HRP20010025A2 - Pharmaceutical uses of nab1 and nab2 - Google Patents

Pharmaceutical uses of nab1 and nab2 Download PDF

Info

Publication number
HRP20010025A2
HRP20010025A2 HR20010025A HRP20010025A HRP20010025A2 HR P20010025 A2 HRP20010025 A2 HR P20010025A2 HR 20010025 A HR20010025 A HR 20010025A HR P20010025 A HRP20010025 A HR P20010025A HR P20010025 A2 HRP20010025 A2 HR P20010025A2
Authority
HR
Croatia
Prior art keywords
nab2
nab1
polypeptide
nucleic acid
acid molecule
Prior art date
Application number
HR20010025A
Other languages
Croatian (hr)
Inventor
Martin Braddock
Callum Jeffrey Campbell
Original Assignee
Glaxo Group Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB9814989.1A external-priority patent/GB9814989D0/en
Priority claimed from GBGB9819826.0A external-priority patent/GB9819826D0/en
Application filed by Glaxo Group Ltd filed Critical Glaxo Group Ltd
Publication of HRP20010025A2 publication Critical patent/HRP20010025A2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1703Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • A61K38/1709Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Dermatology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Description

Ovaj izum odnosi se na upotrebu tehnika genske terapije kod zacjeljivanja rana. Specifičnije rečeno, odnosi se na novu upotrebu polinukleotida koji kodiraju NAB1 ili NAB2 proteinske represore transkripcije kod smanjenja poremećaja stanične proliferacije koji naročito usporavaju zacjeljivanje kože, a čime se sprečava hipertrofija i nastajanje keloidnih ožiljaka, psorijaza, inhibicija restenoze nakon koje slijedi perkutana transluminalna koronarna angioplastika, modulacija kalcifikacije stijenki žila te inhibicija stanične proliferacije raka. This invention relates to the use of gene therapy techniques in wound healing. More specifically, it refers to the new use of polynucleotides encoding NAB1 or NAB2 protein transcription repressors in the reduction of cell proliferation disorders that particularly slow down skin healing, thus preventing hypertrophy and formation of keloid scars, psoriasis, inhibition of restenosis followed by percutaneous transluminal coronary angioplasty, modulation of vessel wall calcification and inhibition of cancer cell proliferation.

Zacjeljivanje kože uključuje široki spektar staničnih, molekulskih fizioloških i biokemijskih procesa. Za vrijeme procesa zacjeljivanja stanice migriraju do mjesta na kojima se nalaze rane, te tamo proliferiraju i sintetiziraju sastojke izvanstaničnog matriksa, kako bi se rekonstruiralo tkivo vrlo slično onome koje je ozlijeđeno. Ovo djelovanje reguliraju posrednici koje izlučuju granične stanice uz ranu, kao što su trombocitni faktori rasta (PDGF), epidermalni faktor rasta (EGF), transformacijski faktor rasta beta (TGF beta), te ostali citokini. Korisni učinci tih tvari na stanice pokazali su se i in vitro i in vivo (objavljeno u Moulin, Eur. J. Cell Biol. 68; 1-7, 1995), uključujući korist uslijed primjene PDGF na štakorima koji boluju od dijabetesa (Brown i suradnici, J. Surg. Res. 56; 562-570, 1994). Skin healing involves a wide range of cellular, molecular, physiological and biochemical processes. During the healing process, cells migrate to the site of the wound, where they proliferate and synthesize components of the extracellular matrix, in order to reconstruct a tissue very similar to the one that was injured. This action is regulated by mediators secreted by border cells near the wound, such as platelet-derived growth factors (PDGF), epidermal growth factor (EGF), transforming growth factor beta (TGF beta), and other cytokines. Beneficial effects of these substances on cells have been demonstrated both in vitro and in vivo (published in Moulin, Eur. J. Cell Biol. 68; 1-7, 1995), including benefit from the administration of PDGF in diabetic rats (Brown et al. colleagues, J. Surg. Res. 56; 562-570, 1994).

U posljednjih pet godina pokazalo se da mnogobrojni faktori rasta ubrzavaju proliferaciju in vitro i pospješuju zacjeljivanje rana kod životinja. TGF beta zaslužila je najveću pozornost u kontekstu zacjeljivanja rana s obzirom da pospješuje staničnu proliferaciju, diferencijaciju i proizvodnju matriksa. TGF primijenjen ili lokalno ili sistemski ubrzava brzinu zacjeljivanja rana na koži životinja. (Ashcroft i suradnici, Nature Medicine, 3; 1209-1215, 1997; Sporn i Roberts, J. Cell Biol. 119; 1017-1021, 1997; Beck i suradnici, J. Clin. Invest. 92; 2841-2849, 1993). Također je objavljeno da PDGF pospješuje reepitelizaciju i revaskularizaciju ishemijskog tkiva te životinja koje boluju od dijabetesa (Uhl i suradnici, Langenbecks Archiv für Chirurgie-Supplement-Kongressband 114; 705-708, 1997 i članak Drinks i Bloemers, Mol. Biol. Reports 22; 1-24, 1996). In the last five years, numerous growth factors have been shown to accelerate proliferation in vitro and promote wound healing in animals. TGF beta has received the most attention in the context of wound healing as it promotes cell proliferation, differentiation and matrix production. TGF applied either locally or systemically accelerates the rate of wound healing in animal skin. (Ashcroft et al., Nature Medicine, 3; 1209-1215, 1997; Sborn and Roberts, J. Cell Biol. 119; 1017-1021, 1997; Beck et al., J. Clin. Invest. 92; 2841-2849, 1993 ). PDGF has also been reported to promote reepithelialization and revascularization of ischemic tissue and diabetic animals (Uhl et al., Langenbecks Archiv für Chirurgie-Supplement-Kongressband 114; 705-708, 1997 and Drinks and Bloemers, Mol. Biol. Reports 22; 1-24, 1996).

Transkripcijski faktor Egr-1 (gen za odgovor ranog rasta) potencijalni je regulator preko 30 gena, a ima ulogu u staničnoj proliferaciji, razvoju i diferencijaciji (objavljeno u Liu i suradnici, Crit. Rev. Oncogenesis 7; 101-125, 1996; Khachigian i Collins, Circ. Res. 81; 457-461, 1997). Egr-1 se inducira uslijed ozljede vaskularnog endotela (Khachigan i suradnici, Science; 271, 1427-1431, 1996), a mnogobrojni geni su ciljevi transkripcijske aktivacije, uključujući i EGF, trombocitne faktore rasta A (PDGF-A), osnovni fibroblastni faktor rasta (bFGF), indukcija PDGF A, trombocitni faktora rasta B (PDGF B), TGF beta, bFGF, uroplazminogeni aktivator (u-PA), tkivni faktor i inzulinu slični faktor rasta 2 (IGF-2). Blokada inducibilnog TGF beta genom Egr-1 može imati primjenu u sprečavanju ožiljaka. Antitijela koja se razvijaju na TGF beta smanjuju ožiljke kod posjekotina na glodavcima (Shah i suradnici, J. Cell Science; 107; 1137-1157; Shah i suradnici; Lancet; 339, 213-214, 1992). The transcription factor Egr-1 (early growth response gene) is a potential regulator of over 30 genes, and has a role in cell proliferation, development and differentiation (published in Liu et al., Crit. Rev. Oncogenesis 7; 101-125, 1996; Khachigian and Collins, Circ. Res. 81; 457-461, 1997). Egr-1 is induced by vascular endothelial injury (Khachigan et al., Science; 271, 1427-1431, 1996), and numerous genes are targets of transcriptional activation, including EGF, platelet-derived growth factor A (PDGF-A), basic fibroblast factor growth factor (bFGF), induction of PDGF A, platelet-derived growth factor B (PDGF B), TGF beta, bFGF, uroplasminogen activator (u-PA), tissue factor and insulin-like growth factor 2 (IGF-2). Blockade of inducible TGF beta by the Egr-1 gene may be used to prevent scarring. Antibodies raised to TGF beta reduce incisional scarring in rodents (Shah et al., J. Cell Science; 107; 1137-1157; Shah et al.; Lancet; 339, 213-214, 1992).

Transkripcijski kompleks koji posreduje u indukciji vaskularnog endotelnog faktora rasta (VEGF) ovisi o AP2, te indirektno o Egr-1 (Gille i suradnici, EMBO J 16; 750-759, 1997). PDGF B direktno regulira povišenje VEGF ekspresije (Finkenzeller, Oncogene 15; 669-676, 1997). Transkripcija VEGF mRNA pojačava se nizom faktora uključujući PDGF B, bFGF, keratinocitni faktor rasta (KGF), EGF, faktor nekroze tumora (TNF) alfa i TGF beta1. Na životinjama se pokazalo da pasivacija metalnih "stentova" uslijed VEGF inhibira nastajanje neo-intime, ubrzava reendotelizaciju i povećanje vazomotornog djelovanja (Asahara i suradnici, Circulation; 94; 3291-3302). The transcriptional complex that mediates the induction of vascular endothelial growth factor (VEGF) depends on AP2, and indirectly on Egr-1 (Gille et al., EMBO J 16; 750-759, 1997). PDGF B directly regulates the increase in VEGF expression (Finkenzeller, Oncogene 15; 669-676, 1997). Transcription of VEGF mRNA is enhanced by a number of factors including PDGF B, bFGF, keratinocyte growth factor (KGF), EGF, tumor necrosis factor (TNF) alpha, and TGF beta1. It has been shown in animals that passivation of metal "stents" due to VEGF inhibits the formation of neo-intima, accelerates reendothelialization and increases vasomotor activity (Asahara et al., Circulation; 94; 3291-3302).

VEGF ekspresija primijećena je kod zacjeljivanja rana i kože koja boluje od psorijaze, oba stanja kod kojih se regulira povišenje TGF alfa i njegovog liganda EGFr. Ekspresija EGF inducira Egr-1 (Iwami i suradnici, Am. J. Physiol. 270; H2100-2107, 1996; Fang i suradnici, Calcified Tissue International 57; 450-455, 1995; J. Neuroscience Res. 36; 58-65, 1993). Potpuno je očito da Egr-1 može aktivirati ekspresiju unutarstanične adhezivne molekule-1 (ICAM-1) u forbolnom esteru stinuliranog B limfocita (Maltzman i suradnici, Mol. Cell. Biol; 16; 2283-2294, 1996), te može aktivirati ekspresiju TFN alfa pomoću Egr-1 veznog mjesta na TNF alfa protomeru (Kramer i suradnici, Biochim. Biophys. Acta 1219; 413-421, 1994). Konačno, Egr-1 omamljeni miševi su neplodni, a nedostatak luteinizirajućeg hormona (LH) (Lee i suradnici 273; 1219-1221, 1996) implicira da bi LH promotor također mogao biti cilj za aktivaciju Egr-1. Vaskularna kalcifikacija je aktivno regulirani proces sličan stvaranju kosti koji uključuje stanice i faktore za koje je poznato da su značajne za regulaciju koštanog metabolizma (objavljeno u Dermer i suradnici, Trends Cardiovasc. Med. 4; 45-49, 1994). Regulatori osteoblastogeneze i/ili osteoklastogeneze mogu modulirati stupanj kalcifikacije stijenki žila. NAB proteini NAB1 i NAB2 (NGFI-A vezujući korepresori) interagiraju s konzerviranom R1 domenom Egr-1 i Egr-2 transaktivatora (Svarwen i suradnici, EMBO J. 17; 6010-6019, 1998). Prije je uočeno da će NAB2 izvršiti represiju NGF inducirane diferencijacije PC12 stanica (Qu, Z. i suradnici, J. Cell Biol. 142, 1075-1082, 1998) i aktivacije bazičnog FGF kojom upravlja Egr-1 (Svaren i suradnici, EMBO J. 17; 6010-6019, 1998). VEGF expression has been observed in wound healing and psoriatic skin, both conditions in which TGF alpha and its ligand EGFr are up-regulated. EGF expression induces Egr-1 (Iwami et al., Am. J. Physiol. 270; H2100-2107, 1996; Fang et al., Calcified Tissue International 57; 450-455, 1995; J. Neuroscience Res. 36; 58-65 , 1993). It is quite evident that Egr-1 can activate the expression of intracellular adhesion molecule-1 (ICAM-1) in the phorbol ester of stynulated B lymphocytes (Maltzman et al., Mol. Cell. Biol; 16; 2283-2294, 1996), and can activate the expression TFN alpha by the Egr-1 binding site on the TNF alpha protomer (Kramer et al., Biochim. Biophys. Acta 1219; 413-421, 1994). Finally, Egr-1 knockdown mice are infertile, and the lack of luteinizing hormone (LH) (Lee et al. 273; 1219-1221, 1996) implies that the LH promoter may also be a target for Egr-1 activation. Vascular calcification is an actively regulated process similar to bone formation involving cells and factors known to be important in the regulation of bone metabolism (published in Dermer et al., Trends Cardiovasc. Med. 4; 45-49, 1994). Regulators of osteoblastogenesis and/or osteoclastogenesis can modulate the degree of calcification of vessel walls. The NAB proteins NAB1 and NAB2 (NGFI-A binding corepressors) interact with the conserved R1 domain of Egr-1 and Egr-2 transactivators (Svarwen et al., EMBO J. 17; 6010-6019, 1998). NAB2 has previously been observed to repress NGF-induced PC12 cell differentiation (Qu, Z. et al., J. Cell Biol. 142, 1075-1082, 1998) and Egr-1-driven activation of basic FGF (Svaren et al., EMBO J 17; 6010-6019, 1998).

Problem koji se susreće kod liječenja rana je nastajanje hipertrofije te nastajanje keloidnih ožiljaka. To je naročito nepoželjno, napose nakon kozmetičke kirurgije. Fibroza tkiva (koja se pojavljuje na bubrezima, jetri ili koži) manifestira se nakupljanjem izvanstaničnog matriksa. Deregulirana proizvodnja izvanstaničnog matriksa, koja je podložna razvoju tkivne fibroze, barem djelomično se regulira određenim brojem faktora rasta, prvenstveno, no ne i isključivo, pomoću TGFβ (Muir, Eur. J. Plast. Surg. 21; 1-7, 1998), PDGF izoformi (Katou i suradnici J. Pathol. 186; 201-208, 1998, Heldin i suradnici u The molecular i cellular biology of wound repair “Molekulska i stanična biologija zaraštanja rana”, Clark, ed.; 249-364, 1996 Plenum Press) i VEGF (Jones i suradnici, Frontiers in Bioscience 4; D303-309, 1999). Terapija koja bi smanjila, ali ne i uklonila ekspresiju faktora rasta na mjestima rana imala bi značajan utjecaj na zacjeljivanje tkiva koje je reducirano zbog ožiljka, te bi poboljšala kvalitetu života. The problem encountered in the treatment of wounds is the formation of hypertrophy and the formation of keloid scars. This is particularly undesirable, especially after cosmetic surgery. Tissue fibrosis (which occurs in the kidneys, liver or skin) is manifested by the accumulation of extracellular matrix. Deregulated extracellular matrix production, which is subject to the development of tissue fibrosis, is at least partially regulated by a number of growth factors, primarily, but not exclusively, by TGFβ (Muir, Eur. J. Plast. Surg. 21; 1-7, 1998), PDGF isoforms (Katou et al. J. Pathol. 186; 201-208, 1998, Heldin et al. in The molecular and cellular biology of wound repair, Clark, ed.; 249-364, 1996 Plenum Press) and VEGF (Jones et al., Frontiers in Bioscience 4; D303-309, 1999). A therapy that would reduce, but not eliminate, growth factor expression at wound sites would have a significant impact on the healing of scar-reduced tissue, and would improve quality of life.

Internacionalna patentna prijava PCT.GB99.01722 opisuje upotrebu Egr-1 faktora transkripcije koji pospješuju zacjeljivanje rana. Ovi izumitelji pronašli su da primjena polinukleotida koji kodiraju transkripcijski represor NAB1 ili NAB2: (a) vrše represiju aktivacije faktora rasta kojom upravlja Egr-1 in vitro; (b) vrše represiju bazalnih razina ekspresije gena za faktor rasta in vitro; te (c) na mjestima ranjavanja kod glodavaca, kao i njihovoj slijedećoj ekspresiji, smanjuje ekspresiju TGF-β, ali ne i TGF-β3 te se primjenjuje kako bi se smanjili ožiljci za vrijeme zacjeljivanja (Shah i suradnici J. Cell Science 107; 1137-1157, 1994). International patent application PCT.GB99.01722 describes the use of Egr-1 transcription factors to promote wound healing. These inventors have found that administration of polynucleotides encoding the transcriptional repressor NAB1 or NAB2: (a) repress Egr-1-driven growth factor activation in vitro; (b) repress basal levels of growth factor gene expression in vitro; and (c) at rodent wound sites, as well as their subsequent expression, reduces the expression of TGF-β but not TGF-β3 and is administered to reduce scarring during healing (Shah et al. J. Cell Science 107; 1137 -1157, 1994).

Stoga smanjenje regulacije Egr-1 usporava postupak zacjeljivanja i smanjuje pojavljivanje hipertrofije i nastajanje keloidnih ožiljaka i psorijaze. Smanjena regulacija gena Egr-1 također može biti korisna u postupku liječenja ostalih poremećaja povezanih sa zacjeljivanjem rana, kao što su restenoza nakon koje slijedi perkutana transluminalna koronarna angioplastika, modulacija kalcifikacije stijenki žila, te inhibicija stanične proliferacije raka. Therefore, downregulation of Egr-1 slows down the healing process and reduces the appearance of hypertrophy and the formation of keloid scars and psoriasis. Downregulation of the Egr-1 gene may also be useful in the treatment of other disorders associated with wound healing, such as restenosis followed by percutaneous transluminal coronary angioplasty, modulation of vessel wall calcification, and inhibition of cancer cell proliferation.

Stoga, prema aspektu izuma, omogućena je upotreba molekule nukleinske kiseline koja uključuje sekvenciju koja kodira NAB1 ili NAB2 polipeptid odnosno njihov biološki djelatan fragment, u proizvodnji lijekova za poremećaje stanične proliferacije povezane sa zacjeljivanjem rana kod sisavaca, uključujući i čovjeka. Therefore, according to an aspect of the invention, it is possible to use a nucleic acid molecule that includes a sequence encoding a NAB1 or NAB2 polypeptide, or a biologically active fragment thereof, in the production of drugs for cell proliferation disorders associated with wound healing in mammals, including humans.

Prema slijedećem aspektu izuma, omogućen je postupak liječenja poremećaja stanične proliferacije povezanih sa zacjeljivanjem rana kod sisavaca, uključujući i čovjeka, koji obuhvaća primjenu na sisavcima molekule nukleinske kiseline, koja uključuje sekvenciju koja kodira NAB1 ili NAB2 polipeptid odnosno njegov biološki djelatan fragment. According to the next aspect of the invention, a procedure for the treatment of cell proliferation disorders associated with wound healing in mammals, including humans, is enabled, which includes the application to mammals of a nucleic acid molecule, which includes a sequence encoding the NAB1 or NAB2 polypeptide, or its biologically active fragment.

