: In Figure 2a, the aerodynamic forces are:

Fu - uzgonska sila koja se računa prema Fu = 1/2 ρ kuw2 A, gdje su: Fu - lift force calculated according to Fu = 1/2 ρ kuw2 A, where:

ρ =1,25 kg/m3 ρ = 1.25 kg/m3

ku = koeficijent uzgona ku = lift coefficient

w = brzina dostrujavauja m/s w = current speed m/s

A = površina krilne lopatice u mz A = wing blade area in mz

Tangencijalna komponenta se računa prema T = R cos β The tangential component is calculated according to T = R cos β

R = rezultanta uzgonske i otporne sile na aerodinamični profil. R = resultant of lift and drag force on the aerodynamic profile.

Iz relacije za proračun snage vjetrenih turbina Pe = 0,29d2v3η1 gdje su: From the relation for calculating the power of wind turbines Pe = 0.29d2v3η1 where:

d = promjer krilnih lopatica d = diameter of wing blades

v = brzina vjetra v = wind speed

η1 =korisnost krilnog profila, vidljivo je kako cijelo vjetreno kolo utječe na protok zraka kroz rotor. η1 = useful wing profile, it is visible how the entire wind wheel affects the air flow through the rotor.

Zbog iskorištavanja djela kinetičke energije vjetra, brzina vjetra opada i upravo ta deakceleracija mase zraka koja prolazi kroz vjetreno kolo stvara silu F, a koja sa visinom nosivog stupa daje moment loma istoga. Na sl.3. je prikazan dijagram brzine vjetra i širenja strujnica nakon prolaska kroz vjetreno kolo po Bemulijevom zakonu. Kako je riječ o visokim nosivim stupovima i -kako postoje momenti tromosti koji onemogućuju brzo djelovanje sigurnosnih zaštita, bilo daje riječ o prevođenju krilnih lopatica na "nož" ili zakretanju rotora od smjera vjetra, potrebno je u sistemima zaštite ići na više norme. To je naročito slučaj kod bure koja je mahovit vjetar i koja stvara turbulentnu atmosferu što je jako opasno jer može prouzročiti odvajanje strujnica sa gornje površine profila, to dovodi do sloma uzgona i do "flatera" krilne lopatice ako nije dinamički stabilna i na kraju do loma iste. Lom krilne lopatice osobito je opasan ako bi se desio na maksimalnim brzinama vrtnje i kada sa nosivim stupom zatvara kut od 45°, proračuni pokazuju za vjetrenu turbinu promjera 40 m da bi lopatica mogla pasti do 165 m od stupa. Zato se ugrađuju paralelni sistemi zaštite, uglavnom samokočenja, koji automatski djeluju. Due to the utilization of a part of the kinetic energy of the wind, the wind speed decreases and it is this deceleration of the mass of air that passes through the wind wheel that creates the force F, which, with the height of the supporting column, gives the breaking moment of the same. In Fig. 3. a diagram of wind speed and the spread of currents after passing through the wind wheel according to Bemuli's law is shown. As it is a question of high load-bearing columns and - as there are moments of inertia that prevent the rapid action of safety protections, whether it is a matter of converting the wing blades to a "knife" or rotating the rotor from the direction of the wind, it is necessary to go to higher standards in the protection systems. This is especially the case with a gale, which is a gusty wind that creates a turbulent atmosphere, which is very dangerous because it can cause the separation of currents from the upper surface of the airfoil, this leads to a breakdown of lift and "flutter" of the wing blade if it is not dynamically stable and eventually to breakage the same. Wing blade breakage is particularly dangerous if it occurs at maximum rotation speeds and when it closes an angle of 45° with the support pole, calculations show for a 40 m diameter wind turbine that the blade could fall up to 165 m from the pole. That's why parallel protection systems, mainly self-braking, are installed, which work automatically.

Osim konstrukcijskih zahtjeva današnje vjetrene turbine traže i vrhunsku tehnologiju za montažno-servisne radnje koje nimalo ne zaostaju za konstrukcijskim. Za montirati jednu vjetrenu turbinu potrebna je specijalna dizalica. In addition to structural requirements, today's wind turbines also require top-notch technology for assembly and service operations that are not at all behind the construction ones. A special crane is required to mount one wind turbine.

