HRP20090682B1 - Energy system for drying products - Google Patents

Energy system for drying products Download PDF

Info

Publication number
HRP20090682B1
HRP20090682B1 HRP20090682AA HRP20090682A HRP20090682B1 HR P20090682 B1 HRP20090682 B1 HR P20090682B1 HR P20090682A A HRP20090682A A HR P20090682AA HR P20090682 A HRP20090682 A HR P20090682A HR P20090682 B1 HRP20090682 B1 HR P20090682B1
Authority
HR
Croatia
Prior art keywords
air
drying
tobacco
moist
energy
Prior art date
Application number
HRP20090682AA
Other languages
Croatian (hr)
Inventor
Pane KONDIĆ
Original Assignee
Pane KONDIĆ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pane KONDIĆ filed Critical Pane KONDIĆ
Publication of HRP20090682A2 publication Critical patent/HRP20090682A2/en
Publication of HRP20090682B1 publication Critical patent/HRP20090682B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/28Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/02Circulating air or gases in closed cycles, e.g. wholly within the drying enclosure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/06Controlling, e.g. regulating, parameters of gas supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B23/00Heating arrangements
    • F26B23/001Heating arrangements using waste heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B25/00Details of general application not covered by group F26B21/00 or F26B23/00
    • F26B25/06Chambers, containers, or receptacles
    • F26B25/08Parts thereof
    • F26B25/10Floors, roofs, or bottoms; False bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B9/00Machines or apparatus for drying solid materials or objects at rest or with only local agitation; Domestic airing cupboards
    • F26B9/06Machines or apparatus for drying solid materials or objects at rest or with only local agitation; Domestic airing cupboards in stationary drums or chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S90/00Solar heat systems not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/02Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Drying Of Solid Materials (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Izvori energije: sunčani kolektori (4), visokotemperaturna toplinska pumpa (5) zrak-voda i toplovodni kotao (6). Pomoću radijalnog ventilatora (86) sušioni zrak struji kanalom (114), prolazi kroz perforirani pod (115), ulazi u komoru (3), strujeći kroz vlažni proizvod postaje vlažan, struji kroz otvor (94) u kanal (34). Prilikom ne odstranjivanja vlage vlažan zrak struji kroz kanal (35), izmjenjivač (15) topla voda-zrak, postaje sušioni i ponavlja kruženje. Prilikom odstranjivanja vlage dio vlažnog zraka kanala (34) struji kroz pločaste rekuperatore (7) i (8), izmjenjivač (9) zrak-voda i kanalom (96) i (97) u okruženje. Zrak iz okruženja ulazi kroz žaluzine (108) i (109), struji kanalima (110) i (111) prolazi kroz izmjenjivače (10) i (11) voda-zrak, pločaste rekuperatore (7) i (8), miješa se s vlažnim zrakom u kanalu (35). Miješani zrak struji kroz izmjenjivač topline (15) topla voda-zrak, postaje sušioni i nastavlja strujanje. Vlaženje se vrši pregrijanom vodenom parom.\n\nSources of energy: solar collectors (4), high temperature heat pump (5) air-water and hot water boiler (6). With the help of a radial fan (86), the drying air flows through the duct (114), passes through the perforated floor (115), enters the chamber (3), flows through the wet product becoming moist, flows through the opening (94) into the duct (34). When moisture is not removed, moist air flows through the duct (35), the hot water-air exchanger (15), becomes drying and repeats the cycle. When removing moisture, a portion of the humid air of the duct (34) flows through the plate recuperators (7) and (8), the air-to-water exchanger (9) and the duct (96) and (97) into the environment. The ambient air enters through the blinds (108) and (109), flows through channels (110) and (111) through the exchanger (10) and (11) water-air, plate recuperators (7) and (8), mixes with moist air in the duct (35). The mixed air flows through the heat exchanger (15) warm water-air, becomes drying and continues flowing. Moisture is done by superheated steam. \ N \ n

Description

Područje tehnike na koje se izum odnosi Technical field to which the invention relates

Izum pripada području poljoprivrede, a odnosi se na sušenje vlažnih proizvoda, naročito se odnosi na sušenje duhana. Po međunarodnoj klasifikaciji patenata (MKP) oznaka je F26B 23/00 i A24B 1/02. The invention belongs to the field of agriculture, and relates to the drying of moist products, especially to the drying of tobacco. According to the International Patent Classification (IPC), the designation is F26B 23/00 and A24B 1/02.

Tehnički problem Technical problem

Izum rješava problem: pouzdanog i efikasnog sistema sušenja vlažnih proizvoda, a naročito duhana, izvorima topline manjim od 100ºC; smanjenja potrošnje energije korištenjem raspoloživih instaliranih izvora energije; neprekidnog dovođenja energije izmjenjivaču topline topla voda- zrak i održavanja temperature sušionog zraka na zadanu vrijednost pomoću elektromotorne trokrake regulacione slavine sa radom u tri točke, vođene transmiterom temperature i digitalnim regulatorom/indikatorom; iskorištenja energije vlažnog zraka, koji odlazi van sistema sušenja u okruženje, rekuperacijom energije; grijanja vlažnog zraka pomoću izmjenjivača topline topla voda–zrak, energijom sunca, visokotemperaturne toplinske pumpe zrak-voda i toplovodnog kotla; neprekidnog održavanja relativne vlage vlažnog zraka na zadanu vrijednost vođene transmiterom vlage i digitalnim regulatorom/indikatorom; održavanja potrebne količine protoka zraka regulacijom broja obrtaja motora ventilatora frekventnim regulatorom; vlaženja osušenog duhana vodenom parom. The invention solves the problem of: a reliable and efficient system for drying wet products, especially tobacco, with heat sources below 100ºC; reducing energy consumption by using available installed energy sources; continuous supply of energy to the hot water-air heat exchanger and maintenance of the temperature of the drying air at the set value by means of an electric motor three-arm regulation faucet with three-point operation, guided by a temperature transmitter and a digital regulator/indicator; utilization of the energy of moist air, which goes outside the drying system into the environment, through energy recovery; heating moist air using a hot water-air heat exchanger, solar energy, a high-temperature air-water heat pump and a hot water boiler; continuous maintenance of the relative humidity of moist air at a set value guided by a humidity transmitter and a digital regulator/indicator; maintaining the required amount of air flow by regulating the number of revolutions of the fan motor with a frequency regulator; wetting of dried tobacco with steam.