Prema slijedećem aspektu, izum osigurava molekulu nukleinske kiseline koja uključuje sekvenciju koja kodira NAB1 ili NAB2 polipeptid ili njegov biološki djelatan fragment, koja se koristi u liječenju poremećaja stanične proliferacije povezanih sa zacjeljivanjem rana. According to a further aspect, the invention provides a nucleic acid molecule comprising a sequence encoding a NAB1 or NAB2 polypeptide or a biologically active fragment thereof, which is used in the treatment of cell proliferation disorders associated with wound healing.

Slijedeći aspekt izuma odnosi se na upotrebu kombinacije molekule nukleinske kiseline koja uključuje sekvenciju koja kodira NAB1 polipeptid i drugu koja uključuje sekvenciju koja kodira i NAB2 polipeptid. Another aspect of the invention relates to the use of a combination of a nucleic acid molecule comprising a sequence encoding the NAB1 polypeptide and another comprising a sequence encoding the NAB2 polypeptide.

Najpogodniji aspekt ovog izuma je taj da poremećaji stanične proliferacije povezani sa zacjeljivanjem rana tvore skupinu u koju se ubrajaju hipertrofni i keloidni ožiljci, psorijaza, restenoza nakon koje slijedi perkutana transluminalna koronarna angioplastika, kalcifikacija stijenki žila te stanična proliferacija raka. Posebno pogodan aspekt ovog izuma predstavljaju poremećaji stanične proliferacije, to jest tvorbe hipertrofnih i keloidnih ožiljaka. The most convenient aspect of the present invention is that cell proliferation disorders associated with wound healing form a group that includes hypertrophic and keloid scars, psoriasis, restenosis followed by percutaneous transluminal coronary angioplasty, vessel wall calcification, and cancer cell proliferation. A particularly suitable aspect of this invention is represented by cell proliferation disorders, that is, the formation of hypertrophic and keloid scars.

Stoga se ovaj izum odnosi na terapeutsku upotrebu polinukleotida koji kodiraju NAB1 ili NAB2 u postupcima zacjeljivanja rana. Izum se također odnosi na terapeutsku upotrebu samih NAB1 ili NAB2 u postupcima zacjeljivanja rana, kao što je detaljno opisano u nastavku. Therefore, the present invention relates to the therapeutic use of polynucleotides encoding NAB1 or NAB2 in wound healing procedures. The invention also relates to the therapeutic use of NAB1 or NAB2 alone in wound healing procedures, as detailed below.

Izum se odnosi na upotrebu NAB1 ili NAB2 polipeptida i sekvencija nukleinske kiseline koje kodiraju NAB1 ili NAB2 polipeptide bez obzira na podrijetlo vrste. Humana DNA sekvencija nalazi se u popisu banke gena pod pristupnim brojem U47007, a kodira nuklearni protein od 486 aminokiselina. NAB1 štakora predstavlja nuklearni protein s 570 aminokiselina, a opisan je u PNAS USA 92, 1995 str. 6873-6877. DNA sekvencija štakora nalazi se u popisu banke gena pod pristupnim brojem U17253. The invention relates to the use of NAB1 or NAB2 polypeptides and nucleic acid sequences encoding NAB1 or NAB2 polypeptides regardless of species origin. The human DNA sequence is listed in the gene bank under accession number U47007, and encodes a nuclear protein of 486 amino acids. Rat NAB1 is a nuclear protein with 570 amino acids and is described in PNAS USA 92, 1995 p. 6873-6877. The rat DNA sequence is listed in the gene bank under accession number U17253.

Mišje i humane NAB2 sekvencije proteina opisane su u Molecular and Cellular Biology “Molekulska i stanična biologija”, 1996 16, 3545-3553. Humana DNA sekvencija nalazi se u popisu banke gena pod pristupnim brojem U48361. Mouse and human NAB2 protein sequences are described in Molecular and Cellular Biology, 1996 16, 3545-3553. The human DNA sequence is listed in the gene bank under accession number U48361.

Literaturni podaci koji se odnose na NAB1 ili NAB polipeptide i polinukleotide, a opisani su u nastavku, općenito se mogu primijeniti kod sekvencija bez obzira na podrijetlo, a posebice na gore opisane humane sekvencije. Kao što je opisano u nastavku, pojmovi NAB1 ili NAB2 također uključuju varijante, fragmente i analoge NAB1 ili NAB2. The literature data related to NAB1 or NAB polypeptides and polynucleotides, described below, can generally be applied to sequences regardless of origin, and in particular to the human sequences described above. As described below, the terms NAB1 or NAB2 also include variants, fragments, and analogs of NAB1 or NAB2.

Slijedeća ilustrativna objašnjenja navedena su kako bi se olakšalo razumijevanje određenih pojmova koji se ovdje koriste. Objašnjenja se navode kao određena prednost i ne ograničavaju izum. The following illustrative explanations are provided to facilitate understanding of certain terms used herein. The explanations are given by way of preference and do not limit the invention.

Biološki aktivni fragmenti NAB1 ili NAB2, kao što se ovdje navodi, su ti fragmenti koji imaju represivno djelovanje na transkripciju Egr-1. Biologically active fragments of NAB1 or NAB2, as referred to herein, are those fragments that have a repressive effect on Egr-1 transcription.

GENETSKI ELEMENT općenito označava polinukleotid koji uključuje područje koje kodira polipeptid odnosno polinukleotidno područje koje upravlja replikacijom, transkripcijom ili translacijom, odnosno ostalim postupcima koji su važni za ekspresiju polipeptida u stanici domaćina, odnosno polinukleotid koji uključuje i područje koje kodira polipeptid i područje koje je na njega operabilno vezano, a regulira ekspresiju. Genetski elementi mogu biti uključeni unutar vektora koji se replicira kao epizomalni element; što ustvari predstavlja molekulu fizički neovisnu o genomu stanice domaćina. Oni mogu biti uključeni unutar plazmida. Genetski elementi također mogu biti uključeni unutar genoma stanice domaćina; ne u svom prirodnom obliku nego vjerojatnije, između ostalog, u obliku pročišćene DNA ili u vektoru nakon manipulacije, kao što je izolacija, kloniranje i uvođenje u stanicu domaćina. GENETIC ELEMENT generally means a polynucleotide that includes a region that codes for a polypeptide, or a polynucleotide region that governs replication, transcription or translation, or other processes that are important for the expression of a polypeptide in a host cell, or a polynucleotide that includes both a region that codes for a polypeptide and a region adjacent to it operably bound, and regulates expression. Genetic elements may be included within a vector that replicates as an episomal element; which actually represents a molecule physically independent of the genome of the host cell. They can be included within a plasmid. Genetic elements may also be included within the host cell genome; not in its natural form but more likely, inter alia, in the form of purified DNA or in a vector after manipulation, such as isolation, cloning and introduction into a host cell.

STANICA DOMAĆIN je stanica koja je transformirana ili transfektirana, odnosno koja su može transformirati ili transfektirati pomoću egzogene sekvencije polinukleotida. A HOST CELL is a cell that has been transformed or transfected, or that can be transformed or transfected using an exogenous polynucleotide sequence.

Kao što je poznato u struci, identitet predstavlja odnos između dvije ili više polipeptidnih sekvencija, odnosno dvije ili više polinukleotidnih sekvencija, a određuje se uspoređivanjem sekvencija. Stručno, identitet također znači stupanj sekvencijske srodnosti između polipeptidnih ili polinukleotidnih sekvencija, ovisno o slučaju, a određuje se podudaranjem lanaca tih sekvencija. Identitet se može lako izračunati (Computational Molecular Biology “Komputacijska molekulska biologija”, Lesk, A.M. urednik, Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, “Biokomputacija: Informatika i projekti genoma”Smith, D.W., urednik, Academic Press, New York, 1993; Computer Analysis of Sequence Data “Kompjuterska analiza sekvencijskih podataka” Dio I, Griffin, A.M. i Griffin, H.G. urednici, Humana Press, New Jersey, 1994; Sequence Analysis in Molecular Biology “Sekvencijska analiza u molekularnoj biologiji”, von Heinje, G., Academic Press, 1987; i Sequence Analysis Primer “Početnica sekvencijske analize”, Gribskov, M. i Devereux, J. urednici, M Stockton Press, New York, 1991). S obzirom da postoji niz postupaka za mjerenje identiteta između dvije polinukleotidne ili dvije polipeptidne sekvencije, pojam je dobro poznat stručnim osobama (Sequence Analysis in Molecular Biology “Sekvencijska analiza u molekularnoj biologiji”, von Heinje, G., Academic Press, 1987; i Sequence Analysis Primer “Početnica sekvencijske analize”, Gribskov, M. i Devereux, J. urednici, M Stockton Press, New York, 1991; i Carillo, H. i Lipman, D., SIAM J. Applied Math., 48: 1073 (1988). Postupci koji se uobičajeno koriste za određivanje identiteta između sekvencija uključuju postupke opisane u i Carillo, H. i Lipman, D., SIAM J. Applied Math., 48: 1073 (1988), no nisu ograničeni samo na njih. Pogodni postupci za određivanje identiteta su tako napravljeni da omogućuju najšire podudaranje između ispitivanih sekvencija. Pogodni kompjuterski programski postupci za određivanje identiteta između sekvencija uključuju GCG programski paket (Devereux, J. i suradnici, Nucleic Acids Research 12(1): 387 (1984)), BLASTP, BLASTN, te FASTA (Atschul, S.F. i suradnici, J. Molec. Biol. 215: 403 (1990)), no nisu ograničeni samo na njega. As is known in the art, identity represents the relationship between two or more polypeptide sequences, or two or more polynucleotide sequences, and is determined by comparing the sequences. Technically, identity also means the degree of sequence relatedness between polypeptide or polynucleotide sequences, as the case may be, and is determined by matching the strands of those sequences. Identity can be easily calculated (Computational Molecular Biology, Lesk, A.M. editor, Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D.W., editor, Academic Press, New York, 1993; Computer Analysis of Sequence Data Part I, Griffin, A.M. and Griffin, H.G. editors, Humana Press, New Jersey, 1994; Sequence Analysis in Molecular Biology ”, von Heinje, G., Academic Press, 1987; and Sequence Analysis Primer “Introduction to Sequence Analysis”, Gribskov, M. and Devereux, J. editors, M Stockton Press, New York, 1991). Given that there are a number of procedures for measuring the identity between two polynucleotide or two polypeptide sequences, the term is well known to those skilled in the art (Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; and Sequence Analysis Primer "Introduction to Sequential Analysis", Gribskov, M. and Devereux, J. editors, M Stockton Press, New York, 1991; and Carillo, H. and Lipman, D., SIAM J. Applied Math., 48: 1073 ( 1988).Procedures commonly used to determine identity between sequences include, but are not limited to, those described in and Carillo, H. and Lipman, D., SIAM J. Applied Math., 48: 1073 (1988). for determining identity are designed to provide the broadest match between the sequences examined. Suitable computer program procedures for determining identity between sequences include the GCG program package (Devereux, J. et al., Nucleic Acids Research 12(1): 3 87 (1984)), BLASTP, BLASTN, and FASTA (Atschul, S.F. and associates, J. Molec. Biol. 215: 403 (1990)), but are not limited to it.

IZOLIRAN znači promijenjen “ljudskom rukom” u odnosu na svoje prirodno stanje; npr. ako se u prirodi pojavljuje, tada je promijenjen ili uklonjen iz svog izvornog okruženja, odnosno oboje. Na primjer, polinukleotid koji se pojavljuje u prirodi ili polipeptid koji je prirodno prisutan u živom organizmu u svom prirodnom stanju nije “izoliran”, u duhu pojma koji se ovdje koristi. Kao dio, odnosno nakon izolacije, takvi polinukleotidi mogu se pridružiti drugim polinukleotidima, poput DNA molekula, za mutagenezu, kako bi nastali fuzijski proteini, te npr. za propagiranje ili ekspresiju u domaćinu. Izolirani polinukleotid, pojedinačan ili pridružen drugim polinukleotidnim sekvencijama u obliku vektora, mogu se uvesti u stanicu domaćina, u kulturu, odnosno u cijeli organizam. Uvedene u stanice domaćina, u kulturi odnosno u cijelom organizmu, takve molekule DNA još uvijek bi bile izolirane, u smislu koji se ovdje koristi, jer ne bi bile u svojem prirodnom obliku u kojem se pojavljuju odnosno prirodnom okolišu jer nisu smjese koje se pojavljuju u prirodi, te stoga ostaju izolirani polinukleotidi ili polipeptidi unutar značenja pojma koji se ovdje koristi. ISOLATED means changed “by the hand of man” from its natural state; eg if it occurs in nature, then it has been changed or removed from its original environment, or both. For example, a naturally occurring polynucleotide or a polypeptide that is naturally present in a living organism in its natural state is not “isolated,” as used herein. As part of, or after isolation, such polynucleotides can be joined to other polynucleotides, such as DNA molecules, for mutagenesis, to create fusion proteins, and for example for propagation or expression in the host. An isolated polynucleotide, single or joined to other polynucleotide sequences in the form of a vector, can be introduced into a host cell, into a culture, or into the whole organism. Introduced into host cells, in culture, or in the whole organism, such DNA molecules would still be isolated, in the sense used here, because they would not be in their natural form in which they appear, or in the natural environment, because they are not mixtures that appear in nature, and therefore remain isolated polynucleotides or polypeptides within the meaning of the term used herein.

POLINUKLEOTID(I) općenito se odnosi na bilo koji polinukleotid ili polideoksiribonukleotid, a to mogu biti nemodificirana RNA ili DNA odnosno modificirana RNA ili DNA ili cDNA. Stoga na primjer, polinukleotidi u smislu koji se ovdje koristi odnose se među ostalim na jednolančane i dvolančane DNA, DNA koja predstavlja smjesu jednolančanih i dvolančanih područja, odnosno jednolančanih, dvolančanih i trolančanih područja, jednolančanih i dvolančanih RNA, te RNA koja predstavlja smjesu jednolančanih i dvolančanih područja, hibridne molekule koje uključuju DNA i RNA koje mogu biti jednostruke odnosno učestalije dvostruke ili trostruke, odnosno smjese jednolančanih i dvolančanih područja. Dodatno, polinukleotid u smislu koji se ovdje koristi odnosi se na trostruka područja koja uključuju RNA ili DNA ili oboje, tj. RNA i DNA. Lanci u takvim područjima mogu biti od istih ili različitih molekula. Područja mogu uključivati jednu cijelu ili više molekula, ali češće je da uključuju samo područje pojedinih molekula. Često je jedna od molekula sa trostrukim helikoidalnim područjem oligonukleotid. Ovdje korišteni pojam polinukleotid uključuje molekule DNA ili RNA, kao što je gore opisano, koje sadržavaju jednu ili više modificiranih baza. Stoga, molekule DNA i RNA sa modificiranom osnovom, kako bi se postigla stabilnost ili uslijed drugih razloga, predstavljaju “polinukleotide” u duhu pojma koji se ovdje koristi. Nadalje, molekule DNA ili RNA koje sadržavaju neuobičajene baze, kao što je inozin, ili modificirane baze, kao što su baze s tricijem, pri čemu navedeno predstavlja samo dva primjera, su polinukleotidi u duhu pojma koji se ovdje koristi. Procjenjuje se da postoji velika raznolikost modifikacija DNA i RNA koje se upotrebljavaju u mnoge korisne svrhe poznate stručnjacima. Pojam polinukleotid, koji se ovdje koristi, obuhvaća takve kemijski, enzimatski ili metabolitički modificirane oblike polinukleotida, kao i kemijske oblike DNA i RNA karakteristične za viruse i stanice, uključujući među ostalim jednostavne i kompleksne stanice. Polinukleotidi obuhvaćaju kratke polinukleotide, koji se često odnose na oligonukleotid(e). POLYNUCLEOTIDE(S) generally refers to any polynucleotide or polydeoxyribonucleotide, which can be unmodified RNA or DNA, or modified RNA or DNA or cDNA. Therefore, for example, polynucleotides in the sense used here refer, among others, to single-stranded and double-stranded DNA, DNA representing a mixture of single-stranded and double-stranded regions, i.e. single-stranded, double-stranded and triple-stranded regions, single-stranded and double-stranded RNA, and RNA representing a mixture of single-stranded and double-stranded regions, hybrid molecules that include DNA and RNA that can be single-stranded or more often double-stranded or triple-stranded, i.e. a mixture of single-stranded and double-stranded regions. Additionally, polynucleotide as used herein refers to triple regions that include RNA or DNA or both, i.e., RNA and DNA. The chains in such areas can be of the same or different molecules. Regions can include one entire molecule or more, but more often they only include a region of individual molecules. Often, one of the molecules with a triple helical region is an oligonucleotide. As used herein, the term polynucleotide includes DNA or RNA molecules, as described above, that contain one or more modified bases. Therefore, DNA and RNA molecules with a modified base, to achieve stability or for other reasons, are “polynucleotides” as used herein. Furthermore, DNA or RNA molecules containing unusual bases, such as inosine, or modified bases, such as tritium bases, the above being only two examples, are polynucleotides as used herein. It is estimated that there is a wide variety of DNA and RNA modifications that are used for many useful purposes known to those skilled in the art. The term polynucleotide, as used herein, includes such chemically, enzymatically or metabolically modified forms of polynucleotides, as well as chemical forms of DNA and RNA characteristic of viruses and cells, including among others simple and complex cells. Polynucleotides include short polynucleotides, which often refer to oligonucleotide(s).

POLIPEPTIDI, kao što se ovdje koristi, uključuju sve polipeptide opisane u nastavku. Osnovna struktura polipeptida je dobro poznata i opisana je u bezbroj knjiga i ostalih stručnih izdanja. U tom kontekstu, ovdje korišten pojam odnosi se na bilo koji peptid ili protein koji uključuje dvije ili više aminokiselina međusobno spojenih peptidnom vezom u ravan lanac. Ovdje korišteni pojam odnosi se na kratke lance, pri čemu se u struci uobičajeno podrazumijevaju npr. peptidi, oligopeptidi i oligomeri, kao i na duge lance, pri čemu se u struci općenito podrazumijevaju proteini različitih tipova. Pogodno je da polipeptidi sadržavaju aminokiseline koje se razlikuju od onih 20 aminokiselina koje se uobičajeno pojavljuju u prirodi, te zatim da mnogo aminokiselina, uključujući i terminalne aminokiseline, mogu biti modificirane u danom polipeptidu ili prirodnim postupkom, kao što su procesuiranje i druge posttranslacijske modifikacije, ali i kemijskim modifikacijskim tehnikama koje su dobro poznate u struci. Čak i obične modifikacije koje se prirodno događaju, kod polipeptida su toliko mnogobrojne da bi ovdje njihovo nabrajanje bilo dugotrajno, no one su dobro opisane u osnovnim tekstovima i u znatno iscrpnijim monografijama, kao i opsežnoj istraživačkoj literaturi, te su dobro poznate stručnjacima. POLYPEPTIDES, as used herein, includes all polypeptides described below. The basic structure of polypeptides is well known and has been described in countless books and other professional publications. In this context, the term used herein refers to any peptide or protein that includes two or more amino acids linked together by a peptide bond in a straight chain. The term used here refers to short chains, whereby in the art it is usually understood, for example, peptides, oligopeptides and oligomers, as well as to long chains, whereby in the art it is generally understood proteins of various types. Conveniently, polypeptides contain amino acids that differ from the 20 amino acids that normally occur in nature, and then that many amino acids, including terminal amino acids, may be modified in a given polypeptide either by natural processes, such as processing and other post-translational modifications, but also by chemical modification techniques that are well known in the art. Even simple modifications that occur naturally, in polypeptides, are so numerous that listing them here would take a long time, but they are well described in basic texts and in significantly more exhaustive monographs, as well as extensive research literature, and are well known to experts.