Izlaganje biti izuma Presentation of the essence of the invention

Sa novim konceptom iskorištavanja energije vjetra preko translatorno njihajućeg krila sl.1. dolazimo do primarnog cilja izuma, veća iskoristivost. Translatornim kretanjem krila lijevo-desno i obrnuto nema više obodnih brzina te tako cijela uzgonska sila Fu stvara korisni zakretni moment, sl.2b. With the new concept of harnessing wind energy via translationally oscillating wing fig.1. we come to the primary goal of the invention, greater usability. With the translational movement of the wings left-right and vice versa, there are no more circumferential speeds, and thus the entire lift force Fu creates a useful torque, fig.2b.

Iskoristivost raste jer njihajuće krilo može raditi i pri olujnom vjetru. Otporna sila koja bi prouzročila lom konstrukcije sada se računa samo za krilo prema F0=1/2ρkov2A gdje je: Usability increases because the oscillating wing can work even in stormy winds. The resistance force that would cause the structure to break is now calculated only for the wing according to F0=1/2ρkov2A where:

ko=koeficijent otpora profila, na maksimalnim napadnim kutovima iznosi oko 0,12. co=coefficient of resistance of the profile, at the maximum angles of attack, is about 0.12.

Otporna sila sada djeluje na mnogo kraćem kraku h, a ne kao prije na vrhu nosivog stupa. The resisting force now acts on the much shorter arm h, and not as before on the top of the bearing column.

Sekundarni cilj izuma bio je izbjeći nosivi stup, smjestiti multiplikator brzine okretaja sa generatorom i ostalim sistemima što bliže tlu. Ovo uveliko smanjuje troškove izrade, montaže i servisiranja. Daljnja bit izuma je pojednostavljenje sigurnosnih mjera zaštite, jer nema rotirajućih krilnih lopatica, a koje prilikom loma ugrožavaju sredinu, njihajuće krilo u najgoroj opciji može pasti pored postolja. The secondary goal of the invention was to avoid the support column, to place the speed multiplier with the generator and other systems as close to the ground as possible. This greatly reduces manufacturing, assembly and servicing costs. The further essence of the invention is the simplification of safety protection measures, because there are no rotating wing blades, which in case of breakage endanger the middle, the swinging wing in the worst case can fall next to the base.

Dodatni ciljevi su ekološke naravi. U prirodnom okolišu na vjetru se sve njiše, od trave do ogromnih stabala. Polja vjetrogenratora sa njihajućim krilima izgledala bi poput šume visokih stabala. Additional goals are of an ecological nature. In the natural environment, everything sways in the wind, from grass to huge trees. Fields of wind turbines with swaying wings would look like a forest of tall trees.

Kratak opis crteža Brief description of the drawing

Sl. 1. nacrt i bokocrt njihajućeg krila; Sl. 1. draft and side view of swinging wing;

Sl. 2a. dijagram aerodinamičnih sila na profil krilne lopatice; Sl. 2a. diagram of aerodynamic forces on the wing blade profile;

Sl. 2b. dijagram aerodinamičnih sila na profil njihajućeg krila; Sl. 2b. diagram of aerodynamic forces on the swing wing profile;

Sl. 3. dijagram brzine vjetra i strujnica kroz rotor turbine; Sl. 3. diagram of wind speed and currents through the turbine rotor;

Sl. 4. dijagram ovisnosti koeficijenta uzgona o priklonom kutu a za profil NACA 0015; Sl. 4. diagram of the dependence of the lift coefficient on the inclination angle a for the NACA 0015 profile;

Detaljan opis najmanje jednog od načina ostvarivanja izuma A detailed description of at least one way of realizing the invention

Njihajuće krilo kao pogonski dio vjetrogeneratora po ovom izumu obuhvaća krilo (1) sa simetričnim profilom NACA 0015, jer prilikom njihanja lijevo-desno potrebno je ostvariti uzgonsku silu u oba smjera. Kontrolni mehanizam (2) sa polužnim paralelogramom odgovoran je za translatomo kretanje krila. Drugi kontrolni mehanizam (3), a koji se nalazi unutar rotirajuće platforme (4) sinhrono sa njihanjem mijenja prikloni kut krila (1). The oscillating wing as the driving part of the wind generator according to this invention comprises a wing (1) with a symmetrical NACA 0015 profile, because when oscillating left and right, it is necessary to generate buoyant force in both directions. Control mechanism (2) with lever parallelogram is responsible for translational movement of the wings. The second control mechanism (3), which is located inside the rotating platform (4), changes the inclined angle of the wing (1) synchronously with the oscillation.

