HRP20010056A2 - The flat-soffit large-span industrial building system - Google Patents

The flat-soffit large-span industrial building system Download PDF

Info

Publication number
HRP20010056A2
HRP20010056A2 HR20010056A HRP20010056A HRP20010056A2 HR P20010056 A2 HRP20010056 A2 HR P20010056A2 HR 20010056 A HR20010056 A HR 20010056A HR P20010056 A HRP20010056 A HR P20010056A HR P20010056 A2 HRP20010056 A2 HR P20010056A2
Authority
HR
Croatia
Prior art keywords
panels
fact
concrete
bearing
roof
Prior art date
Application number
HR20010056A
Other languages
Croatian (hr)
Inventor
Skendžić Milovan
Emrček Branko
Original Assignee
Mara D O O
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mara D O O filed Critical Mara D O O
Priority to HR20010056A priority Critical patent/HRPK20010056B1/en
Priority to PCT/HR2001/000050 priority patent/WO2002057572A2/en
Publication of HRP20010056A2 publication Critical patent/HRP20010056A2/en
Publication of HRPK20010056B1 publication Critical patent/HRPK20010056B1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H5/00Buildings or groups of buildings for industrial or agricultural purposes
    • E04H5/02Buildings or groups of buildings for industrial purposes, e.g. for power-plants or factories
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/16Structures made from masses, e.g. of concrete, cast or similarly formed in situ with or without making use of additional elements, such as permanent forms, substructures to be coated with load-bearing material
    • E04B1/165Structures made from masses, e.g. of concrete, cast or similarly formed in situ with or without making use of additional elements, such as permanent forms, substructures to be coated with load-bearing material with elongated load-supporting parts, cast in situ
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/30Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts being composed of two or more materials; Composite steel and concrete constructions
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/64Insulation or other protection; Elements or use of specified material therefor for making damp-proof; Protection against corrosion
    • E04B1/644Damp-proof courses
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B7/00Roofs; Roof construction with regard to insulation
    • E04B7/02Roofs; Roof construction with regard to insulation with plane sloping surfaces, e.g. saddle roofs
    • E04B7/022Roofs; Roof construction with regard to insulation with plane sloping surfaces, e.g. saddle roofs consisting of a plurality of parallel similar trusses or portal frames
    • E04B7/024Roofs; Roof construction with regard to insulation with plane sloping surfaces, e.g. saddle roofs consisting of a plurality of parallel similar trusses or portal frames the trusses or frames supporting load-bearing purlins, e.g. braced purlins
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/29Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures
    • E04C3/293Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures the materials being steel and concrete
    • E04C3/294Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures the materials being steel and concrete of concrete combined with a girder-like structure extending laterally outside the element
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/74Removable non-load-bearing partitions; Partitions with a free upper edge
    • E04B2/7407Removable non-load-bearing partitions; Partitions with a free upper edge assembled using frames with infill panels or coverings only; made-up of panels and a support structure incorporating posts
    • E04B2/7409Removable non-load-bearing partitions; Partitions with a free upper edge assembled using frames with infill panels or coverings only; made-up of panels and a support structure incorporating posts special measures for sound or thermal insulation, including fire protection
    • E04B2/7412Posts or frame members specially adapted for reduced sound or heat transmission

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Building Environments (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

Područje tehnike The field of technology

Izum se odnosi na sistem za gradnju industrijskih građevina velikih raspona od kompozitnih elemenata. Prema IPC klasifikaciji područje tehnike je obuhvaćeno poglavljima E 04 B 1/00 i E 04 B 2/00. The invention relates to a system for the construction of industrial buildings of large spans from composite elements. According to the IPC classification, the field of technology is covered by chapters E 04 B 1/00 and E 04 B 2/00.

Tehnički problemi Technical problems

Predmetni sistem za gradnju se odnosi na kompozitne elemente i način na koji se od njih formira gotova građevina. Izum rješava mnoštvo manjih tehničkih problema ili unaprjeđenja poznatih rješenja u cilju brze i jednostavne gradnje ekonomičnih i kvalitetnih hala. Tehnički problemi koje ovaj sistem gradnje rješava kao zadatak su: The building system in question refers to composite elements and the way in which a finished building is formed from them. The invention solves many minor technical problems or improvements of known solutions in order to quickly and easily build economical and high-quality halls. The technical problems that this construction system solves as a task are:

U industrijskim građevinama većinom postoji prazni unutarnji prostor između kosina u krovnoj konstrukciji kojeg treba grijati i time trošiti energiju. In industrial buildings, there is mostly an empty interior space between the slopes in the roof structure that needs to be heated and thus consume energy.

Krovna konstrukcija je visoko iznad poda izložena prašini i drugim nečistoćama, teško dostupna za čišćenje i održavanje sto je nepovoljno za finije industrije, trgovine i slično te je poželjno imati ravan i gladak strop. The roof structure is high above the floor exposed to dust and other impurities, difficult to access for cleaning and maintenance, which is unfavorable for finer industries, shops and the like, and it is desirable to have a flat and smooth ceiling.

Mnoštvo instalacija se obično vodi kroz unutarnji korisni prostor hale koje su vidljive i smetaju sadržajima u hali. Many installations are usually led through the internal useful space of the hall, which are visible and interfere with the contents of the hall.

Hale se sklapaju od prevelikog broja sastavnih elemenata koji često vrše jednu ili malo, npr. grede služe nošenju, paneli zatvaranju prostora i slično. Halls are assembled from an excessive number of component elements that often perform one or a few, for example, beams are used for carrying, panels to close the space and the like.

Hale često imaju hladne mostove na mjestima spajanja elemenata. Halls often have cold bridges where elements join.

Spojevi elemenata su vidljivi, skloni oštećenjima kod transporta ili ugradnje pa ih nakon ugradnje elemenata treba dotjeravati ili sanirati. The joints of the elements are visible, prone to damage during transport or installation, so they should be adjusted or repaired after the installation of the elements.

Primjenjuju se zasebne stabilizirajuće i ukrutne konstrukcije. Elementi se nedovoljno povezuju u globalnije nosive cjeline. Gradnja hala a posebno temelja hala je previše ovisna o vremenskim prilikama i vanjskoj temperaturi. Separate stabilizing and stiffening structures are applied. The elements are insufficiently connected into more global load-bearing units. The construction of halls, especially the foundations of halls, is too dependent on the weather and outside temperature.

Gradnja hala zahtijeva obavljanje niz opasnih radova koji se vrše na krovu kod montaže ili pokrivanja krova. The construction of halls requires the performance of a series of dangerous works that are performed on the roof during the assembly or covering of the roof.

Čelične dijelovi krovnih konstrukcija su često nedovoljno zaštićeni od požara. Steel parts of roof structures are often insufficiently protected against fire.

Stanje tehnike State of the art

Svi nabrojani problemi su već rješavani na različite načine, bilo kao rješenja pojedinih elemenata ili pojedini dijelovi konstrukcije na primjer kao konstrukcija krova, konstrukcija temelja, konstrukcija panela i slično. S obzirom da se predmetni sistem sastoji od niza rješenja kao krov, panoi, stupovi i slično, usporedba sa postojećim stanjem tehnike će se vršiti po dijelovima. All the listed problems have already been solved in different ways, either as solutions of individual elements or individual parts of the construction, for example, roof construction, foundation construction, panel construction, and the like. Given that the system in question consists of a series of solutions such as roof, panels, columns and the like, the comparison with the existing state of the art will be done by parts.

Najčešće rješenje ravnog podgleda na konstrukcijama velikih raspona je oblačenje donjeg dijela konstrukcije laganim pločama od metala, plastike, drveta ili gipsa, pričvršćenjem za samu konstrukciju ili posredstvom dodatne potkonstrukcije. Takva rješenja zahtijevaju dodatni rad na podglednoj plohi, na visini nakon ugradnje krovne konstrukcije. Postoje razna rješenja kod kojih se ravan strop rješava panelom ali su ona uglavnom primjenjiva na kuće ili male raspone. The most common solution for a flat roof on large-span constructions is to cover the lower part of the structure with light plates made of metal, plastic, wood or plaster, by attaching it to the structure itself or by means of an additional substructure. Such solutions require additional work on the viewing surface, at the height after the installation of the roof structure. There are various solutions where a flat ceiling is solved with a panel, but they are mostly applicable to houses or small spans.

Mnoga rješenja jednim krovnim nosačem daju djelomično ravne podglede sa rebrima ili sličnim vidljivim dijelovima kao npr. US patent 005491946A koji primjenjuje element velikog raspona ali sa vidljivim rebrima. Many solutions with one roof support provide partially flat soffits with ribs or similar visible parts, such as US patent 005491946A which applies a large span element but with visible ribs.

Međunarodna prijava WO 00/53859 rješava krovnu konstrukciju sastavljanjem bar dvije čelične rešetke koje sadrže pokrov a mogu sadržati i podgled od profiliranog lima. International application WO 00/53859 solves the roof structure by assembling at least two steel grids that contain a cover and can also contain a profiled sheet.

Rješenje EP0039382 se također odnosi na obloženu čeličnu krovno-stropnu konstrukciju. Ovi elementi se nakon montiranja trebaju međusobno spajati što zahtjeva priličan rad na namještanju i spajanju na visini i nisu podesni za transport zbog mekanog lima kojim su obloženi a na kraju nije postignut ravan nego valovit podgled a obloženoj čeličnoj konstrukciji tanka limena obloga ne pruža dovoljnu protupožarnu zaštitu. Solution EP0039382 also refers to a coated steel roof-ceiling structure. After assembly, these elements need to be connected to each other, which requires considerable work on setting and joining at a height, and they are not suitable for transport due to the soft sheet with which they are covered, and in the end, a flat but wavy surface is not achieved, and the thin sheet metal lining does not provide sufficient fire protection to the coated steel structure. .

Konstrukcije zidnih panoa, nosivih ili nenosivih, su rješavane na mnogo načina sa termoizolacijom izvana ili između dvije betonske stijenke pri čemu se često težilo jakom spoju dviju stijenki između kojih je termoizolacija a u rješenjima se često malo vodilo računa o očuvanju njenog kontinuiteta na spojevima. Mnoga od tih rješenja su primjenjiva samo na male građevine. Međusobni spojevi zidnih panela su rješavani na vrlo mnogo načina, često kompliciranim umetanjem čeličnih dijelova a mnoga od rješenja ne vode računa o hladnim mostovima na spojevima nastojeći riješit samo jak spoj. Takvih je rješenja mnogo pa se ovdje ne nabrajaju. Constructions of wall panels, load-bearing or non-load-bearing, have been solved in many ways with thermal insulation from the outside or between two concrete walls, where a strong connection of two walls with thermal insulation between them was often sought, and in the solutions, little care was often taken to preserve its continuity at the joints. Many of these solutions are only applicable to small buildings. Interconnections of wall panels are solved in many ways, often by complicated insertion of steel parts, and many of the solutions do not take into account cold bridges at the joints, trying to solve only a strong connection. There are many such solutions, so they are not listed here.

Predmetni sistem se između ostalog bitno zasniva na spoju stupa i horizontalnih nosivih panoa pa je kao kriterij za usporedbu sa sličnim rješenjima uzet način spajanja stupova sa horizontalnim panoima unutar samog stupa. Among other things, the system in question is essentially based on the connection of the column and horizontal load-bearing panels, so the method of connecting columns with horizontal panels within the column itself was taken as a criterion for comparison with similar solutions.

Patent US5887404 formira armirano-betonski stup unutar jednog od dva spajana panela na mjestu njihova spoja tako da je formirana vertikalna betonska oplata kao šupljina u koju se umeće armaturni skelet i betonira stup. Rješenje je jednostavno za izvedbu no nepraktično za visoke hale radi uvlačenja armature u visoki spoj i nepristupačne kontrole spoja umetnutog armaturnog skeleta sa ankerima iz temelja. Rješenje je nepovoljno i radi dimenzija stupa koje sa visinom znatno rastu a sadrže i, debelu oblogu. Patent US5887404 forms a reinforced concrete column inside one of two joined panels at the point of their connection so that a vertical concrete formwork is formed as a cavity into which the reinforcing skeleton is inserted and the column is concreted. The solution is simple to implement, but impractical for high halls due to the insertion of the reinforcement into the high connection and the inaccessible control of the connection of the inserted reinforcement skeleton with the anchors from the foundation. The solution is unfavorable because of the dimensions of the column, which grow significantly with height and contain thick cladding.