Navodi se ilustrativna količina poznatih modifikacija koje se mogu susresti kod polipeptida korištenih u ovom izumu, a to su acetilacija, acilacija, ADP-ribosilacija, amidacija, kovalentno vezanje flavina, kovalentno vezanje strukture hema, kovalentno vezanje nukleotida ili derivata nukleotida, kovalentno vezanje lipida ili derivata lipida, kovalentno vezanje fosfotidilinozitola, unakrsno povezivanje, nastajanje cistina, nastajanje piroglutamata, formilacija, gamakarboksilacija, glikozilacija, nastajanje GPI strukture sidra, hidroksilacija, jodiranje, metilacija, miristoilacija, oksidacija, protolitičko procesiranje, fosforilacija, prenilacija, racemizacija, selenoilacija, uvođenje sulfatne skupine, transfer-RNAposredovana adicija aminokiselina proteinima, kao što je arginilacija, te ubikitinacija. Takve modifikacije su dobro poznate stručnjacima i vrlo su iscrpno opisane u znanstvenoj literaturi. Na primjer, nekoliko naročito običnih modifikacija kao što su glikozilacija, vezanje lipida, uvođenje sulfatne skupine, karboksilacija gama kraja glutaminske kiseline, hidroksilacija i ADP-ribosilacija opisane su u većini osnovnih tekstova, kao što su na primjer PROTEINS - STRUCTURE AND MOLECULAR PROPERTIS “PROTEINI - STRUKTURA I MOLEKULSKA SVOJSTVA”, 2. izdanje, T. E. Creighton, W. H- Freeman and Company, New York (1993). Dostupne su mnoge iscrpne revije koje se bave ovim predmetom, kao što su na primjer Wold, F., Posttranslational Protein Modification: Perspectives and Prospects “Posttranslacijske modifikacije proteina: perspektive i očekivanja”, str. 1-12 u POSTTRANSLATIONAL COVALENT MODIFICATION OF PROTEINS “POSTTRANSLACIJSKA KOVALENTNA MODIFIKACIJA PROTEINA”, B. C. Johnson, urednik, Academis Press, New York (1983); Seifter i suradnici, Meth. Enzymol. 182:626-646 (1990), te Rattan i suradnici, Protein Synthesis: Posttranslational Modifications and Aging “Sinteza proteina: postranslacijska modifikacija i starenje”, Ann. N.Y. Acad. Sci. 663: 48-62 (1992). Poželjno je da polipeptidi ne budu uvijek u cijelosti ravni, kao što je gore spomenuto. Na primjer, polipeptidi mogu biti općeniti rezultat posttranslacijskih događaja, uključujući i prirodne procese, kao i događaje uzrokovane ljudskom manipulacijom, koji se inače ne događaju u prirodi. Kružni, razgranati i razgranato-kružni polipeptidi mogu se sintetizirati netranslacijskim prirodnim postupkom, te također u cijelosti sintetskim postupcima. Modifikacije se mogu pojaviti bilo gdje unutar polipeptida, uključujući i u polipeptidnoj osnovi, lancima aminokiselina koji se nalaze sa strane, te na terminalnim amino ili karboksilnim skupinama. U stvari, blokiranje amino odnosno karboksilne skupine polipeptida, ili pak obje skupine kovalentnom modifikacijom uobičajeno je za prirodne i sintetičke polipeptide, a takve modifikacije također mogu biti prisutne u polipeptidima ovog izuma. Na primjer, amino terminalni kraj polipeptida sintetiziran u E. coli ili u drugim stanicama, prije proteolitičkog procesiranja bit će gotovo uvijek N-formilmetionin. Za vrijeme posttranslacijske modifikacije polipeptida može doći do brisanja metioninskog kraja na NH2-terminalu. Shodno tome, izum predviđa i upotrebu varijanti proteina ovog izuma s amino terminalom koji sadržavaju metionin, kao i one bez metionina. Modifikacija koja se događa na proteinu često će ovisiti o načinu na koji se izvodi. Na primjer, kod polipeptida koji su napravljeni ekspresijom kloniranog gena u domaćinu, priroda i opseg modifikacije bit će određene većim dijelom kapacitetom postranslacijske modifikacije stanice domaćin, te modifikacijskih signala koji su prisutni u polipeptidnoj sekvenciji aminokiselina. Na primjer, dobro je poznato da se glikolizacija često ne odvija u bakterijskom domaćinu, kao što je na primjer E. coli. Shodno tome, kada se želi postići glikolizacija, mora se napraviti ekspresija polipeptida u stanicu domaćina, općenito u eukariotsku stanicu. Stanice insekata često izvode jednaku posttranslacijsku glikozilaciju kao i stanice sisavaca, te je zbog toga sustav ekspresije stanice insekta razvijen kako bi se učinkovito vršila ekspresija proteina sisavaca koji među ostalim imaju prirodne načine glikolizacije. Slična razmatranja primijenjena su na ostale modifikacije. Poželjno je da isti tip modifikacije bude prisutan u istom ili varijabilnom stupnju na nekoliko mjesta u danom polipeptidu. Također, dani polipeptid može sadržavati puno tipova modifikacija. Općenito, ovdje upotrijebljeni pojam polipeptid obuhvaća sve takve modifikacije, posebno one koje su prisutne u rekombinantno sintetiziranim polipeptidima ekspresijom polinukleotida u stanici domaćina. An illustrative number of known modifications that may be encountered in the polypeptides used in this invention are listed, namely acetylation, acylation, ADP-ribosylation, amidation, covalent binding of flavin, covalent binding of heme structure, covalent binding of nucleotides or nucleotide derivatives, covalent binding of lipids or lipid derivatives, covalent binding of phosphotidylinositol, cross-linking, formation of cystine, formation of pyroglutamate, formylation, gammacarboxylation, glycosylation, formation of GPI anchor structure, hydroxylation, iodination, methylation, myristoylation, oxidation, protolytic processing, phosphorylation, prenylation, racemization, selenoylation, introduction of sulfate groups, transfer-RNA-mediated addition of amino acids to proteins, such as arginylation, and ubiquitination. Such modifications are well known to experts and are very exhaustively described in the scientific literature. For example, several particularly common modifications such as glycosylation, lipid attachment, introduction of a sulfate group, carboxylation of the gamma terminus of glutamic acid, hydroxylation and ADP-ribosylation are described in most basic texts, such as for example PROTEINS - STRUCTURE AND MOLECULAR PROPERTIES "PROTEINS - STRUCTURE AND MOLECULAR PROPERTIES”, 2nd edition, T. E. Creighton, W. H- Freeman and Company, New York (1993). Many comprehensive reviews are available on this subject, such as Wold, F., Posttranslational Protein Modification: Perspectives and Prospects, p. 1-12 in POSTTRANSLATIONAL COVALENT MODIFICATION OF PROTEINS, B. C. Johnson, editor, Academis Press, New York (1983); Seifter et al., Meth. Enzymol. 182:626-646 (1990), and Rattan et al., Protein Synthesis: Posttranslational Modifications and Aging, Ann. N.Y. Acad. Sci. 663: 48-62 (1992). Polypeptides are preferably not always completely planar, as mentioned above. For example, polypeptides can be the general result of post-translational events, including natural processes as well as events caused by human manipulation, which do not normally occur in nature. Circular, branched and branched-circular polypeptides can be synthesized by a non-translational natural process, and also entirely by synthetic processes. Modifications can occur anywhere within a polypeptide, including in the polypeptide backbone, amino acid side chains, and terminal amino or carboxyl groups. In fact, blocking of the amino or carboxyl group of a polypeptide, or both groups by covalent modification is common for natural and synthetic polypeptides, and such modifications may also be present in the polypeptides of this invention. For example, the amino terminus of a polypeptide synthesized in E. coli or in other cells, prior to proteolytic processing, will almost always be N-formylmethionine. During the post-translational modification of the polypeptide, deletion of the methionine end at the NH2-terminal can occur. Accordingly, the invention contemplates the use of methionine-containing, as well as methionine-free, amino-terminal variants of the protein of this invention. The modification that occurs to a protein will often depend on how it is performed. For example, with polypeptides made by expression of a cloned gene in the host, the nature and extent of the modification will be largely determined by the post-translational modification capacity of the host cell, and the modification signals present in the polypeptide amino acid sequence. For example, it is well known that glycosylation often does not occur in a bacterial host, such as, for example, E. coli. Accordingly, when glycosylation is to be achieved, the polypeptide must be expressed in a host cell, generally a eukaryotic cell. Insect cells often perform the same post-translational glycosylation as mammalian cells, and therefore the insect cell expression system was developed to efficiently express mammalian proteins that, among other things, have natural ways of glycosylation. Similar considerations were applied to other modifications. Preferably, the same type of modification is present to the same or variable degree at several sites in a given polypeptide. Also, a given polypeptide can contain many types of modifications. In general, the term polypeptide as used herein encompasses all such modifications, particularly those present in recombinantly synthesized polypeptides by expression of the polynucleotide in a host cell.

VARIJANTA(E) polinukleotida ili polipeptida, u duhu pojma koji se ovdje koristio predstavlja polinukleotide ili peptide koji se razlikuju od standardnog polinukleotida ili polipeptida. Varijante u tom smislu opisane su vrlo iscrpno u nastavku ovog teksta. (1) Polinukleotid koji se razlikuje u nukleotidnoj sekvenciji od drugog standardnog polinukleotida. Općenito, razlike su ograničene tako da su nukleotidne sekvencije standarda i varijante vrlo slične u cijelosti, a u mnogim područjima i identične. Kao što je navedeno u nastavku, promjene kod nukleotidnih sekvencija varijante mogu biti inaktivne. To znači da one ne moraju mijenjati amino kiseline kodirane polinukleotidom. Gdje su razlike ograničene na inaktivne promjene ovog tipa, varijanta će kodirati polipeptid s istom sekvencijom aminokiselina kao i standard. Također kao što je navedeno u nastavku, promjene u nukleotidnoj sekvenciji varijante mogu mijenjati sekvenciju aminokiselina polipeptida kodiranog standardnim polinukleotidom. Takve promjene nukleotida mogu rezultirati supstitucijom aminokiselina, adicijom, brisanjem, fuzijom i skraćivanjem polipeptida kodiranog standardnom sekvencijom, kao što je navedeno u nastavku. (2) Polipeptid koji se razlikuje po sekvenciji aminokiselina od drugog, standardnog polipeptida. Općenito, razlike su limitirane tako da su sekvencije standarda i varijante vrlo slične u cijelosti, a u mnogim područjima i identične. Polipeptid varijante i standarda može se razlikovati u sekvenciji aminokiselina po jednoj ili više supstitucija, adicija, brisanja, fuzija i skraćivanja, a mogu biti prisutne u bilo kojoj kombinaciji. VARIANT(S) of a polynucleotide or polypeptide, as used herein, refers to polynucleotides or peptides that differ from a standard polynucleotide or polypeptide. Variants in this sense are described in detail in the rest of this text. (1) A polynucleotide that differs in nucleotide sequence from another standard polynucleotide. In general, the differences are limited so that the nucleotide sequences of the standards and variants are very similar throughout, and in many areas identical. As noted below, changes in the nucleotide sequences of the variant may be inactivating. This means that they do not have to change the amino acids encoded by the polynucleotide. Where the differences are limited to inactivating changes of this type, the variant will encode a polypeptide with the same amino acid sequence as the standard. Also as noted below, changes in the nucleotide sequence of a variant can alter the amino acid sequence of the polypeptide encoded by the standard polynucleotide. Such nucleotide changes can result in amino acid substitution, addition, deletion, fusion, and truncation of the polypeptide encoded by the standard sequence, as noted below. (2) A polypeptide that differs in amino acid sequence from another, standard polypeptide. In general, the differences are limited so that the sequences of standards and variants are very similar throughout, and in many areas identical. The variant and standard polypeptide may differ in amino acid sequence by one or more substitutions, additions, deletions, fusions and truncations, and may be present in any combination.

Izum se odnosi na terapeutski upotrebu molekule nukleinske kiseline koja uključuje sekvenciju koja kodira NAB1 ili NAB2 polipeptid, odnosno njihovu kombinaciju. Izum se također odnosi na terapeutsku upotrebu fragmenata spomenute polinukleotidne sekvencije koja kodira biološki djelatne fragmente NAB1 ili NAB2 polipeptida, odnosno varijanti polinukleotidne sekvencije koje uz pomoć degeneracije genetskog koda kodiraju funkcionalne odnosno biološki djelatne fragmente NAB1 ili NAB2, te se odnosi na funkcionalno ekvivalentne alelne varijante i srodne sekvencije modificirane pojedinačnom ili višestrukom supstitucijom baze, adicijom i/ili brisanjem koje kodiraju polipeptide koji imaju NAB1 ili NAB2 djelovanje. The invention relates to the therapeutic use of a nucleic acid molecule that includes the sequence encoding the NAB1 or NAB2 polypeptide, or their combination. The invention also relates to the therapeutic use of fragments of the aforementioned polynucleotide sequence that encodes biologically active fragments of the NAB1 or NAB2 polypeptide, i.e. variants of the polynucleotide sequence that, with the help of degeneration of the genetic code, encode functional or biologically active fragments of NAB1 or NAB2, and refers to functionally equivalent allelic variants and related sequences modified by single or multiple base substitution, addition and/or deletion encoding polypeptides having NAB1 or NAB2 activity.

To se može postići standardnim postupcima kloniranja koji su poznati stručnjacima. This can be accomplished by standard cloning procedures known to those skilled in the art.

Polinukleotidi koji kodiraju NAB1 ili NAB2 proteinske represore transkripcije mogu biti u obliku DNA, cDNA ili RNA, kao što je mRNA dobivena kloniranjem ili proizvedena kemijskim sintetskim tehnikama. DNA može biti jednostruka ili dvostruka. Jednostruka DNA može biti kodirajuća ili sa sense lancem, odnosno može biti nekodirajuća ili s anti-sense lancem. Za terapeutsku upotrebu, polinukleotid je u takvom obliku u kojem je moguća njegova ekspresija na funkcionalne NAB1 ili NAB2 proteinske represore na mjestu rane subjekta koji se liječi. Polinukleotidi se također mogu upotrijebiti za in vitro proizvodnju NAB1 ili NAB2 polipeptida za primjenu kod daljnjeg terapeutskog aspekta izuma, a što je iscrpno opisano u nastavku. Polynucleotides encoding NAB1 or NAB2 protein transcription repressors can be in the form of DNA, cDNA or RNA, such as mRNA obtained by cloning or produced by chemical synthetic techniques. DNA can be single-stranded or double-stranded. Single-stranded DNA can be coding or with a sense strand, that is, it can be non-coding or with an anti-sense strand. For therapeutic use, the polynucleotide is in such a form that it can be expressed to functional NAB1 or NAB2 protein repressors at the wound site of the subject being treated. The polynucleotides can also be used for in vitro production of NAB1 or NAB2 polypeptides for use in a further therapeutic aspect of the invention, as described in detail below.

Polinukleotidi ovog izuma koji kodiraju polipeptide NAB1 ili NAB2, mogu uključivati kodirajuću sekvenciju NAB1 ili NAB2 polipeptida, odnosno njihov biološki djelatan fragment, no nisu ograničeni samo na to. Stoga, polinukleotid može biti dobiven zajedno (no nije ograničeno samo na to) s dodatnom, nekodiranom sekvencijom, uključujući npr. nekodirane 5’ i 3’ sekvencije, kao što je transkribirana, netranslatirana sekvencija koja ima ulogu u transkripciji (uključujući npr. i terminacijske signale), ribosomna veza, mRNA stabilizacijski elementi, te dodatna kodirajuća sekvencija koja kodira dodatne aminokiseline, poput onih koje omogućavaju dodatne funkcionalnosti. Polinukleotidi izuma također uključuju, no nisu ograničeni samo na to, polinukleotide koji uključuju strukturalni gen za NAB1 ili NAB2, te njihove prirodno pridružene genetske elemente. Polynucleotides of the present invention that encode NAB1 or NAB2 polypeptides may include the coding sequence of NAB1 or NAB2 polypeptides, or a biologically active fragment thereof, but are not limited thereto. Thus, a polynucleotide may be obtained together with (but not limited to) additional, non-coding sequence, including, for example, non-coding 5' and 3' sequences, such as a transcribed, untranslated sequence that plays a role in transcription (including, for example, termination signals), ribosomal binding, mRNA stabilizing elements, and an additional coding sequence that encodes additional amino acids, such as those that enable additional functionality. Polynucleotides of the invention also include, but are not limited to, polynucleotides that include the structural gene for NAB1 or NAB2, and their naturally associated genetic elements.

U skladu s prethodnim, ovdje korišten pojam “polinukleotid koji kodira polipeptid” uključuje sekvenciju koja kodira polipeptid NAB1 ili NAB2. Pojam obuhvaća polinukleotide koji uključuju pojedinačno kontinuirano područje polipeptida (npr. prekinut pripadajućim fagom ili umetnutom sekvencijom ili uređivanjem) zajedno s dodatnim područjima, koja također mogu sadržavati kodirane i/ili nekodirane sekvencije. In accordance with the foregoing, the term “polynucleotide encoding a polypeptide” as used herein includes a sequence encoding a NAB1 or NAB2 polypeptide. The term encompasses polynucleotides that include a single continuous region of a polypeptide (eg interrupted by an associated phage or inserted sequence or editing) together with additional regions, which may also contain coding and/or non-coding sequences.