Stanje tehnike State of the art

Proizvođači duhana suše duhan opremom koja se naziva sušara za sušenjeduhana. Sušara za sušenje duhana sastoji se od komore u koju se stavlja ubran duhan za sušenje, nanizan i zbijen u ramove ili u kontejnere i komore u koju je ugrađen termogen, kojim se grije vlažan zrak. U gornjem dijelu termogena ugrađen je izmjenjivač topline u kojem se vrši sagorijevanje energenta i grije vlažan zrak. Održavanje temperature sušionog zraka na zadanu vrijednost vrši se povremenim uključivanjem sagorijevanja energenta u izmjenjivaču topline. U termogen je ugrađen radijalni ventilator koji vrši prinudno strujanje sušionog i vlažnog zraka i usisavanje svježeg zraka. Duhan se suši dovođenjem sušionog zraka u komoru za sušenje duhana pri čemu se smanjuje količina vlage u duhanu, a povećava vlažnost sušionog zraka koji postaje vlažanzrak. Prilikom sušenja duhana osnovni parametri su temperatura, relativna vlažnost zraka u prostoru u kojem se suši duhan, količina sušionog zraka koji prinudno cirkulira između listova duhana i vrijeme održavanja podešene temperature i vlage. Sušenje duhana se odvija u fazi kada se ne odstranjuje vlaga i u fazi kada se odstranjuje vlaga iz komore u kojoj se suši duhan. U fazi kada se ne odstranjuje vlaga vrši se žućenje duhana i traje 36 do 72 sata što zavisi od zrelosti duhana i pozicije lista na stabljici duhana. U fazi kada se odstranjuje vlaga vrši se fiksiranje boje lista, isušivanje plojke lista i glavne žile lista duhana u trajanju 3 do 4 dana. U fazi kada se ne odstranjuje vlaga potreba za energijom je manja, početna temperatura sušionog zraka određuje se između 30 oC i 37 oC, završna temperatura sušionog zraka određuje se između 37 oC i 42 oC, relativna vlaga do 90 %, sa velikom recirkulacijom sušionog zraka. U fazi kada se odstranjuje vlaga potreba za energijom se povećava, početna temperatura sušionog zraka određuje se na osnovu završne temperature sušionog zraka faze kada se ne odstranjuje vlaga, završna temperatura sušionog zraka je 74 oC, relativna vlaga između 18 % i 11 %, sa povećanim odvođenjem vlažnog zraka u okruženje. U fazi kada se ne odstranjuje vlaga zrak u sušari recirkulira, a prolazom preko izmjenjivača topline sagorjeli plinovi-vlažan zrak, vlažan zrak se grije i postaje sušioni zrak. U fazi kada se odstranjuje vlaga, dio vlažnog zraka recirkulira, a dio odvodi u okruženje iz komore za sušenje duhana preko njihajućih žaluzina i dovodi suhi zrak iz okruženja kroz žaluzine ugrađene na termogen, u jednakoj količini i miješa se sa recirkulacionim zrakom. Pomiješani suhi i vlažan zrak prolaskom preko izmjenjivača topline sagorjeli plinovi-vlažan zrak griju se i postaju sušioni zrak. Podešavanje vlage vrši se pomoću podesivih žaluzina ugrađenih na termogen, a kontrola vlage u komori za sušenje duhana vrši se pomoću psihrometra. Regulacija količine protoka zraka vrši se podešavanjem žaluzina koje su ugrađene na termogen. U termogen iznad izmjenjivača topline ugrađena je cijev sa diznama za raspršivanje vode za vlaženje duhana. Po završetku sušenja duhan se vlaži vodom, koja se uslijed pritiska pomoću dizni, u vidu vodene magle, ubacuje u recirkulacioni zrak. Duhan je potrebno vlažiti jer je osušen duhan lomljiv i nije pogodan za transport i daljnju preradu. Proizvođači sušara proizvode sušare pod nazivom sušara za sušenje duhana i isporučuju ih proizvođačima duhana za sušenje duhana. Sušara se sastoji od komore u koju se stavlja ubran duhan za sušenje nanizan i zbijen u ramove ili kontejnere i komore u koju je ugrađen termogen. U termogen je ugrađen izmjenjivač topline u kojem se vrši sagorijevanje energenta, a pomoću izmjenjivača grije se vlažan zrak koji postaje sušioni. Ove sušare kao energent koriste lož ulje ili zemni plin. Tobacco manufacturers dry tobacco using equipment called a tobacco dryer. A tobacco dryer consists of a chamber in which harvested tobacco is placed for drying, strung and compacted in frames or in containers, and a chamber in which a thermogen is installed, which heats moist air. A heat exchanger is installed in the upper part of the thermogen, where energy is burned and humid air is heated. Maintaining the temperature of the drying air at the set value is done by periodically turning on the combustion of energy in the heat exchanger. A radial fan is installed in the thermogen, which performs a forced flow of dried and moist air and suction of fresh air. Tobacco is dried by introducing dried air into the tobacco drying chamber, which reduces the amount of moisture in the tobacco, and increases the humidity of the dried air, which becomes moist air. When drying tobacco, the basic parameters are temperature, relative air humidity in the room where the tobacco is dried, the amount of dried air that is forced to circulate between the tobacco leaves and the time to maintain the set temperature and humidity. Tobacco drying takes place in the phase when moisture is not removed and in the phase when moisture is removed from the chamber where the tobacco is dried. In the phase when the moisture is not removed, the yellowing of the tobacco takes place and lasts 36 to 72 hours, which depends on the maturity of the tobacco and the position of the leaf on the tobacco stem. In the phase when the moisture is removed, the color of the leaf is fixed, the leaf blade and the main veins of the tobacco leaf are dried for 3 to 4 days. In the phase when moisture is not removed, the need for energy is lower, the initial temperature of the drying air is determined between 30 oC and 37 oC, the final temperature of the drying air is determined between 37 oC and 42 oC, relative humidity up to 90%, with a large recirculation of the drying air . In the phase when moisture is removed, the need for energy increases, the initial temperature of the drying air is determined based on the final temperature of the drying air of the phase when moisture is not removed, the final temperature of the drying air is 74 oC, relative humidity between 18% and 11%, with increased by removing moist air into the environment. In the phase when moisture is not removed, the air in the dryer recirculates, and by passing through the heat exchanger, the burnt gases-moist air, the moist air is heated and becomes drying air. In the phase when the moisture is removed, part of the moist air recirculates, and part of it is taken into the environment from the tobacco drying chamber through swinging louvers and brings dry air from the environment through the louvers installed on the thermogen, in an equal amount and mixes with the recirculation air. When the mixed dry and moist air passes through the heat exchanger, the burnt gases-moist air are heated and become drying air. The humidity is adjusted using adjustable blinds installed on the thermogen, and the humidity in the tobacco drying chamber is controlled using a psychrometer. Regulation of the amount of air flow is done by adjusting the blinds that are installed on the thermogen. In the thermogen above the heat exchanger, a tube with nozzles for spraying water for moistening the tobacco is installed. At the end of drying, the tobacco is moistened with water, which is injected into the recirculation air in the form of a water mist due to the pressure of the nozzles. Tobacco needs to be moistened because dried tobacco is brittle and not suitable for transport and further processing. Dryer manufacturers manufacture dryers called tobacco dryers and supply them to tobacco manufacturers for drying tobacco. The dryer consists of a chamber in which the harvested tobacco is placed for drying, strung and compacted in frames or containers, and a chamber in which a thermogen is installed. A heat exchanger is built into the thermogen in which the energy is burned, and the moist air is heated using the exchanger, which becomes dry. These dryers use heating oil or natural gas as an energy source.

Za sušenje proizvođači duhana imaju tehnologije sušenja koje se primenjuju za duhane različite zrelosti i pozicije ubranog lista sa stabljike duhana. For drying, tobacco manufacturers have drying technologies that are used for tobacco of different maturity and position of the picked leaf from the tobacco stem.

Iskorištenje energije u ovim sušarama je 65 % do 70 %. Zagrijavanje i održavanje podešene temperature sušionog zraka vrši se sa prekidima sagorijevanja energenta. Dovođenje energije za grijanje vlažnog zraka je u prekidima, temperatura sušionog zraka nije ravnomjerna što loše utječe na biokemijske procese u listu duhana. Temperature sagorijevanja energenata u izmjenjivaču topline su visoke. Visoke temperature u izmjenjivaču topline uslijed promjena temperatura koje nastaju uključivanjem i isključivanje grijanja vlažnog zraka izazivaju deformacije limova na spojevima što utječe na vijek trajanja izmjenjivača. U fazi kada se odstranjuje vlaga, dio vlažnog zraka kao otpadni odvodi se u okruženje iz komore za sušenje duhana preko njihajućih žaluzina i bespovratno odnosi energiju u okruženje. Regulacija dovoda svježeg zraka vrši se ručno pomoću žaluzina. Kontrola vlage se vrši psihrometrom. Regulacija količine protoka zraka vrši se ručno pomoću žaluzina. Vlaženje duhana raspršivanjem vode preko dizni je neefikasno jer se na listove duhana mjestimično talože kapi vode koje na taloženom mjestu mijenjaju boju lista duhana. Energy utilization in these dryers is 65% to 70%. Heating and maintaining the set temperature of the drying air is done with interruptions in the combustion of energy. The supply of energy for heating moist air is interrupted, the temperature of the drying air is not uniform, which has a bad effect on the biochemical processes in the tobacco leaf. The combustion temperatures of energy sources in the heat exchanger are high. High temperatures in the heat exchanger due to temperature changes caused by switching on and off the humid air heating cause deformations of the sheets at the joints, which affects the service life of the exchanger. In the stage when the moisture is removed, part of the moist air is discharged into the environment as waste from the tobacco drying chamber through the oscillating blinds and irreversibly transfers energy to the environment. Regulation of the fresh air supply is done manually using blinds. Moisture control is performed with a psychrometer. Regulation of the amount of air flow is done manually by means of blinds. Wetting the tobacco by spraying water over the nozzles is ineffective because drops of water settle on the tobacco leaves in places, which change the color of the tobacco leaf at the deposited place.