Patent FR2541341 rješava spoj horizontalnih panoa unutar dva dijela stupa sa preklopljenim kliznim omčama na njima i oslanja horizontalni pano temelje stupova kao i rješenje ove prijave s time da je ideja ovog rješenja zatvoriti mjesto spoja i napraviti prostor za ulijevanje betona. Rješenje međutim ne vodi računa o termoizolaciji spoja na stupu jer su oba dijela stupa betonska te se pune betonom između čime se dobiva potpuno betonski stup. Rješava se spoj samo jednog panoa po visini koji nosi sam sebe a nije opterećen nošenjem drugih konstrukcija te nije riješena ugradnja panoa na visini, koji se ne oslanjaju na temelje. Patent FR2541341 solves the connection of horizontal panels inside two parts of a column with folded sliding loops on them and supports the horizontal panel on the foundations of the columns, as well as the solution of this application, with the idea of this solution being to close the connection point and create a space for pouring concrete. However, the solution does not take into account the thermal insulation of the joint on the column, because both parts of the column are concrete and are filled with concrete in between, resulting in a completely concrete column. The connection of only one panel per height, which supports itself and is not burdened by the support of other structures, is solved, and the installation of panels at height, which do not rest on foundations, is not solved.

Patent US5216860 rješava spoj dvaju betonskih panela zatvaranjem spoja dvodijelnom limenom oplatom koja se priteže vijkom kako bi se dobio prostor u koji se sipa beton čime se dobiva jak spoj ali termoizolacija spoja nije riješena. Čelični dijelovi spoja unutar bočnih poklopaca koji zatvaraju spoj ostvaruju jaku vezu dvaju susjednih elemenata ali pretjerano kompliciraju detalj. Patent US5216860 solves the connection of two concrete panels by closing the connection with two-part sheet metal that is tightened with a screw to create a space into which concrete is poured, which results in a strong connection, but the thermal insulation of the connection is not solved. The steel parts of the joint inside the side covers that close the joint achieve a strong connection between the two adjacent elements, but excessively complicate the detail.

Suština izuma The essence of the invention

Predmet izuma je novi sistem za gradnju hala velikih raspona sa ravnim podgledom koji se sastavlja od malog broja višefunkcionalnih kompozitnih elemenata kojima se rješava zadatak brze i jednostavne gradnje, ekonomičnih i kvalitetnih hala. Izum se odnosi na elemente i način na koji se od njih formira gotova građevina objedinjavajući pri tom više rješenja parcijalnih tehničkih problema koji se odnose na same elemente, dijelove konstrukcije ili kompletnu građevinu. The subject of the invention is a new system for the construction of large-span halls with a flat surface, which is composed of a small number of multifunctional composite elements that solve the task of quick and simple construction of economic and high-quality halls. The invention relates to elements and the way in which a finished building is formed from them, uniting at the same time several solutions to partial technical problems related to the elements themselves, parts of the structure or the complete building.

Sistem je zasnovan na koncepciji primjene malog broja krupnih, predfabriciranih, kompozitnih, višefunkcionalnih elemenata, koji su potpuno završeni i uključuju izvedene završne radove. Višefunkcionalnost elementa pri tom znači da se jednim elementom istovremeno rješava više problema. Na primjer, da element bude istovremeno nosiv kao greda, da pri tom zatvara prostor kao zid, da služi kao ukrutna konstrukcija, da prilikom gradnje služi kao privremena potpora i slično. The system is based on the concept of applying a small number of large, prefabricated, composite, multi-functional elements, which are completely finished and include finished finishing works. The multi-functionality of the element means that one element solves several problems at the same time. For example, for the element to be load-bearing as a beam at the same time, to close the space as a wall, to serve as a rigid structure, to serve as a temporary support during construction, and the like.

Izum je rješenje gotove finalizirane građevine a ne samo njene konstrukcije. An invention is a solution for a ready-made, finalized building, not just its construction.

Prednosti u pogledu konačne kvalitete građevine koje ovaj sistem gradnje rješava su; Ravni podgled čime interijer hale dobiva estetski strop velikog raspona, bez vidljive konstrukcije krova koja skuplja prašinu i druge nečistoće teško dostupne za čišćenje i održavanje, zatvara se neiskorišteni prostor u krovu konstrukcije i smanjuje volumen grijanog prostora čime se štedi energija grijanja, formira se plitki tavanski prostor sa termoizolacijom položenom na gornju površinu stropa koji se provjetrava prirodnom ventilacijom, tavanski prostor se koristi za vođenje instalacija i industrijskih vodova tako da ne smetaju u prostoru hale a da su dostupne za popravke i održavanje pristupom kroz otvor u tavanu ili kroz krov, betonski podgled formiran od tankih betonskih ploča pruža znatnu vatrootpornost čeličnoj krovnoj konstrukciji iznad, panoi konstrukcije sadrže pretjerano debelu termoizolaciju čime se povećava kvaliteta hale (Razlog upotrebe predebele termo- izolacije će se iznijeti u nastavku), svi međusobni spojevi betonskih elemenata su sakriveni što je estetski poželjno, vertikalna odvodnja krovnih voda je riješena kroz stupove tako da izvan hale nije vidljiva. The advantages in terms of the final quality of the building that this construction system solves are; A flat view, which gives the interior of the hall an aesthetic ceiling of a large range, without a visible roof structure that collects dust and other impurities that are difficult to access for cleaning and maintenance, closes the unused space in the roof of the structure and reduces the volume of the heated space, thus saving heating energy, forming a shallow attic a space with thermal insulation laid on the upper surface of the ceiling that is ventilated by natural ventilation, the attic space is used to guide installations and industrial lines so that they do not interfere with the space of the hall and are available for repairs and maintenance by accessing through an opening in the attic or through the roof, concrete underlay formed of thin concrete slabs provides considerable fire resistance to the steel roof structure above, the panels of the structure contain excessively thick thermal insulation, which increases the quality of the hall (The reason for the use of excessively thick thermal insulation will be explained below), all the interconnections of the concrete elements are hidden, which is aesthetically desirable,the vertical drainage of roof water is solved through columns so that it is not visible outside the hall.

Ekonomičnost novog sistema gradnje se zasniva na specifičnoj koncepciji građevine i brzini gradnje krupnim, tankostijenim potpuno finaliziranim elementima, sa malim utroškom materijala i sa forsiranom višefunkcionalnošću kao: Jednim krovnim nosačem velikog raspona se istovremeno rješava i krov i finalizirani strop u hali. Visoki gornji nosivi panoi, postavljeni uzduž hale, služe za nošenje krovnih elemenata, istovremeno zatvaraju prostor hale kao gotova fasada a spojeni sa drugim elementima ukrućuju i stabiliziraju konstrukciju te sadrže gotove okvire za ostakljivanje i nose horizontalne žljebove. Visoki donji nosivi panoi, postavljeni uzduž hale, zatvaraju prostor hale kao gotova fasada ili zid hale i ne treba ih temeljiti jer su samonosivi, kao greda oslonjeni na stupove, spojeni sa drugim elementima ukrućuju i stabiliziraju konstrukciju, povezuju međusobno temelje i podnu ploču, sadrže gotove okvire za ostakljivanje. Temelji stupova su predfabricirani, potpuno montažni elementi koji sadrže stope i gotovi se montiraju na pripremljenu podlogu. Temeljenje je prilagođeno zimskim uvjetima jer se gotovi montažni temelji mogu montirati i po niskim temperaturama, suhim spojem u njih ugrađivati stupovi a podna ploča, kao pretežni dio zemljanih i monolitnih betonskih radova radova u hali može se izvesti naknadno, u zatvorenom prostoru, nakon što je kompletna građevina završena. The economy of the new construction system is based on the specific construction concept and the speed of construction with large, thin-walled fully finalized elements, with low consumption of materials and with forced multi-functionality, such as: One roof support of a large span simultaneously solves both the roof and the finalized ceiling in the hall. The high upper load-bearing panels, placed along the hall, are used to carry the roof elements, at the same time they close the hall space as a finished facade, and when joined with other elements, they stiffen and stabilize the construction and contain ready-made glazing frames and carry horizontal grooves. The high lower load-bearing panels, placed along the hall, enclose the space of the hall as a finished facade or wall of the hall and do not need a foundation because they are self-supporting, like a beam supported on columns, joined with other elements they stiffen and stabilize the construction, connect the foundation and the floor slab to each other, contain ready frames for glazing. The foundations of the columns are prefabricated, fully assembled elements that contain feet and are mounted on the prepared base. The foundation is adapted to winter conditions because ready-made prefabricated foundations can be mounted even at low temperatures, columns can be built into them with a dry joint, and the floor slab, as the predominant part of the earthen and monolithic concrete works in the hall, can be carried out later, indoors, after complete construction completed.

Primjenjuju se veliki poprečni raspon i veliki uzdužni raster. U statičkom smislu povezani su i iskorišteni svi sastavni elementi u svrhu ukrućivanja i stabilizacije konstrukcije kao cjeline, njenih pojedinih dijelova u konačnoj fazi ili u pojedinim fazama gradnje. Veliki vertikalni moment inercije uzdužnih nosivih panoa iskorištava se za vertikalno nošenje krova i stropa. Uzdužni nosivi panoi se spajaju sa stupovima upetim spojem u dva uzdužna kruta kontinuirana okvira kojima se u uzdužnom smjeru osigurava horizontalna stabilnost. Gornji nosivi panoi su poprečno vitki i slabi pa se ukrućuju protiv bočnog izvijanja vezanjem za krutu, horizontalnu stropnu ploču koju formiraju krovno-stropne ploče međusobnim spajanjem. Horizontalno kuta sastavljena stropna ploča prenosi sile potresa direktno na stupove ne savijajući pri tom bočno uzdužne nosive panoe na koje je oslonjena. Donji nosivi panoi su visokostjeni nosači koji spojeni na stupove premoštavaju raspon između dva temelja stupa i vežu se za monolitnu podnu ploču koja ih stabilizira protiv bočnog izvijanja a zajedno spajaju temelje stupova sprječavajući njihovo razmicanje kod potresa. U toku gradnje kruta stropna ploča služi kao ravna platforma na kojoj se izvode radovi na krovu umanjujući tako opasnost rada na visini. A large transverse span and a large longitudinal raster are applied. In the static sense, all constituent elements are connected and used for the purpose of stiffening and stabilizing the structure as a whole, its individual parts in the final phase or in individual phases of construction. The large vertical moment of inertia of the longitudinal load-bearing panels is used for the vertical support of the roof and ceiling. Longitudinal load-bearing panels are connected to columns by a clamped connection in two longitudinal rigid continuous frames which ensure horizontal stability in the longitudinal direction. The upper load-bearing panels are transversely slender and weak, so they are stiffened against lateral buckling by tying them to a rigid, horizontal ceiling panel formed by the jointing of roof-ceiling panels. The horizontally angled ceiling panel transmits the earthquake forces directly to the columns without bending laterally the longitudinal load-bearing panels on which it rests. The lower load-bearing panels are high-wall brackets that, connected to the columns, bridge the span between two column foundations and are attached to a monolithic floor slab that stabilizes them against lateral buckling and joins the column foundations together, preventing them from moving apart during an earthquake. During construction, the rigid ceiling panel serves as a flat platform on which work on the roof is carried out, thus reducing the danger of working at height.