Ovaj se izum nadalje odnosi na varijante gore opisanih polinukleotida koje kodiraju fragmente, analoge i derivate polipeptida. Varijanta polinukleotida može biti varijanta koja se pojavljuje u prirodi, kao što je prirodna alelna varijanta, ili pak može biti varijanta za koju se ne zna da li se pojavljuje u prirodi. Takve varijante polinukleotida koje se ne pojavljuju u prirodi mogu biti pripravljene mutagenim tehnikama, uključujući one koje se primjenjuju na polinukleotide, stanice ili organizme. The present invention further relates to variants of the above-described polynucleotides that encode fragments, analogs, and derivatives of polypeptides. A polynucleotide variant can be a naturally occurring variant, such as a naturally occurring allelic variant, or it can be a variant that is not known to occur in nature. Such polynucleotide variants that do not occur in nature can be prepared by mutagenic techniques, including those applied to polynucleotides, cells or organisms.

Među varijantama iz ove domene spadaju varijante koje se razlikuju od prije spomenutih polinukleotida po nukleotidnim supstitucijama, brisanjima ili adicijama. Supstitucije, brisanja i adicije mogu uključivati jedan ili više nukleotida. Varijante se mogu razlikovati po kodiranim ili nekodiranim područjima ili i po jednom i drugom. Razlike u kodiranim područjima mogu proizvesti konzervativnu ili nekonzervativnu supstituciju, brisanje ili adiciju aminokiseline. Variants from this domain include variants that differ from the aforementioned polynucleotides by nucleotide substitutions, deletions or additions. Substitutions, deletions and additions may involve one or more nucleotides. Variants may differ in coded or non-coded regions or both. Differences in coding regions can produce a conservative or non-conservative substitution, deletion or addition of an amino acid.

Slijedeći pogodni spojevi ovog izuma su polinukleotidi koji su barem 70% identični cijelom svojom dužinom u odnosu na polinukleotid koji kodira polipeptide, a koji imaju prije opisanu aminokiselinsku sekvenciju, te polinukleotidi koji su komplementarni takvim polinukleotidima. Alternativno, najpogodniji su polinukleotidi koji uključuju područje koje je barem 80% identično cijelom svojom dužinom u odnosu na polinukleotid koji kodira polipeptid ovog izuma. S tog gledišta, posebno su pogodni polinukleotidi koji su identični barem 90% cijelom svojom dužinom u odnosu na navedeni polinukleotid, te među takvima, posebno su pogodni oni polinukleotidi koji su barem 95% identični. Nadalje, oni koji su barem 97% identični, izrazito su pogodni među polinukleotidima koji su barem 95% identični, a među takvima su još pogodniji oni koji su 98% identični i barem 99% identični, pri čemu su najpogodniji polinukleotidi koji su barem 99% identični. Further suitable compounds of this invention are polynucleotides that are at least 70% identical over their entire length to the polynucleotide encoding the polypeptides, and which have the previously described amino acid sequence, and polynucleotides that are complementary to such polynucleotides. Alternatively, polynucleotides that include a region that is at least 80% identical over its entire length to a polynucleotide encoding a polypeptide of the present invention are most suitable. From this point of view, polynucleotides that are at least 90% identical over their entire length to said polynucleotide are particularly suitable, and among such, those polynucleotides that are at least 95% identical are particularly suitable. Furthermore, those which are at least 97% identical are highly preferred among polynucleotides which are at least 95% identical, and among such polynucleotides which are at least 98% identical and at least 99% identical are even more suitable, with the most suitable polynucleotides which are at least 99% identical.

Pogodni spojevi s tog stajališta su polinukleotidi koji kodiraju polipeptide koji zadržavaju bitnu biološku funkciju ili djelovanje kao zreli NAB1 ili NAB2 polipeptidi koji su kodirani prije opisanim DNA sekvencijama (Pridruženi brojevi iz banke gena U47007 i U48361). Suitable compounds from this point of view are polynucleotides encoding polypeptides that retain the essential biological function or activity as the mature NAB1 or NAB2 polypeptides encoded by the previously described DNA sequences (GenBank Accession Numbers U47007 and U48361).

Ovaj izum nadalje se odnosi na polinukleotide koji se hibridiziraju u gore opisane sekvencije. S tog gledišta, ovaj izum posebno se odnosi na polinukleotide koji hibridiziraju pod veoma dobro utvrđenim uvjetima u gore opisane polinukleotide. Ovdje upotrijebljeni pojam “dobro utvrđeni uvjeti” označava hibridizaciju koja se odvija ako postoji barem 95%, no pogodnije je da bude 97% identičnosti između sekvencija. Pogodno je da sekvencije koje hibridiziraju na ovaj način u sekvencije izuma, kodiraju polipeptid koji ima biološko djelovanje kao spojevi NAB1 ili NAB2. The present invention further relates to polynucleotides that hybridize to the sequences described above. From this point of view, this invention particularly relates to polynucleotides that hybridize under very well-established conditions to the polynucleotides described above. As used herein, the term "well-established conditions" means hybridization that occurs if there is at least 95%, but more preferably 97%, identity between the sequences. It is convenient that the sequences that hybridize in this way to the sequences of the invention encode a polypeptide that has a biological activity like NAB1 or NAB2 compounds.

Polinukleotidi mogu kodirati polipeptid koji je zreo protein kao i dodatnu amino ili karboksilnu-terminalnu aminokiselinu. Takve dodatne sekvencije mogu imati npr. ulogu u produljivanju ili skraćivanju poluživota proteina, ili pak mogu između ostalog olakšati manipulaciju proteinom u svrhu određivanja ili proizvodnje. Kao što je općenito slučaj in vivo, dodatne aminokiseline mogu biti procesuirane podalje od zrelog proteina putem staničnih enzima. Polynucleotides can encode a polypeptide that is a mature protein as well as an additional amino or carboxyl-terminal amino acid. Such additional sequences can, for example, play a role in prolonging or shortening the half-life of the protein, or they can, among other things, facilitate the manipulation of the protein for the purpose of determination or production. As is generally the case in vivo, additional amino acids may be processed away from the mature protein by cellular enzymes.

Polinukleotidi ovog izuma koji se upotrebljavaju u genskoj terapiji mogu se primjenjivati samostalno ili kao dio vektora, kao što je vektor ekspresije, a čiji su primjeri dobro poznati u struci. Polynucleotides of the present invention used in gene therapy can be administered alone or as part of a vector, such as an expression vector, examples of which are well known in the art.

NAB1 ili NAB2 kodirajući polinukleotid može se upotrijebiti terapeutski u postupku izuma u genskoj terapiji, u kojoj se polinukleotid primjenjuje na mjestu rane, ili na druga tkiva koja bi trebala zacijeliti, u obliku koji je u stanju upravljati proizvodnjom NAB1 ili NAB2, odnosno njihovih biološki djelatnih fragmenata in situ. NAB1 or NAB2 encoding polynucleotide can be used therapeutically in the method of the invention in gene therapy, in which the polynucleotide is applied to the site of a wound, or to other tissues that should heal, in a form that is able to control the production of NAB1 or NAB2, or their biologically active fragments in situ.

Pogodno je da u genskoj terapiji polinukleotid bude primijenjen tako da se izvrši njegova ekspresija u subjekt liječenja, npr. u obliku molekule rekombinantne DNA koja uključuje polinukleotid koji kodira NAB1 ili NAB2, operativno spojen na sekvenciju nukleinske kiseline koja upravlja ekspresijom kao u ekspresijskom vektoru. Takav će vektor stoga uključivati odgovarajuće transkripcijske kontrolne signale, uključujući promotorna područja koja su u stanju izvršiti ekspresiju kodirane sekvencije, pri čemu spomenuti promotori moraju biti operabilni u subjektu liječenja. Stoga za humanu gensku terapiju pojam “promotor” ne uključuje samo sekvenciju koja je potrebna za upravljanje RNA polimeraze prema početnom mjestu transkripcije, već također uključuje, ako je to pogodno, ostale operativne ili kontrolne sekvencije, uključujući pojačivaće, a prvenstveno označava humanu promotorsku sekvenciju humanog gena, ili pak gena za kojeg je tipično da se vrši njegova ekspresija kod ljudi, kao što je promotor iz humanog CMV. U poznate eukariotske promotore, pogodne iz ove točke gledišta, spadaju CMV najbliži početni promotor, promotor HSV timidin kinaze, početni i kasni SV40 promotori, promotori retrovirusnog LTRs, poput onih od Rous virusa sarkom (“RSV”), te promotori metalotioneina, poput mišjeg promotora metalotioneina-I . Conveniently, in gene therapy, the polynucleotide is administered so that it is expressed in the treatment subject, e.g. in the form of a recombinant DNA molecule that includes a polynucleotide encoding NAB1 or NAB2, operably linked to a nucleic acid sequence that directs expression as in an expression vector. Such a vector will therefore include appropriate transcriptional control signals, including promoter regions capable of expressing the encoded sequence, said promoters having to be operable in the treatment subject. Therefore, for human gene therapy, the term "promoter" includes not only the sequence necessary to direct the RNA polymerase to the transcription start site, but also includes, if appropriate, other operative or control sequences, including enhancers, and primarily means the human promoter sequence of the human gene, or a gene that is typically expressed in humans, such as a promoter from human CMV. Known eukaryotic promoters suitable from this point of view include the CMV proximal start promoter, the HSV thymidine kinase promoter, SV40 early and late promoters, promoters of retroviral LTRs, such as those from Rous sarcoma virus (“RSV”), and metallothionein promoters, such as mouse promoter of metallothionein-I.

Polinukleotidna sekvencija i kontrolna sekvencija transkripcije mogu se primijeniti klonirane u ponovljivom plazmidnom vektoru, koji se temelji na komercijalno dostupnim plazmidima, poput pBR322, ili mogu biti načinjene od dostupnih plazmida rutinskom primjenom dobro poznatih objavljenih postupaka. The polynucleotide sequence and the transcription control sequence can be used cloned in a replicable plasmid vector, based on commercially available plasmids, such as pBR322, or can be made from available plasmids by routine use of well-known published procedures.

Vektor također može uključivati kontrolne transkripcijske signale koji su smješteni na položaju 3’ u odnosu na NAB1 ili NAB2 kodirajuću sekvenciju, kao i poliadenilacijske signale, koji se mogu prepoznati u subjektu koji se liječi, kao što su na primjer odgovarajuće sekvencije virusa, poput SV40 virusa kod liječenja ljudi. Ostale transkripcijske kontrolne sekvencije dobro su poznate struci, te se mogu koristiti. The vector may also include transcriptional control signals located 3' to the NAB1 or NAB2 coding sequence, as well as polyadenylation signals, which can be recognized in the subject to be treated, such as for example the corresponding virus sequences, such as the SV40 virus when treating people. Other transcriptional control sequences are well known in the art and may be used.

Vektori ekspresije mogu također uključivati odabrane markere za antibiotsku rezistentnost koji omogućavaju vektorima da budu propagirani. Expression vectors may also include selectable markers for antibiotic resistance that enable the vectors to be propagated.

Vektori ekspresije koji su u stanju sintetizirati NAB1 ili NAB2 in situ mogu se direktno uvesti u mjesto rane fizičkim postupcima. Takvi primjeri uključuju lokalnu primjenu “golog” vektora nukleinske kiseline u odgovarajućem vehiklu, npr. u otopini farmaceutski prihvatljive pomoćne tvari, kao što je otopina fosfatnog pufera (PBS), ili davanje vektora putem fizičkih postupaka, kao što je bombardiranje čestica, također poznato kao tehnologija “gene gun”, prema postupcima poznatim u struci, npr. kao što je opisano u US patentu br. 5371015, u kojem se inertne čestice, poput zlatnih zrnaca obloženih vektorom, ubrzavaju na brzine dovoljne da im omoguće prodiranje kroz površinu mjesta rane, npr. stanice kože, pomoću naboja pod visokim tlakom iz projicirajuće naprave. Expression vectors capable of synthesizing NAB1 or NAB2 in situ can be directly introduced into the wound site by physical procedures. Such examples include topical application of a "naked" nucleic acid vector in an appropriate vehicle, eg, in a solution of a pharmaceutically acceptable excipient, such as phosphate buffer solution (PBS), or delivery of the vector by physical procedures, such as particle bombardment, also known as "gene gun" technology, according to procedures known in the art, eg as described in US patent no. 5371015, in which inert particles, such as vector-coated gold beads, are accelerated to velocities sufficient to allow them to penetrate the surface of a wound site, eg, skin cells, by means of a high-pressure charge from a projecting device.

Ostali fizički postupci primjene DNA direktno na primatelja uključuju ultrazvuk, električnu stimulaciju i elektroporaciju. Other physical procedures for applying DNA directly to the recipient include ultrasound, electrical stimulation, and electroporation.

NAB1 ili NAB2 kodirajuća sekvencija nukleinske kiseline koja se upotrebljava u terapiji ovog izuma, može se također primijeniti pomoću vektora dostavljača, kao što su u struci poznati vektori dostavljači adenovirusa ili retrovirusa. The NAB1 or NAB2 encoding nucleic acid sequence used in the therapy of the present invention can also be administered using delivery vectors, such as adenovirus or retrovirus delivery vectors known in the art.

Ostali nevirusni vektori dostavljači uključuju lipidne vektore dostavljače, uključujući u struci poznate liposomske vehikle dostavljače. Other non-viral delivery vectors include lipid delivery vectors, including liposomal delivery vehicles known in the art.

NAB1 ili NAB2 kodirajuća sekvencija nukleinske kiseline također može biti primijenjena na mjesto rane pomoću transformiranih stanica domaćina. Takve stanice uključuju stanice dobivene od subjekta, a u njih se uvodi sekvencija nukleinske kiseline pomoću postupaka poznatih u struci, koji uključuju transfer gena, nakon čega slijedi rast transformiranih stanica u kulturi, te kalemljenje na subjekt. The NAB1 or NAB2 encoding nucleic acid sequence can also be administered to the wound site using transformed host cells. Such cells include cells obtained from a subject and introduced into them with a nucleic acid sequence using methods known in the art, which include gene transfer, followed by growth of the transformed cells in culture, and grafting to the subject.

Ekspresijske konstrukcije, poput onih gore opisanih, mogu se upotrebljavati na razne načine u terapiji ovog izuma. Stoga se mogu izravno primijeniti na mjesto rane subjekta, ili se pak mogu upotrijebiti za pripravu rekombinantnog polipeptida NAB1 ili NAB2 koji se tada može primijeniti na mjesto rane, kao što će biti mnogo iscrpnije razmatrano u nastavku. Izum se također odnosi na stanice domaćina koje su općenito obrađene genetskim inženjeringom s konstrukcijama koje uključuju NAB1 ili NAB2 polinukleotid ili polinukleotide ovog izuma, ili pak genetske elemente koji su gore definirani, kao i na upotrebu tih vektora i stanica u terapijskim postupcima ovog izuma. Te se konstrukcije mogu primijeniti same po sebi u terapijskim postupcima izuma, odnosno oni se mogu primjenjivati za pripravu NAB1 ili NAB2 polipeptida za upotrebu u terapijskim postupcima izuma koji su vrlo iscrpno opisani u nastavku. Expression constructs, such as those described above, can be used in a variety of ways in the therapy of this invention. Therefore, they can be applied directly to the wound site of the subject, or they can be used to prepare a recombinant NAB1 or NAB2 polypeptide that can then be applied to the wound site, as will be discussed in more detail below. The invention also relates to host cells generally genetically engineered with constructs that include the NAB1 or NAB2 polynucleotide or polynucleotides of the invention, or the genetic elements defined above, as well as to the use of these vectors and cells in the therapeutic methods of the invention. These constructs can be used per se in the therapeutic methods of the invention, that is, they can be used to prepare NAB1 or NAB2 polypeptides for use in the therapeutic methods of the invention which are described in more detail below.

Vektor na primjer može biti plazmidni vektor, jednostruki ili dvostruki fag vektor, jednostruki ili dvostruki RNA ili DNA virusni vektor, ovisno o tome da li se vektor treba primijeniti izravno na mjesto rane (npr. za sintezu NAB1 ili NAB2 in situ), ili se treba upotrijebiti za sintezu rekombinantnih NAB1 ili NAB2. Početni plazmidi koji su ovdje opisani mogu biti ili komercijalno dostupni, ili su javno dostupni, ili pak mogu biti pripravljeni iz dostupnih plazmida rutinskom primjenom dobro poznatih, objavljenih postupaka. Mnogi plazmidni i drugi vektori kloniranja i ekspresije koji se mogu upotrebljavati prema ovom izumu dobro su poznati, te su odmah dostupni stručnjacima. The vector can for example be a plasmid vector, a single or double phage vector, a single or double RNA or DNA viral vector, depending on whether the vector is to be applied directly to the wound site (eg for in situ synthesis of NAB1 or NAB2), or should be used to synthesize recombinant NAB1 or NAB2. The starting plasmids described herein may either be commercially available, or publicly available, or may be prepared from available plasmids by routine use of well-known, published procedures. Many plasmids and other cloning and expression vectors that can be used in accordance with the present invention are well known and readily available to those skilled in the art.

Općenito, vektori za ekspresiju NAB1 ili NAB2 polipeptida za upotrebu u izumu uključuju cis- upravljačka područja učinkovita za ekspresiju u domaćinu i operativno povezana s polinukleotidom na kojem će se izvršiti ekspresija. Odgovarajući trans-djelujući faktori, dobivaju se ili od domaćina, ili od komplementarnog vektora, ili samog vektora nakon uvođenja u domaćina. In general, vectors for expression of NAB1 or NAB2 polypeptides for use in the invention include cis-control regions effective for expression in the host and operably linked to the polynucleotide to be expressed. Appropriate trans-acting factors are obtained either from the host, or from the complementary vector, or from the vector itself after introduction into the host.

Kod određenih spojeva iz ove domene vektori omogućavaju specifičnu ekspresiju. Za proizvodnju rekombinantnih NAB1 ili NAB2, takva specifična ekspresija može uključivati inducibilnu ekspresiju ili ekspresiju samo u određenim tipovima stanica, odnosno oboje: i inducibilnu i stanično-specifičnu. Posebno pogodni među inducibilnim vektorima su vektori kojima se lako manipulira, poput temperaturnih i prehrambenih aditiva. Mnoštvo vektora koji odgovaraju ovom aspektu izuma uključuju konstitutivne i inducibilne vektore ekspresije koji se upotrebljavaju u prokariotskim i eukariotskim domaćinima, a vrlo dobro su poznati, te ih stručnjaci primjenjuju rutinski. For certain compounds from this domain, vectors enable specific expression. For the production of recombinant NAB1 or NAB2, such specific expression may include inducible expression or expression only in certain cell types, or both: both inducible and cell-specific. Particularly suitable among inducible vectors are vectors that are easy to manipulate, such as temperature and food additives. A variety of vectors suitable for this aspect of the invention include constitutive and inducible expression vectors used in prokaryotic and eukaryotic hosts, and are well known and routinely employed by those skilled in the art.