Rotirajuća platforma (4) zajedno sa krilom (1) postavlja se u vjetar uz pomoć stabilizatora (6). Uzgonska sila Fu se preko poluga i ekscentra na prvom multiplikatoru brzine (7) iz linearnog kretanja pretvara u kružno. Kako bi se stabiliziralo kružno kretanje i kako njihajuće krilo prolazi kroz točke nultog uzgona, na krajevima njihaja kada se prikloni kut mijenja potreban je zamašnjak (8). The rotating platform (4) together with the wing (1) is placed in the wind with the help of the stabilizer (6). The buoyant force Fu is converted from linear to circular movement via levers and eccentrics on the first speed multiplier (7). In order to stabilize the circular motion and as the oscillating wing passes through the points of zero lift, a flywheel (8) is needed at the ends of the oscillating when the lean angle changes.

Njihajuće krilo (1), težinski je izbalansirano sa tegovima (11), što doprinosi dinamičkoj ravnoteži, a ujedno pojednostavljuje montažu i podizanje krila u radni položaj. Krilo (1) se njiše lijevo-desno i obrnuto do +/- 45°, a kontrolni mehanizam (3) prema krajevima njihaja smanjuje prikloni kut a od maksimalnog +/- 20° do nultog i kada krilo (1) krene u obrnuti smjer, mehanizam (3) ga ponovno povećava do maksimalnog sl.2b. The swinging wing (1) is weight-balanced with weights (11), which contributes to dynamic balance, and at the same time simplifies the assembly and lifting of the wing into the working position. The wing (1) swings left-right and vice versa up to +/- 45°, and the control mechanism (3) towards the ends of the swing reduces the tilt angle a from the maximum +/- 20° to zero and when the wing (1) goes in the opposite direction , mechanism (3) increases it again to the maximum fig.2b.

Na sl.4. dijagram o ovisnosti koeficijenta uzgona o priklonom kutu za profil NACA 0015, vidi se kako je maksimalni uzgon ostvaren na 16° priklonog kuta, ali kako profili od 15% debljine spadaju u grupu debljih profila, i kako mu je maksimalna zakrivljenost na 30% od početka tetive krila, takav profil nema nagli slom uzgona. Zato maksimalni kut od +/- 20° ovaj profil može podnositi bez potpunog odljepljenja strujnica zraka, ili slom uzgona. In Fig. 4. diagram on the dependence of the lift coefficient on the angle of inclination for the NACA 0015 profile, it can be seen that the maximum lift is achieved at 16° of the angle of inclination, but that profiles of 15% thickness belong to the group of thicker profiles, and that its maximum curvature is at 30% from the beginning wing chords, such a profile does not have a sudden breakdown of lift. That is why this profile can withstand a maximum angle of +/- 20° without the air currents completely detaching, or the lift breaking down.

Energija sa zamašnjaka (8) prosljeđuje se na multiplikator brzine (9), a koji usklađuje brzinu vrtnje sa elektrogeneratorom (10). The energy from the flywheel (8) is transmitted to the speed multiplier (9), which coordinates the rotation speed with the generator (10).

Način primjene izuma Method of application of the invention

Kao i dosadašnje vjetrene turbine, njihajuće krilo za pogon vjetrogeneratora može mnogo doprinijeti "čistoj" energiji. Like previous wind turbines, the oscillating wing for driving wind generators can contribute a lot to "clean" energy.

Njihajuće krilo pogotovo može naći primjenu u skučenim prostorima, na primjer, na jahtama i drugim brodicama, a gdje bi se stabilizator pravca zamijenio senzorskim davačima. The oscillating wing can especially be used in confined spaces, for example, on yachts and other boats, where the direction stabilizer would be replaced by sensors.