Kratak opis sli ka Short description of the picture

U nastavku će se izum opisati pozivanjem na priložene slike In the following, the invention will be described with reference to the attached figures

Sl.1 predstavlja prostorni pogled na sastavljenu konstrukciju Fig. 1 represents a spatial view of the assembled construction

Sl.2 prikazuje krovno-stropni element Fig. 2 shows the roof-ceiling element

Sl.3 prikazuje postupak spajanja i niveliranja progiba podglednih ploča krovno-stropnih elemenata Fig. 3 shows the procedure for joining and leveling the deflection of the roof and ceiling elements

Sl.4 prikazuje detalj izvedenog spoja podglednih ploča krovno-stropnih elemenata Fig. 4 shows a detail of the joint of the roof and ceiling elements

Sl.5 prikazuje u pogledu gornji nosivi pano Fig. 5 shows a top view of the supporting panel

Sl.6 prikazuje presjek gornjeg nosivog panoa Fig. 6 shows a section of the upper load-bearing panel

Sl.7 prikazuje u pogledu donji nosivi pano Fig. 7 shows a view of the lower load-bearing panel

Sl.8 prikazuje presjek donjeg nosivog panoa Fig. 8 shows a section of the lower load-bearing panel

Sl.9 je prostorni pogled na prekidač vlage Fig. 9 is a spatial view of the humidity switch

Sl.10 je bočni pogled na čelični stup prije ugradnje Fig. 10 is a side view of the steel column before installation

Sl.11 je poprečni presjek čeličnog stupa prije ugradnje u liniji a-a Fig. 11 is a cross section of a steel column before installation in line a-a

Sl.12 je poprečni presjek čeličnog stupa prije ugradnje u liniji b-b Fig. 12 is a cross-section of a steel column before installation in line b-b

Sl.13 je poprečni presjek stupa nakon ugradnje u liniji a-a Fig. 13 is a cross section of the column after installation in line a-a

Sl.14 predstavlja prostorni pogled na insert stupa Fig. 14 represents a spatial view of the column insert

Sl.15 prikazuje povećanim presjekom spoj gornjeg nosivog panoa sa krovno-stropnim elementom Fig. 15 shows an enlarged section of the connection of the upper load-bearing panel with the roof-ceiling element

Sl.16 prikazuje presjek predfabriciranog potpuno montažnog temelja Fig. 16 shows a section of a prefabricated fully assembled foundation

Sl.17 je tlocrtni pogled na potpuno montažni temelj Fig. 17 is a plan view of the fully assembled foundation

Sl.18 prikazuje presjek višebrodne hale Fig. 18 shows a section of the multi-nave hall

Sl.19 prikazuje detalj spoja stropno krovnih konstrukcija na nosaču unutarnjeg uzdužnog okvira Fig. 19 shows a detail of the joint of the ceiling and roof structures on the support of the internal longitudinal frame

Detaljan opis jednog od načina ostvarivanja izuma Detailed description of one of the ways of realizing the invention

Na SU prikazana je aksonometrijom konstrukcija hale. At SU, the axonometry of the construction of the hall is shown.

Krov hale i gotovi finalizirani ravni strop se istovremeno rješavaju dvostruko prednapregnutim, kompozitnim, krovno-stropnim konstrukcijama sa ravnim podgledom (1) prema ranijoj patentnoj prijavi br. P20000906A. Raspon ovih krovno-stropnih konstrukcija, prikazanih u pogledu na Sl.2, se kreće od 12 do 30 m. Konstrukcija je slična rešetci, sa donjim pojasom od izrazito široke i tanke betonske podgledne ploče (1.1) i čeličnog gornjeg pojasa (1.2) sa vertikalnim štapovima ispune (1.3). Krovno-stropne betonske ploče (1.1) imaju na sebi ugrađene spojeve (1.4), prema SI.4, kojima im se vertikalno izjednačavaju progib nakon montaže i spreže krovna ravnina. U četvrtinama širine oslonjene ploče na ležaju ugrađeni su detalji (1.5), za pričvršćivanje podglednih ploča (1.1) za nosive panoe (2). Na gornji pojas čeličnog rešetkastog dijela konstrukcije (1.2) se montiraju čelični ili drveni sekundarni nosači (7), preko malog raspona 2.0 do 2.4 m i pokrov (8) od valovitih ploča. Na podglednu betonsku ploču (1.1) se polaže termoizolacija potrebne debljine (6). Plitki tavanski prostor (11) između gornjeg lica spregnute stropne ploče i pokrova (8) omogućava skriveno vođenje instalacija i cjevovoda (12) i ventiliran je prirodnom ventilacijom kroz mnoštvo malih otvora (10) na mjestima spojeva gornjih nosivih panoa (2) sa stupovima (4). Dodatni ventilacioni otvori se mogu ugraditi na zabatima ili u sljemenu. Betonska stropna ravnina od spojenih stropnih ploča (1.1) i termoizolacija (6) na njoj služe kao protupožarna zaštita čeličnoj konstrukciji krova a u toku gradnje se koristi kao ravna platforma za siguran rad na visini pri obavljanju radova na krovu. Tako formirana krovna ravnina je horizontalno kruta i kao cjelina predaje horizontalne sile potresa direktno na stupove (4) ne opterećujući pri tom gornje nosive panoe (2) vrlo vitke u poprečnom smjeru hale. Kruta horizontalna ravnina je spojena sa gornjim nosivim panoima (2), koji su linijski oslonac krovno-stropnih konstrukcija (1), pri čemu ih stabilizira protiv bočnog izvijanja. Gornji nosivi panoi (2) postavljeni u uzdužnom smjeru hale na velikom rasteru, 10 do 12 m, nose krovno-stropne konstrukcije (1) oslonjene na uzdužni linijski ležaj (2.5) kako je prikazano na presjeku na Sl. 15. Vrlo veliki vertikalni moment inercije elemenata (2) se iskorištava za nošenje krovnih elemenata (1). Gornji nosivi panoi (2) imaju ugrađenu pretjerano debelu termoizolaciju (2.2) između dviju betonskih stijenki (2.1) spojenih međusobno krutim mrežastim ankerima (2.3) kroz termoizolaciju, kojom se postiže velik razmak između stijenki a time i veća bočna krutost ovih dugačkih elemenata. Bočna krutost elemenata (2) je potrebna naročito kod dizanja ili manipuliranja u toku gradnje ili transporta. Gornji nosivi panoi (2), na vrhovima istaka (2.4), nose horizontalne, uzdužne žljebove, kao na slici. Donji nosivi panoi (3) su finalno obrađeni fasadni elementi koji na uzdužnom rasteru zatvaraju i termički izoliraju prostor hale, oslonjeni na stupove (4) i temelje (5), zamjenjuju temeljne grede koje se uobičajeno primjenjuju na halama, pa ispod njih ne treba izvoditi temelje. Elementi (3) povezuju međusobno temelje (5) protiv međusobnog razmicanja kod potresa i povezuju konstrukciju sa monolitnom armirano-betonskom podnom pločom (9) pomoću bočnih ankera (3.6) koja im osigurava stabilnost protiv bočnog izvijanja. Gornji i donji nosivi panoi (2) i (3) imaju ugrađene uzdužne kanale (2.6) i (3.5) za ugradnju stakla ili drugog prozorskog materijala koji se ulaže između njih kao u gotove okvire. Dvodijelni čelični stupovi (4) su sastavljeni od dvaju U-profila (4.1) u međurazmak kojih se umeću gornji i donji nosivi panoi (2) i (3). Nosivi panoi (2) i (3) se unutar stupa spajaju krutom linijskom vezom međusobno i sa stupom (4). Statički gledano, tako elementi (2), (3) i (4) formiraju kontinuirani okvir u uzdužnom smjeru hale sa vrlo krutim prečkama. Dvodijelni čelični stupovi (4) nakon montaže i injektiranja linijskih spojeva sa elementima (2) i (3) postaju kompozitni, izuzetno jaki stupovi kako je prikazano presjekom na Sl. 13. U stupove je u obje polovice (4.1) prije montaže ugrađena pjenasta termoizolacija (4.4) i cijevi (4.5) za vertikalnu odvodnju oborinskih voda iz horizontalnih žljebova na krovu. Stupovi obostrano sakrivaju vertikalne spojeve nosivih panoa (2) i (3) čime se izbjegavaju naknadna dotjeravanja spojeva, nakon montaže, ili popravci eventualno otkrhnutih rubova. Unutar stupova ugrađena termoizolacija (4.4) kako je prikazano na Sl. 13 ostvaruje kontinuitet termoizolacije (2.3) ili (3.2) ugrađene u panoima (2) ili (3) na mjestu njihovog vertikalnog spoja oblaganjem izvana te termički izolira ugrađene cijevi (4.5) za odvodnju. Konstrukcija se temelji na predfabriciranim, potpuno montažnim temeljima (5), sa gotovim temeljnim stopama (5.1), sa stupom temelja kojim se visinski regulira položaj poda hale u odnosu na okolni teren i čeličnim čašicama (5.2) obloženim betonom u koje se montiraju stupovi (4). Stope temelja (5.1) su tvornički izrađene pa se temelji (5) mogu postavljati na pripremljenu podlogu i po niskim temperaturama, kada beton ne veže. The roof of the hall and the finished flat ceiling are simultaneously solved with double prestressed, composite, roof-ceiling constructions with a flat under-view (1) according to the earlier patent application no. P20000906A. The range of these roof-ceiling constructions, shown in the view of Fig. 2, ranges from 12 to 30 m. The construction is similar to a grid, with a lower belt made of an extremely wide and thin concrete support plate (1.1) and a steel upper belt (1.2) with vertical rods of filling (1.3). Roof-ceiling concrete slabs (1.1) have built-in joints (1.4), according to SI.4, which vertically equalize their deflection after assembly and connect the roof plane. Details (1.5) are installed in the quarters of the width of the supported plate on the bearing, for attaching the viewing plates (1.1) to the load-bearing panels (2). Steel or wooden secondary supports (7), over a small span of 2.0 to 2.4 m, and a cover (8) made of corrugated boards are mounted on the upper belt of the steel grid part of the structure (1.2). Thermal insulation of the required thickness (6) is laid on the concrete slab (1.1). The shallow ceiling space (11) between the upper face of the coupled ceiling panel and the cover (8) enables hidden routing of installations and pipelines (12) and is ventilated by natural ventilation through a multitude of small openings (10) at the junctions of the upper load-bearing panels (2) with the columns ( 4). Additional ventilation openings can be installed on the gables or in the ridge. The concrete ceiling plane made of connected ceiling panels (1.1) and thermal insulation (6) on it serve as fire protection for the steel structure of the roof, and during construction it is used as a flat platform for safe work at height when performing work on the roof. The roof plane formed in this way is horizontally rigid and as a whole transmits the horizontal forces of the earthquake directly to the columns (4) without burdening the upper load-bearing panels (2) which are very slender in the transverse direction of the hall. The rigid horizontal plane is connected to the upper load-bearing panels (2), which are the linear support of the roof-ceiling structures (1), thereby stabilizing them against lateral buckling. The upper load-bearing panels (2) placed in the longitudinal direction of the hall on a large grid, 10 to 12 m, support the roof-ceiling structures (1) supported on the longitudinal linear bearing (2.5) as shown in the section in Fig. 15. The very large vertical moment of inertia of the elements (2) is used to carry the roof elements (1). The upper load-bearing panels (2) have excessively thick thermal insulation (2.2) installed between two concrete walls (2.1) connected to each other by rigid mesh anchors (2.3) through the thermal insulation, which achieves a large distance between the walls and thus greater lateral stiffness of these long elements. The lateral stiffness of the elements (2) is necessary especially when lifting or manipulating during construction or transport. The upper load-bearing panels (2), on the tops of the eaves (2.4), carry horizontal, longitudinal grooves, as in the picture. The lower load-bearing panels (3) are finished facade elements that enclose and thermally insulate the space of the hall on a longitudinal grid, supported on columns (4) and foundations (5), replacing the foundation beams that are usually used in halls, so there is no need to build under them foundations. The elements (3) connect the foundations (5) to each other against mutual separation during earthquakes and connect the construction to the monolithic reinforced concrete floor slab (9) by means of lateral anchors (3.6), which ensure their stability against lateral buckling. The upper and lower load-bearing panels (2) and (3) have built-in longitudinal channels (2.6) and (3.5) for the installation of glass or other window material that is inserted between them as in finished frames. The two-part steel columns (4) are composed of two U-profiles (4.1) in the space between which the upper and lower load-bearing panels (2) and (3) are inserted. The load-bearing panels (2) and (3) are connected inside the column with a rigid linear connection to each other and to the column (4). From a static point of view, elements (2), (3) and (4) form a continuous frame in the longitudinal direction of the hall with very rigid crossbars. Two-part steel columns (4) after assembly and injection of linear joints with elements (2) and (3) become composite, extremely strong columns as shown in the section in Fig. 13. Foam thermal insulation (4.4) and pipes (4.5) for vertical drainage of rainwater from horizontal gutters on the roof were installed in the columns in both halves (4.1) before assembly. The columns hide the vertical joints of the load-bearing panels (2) and (3) on both sides, which avoids subsequent finishing of the joints, after assembly, or repairs of possibly torn edges. Thermal insulation (4.4) installed inside the columns as shown in Fig. 13 achieves the continuity of the thermal insulation (2.3) or (3.2) installed in the panels (2) or (3) at the place of their vertical connection by lining it from the outside and thermally insulates the installed pipes (4.5) for drainage. The construction is based on prefabricated, fully assembled foundations (5), with ready-made foundation feet (5.1), with a foundation column that regulates the height of the hall floor in relation to the surrounding terrain and concrete-coated steel cups (5.2) into which the columns are mounted ( 4). The foundation feet (5.1) are factory-made, so the foundations (5) can be placed on the prepared base even at low temperatures, when the concrete does not set.