Veliko mnoštvo vektora ekspresije može se upotrijebiti i za ekspresiju NAB1 ili NAB2 ovog izuma. Takvi vektori između ostalog uključuju kromosomske, epizomske kao i vektore dobivene od virusa, npr. vektore dobivene od bakterijskih plazmida, od bakteriofaga, od transpozona, od episoma kvasca, od elemenata umetaka, od kromosomskih elemenata kvasca, od virusa poput bakulovirusa, papova virusa, poput SV40, virusa za vakcinu, adenovirusa, virusa ptičjih boginja, pseudorabijskih virusa, te retrovirusa, kao i vektora dobivenih od njihovih kombinacija, poput onih koji su dobiveni od plazmida i genetskih elemenata bakteriofaga, poput kozmida i fagmida, te se svi oni mogu upotrijebiti za ekspresiju prema ovom aspektu ovog izuma. Općenito, bilo koji vektor, koji je pogodan za održavanje, propagiranje ili vršenje ekspresije polinukleotida radi izvršavanja ekspresije polipeptida u domaćinu, može se upotrijebiti za ekspresiju s ovog gledišta. A wide variety of expression vectors can also be used to express NAB1 or NAB2 of the present invention. Such vectors include, but are not limited to, chromosomal, episomal, and virus-derived vectors, e.g., vectors derived from bacterial plasmids, bacteriophages, transposons, yeast episomes, insert elements, yeast chromosomal elements, viruses such as baculoviruses, papoviruses, such as SV40, vaccinia virus, adenovirus, pox virus, pseudorabies virus, and retroviruses, as well as vectors derived from combinations thereof, such as those derived from plasmids and genetic elements of bacteriophages, such as cosmids and phagmids, all of which can be used for expression according to this aspect of the present invention. In general, any vector, which is suitable for maintaining, propagating or expressing a polynucleotide to effect expression of a polypeptide in a host, can be used for expression from this point of view.

Odgovarajuća DNA sekvencija može se ubaciti u vektor pomoću bilo koje od raznolikih dobro poznatih rutinskih tehnika, kao što su na primjer one opisane u djelu Sambrook i suradnici, MOLECULAR CLONING, A LABORATORY MANUAL “Molekulsko kloniranje: laboratorijski priručnik”, 2. izdanje; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989). The appropriate DNA sequence can be inserted into the vector using any of a variety of well-known routine techniques, such as those described in Sambrook et al., MOLECULAR CLONING, A LABORATORY MANUAL, 2nd ed.; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989).

Sekvencija nukleinske kiseline u vektoru ekspresije operativno je povezana s odgovarajućom(im) kontrolnom(im) sekvencijom(ama) ekspresije, uključujući na primjer i promotore za izravnu mRNA transkripciju. Predstavnici takvih promotora uključuju, premda nisu ograničeni samo na njih, fag lambda PL promotor, E. coli lac, trp i tac promotore za rekombinantnu ekspresiju, te SV40, početne i kasne promotore, te promotore retrovirusne LTRs in situ ekspresije. The nucleic acid sequence in the expression vector is operably linked to appropriate expression control sequence(s), including for example promoters for direct mRNA transcription. Representatives of such promoters include, but are not limited to, the phage lambda PL promoter, E. coli lac, trp and tac promoters for recombinant expression, and SV40, early and late promoters, and retroviral LTRs promoters for in situ expression.

Općenito, ekspresijske konstrukcije sadržavat će mjesta za inicijaciju i terminaciju transkripcije, te u transkribiranom području, mjesto vezanja na ribosomu za translaciju. Kodirajući dio zrelih transkripata na kojima je bila izvršena ekspresija pomoću konstrukcija, uključit će translacijsku inicijaciju AUG na početku i kraju kodona koji je postavljen točno na kraju polipeptida koji se translatira. In general, expression constructs will contain sites for initiation and termination of transcription, and in the transcribed region, a ribosome binding site for translation. Encoding the fraction of mature transcripts that have been expressed using the constructs, they will include a translational initiation AUG at the start and end codons that are placed right at the end of the polypeptide being translated.

Dodatno, konstrukcije mogu sadržavati kontrolna područja koja upravljaju te uzrokuju ekspresiju. Općenito, sukladno mnogim uobičajeno upotrebljavanim postupcima, takva će područja među ostalim djelovati, upravljajući transkripcijom, kao transkripcijski faktori, vezna mjesta represora i terminacije. Additionally, constructs may contain control regions that direct and cause expression. In general, according to many commonly used procedures, such regions will act, among other things, to control transcription, as transcription factors, repressor binding sites, and termination sites.

Vektori za propagiranje i ekspresiju općenito uključuju odabrane markere i područja amplifikacije proširenja, kao što su npr. ona navedena u djelu Sambrook i suradnici, MOLECULAR CLONING, A LABORATORY MANUAL “Molekulsko kloniranje: laboratorijski priručnik”, 2. izdanje; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989). Propagation and expression vectors generally include selectable markers and extension amplification regions, such as those described in Sambrook et al., MOLECULAR CLONING, A LABORATORY MANUAL, 2nd ed.; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989).

Reprezentativni primjeri odgovarajućih domaćina za rekombinantnu ekspresiju NAB1 i NAB2 uključuju bakterijske stanice, kao što su streptokoki i stafilokoki, E. coli, streptomyces, te stanice Bacillus subtilis; gljivične stanice, poput stanica kvasca, te stanica Aspergillus; stanica insekata, poput Drosophila S2 i Spodoptera Sf9 stanica; životinjskih stanica poput CHO, COS, HeLa, C127, 3T3, BHK, 293 i Bowes stanice melanoma; te stanice biljaka. Representative examples of suitable hosts for recombinant expression of NAB1 and NAB2 include bacterial cells, such as streptococci and staphylococci, E. coli, streptomyces, and Bacillus subtilis cells; fungal cells, such as yeast cells and Aspergillus cells; insect cells, such as Drosophila S2 and Spodoptera Sf9 cells; animal cells such as CHO, COS, HeLa, C127, 3T3, BHK, 293 and Bowes melanoma cells; and plant cells.

Slijedeći vektori, koji su komercijalno dostupni, dobivaju se prema primjeru. Među pogodne vektore za upotrebu u bakterijama spadaju pQE70, pQE60, te pQE-9, a mogu se nabaviti kod Qiagen; pBS vektori, fagskript vektori, blueskript vektori, pNH8A, pNH16a, pNH18A, pNH46A, koji se mogu nabaviti kod Stratagane; ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 koji se mogu nabaviti kod Pharmacie, te pBR322 (ATCC 37017). Među pogodne eukariotske vektore spadaju pWLNEO, pSV2CAT, pOG44, pXT1 i pSG koji se mogu nabaviti kod Stratagene; te pSVK3, pBPV, pMSG i pSVL koji se mogu nabaviti kod Pharmacie. Oni vektori koji se mogu upotrijebiti i za rekombinantnu ekspresiju i za ekspresiju in situ popisani su jedino kako bi ilustrirali mnoge komercijalno dostupne, dobro poznate vektore koji su dostupni stručnjacima za upotrebu prema aspektu ovog izuma. Poželjno je da se bilo koji drugi plazmid ili vektor pogodan za uvođenje, održavanje, propagiranje ili ekspresiju polinukleotida ili polipeptida ovog izuma u domaćinu može koristiti prema aspektu ovog izuma. The following vectors, which are commercially available, are obtained by way of example. Suitable vectors for use in bacteria include pQE70, pQE60, and pQE-9, available from Qiagen; pBS vectors, fagscript vectors, bluescript vectors, pNH8A, pNH16a, pNH18A, pNH46A, available from Stratagana; ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 available from Pharmacia, and pBR322 (ATCC 37017). Suitable eukaryotic vectors include pWLNEO, pSV2CAT, pOG44, pXT1 and pSG available from Stratagene; and pSVK3, pBPV, pMSG and pSVL which can be obtained from Pharmacia. Those vectors that can be used for both recombinant expression and in situ expression are listed only to illustrate the many commercially available, well-known vectors available to those skilled in the art for use in accordance with aspects of the present invention. Preferably, any other plasmid or vector suitable for introducing, maintaining, propagating, or expressing a polynucleotide or polypeptide of the present invention in a host may be used according to an aspect of the present invention.

Primjeri vektora koji se upotrebljavaju prema ovom aspektu izuma uključuju vektore ekspresije kod kojih se NAB1 ili NAB2 cDNA sekvencija ubacuje u plazmid, pri čemu se ekspresija gena izvodi iz humanog najbližeg početnog citomegalovirusnog pojačanog promotora (Foecking i Hofstetter, Cell, 45, 101-105, 1986). Takvi ekspresijski plazmidi mogu sadržavati SV40 RNA procesirajuće signale poput poliadenilacije i signala terminacije. Komercijalno dostupne ekspresijske konstrukcije koje upotrebljavaju CMV promotor su pCDM8, pcDNA1 i derivati, pcDNA3 i derivati (invitrogen). Ostali dostupni ekspresijski vektori koji se mogu upotrijebiti su pSVK3 i pSVL, koji sadržavaju SV40 promotor i mRNA spojna mjesta i poliadenilacijske signale od SV40 (pVSK3) i SV40 VP1 kao i procesuirajuće signale (pSVL; vektori od Pharmacie). Examples of vectors useful in this aspect of the invention include expression vectors in which the NAB1 or NAB2 cDNA sequence is inserted into a plasmid, wherein expression of the gene is derived from the human proximal cytomegalovirus enhanced promoter (Foecking and Hofstetter, Cell, 45, 101-105, 1986). Such expression plasmids may contain SV40 RNA processing signals such as polyadenylation and termination signals. Commercially available expression constructs using the CMV promoter are pCDM8, pcDNA1 and derivatives, pcDNA3 and derivatives (invitrogen). Other available expression vectors that can be used are pSVK3 and pSVL, which contain the SV40 promoter and mRNA binding sites and polyadenylation signals from SV40 (pVSK3) and SV40 VP1 as well as processing signals (pSVL; vectors from Pharmacia).

Promotorna područja mogu se odabrati iz bilo kojeg željenog gena uporabom vektora koji sadržavaju reportersku transkripcijsku jedinicu kojoj nedostaje promotorsko područje, kao što je kloramfenikol acetiltransferaza (CAT) transkripcijska jedinica, nizvodno od restrikcijskog mjesta ili mjesta za uvođenje fragmenta s potencijalnim promotorom; tj. fragmenta koji može sadržavati promotor. Kao što je dobro poznato, uvođenje u vektor fragmenta koji sadržava promotor na restrikcijskom mjestu uzvodno od cat gena uzrokuje nastajanje CAT delovanja, koje se može odrediti standardnim CAT određivanjima. Vektori koji odgovaraju ovom kraju dobro su poznati, te lako dostupni, a to su pKK232-8 i pCM7. Promotori ekspresije polinukleotida ovog izuma ne uključuju samo dobro poznate i lako dostupne promotore, već i promotore koji se lako dobivaju pomoću prethodnih tehnika upotrebom reporter gena; za ekspresiju in situ, poželjno bi bilo da se takvog promotora prepozna u liječenom subjektu. Promoter regions can be selected from any desired gene by using vectors containing a reporter transcription unit lacking a promoter region, such as a chloramphenicol acetyltransferase (CAT) transcription unit, downstream of a restriction site or a site for introducing a fragment with a potential promoter; i.e. a fragment that may contain a promoter. As is well known, the introduction into the vector of a fragment containing the promoter at the restriction site upstream of the cat gene causes the production of CAT activity, which can be determined by standard CAT assays. The vectors corresponding to this end are well known and readily available, namely pKK232-8 and pCM7. The polynucleotide expression promoters of the present invention include not only well-known and readily available promoters, but also promoters readily obtained by prior techniques using reporter genes; for in situ expression, it would be desirable to recognize such a promoter in the treated subject.

Među poznate prokariotske promotore, koji su pogodni za ekspresiju polinukleotida i polipeptida prema ovom izumu, spadaju E. coli lacI i lacZ i promotori, T3 i T7 promotori, gpt promotor, lambda Pr, PL promotori i trp promotor. Known prokaryotic promoters suitable for expression of polynucleotides and polypeptides of the present invention include E. coli lacI and lacZ and promoters, T3 and T7 promoters, gpt promoter, lambda Pr, PL promoters and trp promoter.

Na primjer, vektori rekombinantne ekspresije uključuju originale replikacija, zatim promotor, koji je po mogućnosti dobiven od gena sa značajnim stupnjem ekspresije, a služi za izravnu ekspresiju nizvodne strukturne sekvencije, te odabrane markere koji omogućuju izolaciju vektora koji sadržava stanice nakon izlaganja vektoru. For example, recombinant expression vectors include replication origins, then a promoter, which is preferably derived from a gene with a significant degree of expression, and serves for direct expression of the downstream structural sequence, and selected markers that allow isolation of the vector containing cells after exposure to the vector.

Polinukleotidi izuma koji kodiraju heterogenu strukturnu sekvenciju polipeptida ovog izuma općenito se ubacuju u vektor upotrebom standardnih tehnika, tako da je vektor operabilno povezan na promotor ekspresije. Polinukleotid je postavljen tako da je početno mjesto transkripcije locirano odgovarajuće na položaju 5’ u odnosu na mjesto vezanja na ribosomu. Mjesto vezanja na ribosomu je na položaju 5’ u odnosu na AUG koji započinje translaciju polipeptida na kojem se vrši ekspresija. Polynucleotides of the invention encoding a heterogeneous structural sequence of a polypeptide of the invention are generally inserted into a vector using standard techniques, such that the vector is operably linked to an expression promoter. The polynucleotide is positioned so that the transcription start site is located appropriately 5' to the binding site on the ribosome. The binding site on the ribosome is at the 5' position in relation to the AUG that initiates the translation of the expressed polypeptide.

Općenito, nema dugih otvorenih okvira čitanja koji započinju s inicijalnim kodonom, obično AUG, te se nalaze između mjesta vezanja na ribosomu i inicijalnog kodona. Također, na kraju polipeptida postoji translacijski stop kodon, a postoji i poliadenilacijski signal u konstrukcijama koje se koriste u eukariotskim domaćinima. Transkripcijski terminalni signal koji je smješten na odgovarajućem 3’ kraju transkribiranog područja također može biti uključen u polinukleotidnu konstrukciju. In general, there are no long open reading frames that begin with the start codon, usually AUG, and are located between the ribosome binding site and the start codon. Also, there is a translational stop codon at the end of the polypeptide, and there is also a polyadenylation signal in the constructs used in eukaryotic hosts. A transcription terminal signal that is located at the appropriate 3' end of the transcribed region can also be included in the polynucleotide construct.

Za sekreciju translatiranog proteina u lumen endoplazmatskog retikuluma, u periplazmatski prostor, odnosno u izvanstanični okoliš, mogu se ugraditi odgovarajući signali za sekreciju u polipeptid na kojem je izvršena ekspresija prilikom rekombinantne sinteze. Ti signali mogu biti endogeni u odnosu na polipeptid, ili to pak mogu biti heterogeni signali. For the secretion of the translated protein into the lumen of the endoplasmic reticulum, into the periplasmic space, that is, into the extracellular environment, suitable signals for secretion can be incorporated into the polypeptide on which expression was performed during recombinant synthesis. These signals can be endogenous to the polypeptide, or they can be heterogeneous signals.

Na polipeptidu se može izvršiti ekspresija u modificirani oblik, kao što je fuzijski protein, a može sadržavati ne samo signal za sekreciju već i dodatne heterogene signale. Prema tome, područja dodatnih aminokiselina, posebno nabijenih aminokiselina, mogu se dodati N- ili C- terminusu polipeptida kako bi se poboljšala stabilnost i otpornost u stanici domaćina za vrijeme pročišćavanja, odnosno za vrijeme naknadnog rukovanja i skladištenja. Područje se može također dodati polipeptidu kako bi se olakšalo pročišćavanje. Takva područja mogu se ukloniti prije konačne priprave polipeptida. Dodavanja peptidnih struktura polipeptidu kako bi se prouzrokovala sekrecija ili izbacivanje, te radi povećavanja stabilnosta ili olakšavanja pročišćavanja, predstavljaju uobičajene rutinske stručne tehnike. Pogodno spajanje proteina uključuje heterogeno područje imunoglobulina koje je korisno za topljenje ili čišćenje polipeptida. Tipično je da se nakon toga stanice skupljaju centrifugiranjem, rastepu fizičkim ili kemijskim sredstvima, a dobiveni se sirovi ekstrakt ostavlja za daljnje čišćenje. The polypeptide may be expressed in a modified form, such as a fusion protein, and may contain not only a secretion signal but also additional heterogeneous signals. Therefore, regions of additional amino acids, especially charged amino acids, can be added to the N- or C-terminus of the polypeptide to improve stability and resistance in the host cell during purification, or during subsequent handling and storage. The region can also be added to the polypeptide to facilitate purification. Such regions can be removed before the final preparation of the polypeptide. Additions of peptide structures to a polypeptide to induce secretion or shedding, and to increase stability or facilitate purification, are common routine professional techniques. A suitable coupling protein includes a heterogeneous region of the immunoglobulin that is useful for melting or purifying the polypeptide. It is typical that after that the cells are collected by centrifugation, dissolved by physical or chemical means, and the obtained crude extract is left for further cleaning.

Mikrobne stanice koje se upotrebljavaju u ekspresiji proteina mogu se rastepsti uobičajenim postupcima, uključujući cikličko smrzavanje i otapanje, sonificiranje, mehaničko rastepanje ili upotrebu litičkih tvari, što su postupci dobro poznati stručnjacima. Microbial cells used in protein expression can be disrupted by conventional methods, including cyclic freezing and thawing, sonication, mechanical disruption, or the use of lytic agents, procedures well known to those skilled in the art.

Vektori ekspresije sisavaca mogu uključivati original replikacije, odgovarajući promotor, pojačivač, te također bilo koje potrebno mjesto vezanja na ribosomu, poliadenilacijska područja, donor veze, te akceptorska mjesta, transkripcijske terminacijske sekvencije, te 5’ flankirne netranskribirane sekvencije koje su nužne za ekspresiju. Mammalian expression vectors may include an origin of replication, an appropriate promoter, an enhancer, and also any necessary ribosome binding sites, polyadenylation regions, donor bonds, and acceptor sites, transcription termination sequences, and 5' flanking non-transcribed sequences necessary for expression.