Izlaganje biti izuma Presentation of the essence of the invention

Izum je efikasan energetski sistem, koji je smješten u komoru koja je sastavni dio sušare, kojim se suše vlažni proizvodi, a naročito duhan. Sušara za sušenje ima i komoru u koju se stavlja duhan koji će se sušiti nanizan i zbijen u ramove ili u kontejnere. U fazi kada se ne odstranjuje vlaga zrak u sušari recirkulira, a prolaskom kroz izmjenjivač topline topla voda-zrak grije se i postaje sušioni zrak. U fazi odstranjivanja vlage dio vlažnog zraka recirkulira, dio odvodi u okruženje, a dovodi se suhi zrak iz okruženja u jednakoj količini. Sistem energiju vlažnog zraka koji se odvodi prema okruženju prenosi na suhi zrak pomoću pločastog rekuperatora topline zrak-zrak. Poslije rekuperacije energije pločastim rekuperatorom topline zrak-zrak, preostala energija u vlažnom zraku ponovo se rekuperira pomoću izmjenjivača topline zrak- voda i topla voda-zrak i prenosi na suhi zrak iz okruženja, a prije ulaza u pločasti izmjenjivač topline zrak-zrak. Za zagrijavanje sušionog zraka pomoću izmjenjivača topline topla voda-zrak bira se jedan od tri instalirana izvora energije. Izvori energije su sunčeva energija, visokotemperaturna toplinska pumpa zrak-voda i toplovodni kotao. Ovim sistemom se u svim fazama sušenja, pomoću diferencijalnih termostata i elektromotornih trokrakih regulacionih slavina, vrši izbor jednog od raspoloživih izvora energije za sušenje, a koji raspolaže sa dovoljnom količinom i potencijalom energije. Pomoću elektromotorne trokrake regulacione slavine, radom u tri točke, vrši se recirkulacija tople vode i kontinuirano dovođenje potrebne energije izmjenjivaču topline topla voda-zrak, radi održavanja temperature sušionog zraka na zadanu vrijednost. Digitalni regulator/indikator sa transmiterom za vlagu, pomoću reverzibilnog elektromotora i navojnog vretena, podešava međusobni razmak pokretnih ploča, održava potrebnu količinu relativne vlage u komori za sušenje. Bit ovog sistema je zagrijavanje suhog zraka rekuperiranom energijom vlažnog zraka, sušenje duhana najekonomičnijim, instaliranim, izvorom energije koji raspolaže potrebnom energijom, neprekidno dovođenje energije sušionom zraku za sušenje, održavanje temperature i vlage na zadanu vrijednost tokom sušenja duhana, održavanje potrebne količine protoka zraka elektronskom regulacijom broja obrtaja elektromotora ventilatora, vlaženje osušenog duhana pregrijanom vodenom parom, poslije sušenja. Energija sunca predana na sunčane kolektore prenosi se u akumulator topline i odvodi u izmjenjivač topline topla voda-zrak za zagrijavanje vlažnog zraka i sušenje duhana. Kada je u sunčanim kolektorima mala temperatura za zagrijavanje sušionog zraka kojim se suši duhan, a veća od temperature tople vode zagrijane rekuperacijom energije pomoću izmjenjivača topline zrak-voda i topla voda-zrak, tada se energija iz sunčanih kolektora preusmjerava da grije suhi zrak, koji struji iz okruženja, izmjenjivačima topline topla voda-zrak, a prije ulaza u pločaste rekuperatore topline zrak-zrak. Prednosti ovog sistema su mala potrošnja energije, velika točnost održavanja temperature sušionog zraka i vlage u komori u kojoj se suši duhan, vlaženje osušenog duhana pregrijanom vodenom parom, visok stupanj sigurnosti sistema pri radu, smanjenje zagađenosti životne sredine na minimum. Radom ovog sistema dobija se vrlo velika ušteda energije. U krajevima gde se proizvodi i suši duhan vrijeme direktnog i difuzionog sunčevog zračenja na kolektore 36 % od ukupnog vremena sušenja duhana, ušteda energije sunčevim direktnim i difuzionim zračenjem prilikom sušenja duhana je 25 %. Visoko temperaturna toplinska pumpa zrak-voda zagrijavanjem vlažnog zraka ostvaruje uštedu 66 %. Rekuperacijom energije vlažnog zraka koji se odvodi u okruženje, u fazi odstranjivanja vlage, suhom zraku koji dolazi iz okruženja vraća se 70 % energije sa visokim potencijalom energije. Ukupna ušteda energije primjenom ovog sistema је 90 %. Sistem se odnosi na sigurnije, ekonomičnije i efikasnije sušenje duhana. Instalirana oprema za korištenje sunčeve energije pomoću kolektora, u vrijeme kada se ne suši vlažni proizvod, može da služi za zagrijavanje sanitarne vode. Visoko temperaturna toplinska pumpa zrak–voda, u vrijeme kada se ne suši vlažni proizvod, može da služi za grijanje sanitarne vode i za niskotemperaturna grijanja stambenog i poslovnog prostora. Тоplovodni kotao, koji je ugrađen van objekta sušare za sušenja vlažnih proizvoda, u zimskom periodu može da služi za grijanje sanitarne vode, stambenog ili poslovnog prostora. The invention is an efficient energy system, which is placed in a chamber that is an integral part of the dryer, which is used to dry moist products, especially tobacco. The dryer also has a chamber where tobacco is placed to be dried strung and compacted in frames or in containers. In the phase when moisture is not removed, the air in the dryer recirculates, and by passing through the heat exchanger, the hot water-air is heated and becomes drying air. In the phase of moisture removal, part of the moist air is recirculated, part is discharged into the environment, and dry air is supplied from the environment in an equal amount. The system transfers the energy of moist air that is removed to the environment to dry air using a plate air-to-air heat recuperator. After energy recovery by the air-to-air plate heat exchanger, the remaining energy in the moist air is recovered again using the air-to-water and hot water-to-air heat exchangers and transferred to the dry air from the environment, before entering the air-to-air plate heat exchanger. To heat the drying air using a hot water-air heat exchanger, one of the three installed energy sources is selected. Energy sources are solar energy, high temperature air-water heat pump and hot water boiler. With this system, in all stages of drying, with the help of differential thermostats and electric three-way control taps, the selection of one of the available energy sources for drying is made, which has a sufficient amount and energy potential. With the help of an electric three-point control valve, working in three points, hot water is recirculated and the necessary energy is continuously supplied to the hot water-air heat exchanger, in order to maintain the temperature of the dried air at the set value. A digital regulator/indicator with a humidity transmitter, using a reversible electric motor and a threaded spindle, adjusts the distance between the moving plates, maintains the required amount of relative humidity in the drying chamber. The essence of this system is to heat the dry air with the recovered energy of the moist air, dry the tobacco with the most economical, installed, energy source that has the necessary energy, continuously supply energy to the dried air for drying, maintain the temperature and humidity at a set value during tobacco drying, maintain the required amount of air flow electronically by regulating the number of revolutions of the electric fan motor, wetting the dried tobacco with superheated steam, after drying. The energy of the sun delivered to the solar collectors is transferred to the heat accumulator and taken to the hot water-air heat exchanger for heating the moist air and drying the tobacco. When the temperature in the solar collectors for heating the drying air used to dry the tobacco is low, and higher than the temperature of the hot water heated by energy recovery using air-water and hot water-air heat exchangers, then the energy from the solar collectors is redirected to heat the dry air, which flows from the environment, through hot water-air heat exchangers, and before entering the plate heat recuperators, air-air. The advantages of this system are low energy consumption, high accuracy of maintaining the temperature of the drying air and humidity in the chamber where the tobacco is dried, moistening of the dried tobacco with superheated water vapor, a high degree of safety of the system during operation, reduction of environmental pollution to a minimum. The operation of this system results in very large energy savings. In the regions where tobacco is produced and dried, the time of direct and diffused solar radiation on the collectors is 36% of the total time of tobacco drying, energy saving by direct and diffused solar radiation during tobacco drying is 25%. The high-temperature air-water heat pump saves 66% by heating moist air. By recuperating the energy of moist air that is discharged into the environment, in the phase of moisture removal, 70% of the energy with a high energy potential is returned to the dry air that comes from the environment. The total energy saving using this system is 90%. The system refers to safer, more economical and more efficient drying of tobacco. Installed equipment for the use of solar energy using a collector, at the time when the wet product is not being dried, can be used for heating sanitary water. The high-temperature air-water heat pump, when the wet product is not being dried, can be used for heating sanitary water and for low-temperature heating of residential and commercial premises. The hot water boiler, which is installed outside the drying facility for drying wet products, can be used for heating sanitary water, residential or business premises in winter.

Kratak opis slika Short description of the pictures

Izum je detaljno opisan po slikama u kojima: The invention is described in detail by pictures in which:

Slika 1. – prikazuje pogled s boka na komoru u kojoj je ugrađena oprema energetskog sistema. Figure 1 – shows a side view of the chamber in which the energy system equipment is installed.

Slika 2. – prikazuje pogled sprijeda na komoru u kojoj je ugrađena oprema energetskog sistema i položaj sunčanih kolektora. Figure 2 - shows a front view of the chamber in which the energy system equipment is installed and the position of the solar collectors.

Slika 3. – prikazuje horizontalni presjek A – A, pogled odozgo. Figure 3 – shows the horizontal section A – A, top view.

Slika 4. – prikazuje pogled po uzdužnom presjeku B – B, u kojem se vidi strujanje zraka i položaji ventilatora, visokotemperaturne toplinske pumpe zrak-voda, izmjenjivača topline topla voda-zrak i žaluzina. Figure 4 - shows the view along the longitudinal section B - B, which shows the air flow and the positions of the fans, high-temperature air-water heat pumps, hot water-air heat exchangers and blinds.

Slika 5. – prikazuje pogled po poprečnom presjeku C – C, u kojem se vide položaji navojnog vretena i izmjenjivača topline za rekuperaciju topline. Figure 5 - shows a cross-sectional view C - C, showing the positions of the threaded spindle and the heat exchanger for heat recovery.

Slika 6. – prikazuje pogled po poprečnom presjeku D – D, u kojem se vide položaji pokretnih ploča, rotacione žaluzine, pločastih rekuperatora topline zrak-zrak, akumulator topline, bojler vodene pare i elektromotor ventilatora. Figure 6 - shows a cross-sectional view D - D, in which the positions of the moving plates, rotary blinds, air-to-air plate heat recuperators, heat accumulator, water vapor boiler and electric fan motor can be seen.

Slika 7. – prikazuje shemu hidrauličkog povezivanja izvora topline. Figure 7 – shows the diagram of the hydraulic connection of the heat source.

Slika 8. – prikazuje shemu hidrauličkog povezivanja izvora za vlaženje. Figure 8 - shows the diagram of the hydraulic connection of the source for moistening.

Detaljan opis izuma Detailed description of the invention

Sušara 1 za sušenje duhana sastoji se iz komore 2 i komore 3. Duhan koji će se sušiti nanizan je i zbijen u ramove ili u kontejnere, smješten je u komoru 3. Struktura komore 3 jednaka je strukturi komore sušara koje danas za tržište proizvode i isporučuju proizvođači sušara duhana, zbog toga nije je potrebno dalje opisivati. Dryer 1 for drying tobacco consists of chamber 2 and chamber 3. The tobacco to be dried is strung and compacted in frames or in containers, placed in chamber 3. The structure of chamber 3 is the same as the chamber structure of dryers that are produced and delivered to the market today manufacturers of tobacco dryers, so it is not necessary to describe it further.

Sušenje duhana odvija se u fazi kada se ne odstranjuje vlaga i u fazi kada se odstranjuje vlaga iz komore 3 u kojoj se suši duhan. U fazi kada se ne odstranjuje vlaga vrši se žućenje duhana. U fazi kada se odstranjuje vlaga vrši se fiksiranje boje lista, isušivanje plojke lista i glavne žile lista. Tobacco drying takes place in the phase when moisture is not removed and in the phase when moisture is removed from the chamber 3 in which the tobacco is dried. In the stage when the moisture is not removed, the tobacco is yellowed. In the phase when the moisture is removed, the leaf color is fixed, the leaf blade and the main leaf veins are dried.

Za sušenje, proizvođači duhana od instruktora za proizvodnju i sušenje duhana dobivaju tehnologije sušenja, koje se primjenjuju za duhane različite zrelosti i pozicije ubranog lista sa stabljike duhana, zbog toga nije potrebno dalje opisivati tehnologiju i režime sušenja duhana. For drying, tobacco producers receive drying technologies from tobacco production and drying instructors, which are applied to tobacco of different maturity and position of the picked leaf from the tobacco stalk, therefore it is not necessary to further describe the technology and regimes of tobacco drying.

Ovim izumom data su i rješenja da proizvođači duhana efikasno i pouzdano mogu voditi tehnologije sušenja duhana različite zrelosti i pozicije ubranog lista sa stabljike duhana, u cilju dobivanja najbolje moguće kvalitete osušenog duhana. This invention also provides solutions that enable tobacco manufacturers to efficiently and reliably manage tobacco drying technologies of different maturity and position of the harvested leaf from the tobacco stem, in order to obtain the best possible quality of dried tobacco.