U daljnjem tekstu se redom navode i opisuju sastavni elementi sistema, njihova primjena i spojevi In the following text, the constituent elements of the system, their application and connections are listed and described in turn

element (1), dvostruko prednapregnuta kompozitna krovno-stropna konstrukcija sa ravnim podgledom prikazan na Sl. 2, označen na svim slikama oznakom (1), prema ranijoj patentnoj prijavi br. P20000906A, nije predmet patentnog zahtjeva u ovoj prijavi kao konstrukcija nego kao sastavni element sistema za gradnju hala. Međusobni sprežuće-nivelirajući spoj ploča (1.4) prikazan na SI.4 je važan sastavni dio sistema hale i predmet ove prijave. Element se sastoji od izrazito široke i tanke betonske ploče (1.1) širine presjeka 200 do 240 cm i visine do 6 cm. Čelični dio konstrukcije (1.2) kao gornji pojas ukupne konstrukcije je izrađen od tankostijenog zatvorenog čeličnog pravokutnog profila, spojen je sa podglednom pločom (1.1) vertikalnim štapovima ispune (1.3). Podgledna betonska ploča (1.1) se prednapreže centričkim, adhezionim postupkom u svrhu ograničavanja pukotina u njoj a gornji, čelični pojas (1.2) se prednapreže razupiranjem u tjemenu u svrhu reguliranja njenih progiba. Sprežuće-nivelirajući spoj (1.4) podglednih ploča (1.1) prikazan na Sl.3 i SI.4 je bitan za upotrebu elemenata (1) pri formiranju konstrukcije hale. Spojem (1.4) betonskih ploča (1.1) se vertikalno izjednačavaju različiti progibi ploča (1.1) te se međusobno spajaju i sprežu u horizontalno krutu stropnu ravninu. Izvedeni međusobni spoj ploča je prikazan na SI.4. Dvije susjedne podgledne ploče (1.1) imaju na mjestima spoja (1.4) ugrađene usidrene L-profile (1.5), potrebne dužine Ls koji se nakon izvršenog niveliranja međusobno zavare varom (1.6). Dvije pomoćne usidrene šipke (1.7) sa navojem i maticom na krajevima služe privremeno za niveliranje te se naknadno odstrane. Spojni detalji se ugrađuju u četvrtinama raspona. Na Sl.3 je prikazan postupak niveliranja ploča (1.1). Uređajem (14) se prisilno dovode ploče (1.1) u položaj zajedničkog progiba. Na usidrene šipke (1.7) se kroz rupe nataknu donji (14.1) i donji (14.2) razuporni profil a između njih se postavi hidraulička ručna dizalica kratkog hoda (14.3) koja međusobnim razupiranjem profila dovodi susjedne ploče (1.1) u zajednički, nivelirani visinski položaj nakon čega vrši trajno spajanje varom (1.6). Na slici (4) je aksonometrijski prikazan gotov presječeni detalj. Izvedeni var (1.6) je opterećen na posmik izazvan uslijed nastojana ploča (1.1) da se vrate u položaj iz kojeg su dovedene prisilno ali je to naprezanje malo jer su ploče vitke a radi se o izjednačavanju malih razlika u progibima susjednih ploča, koje se niveliraju iz estetskih razloga. U uzdužnom smjeru se varovi (1.6) izvode u potrebnoj dužini no oni su neopterećeni, osim kod pojave horizontalnih sila od potresa pri čemu služe kao spreg koji međusobno horizontalno spreže ploče. Uzdužni varovi (1.6) ne dozvoljavaju pojedinim pločama (1.1) da se pomiču neovisno jedna od druge pa one djeluju zajedno, kao kruta ravnina koja ne može opteretiti uzdužne gornje panoe grede (2), koje su izuzetno vitke i slabe u poprečnom smjeru, a na koje ploče (1.1) naliježu. Horizontalna sila potresa se time sa stropne plohe spregnute ovim spojevima prenosi direktno na stupove. U četvrtinama širine oslonjene ploče, na ležaju, ugrađene su čelične pločice (1.7) za pričvršćivanje podglednih ploča (1.1) za nosive panoe (2). element (1), doubly prestressed composite roof-ceiling structure with flat bottom view shown in Fig. 2, marked in all pictures with the mark (1), according to the earlier patent application no. P20000906A, is not the subject of the patent application in this application as a structure, but as an integral element of the hall building system. The mutual coupling-leveling connection of panels (1.4) shown in SI.4 is an important component of the hall system and the subject of this application. The element consists of an extremely wide and thin concrete slab (1.1) with a section width of 200 to 240 cm and a height of up to 6 cm. The steel part of the structure (1.2) as the upper belt of the overall structure is made of thin-walled closed steel rectangular profile, it is connected to the viewing plate (1.1) with vertical filling rods (1.3). The visible concrete slab (1.1) is prestressed by a centric, adhesion process in order to limit cracks in it, and the upper, steel belt (1.2) is prestressed by tensioning in the crown in order to regulate its deflections. The coupling-leveling joint (1.4) of the supporting panels (1.1) shown in Fig.3 and SI.4 is essential for the use of elements (1) in the construction of the hall. The connection (1.4) of the concrete slabs (1.1) equalizes the different deflections of the slabs (1.1) vertically and connects them to each other in a horizontally rigid ceiling plane. The performed mutual connection of the plates is shown in SI.4. Two adjacent support panels (1.1) have anchored L-profiles (1.5) installed at the joint points (1.4), of the required length Ls, which are welded to each other after leveling (1.6). Two auxiliary anchor rods (1.7) with a thread and a nut at the ends are used temporarily for leveling and are subsequently removed. Connecting details are installed in quarter spans. Fig. 3 shows the procedure for leveling the plates (1.1). The device (14) is used to force the plates (1.1) into the joint deflection position. The lower (14.1) and lower (14.2) spacer profiles are placed on the anchored bars (1.7) through the holes, and a short-stroke hydraulic manual jack (14.3) is placed between them. after which he makes a permanent welding connection (1.6). Figure (4) shows the axonometric view of the finished sectioned detail. The derived weld (1.6) is loaded to shear caused by the efforts of the plates (1.1) to return to the position from which they were forced, but this stress is small because the plates are slender and it is about equalizing the small differences in the deflections of the adjacent plates, which are leveled for aesthetic reasons. In the longitudinal direction, the welds (1.6) are performed in the required length, but they are unloaded, except in the event of horizontal forces from an earthquake, in which case they serve as a coupling that horizontally connects the panels to each other. Longitudinal welds (1.6) do not allow individual plates (1.1) to move independently of each other, so they act together, as a rigid plane that cannot load the longitudinal upper panels of the beam (2), which are extremely slender and weak in the transverse direction, and on which plates (1.1) are attached. The horizontal force of the earthquake is thereby transferred from the ceiling surface connected by these joints directly to the columns. Steel plates (1.7) are installed in quarters of the width of the supported plate, on the bearing, for attaching the viewing plates (1.1) to the load-bearing panels (2).

element (2), gornji nosivi pano je prikazan pogledom na Sl.5, označen na svim slikama oznakom (2). Sastoji se od dviju tankih, armirano-betonskih stijenki (2.1) debljine 4.5 do 5 cm, od betona u koji se umješava boja na bazi oksida, postojana na atmosferi. Stijenke (2.1) se na vanjskim stranama mogu obraditi gotovim fasadnim uzorkom kao otiskom u kalupu. Stijenke (2.1) se armiranju građevinskim mrežama. Između stijenki (2.1) se nalazi namjerno pretjerano debela, tvrda termoizolacija (2.2), debljine 14 do 16 cm koja pored svrhe izoliranja služi kao velika distanca za postizanje što veće bočne krutosti elementa. Stijenke (2.1) su međusobno spojene krutim, mrežastim spojevima (2.3) kroz termoizolaciju (2.3) čime se ujednačava njihov zajednici rad na nošenju vertikalnog tereta. Vanjska armirano-betonska stijenka je duža od unutarnje i predstavlja istak (2.4) koji služi kao maska za bočno zatvaranje tavanskog prostora i nošenje horizontalnog krovnog žlijeba kako je vidljivo na presjeku na Sl. 15. Po cijeloj dužini elementa (2) je formiran oslonac betonskih ploča (1.1), krovno-stropnih nosača (1), sa ugrađenom čeličnom trakom (2.5) usidrenom u obje stijenke (2.1) na koju ploče naliježu a kojim se regulira poprečni ekscentricitet vertikalne sile na elemente (2) i raspoređuje opterećenje od ploča ravnomjerno na obje stijenke. Na mjestima spajanja sa podglednim pločama (1.1) ugrađeni su kratki komadi L-profila (2.8), usidreni jednim krakom u obje stijenke nosivih panoa (2.1) tako da im je drugi krak vidljiv na unutarnjoj strani ležaja, na istaku (2.4) te je na njega zavaren vijak (2.9), vidljivo na Sl. 15. Spoj se izvodi tako da se drugi komad L-profila (2.10) koji ima rupu u jednom kraku natakne na vijak (2.9) i pričvrsti maticom (2.11) dok se drugi krak nataknutog profila zavari za pločicu (1.7), ugrađenu na gornje lice podgledne ploče (1.1). Na donjem dijelu element ima po cijeloj dužini ugrađeni metalni kanal (2.6) kao gotov bravarski okvir za umetanje providnog prozorskog materijala. Kanal (2.5) se izvodi dublji radi prostora za uvlačenje stakla i osiguranje od loma stakla uslijed progibanja elementa. Na krajevima elementa (2) ugrađuju se omčasti ankeri (2.7), od betonskog željeza, kojima se sidri u stupove (4). Omčasti ankeri (2.7) se izvode od debljih profila betonskog čelika i sidre duboko u armirano-betonske stijenke (2.1) jer ugrađeni u spoj predstavljaju neprekinutu armaturu gornje zone elementa (2) čime se ostvaruje kontinuitet nosača preko stupova. Povezani u spojevima sa stupovima (4) jakim linijskim spojem visokostjeni panoi (2) i (3) formiraju kontinuirane uzdužne okvire koji se u statičkim proračunima mogu krutima zbog visokog presjeka elementa pri kome je veliki moment savijanja rastavljen unutar presjeka na unutarnji par malih sila na velikom kraku. element (2), the upper load-bearing panel is shown in Fig. 5, marked in all pictures with the mark (2). It consists of two thin, reinforced concrete walls (2.1) with a thickness of 4.5 to 5 cm, made of concrete mixed with oxide-based paint, resistant to the atmosphere. The walls (2.1) can be treated on the outside with a ready-made facade pattern as an impression in the mold. The walls (2.1) are reinforced with construction nets. Between the walls (2.1) there is intentionally excessively thick, hard thermal insulation (2.2), 14 to 16 cm thick, which, in addition to the purpose of insulation, serves as a large distance to achieve the greatest lateral stiffness of the element. The walls (2.1) are connected to each other by rigid, mesh joints (2.3) through thermal insulation (2.3), which evens out their joint work on carrying the vertical load. The outer reinforced concrete wall is longer than the inner one and represents a protrusion (2.4) that serves as a mask for the lateral closure of the attic space and carrying the horizontal roof gutter, as can be seen in the section in Fig. 15. Along the entire length of the element (2), a support of concrete slabs (1.1), roof-ceiling supports (1) is formed, with a built-in steel strip (2.5) anchored in both walls (2.1) on which the slabs rest and which regulates the transverse eccentricity vertical forces on the elements (2) and distributes the load from the plates evenly on both walls. Short pieces of L-profile (2.8) are installed at the points of connection with the viewing panels (1.1), anchored with one leg in both walls of the load-bearing panels (2.1) so that their other leg is visible on the inner side of the bearing, on the protrusion (2.4) and is bolt (2.9) welded to it, visible in Fig. 15. The connection is made so that the second piece of L-profile (2.10), which has a hole in one leg, is put on the screw (2.9) and fixed with a nut (2.11), while the other leg of the put-on profile is welded to the plate (1.7), installed on the upper the face of the inspection panel (1.1). On the lower part, the element has a metal channel (2.6) installed along its entire length as a ready-made locksmith frame for inserting transparent window material. The channel (2.5) is made deeper in order to have space for inserting the glass and to ensure against breakage of the glass due to bending of the element. At the ends of the element (2), loop anchors (2.7), made of concrete iron, are installed, with which they are anchored to the columns (4). Loop anchors (2.7) are made of thicker concrete steel profiles and are anchored deep into the reinforced concrete walls (2.1), because they are embedded in the joint and represent the uninterrupted reinforcement of the upper zone of the element (2), which ensures the continuity of the support over the columns. High-walled panels (2) and (3) connected in joints with columns (4) by a strong linear connection form continuous longitudinal frames that can be rigid in static calculations due to the high cross-section of the element, where the large bending moment is divided within the cross-section into an internal pair of small forces on big arm.