Za pripravu NAB1 ili NAB2 polipeptida koji se upotrebljavaju u izumu mogu se upotrijebiti stanice domaćina dobivene genetskim inženjeringom. Uvođenje polinukleotida u stanicu domaćina može biti potaknuto transfekcijom kalcijevog fosfata, transfekcijom posredovanom DEAE-dekstranom, transvekcijom, mikroinjekcijom, kationskom transfekcijom posredovanom lipidom, elektroporacijom, transdukcijom, nanošenjem tankog sloja, balističkim uvođenjem, infekcijom, ili ostalim postupcima. Takvi postupci opisani su u mnogim standardnim laboratorijskim priručnicima, kao što je Davis i suradnici, BASIC METHODS IN MOLECULAR BIOLOGY, “Osnovni postupci u molekularnoj biologiji”, (1986) i Sambrook i suradnici, MOLECULAR CLONING, A LABORATORY MANUAL, “Molekulsko kloniranje: laboratorijski priručnik”, 2. izdanje; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989). Genetically engineered host cells can be used to prepare the NAB1 or NAB2 polypeptides used in the invention. Introduction of polynucleotides into a host cell can be induced by calcium phosphate transfection, DEAE-dextran mediated transfection, transvection, microinjection, cationic lipid mediated transfection, electroporation, transduction, thin layer application, ballistic introduction, infection, or other procedures. Such procedures are described in many standard laboratory manuals, such as Davis et al., BASIC METHODS IN MOLECULAR BIOLOGY, (1986) and Sambrook et al., MOLECULAR CLONING, A LABORATORY MANUAL. laboratory manual”, 2nd edition; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989).

Zreli proteini mogu se ekspresijom sintetizirati u stanici domaćina uključujući stanice sisavaca, kao što su CHO stanice, stanice kvasca, bakterija ili druge stanice koje su pod nadzorom odgovarajućeg promotora. Bez-stanični translacijski sustavi također se mogu upotrijebiti za proizvodnju takvih proteina upotrebom molekula RNA dobivenih iz DNA konstrukcija ovog izuma. Odgovarajući vektori za kloniranje i ekspresiju koji se upotrebljavaju za prokariotske i eukariotske domaćine opisani su u Sambrook i suradnici, MOLECULAR CLONING, A LABORATORY MANUAL “Molekulsko kloniranje: laboratorijski priručnik”, 2. izdanje; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989). The mature proteins can be synthesized by expression in a host cell including mammalian cells, such as CHO cells, yeast cells, bacteria or other cells under the control of an appropriate promoter. Cell-free translation systems can also be used to produce such proteins using RNA molecules derived from the DNA constructs of the present invention. Suitable cloning and expression vectors used for prokaryotic and eukaryotic hosts are described in Sambrook et al., MOLECULAR CLONING, A LABORATORY MANUAL, 2nd ed.; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989).

Polipeptid se može obnoviti i očistiti iz kultura rekombinantnih stanica pomoću dobro poznatih postupaka, uključujući taloženje amonijevim sulfatom ili etanolom, kiselu ekstrakciju, kromatografiju anionske ili kationske izmjene, kromatografiju na fosfocelulozi, hidrofobnu interakcijsku kromatografiju, afinitetnu kromatografiju, hidroksilapatitnu kromatografiju, lecitinsku kromatografiju. Najpogodnija za upotrebu pri čišćenju je kromatografija visokog učinka. Dobro poznate tehnike za obnavljanje proteina mogu se upotrijebiti za regeneriranje djelatne konformacije kada se polipeptid denaturira tijekom izolacije i čišćenja. The polypeptide can be recovered and purified from recombinant cell cultures using well known procedures, including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography, lecithin chromatography. The most suitable for use in cleanup is high performance chromatography. Well-known techniques for protein recovery can be used to regenerate the active conformation when a polypeptide is denatured during isolation and purification.

Za terapiju, NAB1 ili NAB2 kodirajući polinukleotid koji je u obliku rekombinantnog vektora, može se pročišćavati tehnikama koje su poznate u struci, poput kromatografije na stupcu kao što je opisano u Sambrook i suradnici, MOLECULAR CLONING, A LABORATORY MANUAL “Molekulsko kloniranje: laboratorijski priručnik”, 2. izdanje; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989). For therapy, the NAB1 or NAB2 encoding polynucleotide in recombinant vector form can be purified by techniques known in the art, such as column chromatography as described in Sambrook et al., MOLECULAR CLONING, A LABORATORY MANUAL. ”, 2nd edition; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989).

Kao što je gore navedeno, NAB1 ili NAB2 polipeptid može se primijeniti na mjesto rane ili kao NAB1 ili NAB2 kodirajuća nukleinska kiselina koja je transkribirana i translatirana u NAB1 ili NAB2 na samo mjesto rane u obliku genske terapije, ili se sam proteinski represor transkripcije može primijeniti izravno. As noted above, the NAB1 or NAB2 polypeptide can be administered to the wound site either as a NAB1 or NAB2 encoding nucleic acid that is transcribed and translated into NAB1 or NAB2 at the wound site itself in the form of gene therapy, or the transcriptional repressor protein itself can be administered directly.

Stoga, prema slijedećem aspektu izuma omogućena je upotreba NAB1 ili NAB2 polipeptida, odnosno njegovog biološki djelatnog fragmenta, u proizvodnji lijekova za liječenje poremećaja proliferacije stanice kod sisavaca, uključujući i čovjeka. Therefore, according to the following aspect of the invention, the use of the NAB1 or NAB2 polypeptide, or its biologically active fragment, is enabled in the production of drugs for the treatment of cell proliferation disorders in mammals, including humans.

Prema slijedećem aspektu izuma omogućen je postupak liječenja poremećaja proliferacije stanice kod sisavaca, uključujući i čovjeka, koji uključuje primjenu na sisavcima terapeutski učinkovite količine NAB1 ili NAB2 polipeptida, odnosno njegovog biološki djelatnog fragmenta. According to the next aspect of the invention, a method of treating cell proliferation disorders in mammals, including humans, is enabled, which includes the administration to mammals of a therapeutically effective amount of NAB1 or NAB2 polypeptide, or its biologically active fragment.

Tako promatrano sa slijedećeg aspekta, izum omogućava upotrebu NAB1 ili NAB2 polipeptida, ili njihovih biološki djelatnih fragmenata, u liječenju rana i zacijeljivanju rana. Thus viewed from the following aspect, the invention enables the use of NAB1 or NAB2 polypeptides, or their biologically active fragments, in wound treatment and wound healing.

Ovdje upotrebljavani izraz “NAB1 ili NAB2 polipeptid” uključuje prirodno i rekombinantno proizvedene NAB1 ili NAB2, prirodne, sintetičke i biološki djelatne analoge polipeptida, odnosno varijante, odnosno njihove derivate, odnosno njihove biološki djelatne fragmente i varijante, te derivate i analoge spomenutih fragmenata. The term "NAB1 or NAB2 polypeptide" used here includes naturally and recombinantly produced NAB1 or NAB2, natural, synthetic and biologically active polypeptide analogs, or variants, or their derivatives, or their biologically active fragments and variants, and derivatives and analogs of said fragments.

NAB1 ili NAB2 proteinski produkti, uključujući biološki djelatne fragmente NAB1 ili NAB2, mogu se proizvesti i/ili izolirati općenitim tehnikama poznatim u struci. NAB1 or NAB2 protein products, including biologically active fragments of NAB1 or NAB2, can be produced and/or isolated by general techniques known in the art.

NAB1 ili NAB2, te prije spomenuti fragmenti i njihovi derivati koji se upotrebljavaju u liječenju ovog izuma, mogu se ekstrahirati iz prirodnih izvora pomoću postupaka koji su poznati u struci. Takvi postupci uključuju pročišćavanje pomoću kromatografije sekvencijsko-specifičnog DNA afiniteta upotrebljavajući postupke opisane u Briggs i suradnici, Science 234, 47-52, 1986, u kojem se upotrebljav oligonukleotid koji se veže na DNA i koji prepoznaje NAB1 ili NAB2. Polipeptid se također može pripraviti postupcima rekombinantne DNA tehnologije poznatim u struci, kao što je gore opisano. Alternativno, polipeptidi ovog izuma mogu se proizvesti sintetski uobičajenim sintesizerima peptida. NAB1 or NAB2, and the aforementioned fragments and derivatives thereof used in the treatment of this invention, can be extracted from natural sources using methods known in the art. Such methods include purification by sequence-specific DNA affinity chromatography using the methods described in Briggs et al., Science 234, 47-52, 1986, in which a DNA-binding oligonucleotide that recognizes NAB1 or NAB2 is used. The polypeptide can also be prepared by methods of recombinant DNA technology known in the art, as described above. Alternatively, the polypeptides of the present invention can be produced synthetically by conventional peptide synthesizers.

Izum se također odnosi na upotrebu fragmenata, analoga i derivata NAB1 ili NAB2. Pojam “fragment”, “derivat” i “analog” označava polipeptid koji zadržava esencijalno istu biološku funkciju ili djelovanje kao i takav polipeptid. Stoga, analog uključuje proprotein koji se može aktivirati cijepanjem dijela proproteina kako bi se proizveo djelatni zreo polipeptid. The invention also relates to the use of fragments, analogs and derivatives of NAB1 or NAB2. The terms "fragment", "derivative" and "analog" mean a polypeptide that retains essentially the same biological function or activity as such polypeptide. Therefore, the analog includes a proprotein that can be activated by cleavage of a portion of the proprotein to produce an active mature polypeptide.

Fragment, derivat ili analog polipeptida može biti takav u kojem su jedan ili više aminokiselinskih ostataka supstituirani sa konzerviranim odnosno nekonzerviranim aminokiselinskim ostatkom (pogodnije je da bude zaštićen aminokiselinski ostatak), a takav supstitirani aminokiselinski ostatak može, ali ne mora biti onaj koji je kodiran genetskim kodom, ili (ii) takav kod kojeg jedan ili više aminokiselinskih ostataka uključuju supstituend, ili (iii) takav kod kojeg je zreo polipeptid spojen s drugim spojem, kao što je npr. spoj koji povećava poluživot polipeptida (npr. polietilenglikol), ili (iv) takav kod kojeg su dodatne aminokiseline spojene sa zrelim proteinom, kao što je vodeća sekvencija ili sekretivne sekvencije, odnosno sekvencija koja se upotrebljava za pročišćavanje zrelog polipeptida ili proproteinske sekvencije. Za takve fragmente, derivate i analoge stručnjaci smatraju da su unutar ciljnog područja ovdje navedenih naučavanja. A fragment, derivative or analogue of a polypeptide can be one in which one or more amino acid residues are substituted with a conserved or non-conserved amino acid residue (it is more convenient for the amino acid residue to be protected), and such a substituted amino acid residue may or may not be the one encoded by genetic code, or (ii) one in which one or more amino acid residues include a substituent, or (iii) one in which the mature polypeptide is linked to another compound, such as, for example, a compound that increases the half-life of the polypeptide (eg, polyethylene glycol), or ( iv) one in which additional amino acids are joined to the mature protein, such as the leader sequence or secretory sequences, i.e. the sequence used to purify the mature polypeptide or proprotein sequence. Such fragments, derivatives and analogs are considered by experts to be within the target area of the teachings listed here.

Među pogodne varijante spadaju one koje se od prirodnih NAB1 ili NAB2 razlikuju konzervativnim supstitucijama aminokiselina. Takve supstitucije supstituiraju danu aminokiselinu u polipeptidu drugom aminokiselinom sličnih svojstava. U tipične konzervativne supstitucije ubrajaju se zamjene alifatskih kiselina jedne za drugu Ala, Val, Leu te Ile; međusobne zamjene hidroksilnih ostataka ser i Thr, zamjene kiselih ostataka Asp i Glu, supstitucije među amino ostacima Asn i Gln, zamjene bazičnih ostataka Lys i Arg, te zamjene između aromatskih ostataka Phe, Tyr. Suitable variants include those that differ from natural NAB1 or NAB2 by conservative amino acid substitutions. Such substitutions replace a given amino acid in the polypeptide with another amino acid with similar properties. Typical conservative substitutions include replacing aliphatic acids Ala, Val, Leu and Ile; mutual substitutions of hydroxyl residues Ser and Thr, substitutions of acidic residues Asp and Glu, substitutions between amino residues Asn and Gln, substitutions of basic residues Lys and Arg, and substitutions between aromatic residues Phe, Tyr.

S ovog stajališta slijedeće posebno pogodne varijante, analozi, derivati i fragmenti, te varijante, analozi i derivati fragmenata imaju aminokiselinsku sekvenciju polipeptida u kojoj je supstituirano, obrisano ili dodano nekoliko, 5 do 10, 1 do 5, 1 do 3, 2, 1 ili pak nijedan aminokiselinski ostatak, u bilo kojoj kombinaciji. Posebno pogodne među njima su inaktivne supstitucije, adicije ili brisanja, koja ne mijenjaju svojstva i djelovanja polipeptida ovog izuma. Također su s ovog stajališta posebno pogodne konzervativne supstitucije. From this point of view, the following particularly suitable variants, analogues, derivatives and fragments, and variants, analogues and derivative fragments have an amino acid sequence of the polypeptide in which several, 5 to 10, 1 to 5, 1 to 3, 2, 1 have been substituted, deleted or added or else no amino acid residue, in any combination. Particularly suitable among them are inactive substitutions, additions or deletions, which do not change the properties and actions of the polypeptide of this invention. Conservative substitutions are also particularly suitable from this point of view.

Naročito pogodni fragmenti su biološki djelatni fragmenti, tj. fragmenti koji zadržavaju svojstva ishodnog polipeptida vezana uz zacjeljivanje rana. Particularly suitable fragments are biologically active fragments, i.e. fragments that retain the properties of the original polypeptide related to wound healing.

Pogodno je da se polipeptidi i polinukleotidi ovog izuma dobiju u izoliranom obliku, te da su po mogućnosti pročišćeni do homogenosti. It is convenient that the polypeptides and polynucleotides of this invention are obtained in isolated form, and that they are preferably purified to homogeneity.

NAB1 ili NAB2 polipeptidi koji se upotrebljavaju u ovom izumu uključuju NAB1 ili NAB2 polipeptide, kao i polipeptide koji imaju barem 70% identičnosti, te još pogodnije barem 80% identičnosti, te još pogodnije barem 90% identičnosti, te još pogodnije barem 95% sličnosti (još pogodnije barem 95% identičnosti) u odnosu na gore opisanu polipeptidnu sekvenciju, a također uključuju dijelove takvih polipeptida s takvim dijelovima polipeptida koji općenito sadržavaju najmanje 30 aminokiselina, odnosno još pogodnije, 50 aminokiselina. NAB1 or NAB2 polypeptides used in the present invention include NAB1 or NAB2 polypeptides, as well as polypeptides having at least 70% identity, and more preferably at least 80% identity, and more preferably at least 90% identity, and even more preferably at least 95% similarity ( more preferably at least 95% identity) to the polypeptide sequence described above, and also include portions of such polypeptides with such polypeptide portions generally containing at least 30 amino acids, or more preferably 50 amino acids.

Fragmenti ili dijelovi polipeptida ovog izuma mogu se upotrijebiti u proizvodnji odgovarajućih polipeptida potpune dužine pomoću peptidne sinteze; stoga, fragmenti se mogu upotrijebiti kao intermedijari u proizvodnji polipeptida potpune dužine (full lenght). Fragmenti ili dijelovi polinukleotida ovog izuma mogu se upotrijebiti u sintezi odgovarajućih polinukleotida potpune dužine. Fragments or parts of the polypeptides of the present invention can be used in the production of the corresponding full-length polypeptides by peptide synthesis; therefore, the fragments can be used as intermediates in the production of full-length polypeptides. Fragments or parts of polynucleotides of the present invention can be used in the synthesis of corresponding full-length polynucleotides.

Izum se također odnosi na upotrebu gore definiranih fragmenata NAB1 ili NAB2 polipeptida, te fragmenata ili varijanti i njihovih derivata. The invention also relates to the use of the above-defined fragments of NAB1 or NAB2 polypeptides, and fragments or variants and their derivatives.

S tog gledišta, fragment je polipeptid koji ima aminokiselinsku sekvenciju koja je u potpunosti jednaka dijelu, ali ne i cijeloj aminokiselinskoj sekvenciji NAB1 ili NAB2 polipeptida te varijantama i njihovim derivatima. From this point of view, a fragment is a polypeptide having an amino acid sequence that is completely identical to part, but not all, of the amino acid sequence of NAB1 or NAB2 polypeptides and variants and derivatives thereof.

Takvi fragmenti mogu biti “samostalni”, tj. nisu dio nečega, ili mogu biti spojeni s drugim aminokiselinama odnosno polipeptidima, ili pak mogu biti uključeni unutar većeg polipeptida u kojem tvore dio ili područje. Ako su uključeni u veći polipeptid, najpogodnije je kada ranije razmatrani fragmenti tvore pojedinačna kontinuirana područja. Na primjer, određene pogodne strukture odnose se na fragment ili polipeptid ovog izuma koji je uključen unutar prekursora polipeptida načinjenog za ekspresiju u domaćinu, a koji ima heterogena pre- i pro-polipeptidna područja spojena na amino terminus fragmenta, kao i dodatno područje spojeno na karboksilni terminus fragmenta. Stoga, fragmenti prema jednom aspektu označavaju dio ili dijelove polipeptida za spajanje ili proteina za spajanje koji je dobiven od polipeptida ovog izuma. Such fragments can be "independent", i.e. they are not part of something, or they can be joined with other amino acids or polypeptides, or they can be included within a larger polypeptide in which they form a part or region. If they are included in a larger polypeptide, it is most convenient when the previously discussed fragments form single continuous regions. For example, certain suitable structures relate to a fragment or polypeptide of the present invention that is included within a polypeptide precursor engineered for expression in the host, and which has heterogeneous pre- and pro-polypeptide regions fused to the amino terminus of the fragment, as well as an additional region fused to the carboxyl fragment terminus. Thus, fragments in one aspect refer to a portion or portions of a fusion polypeptide or fusion protein that is derived from a polypeptide of the present invention.

S tog aspekta također su pogodni fragmenti koje karakteriziraju strukturne ili funkcionalne značajke polipeptida ovog izuma. Pogodni spojevi ovog izuma, s ovog stajališta, uključuju fragmente koji obuhvaćaju područja alfa-uzvojnice i područja koja stvaraju alfa-uzvojnicu, područja beta-nabrane strukture i područja koja stvaraju beta-nabranu strukturu, područja zamjene i područja koja stvaraju područja zamjena, spiralna područja i područja koja stvaraju spiralu, hidrofilna područja, hidrofobna područja, alfa amfipatska područja, beta amfipatska područja, fleksibilna područja, područja koja stvaraju površinu, područja za vezanje supstrata, izrazita antigenska indeks područja polipeptida ovog izuma, te kombinacije takvih fragmenata. From this aspect, fragments that characterize the structural or functional features of the polypeptide of this invention are also suitable. Suitable compounds of this invention, from this point of view, include fragments comprising alpha-coil regions and alpha-coil-forming regions, beta-pleated regions and beta-pleated regions, substitution regions and substitution-forming regions, helical regions and helix forming regions, hydrophilic regions, hydrophobic regions, alpha amphipathic regions, beta amphipathic regions, flexible regions, surface forming regions, substrate binding regions, distinct antigenic index regions of the polypeptides of this invention, and combinations of such fragments.