Slike 1 do 8 prikazuju sistem za sušenje duhana. Za sušenje duhana koriste se izvori energije: sunca - zračenjem na sunčane kolektore 4, visokotemperaturne toplinske pumpe 5 zrak-voda i toplovodnog kotla 6 na plin, lož ulje, ugljen, drvo, biomasu ili električnu energiju. Toplovodni kotao 6 je smješten van objekta sušare 1, a sunčani kolektori 4 smješteni su na krov sušare 1 orijentirani prema jugu. Ostali dio opreme sistema za sušenje duhana smješten je u komoru 2 sušare 1. Figures 1 to 8 show the tobacco drying system. Energy sources are used for drying tobacco: the sun - radiation on solar collectors 4, high-temperature heat pumps 5 air-water and hot water boiler 6 on gas, heating oil, coal, wood, biomass or electricity. The hot water boiler 6 is located outside the drying facility 1, and the solar collectors 4 are located on the roof of the drying facility 1, oriented to the south. The rest of the equipment of the tobacco drying system is located in chamber 2 of dryer 1.

U fazi kada se ne odstranjuje vlaga duhan se suši jednim od raspoloživih instaliranih izvora energije. U fazi kada se odstranjuje vlaga duhan se suši jednim od raspoloživih instaliranih izvora energije i rekuperiranom energijom. Rekuperirana energija dobiva se pomoću pločastih rekuperatora topline 7 i 8 zrak-zrak, izmjenjivača topline 9 zrak-voda i izmjenjivača topline 10 i 11 topla voda-zrak kao rekuperatora topline, prijenosom energije vlažnog zraka koji odlazi u okruženje na suhi zrak koji dolazi iz okruženja. Akumulator topline 12 akumulira energiju iz sunčanih kolektora 4 u vrijeme kada je direktnim i difuznim zračenjem sunčane energije postignuta temperatura veća od potrebne temperature koja se zahtijeva za grijanje vlažnog zraka. Akumulator topline 12 akumulira energiju iz visokotemperaturne toplinske pumpe zrak-voda, ako je temperatura u sunčanim kolektorima manja od temperature koja se zahtijeva za grijanje vlažnog zraka. Održavanje temperature tople vode na zadanu vrijednost u akumulatoru topline 12 kada radi visokotemperaturna toplinska pumpa 5 zrak-voda vrši se pomoću termostata 13 i 14. Izmjenjivač topline 15 topla voda-zrak, grije vlažan zrak energijom iz akumulatora topline 12 ako je temperatura u akumulatoru topline 12 veća od potrebne temperature koja se zahtijeva za grijanje vlažnog zraka, a ako je temperatura u akumulatoru topline 12 manja od potrebne temperature koja se zahtijeva za grijanje vlažnog zraka tada izmjenjivač topline 15 topla voda-zrak grije vlažan zrak energijom toplovodnog kotla 6. Pločasti rekuperatori 7 i 8 zrak-zrak u fazi odstranjivanja vlage, odvođenjem vlažnog zraka iz komore 3, energiju dijela vlažnog zraka prenose suhom zraku koji iz okruženja dolazi u sistem sušenja. Pokretne ploče 16 i 17 postavljene iznad pločastih rekuperatora 7 i 8 zrak-zrak, ovješene o glatku cijev 18 pomicanjem i podešavanjem međusobnog razmaka propuštaju vlažan i svjež zrak kroz pločaste rekuperatore 7 i 8 zrak-zrak. Na pokretne ploče ugrađene su gumene višeslojne brtve 19 i 20 vertikalno postavljene, sa malim razmakom do pločastih rekuperatora topline 7 i 8 zrak-zrak, radi sprječavanja prolaza vlažnog i suhog zraka van otvorenog ulaza u pločaste rekuperatore topline 7 i 8 zrak-zrak. Pokretne ploče 16 i 17 u fazi kada se ne odvodi vlažan zrak, zatvaraju prolaz vlažnog i suhog zraka prema pločastim rekuperatorima 7 i 8 zrak-zrak. Navojno vreteno 21 sa lijevim i desnim navojem vrši pomicanje i podešavanje pokretnih ploča 16 i 17. Reverzibilni elektromotor 22 sa reduktorom, radom u tri točke, preko lančanog prijenosa 23 vrši obrtno kretanje navojnog vretena 21 sa lijevim i desnim navojem. Digitalni regulator/indikator vlage i transmiter za vlagu, ugrađeni u elektrokomandni ormar 24, pomoću senzora 25 za vlagu, reverzibilnog elektromotora 22 sa reduktorom radom u tri točke, lančanog prijenosa 23, navojnog vretena 21 sa lijevim i desnim navojem, podešavanjem međusobnog razmaka pokretnih ploča 16 i 17, održava potrebnu količinu relativne vlage u komori 3 za sušenje duhana. Ispod pokretnih ploča 16 i 17, na okvir pločastih rekuperatora topline 7 i 8 zrak-zrak, postavljen je limeni okvir 26 radi zaštite od trošenja površina okvira pločastih rekuperatora topline 7 i 8 zrak-zrak zbog pomicanja pokretnih ploča 16 i 17. Krajnje elektrosklopke 27 i 28 ograničavaju pomicanje pokretnih ploča 16 i 17 isključivanjem rada reverzibilnog elektromotora 22 sa reduktorom. Rotaciona žaluzina 29 regulira količinu protoka vlažnog zraka prema izmjenjivaču topline 15 topla voda-zrak da bi se održavao stalan pritisak vlažnog zraka prema pločastim rekuperatorima topline 7 i 8 zrak-zrak za vrijeme odvođenja vlage iz komore 3. Reverzibilni elektromotorni pokretač 30 sa reduktorom, radom u tri točke, vrši obrtno kretanje rotacione žaluzine 29. U elektroormar 31 ugrađeni su digitalni regulator/indikator i transmiter diferencijalnog pritiska spojen cijevnim vodovima sa senzorima 32 i 33, koji pomoću reverzibilnog elektromotornog pokretača 30, održavaju podešeni pritisak vlažnog zraka ispred pločastih rekuperatora 7 i 8 i protok vlažnog i suhog zraka kroz pločaste rekuperatore 7 i 8 zrak-zrak. Krajnja sklopka 28 pomoću reverzibilnog elektromotornog pokretača 30 sa reduktorom, radom u tri točke, rotacionu žaluzinu 29 vratit će u položaj maksimalnog protoka vlažnog zraka iz kanala 34 u kanal 35 i isključiti rad cirkulacione pumpe 36, kada se ne odvodi vlažan i ne dovodi suhi zrak. Krajnja sklopka 37 ograničava minimalni međusobni razmak pokretnih ploča 16 i 17 isključivanjem rada reverzibilnog elektromotora 22 sa reduktorom. Izmjenjivač topline 9 zrak–voda i izmjenjivači topline topla voda-zrak 10 i 11 posredstvom cijevne instalacije i cirkulacione pumpe 36 rekuperirat će preostalu energiju vlažnog zraka poslije prolaza kroz pločaste rekuperatore topline 7 i 8 zrak-zrak i prenijeti energiju na suhi zrak koji dolazi iz okruženja, a prije ulaza u pločaste rekuperatore topline 7 i 8 zrak-zrak. Cirkulaciona pumpa 36 uključuje se u rad pomoću krajnje sklopke 28 u trenutku otvaranja protoka suhog i dijela vlažnog zraka prema pločastim rekuperatorima topline 7 i 8 zrak-zrak. Cirkulaciona pumpa 38 preko elektromotorne trokrake regulacione slavine 39, radom u tri točke, neprekidno dodaje potrebnu količinu energije izmjenjivaču topline 15 topla voda-zrak. Elektromotorna trokraka regulaciona slavina 39, radom u tri točke, smanjenjem dovoda energije izmjenjivaču topline 15 topla voda-zrak omogućuje recirkulaciju tople vode kruženjem između izmjenjivača topline 15 topla voda-zrak i elektromotorne trokrake regulacione tropoložajne slavine 39. Elektromotorna trokraka regulaciona slavina 39, radom u tri točke regulira dovođenje količine energije izmjenjivaču topline 15 topla voda-zrak. Podešavanje i održavanje temperature sušionog zraka na zadanu vrijednost vrši se pomoću transmitera temperature 40 i regulatora/indikatora temperature, montiran u elektrokomandni ormar 24, djelovanjem na elektromotor trokrake regulacione slavine 39, radom u tri točke. Diferencijalni termostat 41 pomoću senzora temperature 42 i 43 kontrolira razliku temperatura u akumulatoru topline 12 i u izmjenjivaču topline 15 topla voda-zrak. Ako je temperatura u akumulatoru topline 12 veća od temperature u izmjenjivaču topline 15 topla voda-zrak, diferencijalni termostat 41 postavit će elektromotornu trokraku dvopoložajnu slavinu 44 u položaj da se koristi energija iz akumulatora topline 12, isključiti rad toplovodnog kotla 6 i isključiti rad cirkulacione pumpe 45, a ako nije temperatura veća postavit će elektromotornu trokraku dvopoložajnu slavinu 44 u položaj da se koristi energija toplovodnog kotla 6, uključit će rad toplovodnog kotla 6 i rad cirkulacione pumpe 45. Diferencijalni termostat 46 pomoću senzora temperature 47, 48 i 49 kontrolira razliku temperatura u sunčanim kolektorima 4, u odnosu na temperature u izmjenjivaču topline 15 topla voda–zrak i izmjenjivaču topline 9 zrak-voda. Ako je temperatura u sunčanim kolektorima 4 veća od temperature u izmjenjivaču topline 15 topla voda–zrak diferencijalni termostat 46 isključit će rad visokotemperaturne toplinske pumpe 5 zrak-voda, koja će svojom automatikom isključiti rad cirkulacione pumpe 50, uključiti cirkulacionu pumpu 51 i elektromotornu trokraku dvopoložajnu slavinu 52 postaviti u položaj da se energija iz sunčanih kolektora 4 prenosi u akumulator topline 12. Ako je temperatura u sunčanim kolektorima 4 manja od temperature u izmjenjivaču topline 15 topla voda–zrak, a veća od temperature u izmjenjivaču topline 9 zrak-voda, diferencijalni termostat 46 isključit će rad cirkulacione pumpe 51, uključiti u rad visokotemperaturnu toplinsku pumpu 5 zrak-voda koja svojom automatikom uključuje rad cirkulacione pumpe 50, elektromotornu trokraku dvopoložajnu slavinu 52 postaviti u položaj da se energija iz visokotemperaturne toplinske pumpe 5 zrak-voda može prenositi prema akumulatoru topline 12 i elektromotornu trokraku dvopoložajnu slavinu 53 postaviti u položaj da se energija iz sunčanih kolektora 4 prenosi prema izmjenjivačima topline 10 i 11 topla voda-zrak. Kada je temperatura u sunčanim kolektorima 4 manja od temperature u izmjenjivaču topline 9 zrak-voda, diferencijalni termostat 46 elektromotornu trokraku dvopoložajnu slavinu 53 postavit će u položaj da se omogući rekuperacija energije izmjenjivačem topline 9 zrak-voda – izmjenjivači topline 10, 11 topla voda-zrak. Kada toplinska pumpa 5 zrak-voda svojom automatikom isključi rad cirkulacione pumpe 50, istovremeno će pomoću elektromagnetne pomoćne sklopke koja je ugrađena u elektroormar 31 i reverzibilnog elektromotora 103 zatvoriti žaluzine 102. Ako je temperatura u sunčanim kolektorima 4 manja od temperature u akumulatoru topline 12 diferencijalni termostat 54, pomoću senzora 55 i 56, isključit će rad cirkulacione pumpe 51, a ako je veća uključit će rad cirkulacione pumpe 51. Dilatacija tople vode i održavanje podešenog pritiska omogućeno je zatvorenim ekspanzionim dilatacionim posudama 57, 58 i 59, a cijevna instalacija i oprema ventilima sigurnosti 60, 61 i 62 zaštićena je od povećanog pritiska. U cijevnu toplovodnu instalaciju ugrađeni su ventili za preregulaciju 63, 64, i 65, propusni ventili 66, 67 i 68, slavine za punjenje i pražnjenje 69, 70 i 71, na najvišim točkama automatski odzračni lončići 72, 73, 74 75 i 76, hvatači nečistoća 77, 78, i 79, manometri pritiska 80 i 81 i termometri 82, 83 i 84. Smanjenjem potrošnje energije toplovodnog kotla 6 recirkulaciju dijela tople vode omogućuje diferencijalni zaobilazni ventil 85. Grijani fluid je kotlovska voda ako se sušare instaliraju u mjestima u kojima su minimalne temperature okruženja veće od +2 oC, ako je minimalna temperatura okruženja manja od +2 oC tada se etilenglikol dodaje kotlovskoj vodi u postotku da pri niskim temperaturama ne zamrzne grijani fluid. Prinudno strujanje zraka ostvaruje se pomoću radijalnog ventilatora 86 pogonjen elektromotorom 87 međusobno povezani kardanskim vratilom 88. Količina protoka zraka na podešenu vrijednost vrši se regulacijom broja obrtaja elektromotora 87. Broj obrtaja elektromotora 87 regilira elektronski regulator frekvencije montiran u elektroormar 31, pomoću transmitera brzine 89 protoka zraka i regulatora/indikatora brzine, montiran u elektroormar 31. U vertikalni pravokutni kanal 90 ugrađen je radijalni ventilator 86, poluokrugli lim 91, perforirana cijev 92, izmjenjivač topline 15 topla voda-zrak. Iznad vertikalnog pravokutnog kanala 90, ugrađeni su pločasti rekuperatori topline 7 i 8 zrak-zrak, oslonjeni na nosač 93 koji leži na stranici vertikalnog pravokutnog kanala 90. Pločasti rekuperatori topline 7 i 8 zrak-zrak međusobno su razmaknuti radi sigurnog zatvaranja prolaza vlažnog i suhog zraka kroz pločaste rekuperatore topline 7 i 8 zrak-zrak pokretnim pločama 16 i 17 . Limeni okvir 26 zatvara međusobni razmak između pločastih rekuperatora topline 7 i 8 zrak-zrak. Vlažan zrak iz komore 3 prolazi kroz otvor 94 između komora 2 i 3 i struji u kanal 34. U fazi ne odstranjivanja vlage vlažan zrak struji iz kanala 