element (3), donji nosivi pano je prikazan pogledom na Sl.7, označen na svim slikama oznakom (3). Sastoji se od dviju tankih armirano-betonskih stijenki (3.1) debljine 4.5 do 5 cm od betona u koji se umješava boja na bazi oksida, postojana na atmosferi. Stijenke (3.1) se armiranju građevinskim mrežama. Između stijenki (3.1) se nalazi pretjerano debela, tvrda termoizolacija (3.2) debljine 14 do 16 cm, koja pored svrhe izoliranja služi kao velika distanca između ploča za postizanje što veće bočne krutosti elementa. Stijenke (3.1) su međusobno spojene krutim, mrežastim spojevima (3.3) kroz termoizolaciju. Donji dio elementa koji nakon ugradnje dolazi pod zemlju, označen sa (d), se izvodi pun, sa dodanim aditivom u beton za vodonepropusnost. Na prijelazu donjeg dijela elementa, označen sa (d), u gornji dio označen sa (g), koji ostaje iznad nivoa okolnog terena, izvodi se horizontalni prekidač vlage (3.4) koji prekida kapilare u betonu i sprječavanja vlaženja gornjeg dijela elementa (h). Prekidač kapilara (3.4), prikazan na Sl.9, se sastoji od tanke metalne trake (3.4.1), u širini elementa, sa čeličnim ankerima (3.4.2) koji služe da kao armatura spoje beton gornjeg i donjeg dijela kroz prekidač (3.4). Na vanjskoj strani elementa (3) traka (3.4.1) završava uzdužnim, metalnim ili plastičnim profilom (3.4.3) koji razdvaja gornji i donji dio elementa a izvana vizuelno odvaja sokl. Na vrhu je element (3) po cijeloj dužini oblikovan kao zakošena prozorska klupčica sa ugrađenim metalnim kanalom (3.5) za ugradnju prozorskog materijala. Pomoću bočnih ankera (3.7) spajaju se donji nosivi panoi (3) sa monolitnom betonskom podnom pločom hale (9). Na krajevima element ima ugrađene omčaste ankere (3.6) od betonskog željeza kojima se sidri u stupove (4). Omčasti ankeri (3.6) se izvode od debljih profila betonskog čelika i sidre duboko u armirano-betonske stijenke (3.1) jer ugrađeni preklapanjem u međusobni spoj u stupu predstavljaju neprekinutu armaturu gornje zone elementa (3) čime se ostvaruje kontinuitet nosača preko stupova. element (3), the lower load-bearing panel is shown in Fig. 7, marked in all pictures with the mark (3). It consists of two thin reinforced concrete walls (3.1) with a thickness of 4.5 to 5 cm made of concrete into which an oxide-based paint, resistant to the atmosphere, is mixed. The walls (3.1) are reinforced with construction nets. Between the walls (3.1) there is excessively thick, hard thermal insulation (3.2) with a thickness of 14 to 16 cm, which, in addition to the purpose of insulation, serves as a large distance between the panels to achieve the greatest lateral stiffness of the element. The walls (3.1) are connected to each other by rigid, mesh joints (3.3) through thermal insulation. The lower part of the element that goes underground after installation, marked with (d), is made solid, with an additive added to the concrete for waterproofing. At the transition of the lower part of the element, marked with (d), to the upper part, marked with (g), which remains above the level of the surrounding terrain, a horizontal moisture switch (3.4) is made, which interrupts the capillaries in the concrete and prevents the upper part of the element (h) from getting wet. . The capillary switch (3.4), shown in Fig. 9, consists of a thin metal strip (3.4.1), in the width of the element, with steel anchors (3.4.2) that serve as reinforcement to connect the concrete of the upper and lower parts through the switch ( 3.4). On the outside of the element (3), the strip (3.4.1) ends with a longitudinal, metal or plastic profile (3.4.3) that separates the upper and lower parts of the element and visually separates the plinth from the outside. At the top, the element (3) along its entire length is shaped like a beveled window sill with a built-in metal channel (3.5) for installing the window material. Using side anchors (3.7), the lower load-bearing panels (3) are connected to the monolithic concrete floor slab of the hall (9). At the ends, the element has built-in loop anchors (3.6) made of concrete iron, with which it is anchored to the columns (4). Loop anchors (3.6) are made of thicker profiles of concrete steel and anchor deep into the reinforced concrete walls (3.1), because they are installed by overlapping in the mutual connection in the column and represent the uninterrupted reinforcement of the upper zone of the element (3), which achieves the continuity of the support over the columns.

element (4), dvodijelni sastavljeni kompozitni stup prikazan je na Sl. 10,11,12,13 i 14, označen na svim slikama oznakom (4), sastavljen je od dva razmaknuta čelična U-profila (4.1) sa krutim omčama od plosnog čelika (4.2) zavarenim na unutarnje strane profila. Krute omče (4.2) služe za preklapanje u spoju, kako je prikazano na Sl. 10, 11 i 14. a obje polovice stupa (4.1) su međusobno privremeno spojene Vijcima (4.3) na više mjesta po visini stupa, kako je prikazano na Sl. 10,12 i 14. Vijci (4.3) i prečke (4.6) u fazi montaže stupa fiksiraju stalni razmak polovica stupa (4.1) koji se prije spajanja elemenata (2) i (3) privremeno povećava radi lakšeg uvlačenja panoa u međurazmak stupova. Nakon ulaganja nosivih panoa (2) i (3) u međurazmak stupa (4), Vijcima (4.3) se obje polovice stupa pritegnu tako da stisnu panoe (2) i (3). Polovice stupova time sakrivaju spoj betonskih elemenata (2) i (3) koji nije osjetljiv na manje netočnosti ili oštećenja rubova i nastavljaju kontinuitet termoizolacije u panoima na mjestu stupa. Vertikalni raspored omčastih ankera (3.6) na nosivim panoima i razmak zavarenih krutih omča (4.2) na stupovima (4) podešeni su za nesmetano provlačenje uzdužnih sipki (4.9) kroz sve omčaste ankere. Injektiranjem sitnozrnim brzovežućim betonom (4.10) pomoću pumpe i crijeva za injektiranje se u konačnici ostvaruje kontinuirani, linijski vertikalni spoj i jaki kompozitni presjek stupa kao na Sl. 13. U stup je u obje polovice (4.1) prije montaže ugrađena tvrda pjenasta termoizolacija (4.4) i cijevi (4.5) za vertikalnu odvodnju oborinskih voda sa krova. Stupovi (4) su prije montaže međusobno spojeni prečkama (4.6) od L-profila pričvršćenim za obje polovice (4.1) Vijcima kroz rupe kao što je vidljivo na Sl. 12 i 14. Razmak stupova se regulira unutar ovalnih rupa (4.11) na jednoj od polovica. Prečke (4.6) služe kao privremeni oslonac gornjem nosivom panou (2) u fazi montaže te se njima fiksira razmak polovica stupova (4.2). Nakon stezanja nosivih panoa (2) i (3) Vijcima (4.3) prečka (4.2) i vijci (4.3) se mogu ukloniti. Dno stupa (4.7) je opremljeno sa dva kruta trna (4.8) na koje se u fazi montaže stup oslanja u čeličnim čahurama (5.4) spojnog detalja temelja. Trnovi (4.8) služe za centriranje stupova i lakše dovođenje u vertikalni položaj. element (4), a two-part assembled composite column is shown in Fig. 10,11,12,13 and 14, marked (4) in all pictures, is composed of two spaced steel U-profiles (4.1) with rigid flat steel loops (4.2) welded to the inside of the profile. Rigid loops (4.2) are used for folding in the joint, as shown in Fig. 10, 11 and 14. and both halves of the column (4.1) are temporarily connected to each other with screws (4.3) in several places along the height of the column, as shown in Fig. 10,12 and 14. Screws (4.3) and crossbars (4.6) during the pole assembly stage fix the permanent distance between the pole halves (4.1), which is temporarily increased before connecting the elements (2) and (3) for easier insertion of the panels into the distance between the poles. After inserting the load-bearing panels (2) and (3) into the gap between the posts (4), both halves of the post are tightened with screws (4.3) so that they compress the panels (2) and (3). The halves of the columns thereby hide the connection of concrete elements (2) and (3) which is not sensitive to minor inaccuracies or damage to the edges and continue the continuity of the thermal insulation in the panels at the place of the column. The vertical arrangement of the loop anchors (3.6) on the load-bearing panels and the spacing of the welded rigid loops (4.2) on the columns (4) are adjusted for the smooth passage of the longitudinal bars (4.9) through all the loop anchors. By injecting with fine-grained quick-setting concrete (4.10) using a pump and injection hose, a continuous, linear vertical connection and a strong composite cross-section of the column are finally achieved, as in Fig. 13. Hard foam thermal insulation (4.4) and pipes (4.5) for vertical drainage of rainwater from the roof were installed in both halves (4.1) of the column before assembly. Before assembly, the columns (4) are connected to each other with L-profile crossbars (4.6) attached to both halves (4.1) with screws through the holes as shown in Fig. 12 and 14. The distance between the posts is regulated inside the oval holes (4.11) on one of the halves. Crossbars (4.6) serve as a temporary support for the upper load-bearing panel (2) during the assembly phase, and they fix the distance between the halves of the columns (4.2). After clamping the load-bearing panels (2) and (3) with screws (4.3), the crossbar (4.2) and screws (4.3) can be removed. The bottom of the column (4.7) is equipped with two rigid pins (4.8) on which the column rests in the steel bushings (5.4) of the connecting part of the foundation during the assembly phase. The pins (4.8) are used to center the posts and make them easier to bring into a vertical position.

element (5), potpuno montažni temelj prikazan je na Sl. 16 i 17, označen na svim slikama oznakom (5). Potpuno montažni temelj se sastoji od tanke armiranobetonske ili prednapregnute temeljne stope (5.1), temeljnog stupa kojim se temelj prilagođava okolnom terenu (5.2) i čelične čašice (5.3), od dvaju čeličnih U-profila nešto većih od profila stupova (4.1), obloženih betonom. Čašica (5.3) je prilagođena ugradnji dvodijelnih stupova (4). Dno čašice je betonsko sa ugrađene dvije čelične čahure (5.4) u koje stup (4) kod montaže sjeda trnom (4.8). Stup se dovodi u vertikalan položaj zabijanjem po obodu drvenih klinova (5.5) u razmak između čeličnih profila čašice (5.3) i profila stupa (4.1) pri čemu stup (4) rotira oslonjen na trnove (4.8). Nakon niveliranje spoj se zalijeva betonom. Spoj se može izvesti i kao suh što je pogodno u zimskim uvjetima kad beton ne veže, upotrebom čeličnih klinova (5.5) umjesto drvenih pri čemu se stup fiksira trajno ili privremeno varenjem klinova (5.5) za čelične profile stupa (4.1) i čašice (5.3). Temelji se postavljaju u iskopane jame nasipane šljunkom ili mršavim betonom, sa niveliranim dnom. element (5), fully assembled foundation is shown in Fig. 16 and 17, marked in all pictures with the mark (5). The fully prefabricated foundation consists of a thin reinforced concrete or prestressed foundation footing (5.1), a foundation column that adapts the foundation to the surrounding terrain (5.2) and a steel cup (5.3), made of two steel U-profiles slightly larger than the column profiles (4.1), coated with concrete. The cup (5.3) is adapted to the installation of two-part columns (4). The bottom of the cup is made of concrete with two steel bushings (5.4) installed in which the post (4) sits with the mandrel (4.8) during assembly. The column is brought into a vertical position by driving wooden wedges (5.5) around the perimeter into the space between the steel profiles of the cup (5.3) and the column profile (4.1), whereby the column (4) rotates supported by the spikes (4.8). After leveling, the joint is poured with concrete. The joint can also be made dry, which is convenient in winter conditions when the concrete does not set, using steel wedges (5.5) instead of wooden ones, whereby the column is fixed permanently or temporarily by welding the wedges (5.5) to the steel profiles of the column (4.1) and cups (5.3) ). The foundations are placed in excavated pits filled with gravel or thin concrete, with a leveled bottom.