Pogodna su ona područja koja djeluju na aktivnost polipeptida ovog izuma. Najpogodniji fragmenti s ovog stajališta su fragmenti koji imaju kemijsko, biološko ili neko drugo djelovanje polipeptida ovog izuma, uključujući one sa sličnim djelovanjem ili poboljšanim djelovanjem, ili sa smanjenim neželjenim djelovanjem. Daljnji pogodni polipeptidni fragmenti su oni koji uključuju ili sadržavaju antigenske ili imunogenske determinante kod životinja, a osobito kod ljudi. Those regions that affect the activity of the polypeptides of this invention are suitable. The most suitable fragments from this point of view are fragments that have a chemical, biological or other activity of the polypeptide of this invention, including those with similar activity or improved activity, or with reduced side effects. Further suitable polypeptide fragments are those which include or contain antigenic or immunogenic determinants in animals, particularly in humans.

Poželjno je također da se izum među ostalim odnosi na polinukleotide koji kodiraju gore spomenute fragmente, polinukleotide koji hibridiziraju polinukleotide koji kodiraju fragmente, posebno one koji hibridiziraju pod dobro utvrđenim uvjetima, te polinukleotide, poput PCR početka, za pojačavanje polinukleotida koji kodiraju fragmente. S tog gledišta, pogodni su oni polinukleotidi koji odgovaraju pogodnim fragmentima, kao što je gore opisano. It is also preferable that the invention relates, among others, to polynucleotides that encode the above-mentioned fragments, polynucleotides that hybridize polynucleotides that encode fragments, especially those that hybridize under well-established conditions, and polynucleotides, such as PCR primers, for amplifying polynucleotides that encode fragments. From this point of view, those polynucleotides which correspond to suitable fragments, as described above, are suitable.

Kod slijedećih spojeva, s obzirom na ovaj aspekt izuma, uključeni su biološke, profilaktičke, kliničke ili terapeutski korisne varijante, analozi ili njihovi derivati, ili njihovi fragmenti, uključujući fragmente varijanti, analoga i derivata, te mješavine koje uključuju isto. Biološki djelatne varijante, analozi ili fragmenti uključeni su u područje interesa ovog izuma. In the following compounds, with respect to this aspect of the invention, are included biological, prophylactic, clinically or therapeutically useful variants, analogs or derivatives thereof, or fragments thereof, including fragments of variants, analogs and derivatives, and mixtures including the same. Biologically active variants, analogs or fragments are included within the scope of the present invention.

Izum se također odnosi na mješavine koje uključuju gore razmatrane polinukleotide ili polipeptide. Stoga se polinukleotidi i polipeptidi ovog izuma mogu upotrijebiti zajedno s farmaceutski prihvatljivim vehiklom ili vehiklima. The invention also relates to mixtures including the polynucleotides or polypeptides discussed above. Therefore, the polynucleotides and polypeptides of the present invention may be used together with a pharmaceutically acceptable vehicle or vehicles.

Takvi vehikli mogu uključivati slane otopine, slane otopine pufera, dekstrozu, vodu, glicerol, etanol i njihove kombinacije, no nisu ograničeni samo na njih. Such vehicles may include, but are not limited to, saline, buffered saline, dextrose, water, glycerol, ethanol, and combinations thereof.

Polipeptidi i polinukleotidi mogu se upotrijebiti u ovom izumu pojedinačno ili u vezi s drugim spojevima, kao što su npr. terapeutski spojevi. Polypeptides and polynucleotides may be used in this invention alone or in conjunction with other compounds, such as, for example, therapeutic compounds.

Farmaceutske mješavine mogu se primijeniti na bilo koji djelotvoran način koji je u stanju prodrijeti do mjesta rane, uključujući među ostalim npr. lokalne, intravenske, intramuskularne, intranazalne ili intradermalne načine primjene. The pharmaceutical compositions may be administered by any effective means capable of penetrating the wound site, including, but not limited to, for example, topical, intravenous, intramuscular, intranasal, or intradermal routes of administration.

U liječenju, odnosno kao profilaksa, djelatna tvar može se dati pojedincu u obliku injekcije koja sadržava mješavinu, npr. sterilnu vodenu disperziju, po mogućnosti izotoničnu. In treatment, i.e. as prophylaxis, the active substance can be given to the individual in the form of an injection containing a mixture, for example a sterile aqueous dispersion, preferably isotonic.

Alternativno mješavine mogu biti pripravljene za lokalnu primjenu, npr. u obliku masti, krema, losiona, masti za oči, kapi za oči, kapi za uši, sredstava za ispiranje usta, impregniranih zavoja i konaca za šivanje rana, te aerosola, a mogu sadržavati odgovarajuće uobičajene aditive, uključujući npr. konzervanse, otapala koja omogućavaju prodiranje lijeka, te sredstva za umekšavanje u mastima i kremama. Takvi pripravci za lokalnu primjenu mogu također sadržavati kompatibilne, uobičajene vehikle, npr. podloge za kreme i masti, te etanol ili oleil alkohol za losione. Takvi vehikli mogu činiti od oko 1% do oko 98% mase pripravka; uobičajenije je da čine do oko 80% mase pripravka. Alternatively, the mixtures may be prepared for local application, e.g. in the form of ointments, creams, lotions, eye ointments, eye drops, ear drops, mouthwashes, impregnated bandages and sutures, and aerosols, and may contain appropriate common additives, including, for example, preservatives, solvents that enable drug penetration, and emollients in ointments and creams. Such preparations for topical application may also contain compatible, conventional vehicles, eg bases for creams and ointments, and ethanol or oleyl alcohol for lotions. Such vehicles can make up from about 1% to about 98% of the mass of the preparation; it is more common for them to make up to about 80% of the mass of the preparation.

Kod primjene na sisavcima, a posebno na ljudima, očekuje se da razina dnevne doze djelatne tvari iznosi od 0,01 mg/kg do 10 mg/kg, odnosno tipično 1 mg/kg. U svakom pojedinom slučaju liječnici će odrediti najpogodniju dozu za pojedinca, koja će varirati ovisno o dobi, masi i reakciji određene osobe. Gore navedene doze predstavljaju primjere prosječnih slučajeva. Naravno, mogu postojati individualni primjeri u kojima su potrebne više ili niže doze, a i oni spadaju u područje interesa ovog izuma. Konačno, doza koju je odabrala stručna osoba, mora smanjiti proliferaciju stanice, a da pri tome ne sprječava zacjeljivanje rana. When applied to mammals, and especially to humans, the daily dose level of the active substance is expected to be from 0.01 mg/kg to 10 mg/kg, or typically 1 mg/kg. In each individual case, doctors will determine the most suitable dose for an individual, which will vary depending on the age, weight and reaction of a particular person. The above doses represent examples of average cases. Of course, there may be individual examples in which higher or lower doses are required, and these too fall within the scope of the present invention. Finally, the dose selected by the expert must reduce cell proliferation without preventing wound healing.

Kao slijedeći aspekt, dobivena je farmaceutska mješavina koja uključuje NAB1 ili NAB2 polipeptid ili molekulu nukleinske kiseline koja uključuje sekvenciju koja kodira NAB1 ili NAB2 polipeptid, zajedno s jednim ili više njihovih farmaceutski prihvatljivih vehikla. As a further aspect, there is provided a pharmaceutical mixture comprising a NAB1 or NAB2 polypeptide or a nucleic acid molecule comprising a sequence encoding a NAB1 or NAB2 polypeptide, together with one or more pharmaceutically acceptable vehicles thereof.

Terapeutska prednost upotrebe proteinskog represora transkripcije u zacjeljivanju rana je u deaktivaciji višestrukog ciljanog gena koji unapređuje ubrzano zacjeljivanje. NAB1 ili NAB2 je prirodno aktiviran u reakciji na ranu, a povećavanje prirodne reakcije također predstavlja prednost. Liječenje se temelji na DNA te omogućava pouzdan i ponovljiv sustav dostave. The therapeutic advantage of using a protein transcription repressor in wound healing is the deactivation of multiple target genes that promote accelerated healing. NAB1 or NAB2 is naturally activated in the wound response, and augmenting the natural response is also an advantage. The treatment is based on DNA and enables a reliable and repeatable delivery system.

Tamo gdje se upotrebljava NAB1 ili NAB2 polinukleotid u terapeutskom postupku ovog izuma, može se upotrijebiti polinukleotid kao dio ekspresijske konstrukcije u obliku vektora ekspresije. U takvom postupku, konstrukcija se uvodi na mjesto rane gdje se NAB1 ili NAB2 proizvode in situ. Konstrukcije koje se koriste mogu biti standardni vektori i/ili sustavi dostave gena, kao što su liposomi, sustavi dostave kojima posreduje receptor i virusni vektori. Where a NAB1 or NAB2 polynucleotide is used in a therapeutic method of the present invention, the polynucleotide may be used as part of an expression construct in the form of an expression vector. In such a procedure, the construct is introduced into the wound site where NAB1 or NAB2 is produced in situ. The constructs used can be standard vectors and/or gene delivery systems, such as liposomes, receptor-mediated delivery systems, and viral vectors.

Ovaj izum je pogodan za sve aspekte liječenja rana uključujući gnojenje udova kod dijabetesa i bolest periferne arterijske okluzije, postoperativne ožiljke, opekotine, psorijazu, inhibiciju restenoze nakon koje slijedi perkutana transluminalna koronarna angioplastika, modulacija kalcifikacije stijenki žila, te inhibicija stanične proliferacije raka. This invention is suitable for all aspects of wound treatment including limb suppuration in diabetes and peripheral arterial occlusion disease, postoperative scars, burns, psoriasis, inhibition of restenosis followed by percutaneous transluminal coronary angioplasty, modulation of vessel wall calcification, and inhibition of cancer cell proliferation.

Kao što je gore opisano, NAB1 ili NAB2 polipeptidi ili nukleinske kiseline ovog izuma mogu se primijeniti lokalno na mjestu oštećenja tkiva bilo kojim uobičajenim postupkom, npr. topičkom primjenom. Pogodan način primjene proizvoda koji sadržavaju nukleinsku kiselinu predstavlja upotreba genske pištolj (“gun”) tehnologije u kojoj je izolirana molekula Egr-1 nukleinske kiseline, npr. u obliku cDNA ili vektora ekspresije, imobilizirana na česticama zlata, te “ispaljena” direktno na mjesto ranjavanja. Stoga, pogodan aspekt ovog izuma predstavlja omogućavanje upotrebe molekula nukleinske kiseline koja uključuje sekvenciju koja kodira NAB1 ili NAB2 polipeptid u “genskom pištolju” u svrhu liječenja poremećaja stanične proliferacije povezanih sa zacjeljivanjem rana. Nadalje, dobivena je mješavina pogodna za gensku pištolj (“gun”) terapiju koja uključuje NAB1 ili NAB2 kodirajuću sekvenciju imobiliziranu na česticama zlata. As described above, the NAB1 or NAB2 polypeptides or nucleic acids of the invention can be administered locally at the site of tissue damage by any conventional method, eg, topical application. A suitable way of applying products containing nucleic acid is the use of gene gun ("gun") technology in which the Egr-1 nucleic acid molecule is isolated, e.g. in the form of cDNA or expression vector, immobilized on gold particles, and "fired" directly at the site injuries. Therefore, a convenient aspect of the present invention is to enable the use of nucleic acid molecules that include the sequence encoding the NAB1 or NAB2 polypeptide in a “gene gun” for the treatment of cell proliferation disorders associated with wound healing. Furthermore, a mixture suitable for gene gun ("gun") therapy was obtained which includes the NAB1 or NAB2 coding sequence immobilized on gold particles.

Ovaj izum biti će sada opisan pomoću slijedećih neograničavajućih primjera sa referencijama u odnosu na popratne slike, gdje je: The present invention will now be described by means of the following non-limiting examples with reference to the accompanying figures, where:

Slike 1a) -1d). redom prikazuju represiju aktivacije spojeva PDGF-AB, TGFβ, HGF i VEGF do koje dolazi posredovanjem Egr-1; Figures 1a)-1d). respectively, they show the repression of the activation of PDGF-AB, TGFβ, HGF and VEGF compounds, which occurs through the mediation of Egr-1;

Slika 2 opisuje NAB2 trans-represiju HGF proizvodnje do koje dolazi posredovanjem Egr-1; Figure 2 describes NAB2 trans-repression of HGF production mediated by Egr-1;

Slika 3 opisuje učinak NAB2 na angiogenezu kojom upravlja Egr-1; Figure 3 describes the effect of NAB2 on Egr-1-driven angiogenesis;

Slika 4a opisuje učinak NAB2 transfekcije na linearno skraćivanje posjekotine sedam dana nakon ranjavanja; Figure 4a depicts the effect of NAB2 transfection on linear wound shortening seven days after wounding;

Slika 4b opisuje učinak NAB2 transfekcije na razine faktora rasta u epidermi štakora sa 7 dana starim posjekotinama; Figure 4b describes the effect of NAB2 transfection on growth factor levels in rat epidermis with 7-day-old cuts;

Slika 4c opisuje učinak NAB2 transfekcije na razine faktora rasta u granulacijskom tkivu štakora sa 7 dana starim posjekotinama; Figure 4c describes the effect of NAB2 transfection on growth factor levels in the granulation tissue of rats with 7-day-old cuts;

Slika 4d opisuje učinak NAB2 transfekcije na angiogenezu kod štakora sa 7 dana starim posjekotinama; Figure 4d describes the effect of NAB2 transfection on angiogenesis in rats with 7-day-old cuts;

Primjeri Examples

Primjer 1 Example 1

Upotreba NAB2 za represiju trans-aktivacije faktora rasta do koje dolazi posredovanjem Egr-1; Use of NAB2 to repress growth factor trans-activation mediated by Egr-1;

1.1 Postupci 1.1 Procedures

Ljudske stanice glatkih mišića krvnih žila (HVSM; Clonetics) uzgojene su prema preporuci proizvođača. Stanice su uzgojene za transfekciju u mikrotitarskim pločama sa 6 jažica (Costar). Ekspresijski plazmid koji uključuje NAB2 cDNA dobiven od promotora humanog citomegalovirusa (hCMV; Svaren i suradnici, Mol. Cell. Biol., 16; 3545-3553, 1996) transfektriran je skupa s ekspresijskim plazmidom koji uključuje Egr-1 cDNA (Houston i suradnic, Arterioscler. Thromb. Vasc. Biol., 19; 281-289, 1999) u HVSMCu omjerima opisanim u slikama pomoću FUGENE (Boehringer Mannheim). Za sve pokuse upotrijebljen je 3:1 omjer (v/m) FUGENE:DNA, a transfekcija se normalizira upotrebom β-galaktozid ekspresijskog plazmida dobivenog od CMV. Izlučeni faktori rasta detektirani su u kulturi tkiva pomoću ELISA (R&D Systems) upotrebom odgovarajućih kontrola. Human vascular smooth muscle cells (HVSM; Clonetics) were cultured according to the manufacturer's recommendation. Cells were grown for transfection in 6-well microtiter plates (Costar). An expression plasmid including NAB2 cDNA derived from the promoter of human cytomegalovirus (hCMV; Svaren et al., Mol. Cell. Biol., 16; 3545-3553, 1996) was co-transfected with an expression plasmid including Egr-1 cDNA (Houston et al., Arterioscler. Thromb. Vasc. Biol., 19; 281-289, 1999) in HVSMC at ratios described in the figures using FUGENE (Boehringer Mannheim). A 3:1 ratio (v/m) of FUGENE:DNA was used for all experiments, and transfection was normalized using a CMV-derived β-galactoside expression plasmid. Secreted growth factors were detected in tissue culture by ELISA (R&D Systems) using appropriate controls.

1.2 Rezultati 1.2 Results

Slike 1a). do 1d). prikazuju po redu represiju aktivacije spojeva PDGF-AB, TGFβ, HGF i VEGF do koje dolazi posredovanjem Egr-1. 6 μg Egr-1 ekspresijskog plazmida kontransfektirano je ili pojedinačno (Slika 1a, Slika 1b, Slika 1d), ili s 500, 100 ili 25 ng NAB2 (Slika 1a i Slika 1d). Za PDGF-AB, TGFβ i VEGF uočeno je malo povećanje količine detektiranog izlučenog faktora rasta kada se Egr-1 transfektira samostalno. Kod ko-transfekcije došlo je do potpunog nestanka reakcije PDGF-AB na aktivaciju Egr-1, te do smanjenja osnovne ekspresije koja dovodi do peterostrukog smanjenja ukupne proizvodnje TGFβ (Slika 1a). NAB2 transfekcija u cijelosti je poništila reakciju TGFβ na aktivaciju Egr-1, te je prouzročila 30% smanjenje proizvodnje ukupnog TGFβ (Slika 1b). Upotrebom DNA koncentracija prikazanih na slici, Egr-1 transfekcija prouzrokovala je 50%-tno povećanje proizvodnje HGF koje je djelomično blokirano ko-transfekcijom niske doze NAB2, te potpuno blokirano višom dozom (Slika 1c). Najveću učinak zamijećen je 1. dan nakon transfekcije, iako su bili očiti inhibitorski učinci 2. i 3. dan. NAB2 transfekcija, kao i PDGF-AB i TGFβ transfekcije, blokirala je aktivaciju VEGF do koje dolazi posredovanjem Egr-1, te je prouzrokovala 40%-tno smanjenje količine ukupno proizvedenog VEGF (Slika 1d). Figures 1a). to 1d). show, in order, the repression of the activation of PDGF-AB, TGFβ, HGF and VEGF compounds, which is mediated by Egr-1. 6 μg of Egr-1 expression plasmid was countertransfected either alone (Figure 1a, Figure 1b, Figure 1d), or with 500, 100 or 25 ng of NAB2 (Figure 1a and Figure 1d). For PDGF-AB, TGFβ and VEGF, a small increase in the amount of detected secreted growth factor was observed when Egr-1 was transfected alone. In case of co-transfection, there was a complete disappearance of the PDGF-AB reaction to Egr-1 activation, and a decrease in the basic expression, which leads to a fivefold decrease in the total production of TGFβ (Figure 1a). NAB2 transfection completely abrogated the TGFβ response to Egr-1 activation, and caused a 30% reduction in total TGFβ production (Figure 1b). Using the DNA concentrations shown in the figure, Egr-1 transfection caused a 50% increase in HGF production, which was partially blocked by co-transfection of a low dose of NAB2, and completely blocked by a higher dose (Figure 1c). The greatest effect was observed on the 1st day after transfection, although inhibitory effects were evident on the 2nd and 3rd day. NAB2 transfection, as well as PDGF-AB and TGFβ transfections, blocked the activation of VEGF mediated by Egr-1, and caused a 40% decrease in the amount of total VEGF produced (Figure 1d).

1.3 Zaključak 1.3 Conclusion

Ovi podaci pokazuju da Egr-1 supresor NAB2 blokira aktivaciju faktora rasta do koje dolazi posredovanjemEgr-1, kao što je pronađeno na mjestima akutne ozljede. These data indicate that the Egr-1 suppressor NAB2 blocks Egr-1-mediated activation of growth factors, as found at sites of acute injury.