34 u kanal 35, prolazi kroz izmjenjivač topline 15 topla voda-zrak i postaje sušioni zrak. U fazi odstranjivanja vlage dio vlažnog zraka iz kanala 34 struji kroz kanal 35 ka izmjenjivaču topline 15 topla voda-zrak, a dio između pokretnih ploča 16 i 17 kroz pločaste rekuperatore 7 i 8 zrak-zrak i kroz izmjenjivač topline 9 zrak-voda u kanal 95. Vlažan zrak koji je pomoću rekuperatora topline prenio veći dio topline na suhi zrak postaje zrak povećane relativne vlažnosti u kanalu 95. Dio zraka povećane relativne vlažnosti iz kanala 95 struji kanalima 96 i 97 kroz zaštitnu mrežu 98 u okruženje, a dio kosim kanalom 99 prema visoko temperaturnoj toplinskoj pumpi 5 zrak-voda. U kanal 96 ugrađen je poluokrugli lim 100 za prihvaćanje kondenzata iz vlažnog zraka, a pomoću cijevi 101 kondenzat se odvodi u okruženje. U kosi kanal 99 ugrađene su žaluzine 102 kojima se regulira odvod dijela zraka povećane relativne vlažnosti ka visokotemperaturnoj toplinskoj pumpi 5 zrak-voda reverzibilnim elektromotorom 103 sa reduktorom. U fazi kada se odstranjuje vlaga iz komore 3, u kosom kanalu 104, koji je sa gornje i donje strane otvoren, miješa se zrak povećane relativne vlažnosti iz kosog kanala 99 sa suhim zrakom iz okruženja i postaje primarni zrak visokotemperaturne toplinske pumpe 5 zrak-voda. Regulacija temperature na podešenu vrijednost primarnog zraka visokotemperaturne toplinske pumpe 5, u fazi kada se odstranjuje vlaga, vrši se elektronskim regulatorom/indikatorom primarnog zraka ugrađenim u elektroormar 31 i transmitera temperature 105 pomoću reverzibilnog elektromotora 103 sa reduktorom. U fazi kada se ne odstranjuje vlaga primarni zrak visokotemperaturne toplinske pumpe 5 je suhi zrak koji se dovodi iz okruženja kroz fiksne žaluzine 106 i 107, kroz kosi kanal 104, koji je sa gornje i donje strane otvoren. U fazi odstranjivanja vlage, suhi zrak iz okruženja ulazi kroz fiksne žaluzine 108 i 109, struji kanalima 110 i 111, prolazi kroz izmjenjivače 10 i 11 topla voda-zrak, struji kanalima 112 i 113, između pokretnih ploča 16 i 17, kroz pločaste rekuperatore topline 7 i 8 zrak-zrak u kanal 35 i miješa se sa dijelom vlažnog zraka i postaje miješani zrak. Miješani zrak struji kroz izmjenjivač topline 15 topla voda-zrak i postaje sušioni zrak. Sušioni zrak pomoću radijalnog ventilatora 86 koji omogućava prinudno strujanje zraka, struji kanalom 114, prolazi kroz perforirani pod 115, ulazi u komoru 3, prolazi između listova duhana oduzimajući mu vlagu, postaje vlažan zrak i struji prema otvoru 94 između komora 2 i 3 u kanal 34. Između komora 2 i 3 u otvor 94 ugrađena je filter mreža 116. Da bi se moglo pristupiti vlaženju duhana grebenastu dvopoložajnu sklopku koja je ugrađena u elektrokomandni ormar 24 treba postaviti u položaj vlaženja duhana, a po završetku vlaženja duhana vratiti u položaj sušenje duhana. Grebenasta dvopoložajna sklopka koja je ugrađena u elektrokomandni ormar 24 preusmjerava djelovanje digitalnog regulatora/indikatora vlage, ugrađenog u elektrokomandni ormar 24, pomoću mikroprocesora 25 za vlagu sa tropoložajnog djelovanja prilikom sušenja duhana na dvopoložajno djelovanje vlaženja duhana pomoću termostata 117. Duhan se vlaži pregrijanom vodenom parom, koja je proizvedena u bojleru 118 kao zasićena vodena para pomoću električnog grijača 119. Regulator nivoa 120 održava nivo vode u bojleru 118 i omogućuje električnom grijaču 119 da stalno bude u vodi. Kada nivo vode bude ispod podešene vrijednosti regulator nivoa 120 će otvoriti elektromagnetni ventil 121 i omogućiti da voda pod pritiskom dođe u bojler 118, a kada se postigne podešeni nivo, regulator nivoa 120 zatvorit će elektromagnetni ventil 121 i prekinuti dovod vode u bojler 118. Termostat 122 uključuje rad električnog grijača 119 na podešenu vrijednost temperature vodene pare. Limitni termostat 123 isključit će rad električnog grijača 119 ako dođe do prekoračenja podešene temperature u bojleru 118. Električni grijač 119 grije vodu na podešenu vrijednost koja isparava, povećava pritisak u bojleru 118 u kojem se nalazi u donjoj zoni vrela voda, a u gornjoj zoni vodena para. Vodena para je pripremljena za vlaženje kada se postigne podešena temperatura vodene pare u bojleru 118. U trenutku kada je postignuta temperatura vodene pare u bojleru 118, a na osnovu digitalnog regulatora/indikatora vlage ugrađenog u elektrokomandni ormar 24, pomoću mikroprocesora 25 za vlagu kojim se traži povećanje vlažnosti zraka na podešenu vrednost, pomoću termostata 117 i elektromagnetnog ventila 124, pustit će se vodena para iz bojlera 118. Vodena para pri prolazu kroz elektromagnetni ventil 124 i cijev 125 ekspandira smanjenjem pritiska i pomoću perforirane cijevi 92, koja propušta pregrijanu paru, vlaži zrak u kanalu 35. Zrak pomoću radijalnog ventilatora 86 koji omogućava prinudno strujanje, ulazi u vertikalni pravokutni kanal 90, vlaži se pregrijanom vodenom parom, struji kanalom 114, prolazi kroz perforirani pod 115, ulazi u komoru 3, prolazi između listova duhana, vlaži duhan, prolazi kroz otvor 94 između komora 2 i 3 , struji kroz kanal 34 i 35 prema pravokutnom kanalu 90 i nastavlja kruženje. Kada se postigne podešena vlažnost zraka ili kada je temperatura u bojleru 118 manja od podešene, prekinut će se vlaženje zraka, a ciklus vlaženja zraka će se ponavljati do zahtijevane vlažnosti duhana. Poluokrugli lim 91, prilikom vlaženja duhana, odvodi kondenzat pare u okruženje kroz cijev 126. Ekspanziona posuda 127 omogućuje širenje tekućine u instalaciji i održava radni pritisak, a sigurnosni ventil 128 zaštićuje instalaciju od povećanog pritiska. Cijevna instalacija vlaženja duhana ima nepovratni ventil 129, regulator pritiska 130 dovoda vode, hvatač nečistoća 131, propusni ventil 132, manometar pritiska 133, termometar 134 i ventil za preregulaciju 135. In the phase when the moisture is not removed, the tobacco is dried by one of the available installed energy sources. In the phase when moisture is removed, the tobacco is dried using one of the available installed energy sources and recovered energy. Recovered energy is obtained using plate heat recuperators 7 and 8 air-air, heat exchanger 9 air-water and heat exchangers 10 and 11 hot water-air as heat recuperators, by transferring the energy of moist air leaving the environment to dry air coming from the environment . The heat accumulator 12 accumulates energy from the solar collectors 4 at the time when the direct and diffuse radiation of solar energy reaches a temperature higher than the necessary temperature required for heating moist air. The heat accumulator 12 accumulates energy from the high-temperature air-water heat pump, if the temperature in the solar collectors is lower than the temperature required for heating moist air. Maintaining the hot water temperature at the set value in the heat accumulator 12 when the high-temperature heat pump 5 air-water is working is done using thermostats 13 and 14. The heat exchanger 15 hot water-air heats moist air with energy from the heat accumulator 12 if the temperature in the heat accumulator is 12 higher than the necessary temperature required for heating humid air, and if the temperature in the heat accumulator 12 is lower than the necessary temperature required for heating humid air, then the heat exchanger 15 hot water-air heats the humid air with the energy of the hot water boiler 6. Plate recuperators 7 and 8 air-air in the moisture removal phase, by removing the moist air from chamber 3, the energy of part of the moist air is transferred to the dry air coming from the environment into the drying system. Movable plates 16 and 17 placed above air-to-air plate recuperators 7 and 8, suspended from a smooth pipe 18 by moving and adjusting the mutual distance, let moist and fresh air through air-to-air plate recuperators 7 and 8. Rubber multi-layer seals 19 and 20 are installed on the moving plates, vertically placed, with a small gap to the plate heat recuperators 7 and 8 air-to-air, in order to prevent the passage of moist and dry air outside the open entrance to the plate heat recuperators 7 and 8 air-to-air. Moving plates 16 and 17 in the phase when moist air is not removed, close the passage of moist and dry air towards plate recuperators 7 and 8 air-to-air. The screw spindle 21 with left and right thread moves and adjusts the movable plates 16 and 17. The reversible electric motor 22 with a reducer, working in three points, through the chain transmission 23, rotates the screw spindle 21 with left and right thread. Digital moisture regulator/indicator and moisture transmitter, built into the electrical control cabinet 24, using a moisture sensor 25, a reversible electric motor 22 with a three-point reduction gear, a chain transmission 23, a threaded spindle 21 with left and right thread, adjusting the distance between the moving plates 16 and 17, maintains the required amount of relative humidity in chamber 3 for drying tobacco. Below the moving plates 16 and 17, on the frame of the plate heat recuperators 7 and 8 air-to-air, a tin frame 26 is placed in order to protect the surfaces of the frame of the plate heat recuperators 7 and 8 air-to-air from wear due to the movement of the moving plates 16 and 17. End switches 27 and 28 limit the movement of the movable plates 16 and 17 by turning off the operation of the reversible electric motor 22 with the reducer. The rotary shutter 29 regulates the amount of moist air flow towards the hot water-air heat exchanger 15 in order to maintain a constant pressure of moist air towards the plate heat recuperators 7 and 8 air-air during the removal of moisture from the chamber 3. Reversible electric motor starter 30 with a reducer, working in three points, it rotates the rotary shutter 29. A digital regulator/indicator and a differential pressure transmitter are installed in the electrical cabinet 31, connected by pipe lines with sensors 32 and 33, which, with the help of a reversible electric actuator 30, maintain the adjusted pressure of moist air in front of the plate recuperators 7 and 8 and the flow of moist and dry air through plate recuperators 7 and 8 air-to-air. The limit switch 28 by means of a reversible electric actuator 30 with a reducer, working in three points, will return the rotary blind 29 to the position of maximum flow of moist air from the channel 34 to the channel 35 and turn off the operation of the circulation pump 36, when no moist air is removed and no dry air is supplied . The limit switch 37 limits the minimum distance between the movable plates 16 and 17 by turning off the operation of the reversible electric motor 22 with the reducer. The air-water heat exchanger 9 and the hot water-air heat exchangers 10 and 11 by means of the pipe installation and circulation pump 36 will recover the remaining energy of the moist air after passing through the plate heat recuperators 7 and 8 air-air and transfer the energy to the dry air coming from environment, and before entering the plate heat recuperators 7 and 8 air-to-air. The circulation pump 36 is switched on by means of the end switch 28 at the moment of opening the flow of dry and part of moist air towards the plate heat recuperators 7 and 8 air-to-air. Circulation pump 38 continuously adds the required amount of energy to the hot water-air heat exchanger 15 via the electric motor three-point control valve 39, working in three points. Electromotoric three-arm regulation faucet 39, by working in three points, by reducing the energy supply to the heat exchanger 15 hot water-air, enables recirculation of hot water by circulating between the heat exchanger 15 hot water-air and electric motor three-arm regulation three-position faucet 39. Electric motor three-arm regulation faucet 39, by working in three points regulate the supply of energy to the heat exchanger 15 hot water-air. Adjusting and maintaining the temperature of the drying air at the set value is done using the temperature transmitter 40 and the temperature regulator/indicator, mounted in the electrical control