Postupak izvođenja hale: Procedure for making the hall:

Nakon skidanja humusa strojno se iskopaju jame za temelje stupova. Sva dna temeljnih jama se nasipavaju šljunkom i niveliraju na jednaku visinu. Za niveliranje se koristi obični geodetski nivelir. Završni fino nivelirani sloj se izvodi od mršavog betona debljine 10 cm, pri čemu je važno da završna podloga bude horizontalna. Na nivelirana dna se polažu potpuno montažni temelji (5) pri čemu se toleriraju greške u tlocrtnom polaganju temelja, reda veličine do 2 cm, koje se kod montaže konstrukcije mogu kompenzirati pomicanjem stupova (4) unutar čašica temelja (5.3). Visina podne ploče građevine u odnosu na okolni teren odnosno dubina temeljenja se grubo reguliraju izborom visine temeljnog stupa (5.2). Nakon postave temelja (5),u čašice (5.3) se montiraju spojeni čelični dvodijelni stupovi (4) i privremeno fiksiraju klinovima (5.5) zabijenim po obodu stupa unutar čašica (5.3) kao što je vidljivo na Sl. 17. Stupovima se podesi pomoću prečki (4.6) približno 10 mm veći unutarnji razmak od širine donjih nosivih panela (3) prije njihove montaže. Donji nosivi paneli (3) se krajevima umetnu u međurazmak dvodjelnih stupova (4) i oslone na stup temelja (5.2) kroz prorez u čašici temelja pri čemu im se omčasti ankeri preklope sa krutim ankerima stupa (4.2) i omčastim ankerima susjednog, donjeg nosivog panoa (3) kao na Sl. 13. Stupovi (4) se trajno fiksiraju a Vijcima (4.3) se stupovi stisnu uz panoe (3). Sada se stupovi dovode u konačni, precizni vertikalan položaj, pomoću klinova koji se zabijaju dublje ili pliće u prostor između stupa i čašice (5.5) a uz pomoć geodetskih instrumenata kojima se prati vertikalnost s obzirom na dvije okomite ravnine, pri čemu teški panoi (3) ne ometaju rotaciju stupa ili njegove fine pomake u dnu čašice jer su oslonjeni na temelje. Dovođenjem stupova u vertikalan položaj dovedeni su u vertikalan položaj i donji nosivi paneli. Spoj, kao na Sl. 13 se injektira sitnozrnim, brzoveznim betonom. Nakon postave nosivih panoa (3) po cijeloj građevini, montiraju se u međurazmak stupova gornji nosivi panoi (2) oslanjanjem na privremene oslonce (4.6) na stupovima i trajno spajaju spojem kao na Sl. 13. Na gornje nosive panoe (2) se montiraju krovno-stropni elementi (1) koji se oslanjaju cijelom širinom krajeva podglednih ploča (1.1) po linijskim osloncima (2.5) i spajaju detaljem kao na Sl. 15. Ploče se montiraju na međusobnom razmaku 5 mm koji se naknadno zapunjava trajnoelestičnim kitom. Zbog nesavršenosti izvedbe podgledna ploče (1.1) imaju međusobno različite progibe, razlika kojih iznosi nekoliko milimetara ali svakako manje od 1 cm. Susjedne ploče (1.1) se pomoću sprežuće-nivelirajućih spojeva ugrađenih u četvrtinama i sredini raspona prisilno dovode u položaj zajedničkog progiba uz pomoć jednostavnog uređaja te se u tako zajednički niveliranom visinski položaju trajno spajaju varom (1.6), kao što je prikazano na SL.3 i 4. Svi daljnji radovi se odvijaju na sigurnoj i ravnoj betonskoj plohi koju čine spojene podgledne ploče (1.1) elemenata. Na gornju površinu ploča (1.1) se polaže mekana termoizolacija (6), potrebne debljine, jednostavnim razmatanjem bala. Na istake gornjih panela (2.4) se postavljaju horizontalni žlijebni kanali te se spajaju sa vertikalnim cijevima (4.5) ugrađenim u stupove (4). Na gornji čelični pojas (1-2) krovnih nosača (1) montiraju se sekundarni nosači (7) a na njih pričvršćuje pokrov (8). Ostakljivanje fasada hale se vrši jednostavnim umetanjem prozorskog materijala (13) u obliku ploča u kanale (2.6) i (3.5) u elementima (2) i (3) pri čemu kanali služe kao gotov okvir. Nakon ove brze montaže izgrađena je gotova, finiširana hala a ne samo konstrukcija. Instalacije koje se horizontalno razvode po čitavom tavanu i mogu se vertikalno spustiti na bilo kom potrebnom mjestu u hali kroz probušenu rupu u stropu. After removing the humus, pits for the foundations of the columns are dug by machine. All the bottoms of the foundation pits are filled with gravel and leveled to the same height. An ordinary geodetic leveler is used for leveling. The final finely leveled layer is made of thin concrete 10 cm thick, where it is important that the final surface is horizontal. Completely prefabricated foundations (5) are laid on the leveled bottoms, where errors in the layout of the foundation are tolerated, up to 2 cm in size, which can be compensated for by moving the columns (4) inside the foundation cups (5.3) during the assembly of the structure. The height of the floor slab of the building in relation to the surrounding terrain, i.e. the depth of the foundation, is roughly regulated by choosing the height of the foundation column (5.2). After the foundation (5) is installed, the joined steel two-part columns (4) are mounted in the cups (5.3) and temporarily fixed with pegs (5.5) driven around the perimeter of the column inside the cups (5.3), as can be seen in Fig. 17. The columns are adjusted using crossbars (4.6) to have an internal distance of approximately 10 mm greater than the width of the lower load-bearing panels (3) before their assembly. The lower load-bearing panels (3) are inserted with their ends into the gap between the two-part columns (4) and rest on the foundation column (5.2) through the slot in the foundation cup, whereby their loop anchors are overlapped with the rigid anchors of the column (4.2) and the loop anchors of the adjacent, lower load-bearing panel. panel (3) as in Fig. 13. The columns (4) are fixed permanently and the columns are pressed against the panels (3) with screws (4.3). Now the columns are brought to the final, precise vertical position, using wedges that are driven deeper or shallower into the space between the column and the cup (5.5) and with the help of geodetic instruments that monitor verticality with respect to two vertical planes, whereby heavy panels (3 ) do not interfere with the rotation of the column or its fine movements in the bottom of the cup because they are supported on the foundations. By bringing the columns into a vertical position, the lower load-bearing panels were also brought into a vertical position. Connection, as in Fig. 13 is injected with fine-grained, quick-setting concrete. After placing the load-bearing panels (3) throughout the building, the upper load-bearing panels (2) are mounted in the space between the columns by leaning on the temporary supports (4.6) on the columns and permanently connected with a joint as in Fig. 13. The roof-ceiling elements (1) are mounted on the upper load-bearing panels (2), which are supported by the entire width of the ends of the support panels (1.1) on the linear supports (2.5) and connected in detail as in Fig. 15. The panels are mounted at a distance of 5 mm, which is subsequently filled with permanent elastic putty. Due to the imperfection of the design, the viewing panels (1.1) have different deflections, the difference of which is several millimeters, but certainly less than 1 cm. Adjacent panels (1.1) are forcibly brought into the joint deflection position with the help of a simple device by means of coupling-leveling joints installed in the quarters and middle of the span, and in such a joint leveled height position, they are permanently joined by welding (1.6), as shown in FIG.3 and 4. All further work is carried out on a safe and level concrete surface formed by the connected support panels (1.1) of the elements. Soft thermal insulation (6) of the required thickness is laid on the upper surface of the panels (1.1) by simply unrolling the bales. Horizontal gutter channels are placed on the protrusions of the upper panels (2.4) and are connected to the vertical pipes (4.5) built into the columns (4). The secondary supports (7) are mounted on the upper steel belt (1-2) of the roof supports (1) and the cover (8) is attached to them. The glazing of the facades of the hall is done by simply inserting the window material (13) in the form of panels into the channels (2.6) and (3.5) in the elements (2) and (3), whereby the channels serve as a finished frame. After this quick assembly, a finished, finished hall was built, not just a structure. Installations that are distributed horizontally throughout the attic and can be lowered vertically at any necessary place in the hall through a hole drilled in the ceiling.

Postupak izvođenja višebrodne hale: The procedure for building a multi-nave hall:

Predmetnim sistemom za gradnju hala sa ravnim stropom mogu se graditi i višebrodne hale od dva ili više poprečnih raspona kako je prikazano na poprečnom presjeku na Sl. 18. Od stupova (16) na proizvoljnom uzdužnom rasteru koji ne mora biti jednak rasteru vanjskih stupova (4) i visokog čeličnog nosača I-profila (15) formira se unutarnji uzdužni okvir na kojeg se oslanjaju ploče sa dva raspona. Na presjeku na Sl. 19. je prikazan detalj spoja dviju ploča (1.1) krovno-stropnih konstrukcija (1) sa čeličnim uzdužnim nosačem (15), srednjeg uzdužnog okvira. Ploče se montiraju na donju flanšu I-profila i spajaju poprečnim rebrom od čeličnih ploča (17) koje se zavare za pločice (1.5) te na hrbat i gornju flanšu uzdužnog nosača (15). Čelični nosač koji je sam za sebe torzijski osjetljiv time je poprečno spregnut sa pločama (1.1) stabiliziran. Kruta horizontalna ravnina stropa koju formiraju spojevima (1.4) spregnute podgledne ploče (1.1) ne opterećuje srednji nosač (15) bočno već ga stabilira prenoseći sile direktno na stupove. Multi-nave halls with two or more transverse spans can also be built with the system in question for building halls with a flat ceiling, as shown in the cross-section in Fig. 18. An internal longitudinal frame is formed from the columns (16) on an arbitrary longitudinal grid, which does not have to be equal to the grid of the outer columns (4) and the tall I-profile steel support (15), on which the panels with two spans rest. On the section in Fig. 19 shows a detail of the connection of two panels (1.1) of the roof-ceiling construction (1) with the steel longitudinal support (15), of the middle longitudinal frame. The plates are mounted on the lower flange of the I-profile and connected with a transverse rib made of steel plates (17) which are welded to the plates (1.5) and to the spine and upper flange of the longitudinal support (15). The steel support, which is itself sensitive to torsion, is thus cross-coupled with the plates (1.1) and stabilized. The rigid horizontal plane of the ceiling, which is formed by the joints (1.4) of the connected support panels (1.1), does not load the middle support (15) laterally, but stabilizes it by transferring forces directly to the columns.