Claims (1)

1. Njihajuće krilo kao pogon vjetrogeneratora i vjetrena turbina rade na istom principu, uzgonsku silu Fu ostvaruju na aerodinamičnom profilu pretvorbom kinetičke energije vjetra, međutim vjetrena turbina nije u stanju cijelu komponentu uzgonske sile Fu pretvoriti u korisni zakretni moment, zbog obodne brzine; nasuprot tome njihajuće krilo kao pogon vjetrogeneratora "naznačen time" uz pomoć paralelograma poluga (2) ima karakter translatornog kretanja lijevo-desno bez obodne brzine, te se tako cijela ugonska sila Fu pretvara u korisni zakretni moment, a kontrolni mehanizam (3) postavlja krilo (1) na optimalni prikloni kut.1. The oscillating wing as the drive of the wind generator and the wind turbine work on the same principle, the lift force Fu is realized on the aerodynamic profile by converting the kinetic energy of the wind, however, the wind turbine is not able to convert the entire component of the lift force Fu into a useful torque, due to the peripheral speed; on the other hand, the oscillating wing as the drive of the wind generator "indicated by" with the help of the parallelogram lever (2) has the character of translational movement left-right without peripheral speed, and thus the entire propulsive force Fu is converted into a useful torque, and the control mechanism (3) sets the wing (1) to the optimal lean angle.
HR20100151A 2010-03-17 2010-03-17 Swing wing like the drive for windgenerator HRP20100151A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
HR20100151A HRP20100151A2 (en) 2010-03-17 2010-03-17 Swing wing like the drive for windgenerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
HR20100151A HRP20100151A2 (en) 2010-03-17 2010-03-17 Swing wing like the drive for windgenerator

Publications (1)

Publication Number Publication Date
HRP20100151A2 true HRP20100151A2 (en) 2011-09-30

Family

ID=44653649

Family Applications (1)

Application Number Title Priority Date Filing Date
HR20100151A HRP20100151A2 (en) 2010-03-17 2010-03-17 Swing wing like the drive for windgenerator

Country Status (1)

Country Link
HR (1) HRP20100151A2 (en)

Similar Documents

Publication Publication Date Title
AU2007303956B2 (en) Wind turbine with blade pitch control to compensate for wind shear and wind misalignment
US4156580A (en) Wind-turbines
US4408958A (en) Wind turbine blade
US8333561B2 (en) Vertical axis wind turbine
JP4954066B2 (en) Wind energy extraction system
CA2732543C (en) Horizontal axis airfoil turbine
US5599168A (en) Wind turbine adaptable to wind direction and velocity
WO2007043895A1 (en) Speed control system for a wind power plant's rotor and an aerodynamic brake
JP2008506877A5 (en)
CN101008376A (en) Looseleaf friction reducing and rotary-wing wind turbine generator sets
CN103256181B (en) Centrifugal speed-regulating tail-folding yaw type wind power generator
CA2425447A1 (en) Wind turbine blade unit
US20080019832A1 (en) Turbine/rotorcraft/oar blade
US20110070083A1 (en) Streamlined Wind Turbine Optimized for Laminar Layer
JP3766845B2 (en) Wind power generator
Hossain et al. Design and development of a 1/3 scale vertical axis wind turbine for electrical power generation
Yamada et al. Overspeed control of a variable-pitch vertical-axis wind turbine by means of tail vanes
WO2011131792A2 (en) Wind turbine direction control
HRP20100151A2 (en) Swing wing like the drive for windgenerator
RU161935U1 (en) WIND POWER INSTALLATION OF CHARACTER TYPE OF BEAM STRUCTURE WITH VERTICAL ROTATION AXIS
Nila et al. Small power wind turbine (Type Darrieus)
CN104153944B (en) A kind of Large marine vertical axis aerogenerator group
CN100443718C (en) Oblique axis type windpower generating unit
WO2019073189A1 (en) Vertical axis wind turbine
CN203130360U (en) Lifting type oval vacuum magnetic levitation wind turbine

Legal Events

Date Code Title Description
A1OB Publication of a patent application
AKOB Publication of a request for the grant of a patent not including a substantive examination of a patent application (a consensual patent)
ODRP Renewal fee for the maintenance of a patent

Payment date: 20130214

Year of fee payment: 4

OBST Application withdrawn