cabinet 24, by acting on the electric motor of the three-point regulating valve 39, working in three points. The differential thermostat 41 controls the temperature difference in the heat accumulator 12 and in the hot water-air heat exchanger 15 using temperature sensors 42 and 43. If the temperature in the heat accumulator 12 is higher than the temperature in the hot water-air heat exchanger 15, the differential thermostat 41 will set the electric three-arm two-position faucet 44 in the position to use the energy from the heat accumulator 12, turn off the operation of the hot water boiler 6 and turn off the operation of the circulation pump 45, and if the temperature is not higher, it will set the electric motor three-arm two-position tap 44 in the position to use the energy of the hot water boiler 6, it will turn on the operation of the hot water boiler 6 and the operation of the circulation pump 45. The differential thermostat 46 controls the temperature difference using temperature sensors 47, 48 and 49 in solar collectors 4, in relation to the temperatures in heat exchanger 15 hot water-air and heat exchanger 9 air-water. If the temperature in the solar collectors 4 is higher than the temperature in the heat exchanger 15, the hot water-air differential thermostat 46 will turn off the operation of the high-temperature heat pump 5 air-water, which will automatically turn off the operation of the circulation pump 50, turn on the circulation pump 51 and the three-arm two-position electric motor set the tap 52 in the position so that the energy from the solar collectors 4 is transferred to the heat accumulator 12. If the temperature in the solar collectors 4 is lower than the temperature in the hot water-air heat exchanger 15, and higher than the temperature in the air-water heat exchanger 9, the differential the thermostat 46 will turn off the operation of the circulation pump 51, turn on the high-temperature heat pump 5 air-water, which automatically turns on the operation of the circulation pump 50, set the electric three-arm two-position faucet 52 in a position so that the energy from the high-temperature heat pump 5 air-water can be transferred to heat accumulator 12 and three-arm electric motor d set the valve 53 in the position so that the energy from the solar collectors 4 is transferred to the heat exchangers 10 and 11 hot water-air. When the temperature in the solar collectors 4 is lower than the temperature in the air-water heat exchanger 9, the differential thermostat 46 will set the electric three-arm two-position faucet 53 in a position to enable energy recovery by the air-water heat exchanger 9 - heat exchangers 10, 11 hot water - air. When the air-water heat pump 5 automatically turns off the operation of the circulation pump 50, at the same time, using the electromagnetic auxiliary switch installed in the electrical cabinet 31 and the reversible electric motor 103, it will close the shutters 102. If the temperature in the solar collectors 4 is lower than the temperature in the heat accumulator 12, the differential the thermostat 54, using sensors 55 and 56, will turn off the operation of the circulation pump 51, and if it is higher, it will turn on the operation of the circulation pump 51. Expansion of hot water and maintenance of the set pressure is made possible by closed expansion expansion vessels 57, 58 and 59, and the pipe installation and equipment with safety valves 60, 61 and 62 is protected against increased pressure. Pre-regulation valves 63, 64, and 65, bypass valves 66, 67, and 68, filling and emptying taps 69, 70, and 71 are installed in the pipe hot water installation, automatic air vents 72, 73, 74, 75, and 76 at the highest points. dirt traps 77, 78, and 79, pressure manometers 80 and 81 and thermometers 82, 83 and 84. By reducing the energy consumption of the hot water boiler 6, the recirculation of part of the hot water is enabled by the differential bypass valve 85. The heated fluid is boiler water if the dryers are installed in places in for which the minimum ambient temperature is higher than +2 oC, if the minimum ambient temperature is lower than +2 oC, then ethylene glycol is added to the boiler water in a percentage so that the heated fluid does not freeze at low temperatures. Forced air flow is achieved by means of a radial fan 86 driven by an electric motor 87 connected to each other by a cardan shaft 88. The amount of air flow to the set value is regulated by the number of revolutions of the electric motor 87. The number of revolutions of the electric motor 87 is regulated by an electronic frequency regulator mounted in the electrical cabinet 31, using a flow rate transmitter 89 of air and speed regulator/indicator, mounted in electrical cabinet 31. Radial fan 86, semi-circular sheet 91, perforated pipe 92, heat exchanger 15 hot water-air are installed in vertical rectangular channel 90. Above the vertical rectangular channel 90, air-air plate heat recuperators 7 and 8 are installed, supported on a support 93 that lies on the side of the vertical rectangular channel 90. air through plate heat recuperators 7 and 8 air-to-air moving plates 16 and 17. The tin frame 26 closes the gap between the air-to-air plate heat recuperators 7 and 8. Moist air from chamber 3 passes through opening 94 between chambers 2 and 3 and flows into channel 34. In the phase of not removing moisture, moist air flows from channel 34 into channel 35, passes through heat exchanger 15 hot water-air and becomes drying air. In the moisture removal phase, a part of the moist air from the channel 34 flows through the channel 35 to the hot water-air heat exchanger 15, and the part between the moving plates 16 and 17 through the plate recuperators 7 and 8 air-air and through the air-water heat exchanger 9 into the channel 95. Moist air that transferred most of the heat to dry air using the heat recuperator becomes air of increased relative humidity in duct 95. Part of the air of increased relative humidity from duct 95 flows through ducts 96 and 97 through the protective net 98 into the environment, and part through inclined duct 99. according to the high temperature heat pump 5 air-water. A semi-circular sheet 100 is installed in the channel 96 for accepting condensate from moist air, and the condensate is drained into the environment using a pipe 101. Blinds 102 are installed in the oblique channel 99, which regulate the discharge of part of the air with increased relative humidity to the high-temperature heat pump 5 air-water by a reversible electric motor 103 with a reducer. In the phase when the moisture is removed from the chamber 3, in the inclined channel 104, which is open on the upper and lower sides, air of increased relative humidity from the inclined channel 99 mixes with dry air from the environment and becomes the primary air of the high-temperature heat pump 5 air-water . Temperature regulation to the set value of the primary air of the high-temperature heat pump 5, in the phase when moisture is removed, is performed by the electronic regulator/indicator of the primary air built into the electrical cabinet 31 and the temperature transmitter 105 by means of the reversible electric motor 103 with a reducer. In the phase when the moisture is not removed, the primary air of the high-temperature heat pump 5 is dry air that is supplied from the environment through the fixed shutters 106 and 107, through the inclined channel 104, which is open on the upper and lower sides. In the moisture removal phase, dry air from the environment enters through fixed louvers 108 and 109, flows through channels 110 and 111, passes through hot water-air exchangers 10 and 11, flows through channels 112 and 113, between moving plates 16 and 17, through plate recuperators heats 7 and 8 air-air into channel 35 and mixes with part of the moist air and becomes mixed air. The mixed air flows through the hot water-air heat exchanger 15 and becomes drying air. The drying air using the radial fan 86, which enables forced air flow, flows through the channel 114, passes through the perforated floor 115, enters the chamber 3, passes between the tobacco leaves, dehumidifying it, becomes moist air and flows towards the opening 94 between the chambers 2 and 3 into the channel 34. A filter mesh 116 is installed between chambers 2 and 3 in the opening 94. In order to be able to humidify the tobacco, the ridged two-position switch installed in the electrical control cabinet 24 should be set to the position of humidifying the tobacco, and after finishing the humidification of the tobacco, return it to the position of drying the tobacco . The ridged two-position switch, which is built into the electrical control cabinet 24, redirects the action of the digital humidity regulator/indicator, built into the electrical control cabinet 24, by means of the microprocessor 25 for moisture from three-position action when drying tobacco to two-position action of moistening tobacco using the thermostat 117. The tobacco is moistened with superheated water vapor , which is produced in the boiler 118 as saturated water vapor by the electric heater 119. The level controller 120 maintains the water level in the boiler 118 and allows the electric heater 119 to be constantly in water. When the water level is below the set value, the level regulator 120 will open the electromagnetic valve 121 and allow pressurized water to enter the boiler 118, and when the set level is reached, the level regulator 120 will close the electromagnetic valve 121 and cut off the water supply to the boiler 118. Thermostat 122 includes the operation of the electric heater 119 at the set value of the water vapor temperature. The limit thermostat 123 will turn off the operation of the electric heater 119 if the set temperature in the water heater 118 is exceeded. The electric heater 119 heats the water to the set value, which evaporates, increases the pressure in the water heater 118, in which there is hot water in the lower zone, and water vapor in the upper zone. . Water vapor is prepared for humidification when the set temperature of water vapor in the boiler 118 is reached. At the moment when the temperature of the water vapor in the boiler 118 is reached, based on the digital humidity regulator/indicator built into the electrical control cabinet 24, by means of the microprocessor 25 for humidity which requests an increase in air humidity to the set value, using the thermostat 117 and the electromagnetic valve 124, water vapor will be released from the boiler 118. When the water vapor passes through the electromagnetic valve 124 and the pipe 125, it expands by reducing the pressure and using the perforated pipe 92, which lets the superheated steam through. humidifies the air in channel 35. The air, by means of the radial fan 86, which enables forced flow, enters the vertical rectangular channel 90, is moistened with superheated water vapor, flows through the channel 114, passes through the perforated floor 115, enters the chamber 3, passes between the tobacco leaves, moistens the tobacco, passes through the opening 94 between chambers 2 and 3, flows through channel 34 and 35 towards rectangular channel 90 and continues circulation. When the set air humidity is reached or when the temperature in the boiler 118 is lower than the set one, air humidification will be stopped, and the air humidification cycle will be repeated until the required tobacco humidity. The semi-circular sheet 91, during tobacco humidification, drains the steam condensate into the environment through the pipe 126. The expansion vessel 127 enables the expansion of the liquid in the installation and maintains the working pressure, and the safety valve 128 protects the installation from increased pressure. The tobacco humidification pipe installation has a non-return valve 129, a regulator water inlet pressure 130, dirt trap 131, bypass valve 132, pressure gauge 133, thermometer 134 and pre-regulation valve 135.