Kvaliteta izrade komponenti konstrukcije se kontrolira po standardima za čelik, beton, kompozitne ili prednapregnute konstrukcije a kontrola kvalitete izrade gotovog elementa u smislu kvalitete obrade površina i tolerancije makroskopskim pregledom ili mjerenjima vezano također na odgovarajuće standarde. U smislu kvalitete izrade konstrukcije se kontroliraju; kvaliteta materijala i varova, zahtjevane tolerancije deformacija čeličnih dijelova konstrukcije nakon zavarivanja, položaj čeličnih dijelova u kalupu prije betoniranja, tlačna čvrstoća betona, konzistencija betona pri ugradnji, pravilna izrada i postava armature i užadi za prednaprezanje u kalupu i kontrolira se unesena sila prednaprezanja. Prije betoniranja i očvršćivanja betona elementima se kontrolira pregledom prisustvo i položaj svih ugrađenih spojnih detalja a nakon betoniranja elemenata, kvaliteta obrađenosti površina i u beton ugrađene boje, eventualna oštećenja otkrhnućem rubova ili pukotina. Industrijskim načinom izrade elemenata u čvrstim i stabilnim kalupima, sa ugrađenim graničnicima te odgovarajućim sredstvima i alatom eliminira se mogućnost čovjekove greške pri radu. The quality of construction components is controlled according to the standards for steel, concrete, composite or prestressed structures, and the quality control of the finished element in terms of the quality of surface treatment and tolerance by macroscopic inspection or measurements is also related to the appropriate standards. In terms of quality, constructions are controlled; quality of materials and welds, required tolerances of deformation of steel parts of the structure after welding, position of steel parts in the mold before concreting, compressive strength of concrete, consistency of concrete during installation, correct production and placement of reinforcement and ropes for prestressing in the mold and control of the applied prestressing force. Before concreting and hardening of the concrete with elements, the presence and position of all installed connecting details are checked by inspection, and after concreting of the elements, the quality of the surface finish and the paint incorporated into the concrete, possible damage due to chipping of edges or cracks. The industrial way of making elements in solid and stable molds, with built-in stops and appropriate means and tools, eliminates the possibility of human error during work.

Konstrukcija se deponira po elementima i transportira na gradilište odgovarajućim transportom kojem se postavljaju uvjeti da ne narušavaju kvalitetu, nosivost ili neko drugo svojstvo elementa. Na elemente i konstrukciju u cjelini primjenjuju se standardni proračuni stabilnosti i otpornosti regulirani propisima zemlje u kojoj se konstrukcija izvodi, bazirani na općim principima građevinske mehanike. Elementi se pri tome dimenzioniraju za nošenje propisanih opterećenja na zahtjevane faktore sigurnosti graničnih stanja sloma i eksploatacionih karakteristika prema odgovarajućim propisima koji reguliraju gradnju betonom, čelikom, kompozitnim presjecima ili prednaprezanjem. Elementi i konstrukcija se za masovnu proizvodnju i primjenu treba atestirati što je također regulirano propisima pojedinih zemalja. The construction is deposited by elements and transported to the construction site by appropriate transport, which is subject to conditions that do not impair the quality, load-bearing capacity or any other property of the element. Standard calculations of stability and resistance regulated by the regulations of the country where the construction is carried out, based on general principles of construction mechanics, are applied to the elements and the construction as a whole. In doing so, the elements are dimensioned to carry the prescribed loads to the required safety factors of limit states of failure and exploitation characteristics according to the appropriate regulations that regulate construction with concrete, steel, composite sections or prestressing. Elements and construction must be certified for mass production and application, which is also regulated by the regulations of individual countries.

Jedna od prednosti koju pruža ovaj sistem je u slijedećem: One of the advantages provided by this system is in the following:

Priprema gradilišta za montažu zahtjeva izvršenje zemljanih i betonskih radova u opsegu u kojem to dozvoljavaju vremenski uvjeti. Postoji mogućnost izvesti nužni minimum zemljanih radova, koji se sastoji u iskopu za temelje niveliranje dna te minimalnom, grubom iskopu po obodu građevine na mjestima gdje dolaze donji nosivi panoi (3) koji dijelom ulaze u zemlju te montirati halu, a zemljane i betonske radove na monolitnoj podnoj ploči (9) izvesti naknadno u zatvorenom prostoru hale. Ova mogućnost je pogodna zimi, po snijegu i niskim temperaturama i snijegu jer montaža hale ne treba čekati prethodno izvođenje opsežnih i o lošem vremenu ovisnih zemljanih i monolitnih betonskih radova. The preparation of the construction site for assembly requires the execution of earth and concrete works to the extent that weather conditions allow. It is possible to carry out the necessary minimum earthworks, which consists of excavation for foundations, leveling of the bottom and minimal, rough excavation around the perimeter of the building in the places where the lower load-bearing panels (3) come, which partially enter the ground, and to mount the hall, and earth and concrete works on monolithic floor slab (9) to be performed later in the closed area of the hall. This possibility is convenient in winter, in snow and low temperatures and snow, because the assembly of the hall does not need to wait for the previous execution of extensive and bad weather-dependent earth and monolithic concrete works.

Claims (18)

1. Sistem za gradnju hala velikih raspona sa ravnim podgledom od višefunkcionalnih elemenata naznačen time se sastavlja od dvostruko prednapregnutih, kompozitnih, krovno-stropnih konstrukcija sa ravnim podgledom (1), gornjih nosivih panoa (2), donjih nosivih panoa (3), dvodijelnih sastavljenih kompozitnih stupova (4) i potpuno montažnih temelja (5) pri čemu svi nabrojani elementi čine kompatibilnu cjelinu.1. The system for the construction of large-span halls with a flat bottom view of multi-functional elements is characterized by the fact that it consists of double prestressed, composite, roof-ceiling structures with a flat bottom view (1), upper load-bearing panels (2), lower load-bearing panels (3), two-part assembled composite columns (4) and completely prefabricated foundations (5), where all the listed elements form a compatible whole. 2. Sistem za gradnju hala velikih raspona, prema zahtjevu 1, naznačen time što se međusobnim spajanjem podglednih ploča (1.1), krovno-stropnih konstrukcija (1), sastavlja potpuno ravan betonski podgled koji formira tavanski prostor (11) provjetravan prirodnom ventilacijom kroz otvore (10) na mjestima spojeva gornjih nosivih panoa (2) sa stupovima (4).2. System for the construction of halls of large spans, according to claim 1, characterized by the fact that by mutually connecting the soffits (1.1), roof-ceiling constructions (1), a completely flat concrete soffit is assembled, which forms an attic space (11) ventilated by natural ventilation through openings (10) at the joints of the upper load-bearing panels (2) with the columns (4). 3. Sistem za gradnju hala velikih raspona, prema zahtjevu 2, naznačen time što se na betonski strop sa gornje strane polaže termoizolacija (6) proizvoljne debljine nakon montaže elementa ili kod predfabrikacije pri čemu betonske podgledne ploče i izolacija na njima čine protupožarnu zaštitu čeličnoj konstrukciji krova sa slavljenoj od dijelova (1.2), (1.3) i 7 iznad stropa.3. A system for the construction of large-span halls, according to claim 2, indicated by the fact that thermal insulation (6) of arbitrary thickness is laid on the concrete ceiling from the upper side after the assembly of the element or during prefabrication, whereby the concrete support panels and the insulation on them provide fire protection for the steel structure of the roof with the celebrated part (1.2), (1.3) and 7 above the ceiling. 4. Sistem za gradnju hala velikih raspona, prema zahtjevu 1, naznačen time što se kroz tavanski prostor horizontalno razvode instalacije i industrijski vodovi (12) po gornjoj površini sastavljenog stropa.4. System for the construction of halls of large spans, according to claim 1, characterized by the fact that the installations and industrial lines (12) are distributed horizontally through the attic space on the upper surface of the assembled ceiling. 5. Sistem za gradnju hala velikih raspona, prema zahtjevu 1, naznačen time što se gornja površina sastavljenog stropa koristi u toku gradnje za sigurno odvijanje radova na krovu.5. System for the construction of large-span halls, according to claim 1, characterized by the fact that the upper surface of the assembled ceiling is used during construction for the safe progress of work on the roof. 6. Sistem za gradnju hala velikih raspona, prema zahtjevu 1, naznačen time što se prvo može izvesti hala pa tek onda izvesti zemljane i betonske radove na monolitnoj podnoj ploči (9) u zatvorenom prostoru hale.6. System for the construction of halls of large spans, according to claim 1, characterized by the fact that the hall can be constructed first and only then earth and concrete works can be carried out on the monolithic floor slab (9) in the closed space of the hall. 7. Sistem za gradnju hala velikih raspona, prema zahtjevu 1, naznačen time što se spajanjem podglednih ploča (1.1), krovno-stropnih konstrukcija (1) međusobno spajaju sprežuće-nivelirajućim spojevima (1.4) u krutu horizontalnu ravninu koja horizontalne sile potresa prenosi direktno na stupove a pri tom bočno ne savija uzdužne gornje nosive panoe (2) vezane na sebe, već iste stabilizira protiv bočnog izvijanja.7. System for the construction of large-span halls, according to claim 1, characterized by the fact that by joining the slats (1.1), the roof-ceiling structures (1) are connected to each other by coupling-leveling joints (1.4) into a rigid horizontal plane that transmits the horizontal forces of the earthquake directly on the columns, while at the same time it does not bend the longitudinal upper load-bearing panels (2) tied to itself, but rather stabilizes them against lateral bending. 8. Sistem za gradnju hala velikih raspona, prema zahtjevu 7, sa sprežuće-nivelirajućim spojem (1.4) naznačenim time što se sastoji od usidrenih L-profila (1.5) na rubovima ploča i privremenih sipki (1.7) sa navojem i maticom na kraju, preko kojih se pomoću naprave (14), podgledne ploče (1.1), elemenata (1), prisilno dovode u položaj zajedničkog vertikalnog progiba nakon čega se L-profili spajaju uzdužnim varom (1.6)8. A system for building large-span halls, according to claim 7, with a coupling-leveling joint (1.4) indicated by the fact that it consists of anchored L-profiles (1.5) on the edges of the panels and temporary crossbars (1.7) with a thread and a nut at the end, through which, by means of the device (14), the viewing panels (1.1), the elements (1), are forced into the position of common vertical deflection, after which the L-profiles are joined by a longitudinal weld (1.6) 9. Gornji nosivi pano, prema zahtjevu 1, se sastoji od dviju tankih armirano-betonskih stijenki (2.1) sa ugrađenom termoizolacijom (2.2) kroz koju se ploče spajaju mrežastim ankerima (2.3) a vanjska ploča čini istak (2.4), sa uzdužnim ležajem (2.5) za nošenje ploča (1.1), sa ugrađenim kanalom (2.5) za ugradnju stakla i omčastim ankerima (2.6) za spajanje, naznačen time što se koristi kao dugačak visokostjeni nosač za nošenje teškog krova i zatvaranje prostora a nakon spajanja sa stupovima (4) i donjim nosivim panoima (3) krutim vertikalnim spojevima, formira, statički gledano, kontinuirani okvir koji horizontalno stabilizira konstrukciju u uzdužnom smjeru.9. The upper load-bearing panel, according to requirement 1, consists of two thin reinforced concrete walls (2.1) with built-in thermal insulation (2.2) through which the panels are connected with mesh anchors (2.3) and the outer panel forms a protrusion (2.4), with a longitudinal bearing (2.5) for carrying panels (1.1), with a built-in channel (2.5) for installing glass and loop anchors (2.6) for connection, indicated by the fact that it is used as a long high-wall support for carrying a heavy roof and closing the space and after connecting with the columns ( 4) and the lower load-bearing panels (3) with rigid vertical joints, form, from a static point of view, a continuous frame that horizontally stabilizes the construction in the longitudinal direction. 10. Gornji nosivi pano, prema zahtjevu 9, naznačen time što se između dviju armirano-betonskih stijenki (2.1) spojenih krutim mrežastim ankerima (2.3) namjerno ugrađuje pretjerano debela termoizolacija (2.2) kojom se pored svrhe termoizoliranja ostvaruje veće distance između betonskih stijenki (2.1) a time i veće bočne krutosti elementa.10. The upper load-bearing panel, according to claim 9, characterized by the fact that between two reinforced concrete walls (2.1) connected by rigid mesh anchors (2.3) excessively thick thermal insulation (2.2) is deliberately installed, which in addition to the purpose of thermal insulation achieves greater distances between the concrete walls ( 2.1) and thus greater lateral stiffness of the element. 11. Donji nosivi pano, prema zahtjevu 1, se sastoji od dviju tankih armirano-betonskih stijenki (3.1) sa ugrađenom termoizolacijom (3.2) kroz koju se ploče spajaju mrežastim ankerima (3.3) sa ugrađenim kanalom (3.5) za ugradnju stakla i omčastim ankerima (2.6) za spajanje, naznačen time što se u njega ugrađuje pretjerano debela termoizolacija (3.2) kojom se pored svrhe izoliranja ostvaruje velika distanca između betonskih stijenki (3.1) radi postizanja veće bočne krutosti elementa.11. The lower load-bearing panel, according to claim 1, consists of two thin reinforced concrete walls (3.1) with built-in thermal insulation (3.2) through which the panels are connected with mesh anchors (3.3) with a built-in channel (3.5) for installing glass and loop anchors (2.6) for connection, characterized by the fact that excessively thick thermal insulation (3.2) is installed in it, which, in addition to the purpose of insulation, achieves a large distance between the concrete walls (3.1) in order to achieve greater lateral stiffness of the element. 12. Donji nosivi pano, prema zahtjevu 11, naznačen time što se koristi kao visoki zidni nosač koji zatvara prostor i povezuje stupove (4) i temelje (5) sa monolitnom podnom pločom (9), s kojom je spojen pomoću bočnih ankera (3.6), čime sprječava razmicanje temelja kod potresa.12. The lower load-bearing panel, according to claim 11, characterized by the fact that it is used as a high wall support that closes the space and connects the columns (4) and foundations (5) with the monolithic floor plate (9), to which it is connected by means of side anchors (3.6 ), which prevents the foundations from spreading during an earthquake. 13. Donji nosivi pano, prema zahtjevu 11, naznačen time što se ugrađuje tako da mu donji dio (d) ostaje zatrpan pod zemljom i ima ugrađeni prekidač vlage (3.4) koji sprječava prodiranje kapilarne vlage iz donjeg punog dijela (g) u gornji, nadzemni dio (h),13. The lower load-bearing panel, according to claim 11, characterized by the fact that it is installed so that its lower part (d) remains buried underground and has a built-in moisture switch (3.4) that prevents the penetration of capillary moisture from the lower solid part (g) into the upper one. overhead part (h), 14. Donji nosivi pano, prema zahtjevu 13, naznačen time što se prekidač vlage sastoji od tanke metalne trake (3.4.1), u širini elementa, sa čeličnim ankerima (3.4.2) kojima se nastavlja prekinuti beton sa uzdužnim, metalnim ili plastičnim profilom (3.4.3) koji se ugrađuje na vanjsku stranu elementa (3) i vizuelno odvaja sokl.14. The lower load-bearing panel, according to claim 13, characterized by the fact that the moisture switch consists of a thin metal strip (3.4.1), in the width of the element, with steel anchors (3.4.2) which continue to break the concrete with longitudinal, metal or plastic profile (3.4.3) which is installed on the outside of the element (3) and visually separates the plinth. 15. Dvodijelni sastavljeni kompozitni stup, prema zahtjevu 1, naznačen time što se prije ugradnje sastoji od dva razmaknuta čelična U-profila (4.1) sa zavarenim krutim omčama koje se unutar stupa preklapaju (4.2) sa ugrađenom termoizolacijom (4.4) i plastičnim cijevima (4.5) za odvodnju krovne vode sa razdvojenim dnom stupa (4.7) sa dva kruta trna (4.8) na koje se u fazi montaže stup oslanja, pri čemu su profili (4.1) spojeni prečkama od L-profila (4.6) koje služe kao privremeni oslonac gornjem nosivom panou (2) u fazi montaže i labavo spojeni Vijcima (4.3) pomoću kojih se polovice (4.1) nakon ulaganja nosivih panoa (2) i (3) u međurazmak stupa (4) pritežu tako da stisnu panoe i sakriju njihov spoj koji se izvodi preklapanjem krutih omča (4.2) i omčastih ankera (2.6) i (3.6) nosivih panoa (2) i (3), nakon čega se kroz njih provlače vertikalne šipke (4.9) a injektira sitnozrnim betonom (4.10) nakon čega stup postaje kompozitan.15. Two-part assembled composite column, according to claim 1, characterized by the fact that before installation it consists of two spaced steel U-profiles (4.1) with welded rigid loops that overlap inside the column (4.2) with built-in thermal insulation (4.4) and plastic pipes ( 4.5) for the drainage of roof water with a split bottom of the column (4.7) with two rigid spikes (4.8) on which the column rests during the assembly phase, while the profiles (4.1) are connected by L-profile rungs (4.6) that serve as a temporary support to the upper load-bearing panel (2) during the assembly phase and loosely connected with screws (4.3) by means of which the halves (4.1) are tightened after the load-bearing panels (2) and (3) have been inserted into the gap between the posts (4) so as to compress the panels and hide their connection which is performed by overlapping rigid loops (4.2) and loop anchors (2.6) and (3.6) of load-bearing panels (2) and (3), after which vertical rods (4.9) are passed through them and injected with fine-grained concrete (4.10), after which the column becomes composite. 16. Dvodijelni sastavljeni kompozitni stup, prema zahtjevu 15, naznačen time što mu se u fazi montaže pomoću privremenog oslonca (4.6) koji služi za oslanjanje panoa (2) fiksira razmak između polovica (4.1) pri čemu se podešava širi razmak kod montaže radi lakšeg uvlačenja panoa (2) i (3).16. A two-part assembled composite column, according to claim 15, characterized by the fact that during the assembly phase, the distance between the halves (4.1) is fixed by means of a temporary support (4.6) that serves to support the panel (2), whereby a wider distance is adjusted during assembly for easier panels (2) and (3). 17. Dvodijelni sastavljeni kompozitni stup, prema zahtjevima 15 i 16, naznačen time što sadrži ugrađene termoizolacijom (4.4) izolirane cijevi (4.5) za vertikalno odvođenje krovne vode koje se spajaju na horizontalne žljebove.17. Two-part assembled composite column, according to claims 15 and 16, characterized by the fact that it contains pipes (4.5) insulated with thermal insulation (4.4) for vertical drainage of roof water that are connected to horizontal grooves. 18. Potpuno montažni temelj, prema zahtjevu 1, se sastoji od armirano-betonske stope (5.1), temeljnog stupa (5.2) kojim se temelj visinom prilagođava okolnom terenu i čelične čašice (5.3) sastavljene od dvaju čeličnih U-profila obloženih betonom, sa betonskim dnom u kojeg su ugrađene dvije čelične čahure (5.4) naznačen time što ima gotovu predfabriciranu stopu (5.1) koja se postavlja na pripremljenu podlogu.18. The fully prefabricated foundation, according to requirement 1, consists of a reinforced concrete base (5.1), a foundation column (5.2) which adjusts the foundation height to the surrounding terrain and a steel cup (5.3) composed of two steel U-profiles covered with concrete, with with a concrete bottom in which two steel sleeves (5.4) are installed, indicated by the fact that it has a ready-made prefabricated foot (5.1) that is placed on the prepared base.
HR20010056A 2001-01-22 2001-01-22 The flat-soffit large-span industrial building system HRPK20010056B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
HR20010056A HRPK20010056B1 (en) 2001-01-22 2001-01-22 The flat-soffit large-span industrial building system
PCT/HR2001/000050 WO2002057572A2 (en) 2001-01-22 2001-10-23 The flat-soffit large-span industrial building system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
HR20010056A HRPK20010056B1 (en) 2001-01-22 2001-01-22 The flat-soffit large-span industrial building system