Claims (1)

1. Energetski sistem sušenja vlažnih proizvoda smješten je u objekt sušare (1) koja se sastoji od komore (3), u kojoj se suše vlažni proizvodi, gdje pomoću radijalnog ventilatora (86) sušioni zrak strujeći kroz kanal (114) prolazi kroz perforirani pod (115), ulazi u komoru (3), struji kroz vlažni proizvod, kojem prenoseći toplinu oduzima vlagu, postaje vlažan i kao vlažni zrak prolazi kroz otvor (94), ulazi u komoru (2) u kojoj je smještena energetska oprema, naznačen time, da sistem sadrži pokretne ploče (16) i (17), postavljene iznad pločastih rekuperatora (7) i (8) zrak-zrak, ovješene o glatku cijev (18) pomicanjem i podešavanjem međusobnog razmaka propuštaju vlažan i svjež zrak kroz pločaste rekuperatore (7) i (8); da sistem sadrži navojno vreteno (21) sa lijevim i desnim navojem koje vrši pomicanje i podešavanje pokretnih ploča (16) i (17); da sistem sadrži reverzibilni elektromotor (22) sa reduktorom, koji radom u tri točke, preko lančanog prijenosa (23) vrši obrtno kretanje navojnog vretena (21); da sistem sadrži digitalni regulator/indikator za vlagu i transmiter za vlagu ugrađen u elektrokomandni ormar (24) pomoću senzora (25) za vlagu, reverzibilnog elektromotora (22) sa reduktorom, lančanog prijenosa (23), navojnog vretena (21), podešavanjem međusobnog razmaka pokretnih ploča (16) i (17), održava potrebnu količinu relativne vlage u komori (3) za sušenje duhana. [image] [image] [image] [image] [image] [image] [image] [image] 1. The energy system for drying wet products is located in the object of the dryer (1), which consists of a chamber (3), in which wet products are dried, where with the help of a radial fan (86), the drying air flowing through the channel (114) passes through the perforated floor (115), enters the chamber (3), flows through the moist product, from which it takes away moisture by transferring heat, becomes moist and as moist air passes through the opening (94), enters the chamber (2) in which the energy equipment is located, indicated by , that the system contains movable plates (16) and (17), placed above air-to-air plate recuperators (7) and (8), suspended from a smooth tube (18) by moving and adjusting the distance between them, they let moist and fresh air through the plate recuperators ( 7) and (8); that the system contains a threaded spindle (21) with a left and right thread that moves and adjusts the movable plates (16) and (17); that the system contains a reversible electric motor (22) with a reducer, which operates in three points, via a chain transmission (23), which rotates the threaded spindle (21); that the system contains a digital moisture regulator/indicator and a moisture transmitter built into the electrical control cabinet (24) using a moisture sensor (25), a reversible electric motor (22) with a reducer, a chain transmission (23), a threaded spindle (21), by adjusting the mutual distance of moving plates (16) and (17), maintains the required amount of relative humidity in the chamber (3) for drying tobacco. [image] [image] [image] [image] [image] [image] [image] [image]
HRP20090682AA 2007-07-17 2009-12-21 Energy system for drying products HRP20090682B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RS20070307A RS51760B (en) 2007-07-17 2007-07-17 Energy system for moist product drying
PCT/RS2008/000024 WO2009011607A2 (en) 2007-07-17 2008-07-14 Energy system for drying moist products

Publications (2)

Publication Number Publication Date
HRP20090682A2 HRP20090682A2 (en) 2010-01-31
HRP20090682B1 true HRP20090682B1 (en) 2016-10-21

Family

ID=42587909

Family Applications (1)

Application Number Title Priority Date Filing Date
HRP20090682AA HRP20090682B1 (en) 2007-07-17 2009-12-21 Energy system for drying products

Country Status (4)

Country Link
CN (1) CN101796361B (en)
HR (1) HRP20090682B1 (en)
RS (1) RS51760B (en)
WO (1) WO2009011607A2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009014020A1 (en) * 2009-03-23 2010-09-30 Bühler AG Method and device for drying goods
FR2973866A1 (en) * 2011-04-05 2012-10-12 Enthalpy Control Heat treatment installation for drying of paper in paper production facility, has steam generation unit including heat exchanger comprising primary circuit supplied with hot gases, and secondary circuit crossed by fluid to be vaporized
CN102342578A (en) * 2011-09-22 2012-02-08 东莞市正旭新能源设备科技有限公司 Efficient air source low-carbon tobacco drying equipment
CN105135871B (en) * 2012-02-20 2018-06-01 艾默生电气公司 The heat used in the structure is provided
CN103727768B (en) * 2012-10-16 2016-05-18 莫少民 A kind of heat accumulating type overlapping heat pump secondary backheat dehydration drying room system
CN104197652B (en) * 2014-08-26 2016-06-08 王杰阳 A kind of two-way airflow apparatus for baking
CN104329931B (en) * 2014-10-18 2017-05-31 江阴万龙源科技有限公司 Matrimony vine solar heat pump composite module dryer
CN104567330B (en) * 2014-12-31 2016-12-14 伯恩太阳能科技有限公司 A kind of Intelligent internet of things drying unit
CN105394803B (en) * 2015-11-02 2017-03-22 云南省烟草公司文山州公司 Heat supply tobacco curing barn with multiple heat sources
CN105403027B (en) * 2015-12-03 2018-03-13 河北工大太阳能设备有限公司 Use the conduction-type drying means of efficient combination vapour source
CN106070593A (en) * 2016-07-25 2016-11-09 江苏大学 A kind of thermal source multiple techniques grain drying device and method
CN106595233A (en) * 2016-12-20 2017-04-26 珠海格力电器股份有限公司 Heat pump dryer
CN107897361A (en) * 2017-12-16 2018-04-13 安徽热风环保科技有限公司 The round-the-clock heat pump drying center integrated system of energy conservation and environmental protection
CN108477659B (en) * 2018-03-12 2021-06-08 湖南科技大学 Multi-energy complementary internal circulation bulk curing barn
CN108185500B (en) * 2018-03-12 2020-07-28 湖南科技大学 Clean energy internal circulation bulk curing barn baking system
CN112021630A (en) * 2020-09-21 2020-12-04 东南大学 Heat accumulating type solar energy coupling air source heat pump tobacco leaf drying system and control method
CN112918098B (en) * 2021-02-01 2022-07-12 巩义市奔腾辊业有限公司 Energy-saving environment-friendly plastic film dryer and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB267215A (en) * 1925-12-09 1927-03-09 Carrier Engineering Corp Improvements in processes for treating hygroscopic materials
DE2625072A1 (en) * 1976-06-04 1977-12-15 Heinrich Ing Grad Peters Continuous hay dryer using heat from sun - has solar panel with heat exchanger and fan to pass hot air under floor grid and hot water tank for night use
DE2902369A1 (en) * 1979-01-22 1980-08-07 Happel Kg Wood drying chamber operated as heat pump - has inlet air divided into main flow and by=pass flow for precooler
EP0033756A1 (en) * 1980-02-06 1981-08-19 Ingenieurbüro Josef Probst Method and device for regulating a heating plant with an installation for obtaining heat from an absorber
US5018281A (en) * 1990-11-15 1991-05-28 Bulluck Jr S Thomas Tobacco barn with heat exchanger system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB660995A (en) * 1948-05-07 1951-11-14 Imp Tobacco Co Ltd Improved drying chamber for drying samples for use in determining their original moisture content
US3503137A (en) * 1968-12-18 1970-03-31 Bouligny Inc R H Automatic tobacco curing apparatus
ZW2083A1 (en) * 1982-03-29 1983-04-20 Modsa Proprietary Ltd Method of and apparatus for curing tobacco
US4591517A (en) * 1984-06-08 1986-05-27 Overly, Inc. Web dryer with variable ventilation rate
DE19933477A1 (en) * 1999-07-16 2001-01-25 Emmerich Tetkov Plant and method for drying heat sensitive goods
EP1221570A3 (en) * 2000-12-15 2003-02-05 Pierantonio Milanese Steam generator with automatic water loading system
WO2002053995A1 (en) * 2001-01-08 2002-07-11 Advanced Dryer Systems, Inc. Drying system with heat pipe heat recovery
FR2839948B1 (en) * 2002-05-22 2004-12-17 Airbus France EXCHANGER FOR AIRCRAFT AIR CONDITIONING CIRCUIT AND PROPULSION ASSEMBLY INCLUDING SUCH AN EXCHANGER
DE10336685A1 (en) * 2003-08-09 2005-03-03 Karl Kraus Process for drying wet product, especially slurry, in at least one drying step comprises spreading the wet product on a heated base and rotating it at intervals
FR2873680B1 (en) * 2004-07-30 2007-11-02 Amenagement Urbain & Rural PROCESS FOR COMBINED DRYING OF WASTE, IN PARTICULAR SLUDGE OF PURIFICATION STATIONS
DE202004012482U1 (en) * 2004-08-07 2004-11-04 Wittmann Robot Systeme Gmbh Device for the optimized heating and drying of bulk goods, especially plastic powder or plastic granules

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB267215A (en) * 1925-12-09 1927-03-09 Carrier Engineering Corp Improvements in processes for treating hygroscopic materials
DE2625072A1 (en) * 1976-06-04 1977-12-15 Heinrich Ing Grad Peters Continuous hay dryer using heat from sun - has solar panel with heat exchanger and fan to pass hot air under floor grid and hot water tank for night use
DE2902369A1 (en) * 1979-01-22 1980-08-07 Happel Kg Wood drying chamber operated as heat pump - has inlet air divided into main flow and by=pass flow for precooler
EP0033756A1 (en) * 1980-02-06 1981-08-19 Ingenieurbüro Josef Probst Method and device for regulating a heating plant with an installation for obtaining heat from an absorber
US5018281A (en) * 1990-11-15 1991-05-28 Bulluck Jr S Thomas Tobacco barn with heat exchanger system

Also Published As

Publication number Publication date
RS20070307A (en) 2008-09-29
CN101796361A (en) 2010-08-04
HRP20090682A2 (en) 2010-01-31
RS51760B (en) 2011-12-31
CN101796361B (en) 2013-03-20
WO2009011607A3 (en) 2009-04-16
WO2009011607A2 (en) 2009-01-22

Similar Documents

Publication Publication Date Title
HRP20090682B1 (en) Energy system for drying products
CN109489402A (en) A kind of dehumidifying drying heat pump control method
CN107560397A (en) A kind of Multi-layer belt type drying system based on multi-stage heat pump series connection
CN107449266B (en) Tunnel drying system and drying method
CN109405526B (en) Control system and method of self-adjusting dehumidification drying heat pump
CN107062884A (en) A kind of heat pump drying dehumidifying integrated machine
CN204286023U (en) One is applicable to round-the-clock heat pump dryer
Kempkes et al. Heating and dehumidification in production greenhouses at northern latitudes: Energy use
CN203550451U (en) Marine product drying room
CN206959551U (en) A kind of heat pump drying dehumidifying integrated machine
DE2413618A1 (en) Air dehumidifier for indoor swimming pool - with air circulated between pool and heat recovery plant
DE202006005469U1 (en) Water preheating device for low-energy home, uses heat exchanger receiving heat from exhausted ventilation air and additional heat exchanger that is part of building heating system
CN108812950A (en) A kind of energy-saving tea deteriorating machine
CN212339763U (en) Heat pump is from breathing formula drying device
CN204648893U (en) Moderate and high temperature heat alternating temperature drying device
CN110137827B (en) Low-power consumption condensation inhibition auxiliary equipment, system and control method thereof
CN113261457A (en) Automatic accurate simulation system for artificial climate environment in glass greenhouse
CN209763412U (en) comprehensive utilization equipment for fresh air hot water energy
CN204128290U (en) Heat pump cold junction heat dissipation type sealing dehumidifying drying room
RU2632230C1 (en) Heat recovery unit with adaptive recirculation
CN203177331U (en) Air humidifying system
CN208042389U (en) A kind of heat pump fresh air combined system solving winter Humidification problem
CN111336781A (en) Heat pump self-breathing type drying device and drying control method thereof
DE102007058139B3 (en) Wet goods e.g. textiles, drying device i.e. solar laundry dryer cabinet, for movable application, has collector connected upstream to body, where collector warms air by radiant heat of sun and/or area and is supplied to chamber via pipeline
CN105890078A (en) Constant-temperature dehumidifying air-energy heat-pump drying fresh air conditioner

Legal Events

Date Code Title Description
A1OB Publication of a patent application
AIPI Request for the grant of a patent on the basis of a substantive examination of a patent application
B1PR Patent granted
PPPP Transfer of rights

Owner name: MILOS KONDIC, RS

ODRP Renewal fee for the maintenance of a patent

Payment date: 20180704

Year of fee payment: 11

PBON Lapse due to non-payment of renewal fee

Effective date: 20190714