Publications (2)

Publication Number Publication Date
HRP20010056A2 true HRP20010056A2 (en) 2002-08-31
HRPK20010056B1 HRPK20010056B1 (en) 2003-08-31

Family

ID=10947244

Family Applications (1)

Application Number Title Priority Date Filing Date
HR20010056A HRPK20010056B1 (en) 2001-01-22 2001-01-22 The flat-soffit large-span industrial building system

Country Status (2)

Country Link
HR (1) HRPK20010056B1 (en)
WO (1) WO2002057572A2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104100110A (en) * 2013-04-06 2014-10-15 张培霞 Construction method of large production plant
CN103470077A (en) * 2013-10-08 2013-12-25 江苏明福钢结构有限公司 Novel steel-structured plant
CN107620472A (en) * 2017-10-09 2018-01-23 美联钢结构建筑系统(苏州)有限公司 A kind of portal-rigid frames steel construction Earthquake response integral hoisting method
CN109538247B (en) * 2018-12-28 2024-04-05 江苏建筑职业技术学院 Steel tube concrete arch frame for supporting building corridor
CN115324286B (en) * 2022-08-30 2024-01-16 四川省第十一建筑有限公司 Double-layer metal roof interlayer concealed-application electric device and construction method

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH156964A (en) * 1931-04-02 1932-09-15 Bruno Dr Bauer Steel skeleton for multi-storey buildings.
US3603052A (en) * 1968-12-26 1971-09-07 Jose M Novoa Building construction system
US4107893A (en) * 1972-05-13 1978-08-22 Rensch Eberhard Prefabricated building structure
EP0039382A1 (en) 1980-05-07 1981-11-11 Josef Dipl. Ing. Traxler Roof construction and process for its realization
US4413454A (en) * 1980-06-05 1983-11-08 Milh Alfred Henri Prefabricated frame and a multi-storey building including said frame
FR2488930A1 (en) * 1980-08-19 1982-02-26 Kamal Ahmed Building construction using reinforced ring beams - has self wedging prefabricated elements forming lost shutters for floor and walls on each level
FR2541341A1 (en) 1983-02-23 1984-08-24 Itec Expanconseils Sarl System for the prefabricated construction of industrial or agricultural buildings
US4669240A (en) * 1984-07-09 1987-06-02 Giuseppe Amormino Precast reinforced concrete wall panels and method of erecting same
US4724649A (en) * 1986-07-21 1988-02-16 Lowndes Corporation Side weld plate for concrete slabs
US5216860A (en) * 1991-07-16 1993-06-08 Maploca Of Illinois, Inc. Building system for reinforced concrete construction
US5491946A (en) 1992-03-02 1996-02-20 Landis; Donald H. Wide decking structure
SE500785C2 (en) * 1992-12-18 1994-09-05 Joergen Thor Beam cladding elements and process for its manufacture
US5887404A (en) 1996-04-09 1999-03-30 Kreico Building Systems, Inc. Precast concrete wall panel
FI990524A (en) 1999-03-10 2000-09-11 Addax Ab Oy Procedure and arrangement for roof mounting
HRP990305B1 (en) * 1999-10-06 2007-09-30 Mara-Institut D.O.O. Composite roof and floor structure with flat soffit for the construction of halls

Also Published As

Publication number Publication date
WO2002057572A3 (en) 2003-07-17
HRPK20010056B1 (en) 2003-08-31
WO2002057572A2 (en) 2002-07-25

Similar Documents

Publication Publication Date Title
US2920475A (en) Building panel
US6401417B1 (en) Concrete form structure
US4669240A (en) Precast reinforced concrete wall panels and method of erecting same
CA2757563C (en) Building and method of constructing a building
US4219978A (en) Pre-cast reinforced concrete building panel wall structure
US20040040239A1 (en) Prefabricated thin wall concrete panel
US20090300999A1 (en) New type of building, method and means for erecting it
CZ36495A3 (en) Wall modular structure composed of foamy and concrete elements and process and apparatus for making the same
AU2018319415B2 (en) A modular building system
US6280669B2 (en) Method for making insulated pre-formed wall panels for attachment to like insulated pre-formed wall panels
JP2018523770A (en) A structural wall having a structure protruding in a longitudinal axis capable of filling the inside of the wall in the field
US20050115185A1 (en) Masonry block constructions with polymeric coating
Anderson Wood-frame house construction
US20030033773A1 (en) Foundation construction
US20150204067A1 (en) Building system and method
CN111364608A (en) Fully-prefabricated mixed load-bearing house and construction method
HRP20010056A2 (en) The flat-soffit large-span industrial building system
DE102005049414A1 (en) Method for manufacturing wall bodies with construction plates involves providing smooth visible surfaces on outside and transporting structural body to site, anchoring it on concrete foundation and filling interspace with concrete
AU2014252765B2 (en) Slab construction
CN104652662B (en) Prefabricated panel system
RU2820377C1 (en) Low-rise house construction method
WO2002010529A1 (en) Prefabricated building
WO2006050572A1 (en) Modular building construction apparatus and methods
AU2005100980A5 (en) Building Construction System
BR102021005844A2 (en) SYSTEM AND METHOD FOR CONSTRUCTION OF MODULAR TANKS

Legal Events

Date Code Title Description
A1OB Publication of a patent application
AKOB Publication of a request for the grant of a patent not including a substantive examination of a patent application (a consensual patent)
PNAN Change of the applicant name, address/residence

Owner name: MARA-INSTITUT D.O.O., HR

ODRP Renewal fee for the maintenance of a patent

Payment date: 20030530

Year of fee payment: 10

PKB1 Consensual patent granted
PK10 Patent expired after termination of 10 years for consensual patent

Effective date: 20110123