Primjer 2 Example 2

Upotreba NAB2 za represiju bazalnih razina faktora rasta Use of NAB2 to repress basal levels of growth factors

2.1 Postupci 2.1 Procedures

Stanična kultura, transfekcija i detekcija faktora rasta provedena je kao što je opisano u gornjem dijelu 1.1. NAB2 vektor ekspresije transfektiran je u konačnim koncentracijama od 0, 250, 500, 1000 ili 3000 ng. Cell culture, transfection and detection of growth factors were performed as described in section 1.1 above. NAB2 expression vector was transfected at final concentrations of 0, 250, 500, 1000 or 3000 ng.

2.2 Rezultati 2.2 Results

Kao što je prikazano na Slici 2a, transfekcija NAB2 u HVSCM prouzrokovala je drastično smanjenje proizvodnje PDGF-AB. Kod najveće doze NAB2, postignuto je deseterostruko smanjenje PDGF-AB. As shown in Figure 2a, transfection of NAB2 in HVSCM caused a drastic reduction in PDGF-AB production. At the highest dose of NAB2, a tenfold reduction in PDGF-AB was achieved.

2.3 Zaključak 2.3 Conclusion

Ovi podaci pokazuju da Egr-1 supresor može smanjiti bazalnu razinu faktora rasta koje proizvode oba PDGF-AB promotora. These data indicate that an Egr-1 suppressor can reduce the basal level of growth factors produced by both PDGF-AB promoters.

Primjer 3 Example 3

Upotreba NAB za represiju indukcije angiogeneze in vitro Use of NAB to repress angiogenesis induction in vitro

3.1 Postupci 3.1 Procedures

Opisane su NAB2 ekspresijske konstrukcije (divlji tip i dominantno negativan) dobivene od hCMV promotora (Svaren i suradnici, EMBO J. 17;6010-6019, 1998). Pokazali smo da transfekcija Egr-1 transkripcijskog faktora, kada je izvršena njegova ekspresija iz hCMV promotora, unapređuje angiogenezu (Patentna registracija PG3412). U ovim pokusima DNA je transfektiran u angiogenetski kit kao što je propisano uputama proizvođača o opskrbi i održavanju (TCS Biologicals). VEGF protein (2 ng/ml) koristi se kao kontrola, a suramin (20 μM) kao inhibitor angiogeneze. CMV Egr-1 DNA transfektirana je u tri primjerka u količini od 0,5 μg po mjestu u mikrotitarskim posudama sa 24 mjesta uz upotrebu MirusTransit reagensa (Cambridge Biosciences) u omjeru od 2:1 v/m DNA. Za određivanje NAB2 potencijala za represiju angiogeneze do koje dolazi posredstvom Egr-1, kotrasfektirano je 0,5 mg Egr-1 DNA zajedno s 10, 25 ili 100 ng NAB2 ekspresijskog plazmida po mjestu u odsutnosti ili prisustvu 100 ng NAB2 dominantnog negativnog ekspresijskog plazmida. Nakon 11 dana angiogeneza kokulture određena je bojanjem stanica s endotelijskim staničnim markerom PECAM-1 i vizualizacijom pomoću BCIP/NBT supstrata. NAB2 expression constructs (wild type and dominant negative) derived from the hCMV promoter have been described (Svaren et al., EMBO J. 17;6010-6019, 1998). We have shown that transfection of the Egr-1 transcription factor, when its expression was performed from the hCMV promoter, enhances angiogenesis (Patent registration PG3412). In these experiments, DNA was transfected into an angiogenetic kit as prescribed by the manufacturer's supply and maintenance instructions (TCS Biologicals). VEGF protein (2 ng/ml) is used as a control, and suramin (20 μM) as an angiogenesis inhibitor. CMV Egr-1 DNA was transfected in triplicate at 0.5 μg per site in 24-well microtiter plates using MirusTransit reagent (Cambridge Biosciences) at a ratio of 2:1 v/m DNA. To determine NAB2's potential for Egr-1-mediated repression of angiogenesis, 0.5 mg of Egr-1 DNA was cotransfected together with 10, 25, or 100 ng of NAB2 expression plasmid per site in the absence or presence of 100 ng of NAB2 dominant negative expression plasmid. After 11 days, coculture angiogenesis was determined by staining cells with the endothelial cell marker PECAM-1 and visualization using BCIP/NBT substrate.

Reprezentativne slike nastajanja cjevčice upotrebom sva četiri Egr-1 ekspresijska plazmida zajedno s VEGF (pozitivna kontrola) i suraminom (negativna kontrola) snimljene su i procesuirane Quantiment 600 analizatorom slika i pripadajući softverom. Representative images of tube formation using all four Egr-1 expression plasmids together with VEGF (positive control) and suramin (negative control) were captured and processed with a Quantiment 600 image analyzer and associated software.

3.2 Rezultati 3.2 Results

Za Egr-1 DNA pokazano je da je pro-angiogenik u Internacionalnoj patentnoj prijavi broj PCT.GB99.01722 (kao što je prikazano na stupcu 4 Slike 3a.). Kao što je prikazano na Slici 3a, ko-transfekcija s NAB2 prouzrokovala je smanjenje sposobnosti Egr-1 da inducira angiogenezu ovisno o dozi, koja se posebice smanjivala ko-transfekcijom s dominantno negativnim NAB2. Egr-1 DNA has been shown to be pro-angiogenic in International Patent Application No. PCT.GB99.01722 (as shown in column 4 of Figure 3a). As shown in Figure 3a, co-transfection with NAB2 caused a dose-dependent reduction in the ability of Egr-1 to induce angiogenesis, which was particularly reduced by co-transfection with dominant negative NAB2.

3.3 Zaključak 3.3 Conclusion

NAB2 se može upotrebljavati za blokiranje angiogeneze u pozadini akutne ozljede, primjer čega je indukcija faktor rasta pomoću Egr-1. NAB2 can be used to block angiogenesis in the setting of acute injury, exemplified by growth factor induction by Egr-1.

Primjer 4 Example 4

Upotreba NAB2 za smanjivanje ožiljaka kod glodavca s posjekotinom Use of NAB2 to reduce scarring in cut rodents

4.1 Postupci 4.1 Procedures

4.1.1 Učinak NAB2 transfekcije upotrebom “gene gun”na razine faktora rasta kod posjekotina na štakoru 4.1.1 Effect of NAB2 transfection using the "gene gun" on growth factor levels in rat cuts

NAB2 transfekcija u posjekotine na glodavcima može imati potencijal uklanjanja ožiljaka preko svojeg izravnog supresivnog djelovanja na ekspresiju ključnih faktora rasta za brazgotine, kao što je TGFβ1. U ovom pokusu, NAB2 cDNA transfektirana je u posjekotine na štakoru pomoću Biorad “gene gun”, a učinci na zacjeljivanje i razine faktora rasta određene su rutinskim histološkim i imunokemijskim postupcima. NAB2 transfection into rodent incisions may have scar removal potential through its direct suppressive effect on the expression of key scar growth factors, such as TGFβ1. In this experiment, NAB2 cDNA was transfected into rat wounds using a Biorad “gene gun”, and the effects on healing and growth factor levels were determined by routine histological and immunochemical procedures.

4.1.2 Transfer gena posredstvom čestica 4.1.2 Gene transfer by means of particles

Osmorici mužjaka Sprague Dawley štakora mase oko 250 g dana je anestezija izoflorana u smjesi 2:1 smjese kisik/dušik(I)-oksid. Dva mjesta transfekcije (5 cm od baze lubanje, 1,5 cm s obje strane od sredine) i 2 kontrolna mjesta (8 cm od baze lubanje, 1,5 cm s obje strane od sredine) na leđima štakora napravljena su rezanjem kože, a zatim brijanjem brijaćim preparatom. Transfekcija se izvede u kožu na svakom mjestu transfekcije pomoću kompleksa kojeg čine ubrzavajući (accelerating) plazmid/zlato i NAB2 ili Egr-1 (pozitivna kontrola aktivacije faktor rasta) pri tlaku od 350 psi. Uobičajeno je da se aplicira 0,5-1,5 μg DNA po transfekciji. Na jednom kontrolnom mjestu, čestice zlata akceleriraju se u kožu pri tlaku od 350 psi, na drugom kontrolnom mjestu nije bilo manipulacije. Mjesta transfekcije i kontrolna mjesta rotiraju se u smjeru kazaljke na satu kod svake slijedeće životinje kako bi se kontrolirale anteriorno-posteriorne razlike zacjeljivanja rana kod glodavaca. Eight male Sprague Dawley rats weighing about 250 g were anesthetized with isofluorane in a 2:1 mixture of oxygen/nitrous(I)-oxide. Two transfection sites (5 cm from the base of the skull, 1.5 cm on either side of the center) and 2 control sites (8 cm from the base of the skull, 1.5 cm on either side of the center) on the back of rats were made by cutting the skin, and then shaving with shaving preparation. Transfection is performed in the skin at each transfection site using an accelerating plasmid/gold complex and NAB2 or Egr-1 (positive control growth factor activation) at a pressure of 350 psi. It is usual to apply 0.5-1.5 μg of DNA per transfection. In one control site, gold particles are accelerated into the skin at a pressure of 350 psi, in another control site there was no manipulation. Transfection sites and control sites are rotated clockwise in each subsequent animal to control for anterior-posterior differences in wound healing in rodents.

4.1.3 Model zacjeljivanja posjekotina 4.1.3 Model of wound healing

Dvadeset i četiri sata nakon transfekcije, životinjama se da anestezija, te se načini linearni rez širok 1 cm paralelan s kičmom pomoću skalpela točno na mjestima transfekcije. Pusti se da se životinje probude iz anestezije te da rane zacijele bez šivanja. 7. dan nakon ranjavanja svih 8 životinja je ubijeno, a rane se izdvoje seciranjem, te koriste za rutinske histološke i imunokemijske postupke. Twenty-four hours after transfection, the animals are anesthetized, and a 1 cm wide linear incision parallel to the spine is made using a scalpel exactly at the transfection sites. Allow the animals to wake up from anesthesia and allow the wounds to heal without suturing. On the 7th day after wounding, all 8 animals were killed, and the wounds were dissected and used for routine histological and immunochemical procedures.

4.1.4 Histološka analiza 4.1.4 Histological analysis

Svaka se rana u određeno vrijeme nakon sekcije razdijeli horizontalno na dva dijela. Jedna se polovina stavi u 4%-tni paraformaldehid tijekom 24 sata, te upotrijebi u voštanoj histologiji. Izrežu se 5 milimetarske sekcije od svake rane pomoću mikrotoma, te se sekcije oboje pomoću van Geison. Sekcije se promatraju pod svjetlosnim mikroskopom, te se odredi učinak NAB2 na reakciju zacjeljivanja. Each wound is divided horizontally into two parts at a certain time after sectioning. One half is placed in 4% paraformaldehyde for 24 hours and used in wax histology. 5 millimeter sections are cut from each wound using a microtome, and these sections are stained using a van Geison. The sections are observed under a light microscope, and the effect of NAB2 on the healing reaction is determined.

4.1.5 Imunohistokemija 4.1.5 Immunohistochemistry

Druga polovina ukupnih rana smrzne se u OCT, te secira na 7 mm pomoću kriostata. Dvije sekcije od svake rane učvrste se u ledeno hladnom acetonu, te se provede fluorescentno imunobojanje s primarnim antitijelima na Egr-1, PDGF, TGFβ1, TGFβ3 i vWF prema slijedećem postupku The other half of the total wounds are frozen in OCT, and dissected at 7 mm using a cryostat. Two sections from each wound are fixed in ice-cold acetone, and fluorescent immunostaining with primary antibodies to Egr-1, PDGF, TGFβ1, TGFβ3 and vWF is performed according to the following procedure

1. Operi objektno mikroskopsko stakalce s PBS 1. Wash microscope slides with PBS

2. Nanesi 30 ml primarnog antitijela tijekom 1 sata 2. Apply 30 ml of primary antibody over 1 hour

3. Isperi 3 puta po 5 minuta s PBS 3. Wash 3 times for 5 minutes with PBS

4. Nanesi 30 ml sekundarnih antitijela tijekom 45 minuta (izravno povezanih na FICT) 4. Apply 30 ml of secondary antibodies for 45 minutes (directly linked to FICT)

5. Isperi 3 puta po 5 minuta s PBS 5. Wash 3 times for 5 minutes with PBS

6. Nalijepi objektno mikroskopsko stakalce pomoću vodenog lijepila 6. Glue the object microscope slide using water glue

Odmah nakon imunobojanja svako stakalce stavi se pod fluorescentni mikroskop, te se snimaju površine rana pomoću stopostotnog povećanja. Slika se integrira, te se korigira šum kao bi se minimalizirala pozadina. Površina i intenzitet obojenja mjere se pomoću analizatora slika, te se grafički iscrtavaju. Immediately after immunostaining, each slide is placed under a fluorescent microscope, and the surface of the wounds is recorded using 100% magnification. The image is integrated, and the noise is corrected to minimize the background. The area and intensity of staining are measured using an image analyzer, and plotted graphically.

4.2 Rezultati 4.2 Results

4.2.1 Učinak NAB2 na zacjeljivanje rana kod štakora 4.2.1 Effect of NAB2 on wound healing in rats

4.2.1.1 Kontrakcija rane i histološka analiza sedmodnevne rane 4.2.1.1 Wound contraction and histological analysis of the seven-day wound

Prema Slici 4a, rane koje se liječe s NAB2 kontrahiraju se na sličnu veličinu kao i one koje su transfektirane s Egr-1, te kao kontrolne rane, a histološki imaju sličnu zrelost kao granulacijsko tkivo. According to Figure 4a, wounds treated with NAB2 contract to a similar size as those transfected with Egr-1 and as control wounds, and histologically they have a similar maturity as granulation tissue.

Zaključak Conclusion

Primjena NAB2 ne slabi brzinu zacjeljivanja promatranu na modelu zacjeljivanja posjekotina kod glodavaca. Administration of NAB2 does not impair the rate of healing observed in a rodent wound healing model.

4.2.1.2 Dijagrami faktora rasta 4.2.1.2 Diagrams of growth factors

Imunobojenje spojeva Egr-1, TGFβ1, TGFβ3, te PDGF-AB izvodi se na smrznutim kriosekcijama kožnog tkiva na mjestima rana, a intenzitet obojenja svakog pojedinog faktora rasta mjeri se pomoću analizatora slika. Izvode se dva odvojena imunohistokemijska mjerenja na mjestu rane. Ispituje se ekspresija faktora rasta u sekcijama i u epidermi odmah iznad rane i u epidermi unutar mjesta rane (granulacijsko tkivo). Immunostaining of compounds Egr-1, TGFβ1, TGFβ3, and PDGF-AB is performed on frozen cryosections of skin tissue at wound sites, and the staining intensity of each individual growth factor is measured using an image analyzer. Two separate immunohistochemical measurements are performed at the wound site. Growth factor expression is examined in sections and in the epidermis immediately above the wound and in the epidermis within the wound site (granulation tissue).

a) pozitivno obojenje za faktore rasta u epidermi a) positive staining for growth factors in the epidermis

Kao što je prikazano na Slici 4b, sedmi dan nakon ranjavanja značajno se smanjila ekspresija TGFβ1 u epidermi u usporedbi s Egr-1 kontrolom i zlatom. U usporedbi s nemanipuliranom kontrolom, NAB2 transfekcija smanjuje ekspresiju TGFβ1 u epidermi, budući da aplikacija Egr-1 kao i aplikacija zlata aktiviraju proizvodnju TGFβ1. NAB2 transfekcija povećava razine TGFβ3 u epidermi u usporedbi s zlatom i nemanipuliranim kontrolama. NAB2 transfekcija nije značajno promijenila epidermalnu ekspresiju Egr-1 i PDGF. As shown in Figure 4b, at the seventh day after wounding, the expression of TGFβ1 in the epidermis was significantly decreased compared to Egr-1 control and gold. Compared to the unmanipulated control, NAB2 transfection reduces TGFβ1 expression in the epidermis, since Egr-1 application as well as gold application activates TGFβ1 production. NAB2 transfection increases TGFβ3 levels in the epidermis compared with gold and unmanipulated controls. NAB2 transfection did not significantly change the epidermal expression of Egr-1 and PDGF.

b) pozitivno obojenje za faktore rasta u granulacijskom tkivu b) positive staining for growth factors in granulation tissue

Kao što je prikazano na Slici 4c, sedmi dan nakon ranjavanja NAB2 transfekcija nije imala utjecaj na razine Egr-1, PDGF-AB i TGFβ1 u granulacijskom tkivu. NAB2 povećava razine TGFβ3 u granulacijskom tkivu u usporedbi s zlatom i nemanipuliranim kontrolama. As shown in Figure 4c, on the seventh day after wounding NAB2 transfection had no effect on the levels of Egr-1, PDGF-AB and TGFβ1 in the granulation tissue. NAB2 increases TGFβ3 levels in granulation tissue compared to gold and non-manipulated controls.

Zaključak Conclusion

NAB2 transfekcija posjekotina smanjuje razine TGFb1 u epidermi i povećava razine TGFβ3 u epidermi i granulacijskom tkivu sedam dana nakon ranjavanja. Poznato je da TGFβ1 odgovoran za stvaranje ožiljaka, dok TGFβ3 posjeduje svojstva kojima se onemogućava nastajanje ožiljaka (Shah i suradnici, J. Cell Science 107; 1137-1157, 1994). Stoga, dostava NAB2 može imati svojstva koja onemogućavaju nastajanje ožiljaka. NAB2 transfection of wounds decreases TGFb1 levels in the epidermis and increases TGFβ3 levels in the epidermis and granulation tissue seven days after wounding. TGFβ1 is known to be responsible for scar formation, while TGFβ3 has anti-scarring properties (Shah et al., J. Cell Science 107; 1137-1157, 1994). Therefore, NAB2 delivery may have anti-scarring properties.

4.2.2 Učinak NAB2 na angiogenezu 4.2.2 Effect of NAB2 on angiogenesis

Sedam dana nakon ranjavanja, obojane su sekcije kože i označene urezanim crtama za vWF ekspresiju upotrebljavajući imunohistokemijske postupke i analizator slika. Angiogeneza se kvantificira koristeći imunobojenje von Willebrandovog faktora na kriosekcijama rana i analizu slika kako bi se mjerila površina pozitivnog obojenja unutar mjesta rane. Kao što je prikazano na Slici 4d, 7 dana nakon ranjavanja NAB2 transfektirane rane imale su manje novih krvnih žila u usporedbi s kontrolom (rane liječene zlatom). Egr-1 unapređuje angiogenezu in vivo, potpomažući in vitro otkrića iz Primjera 3. Seven days after wounding, skin sections were stained and marked with scored lines for vWF expression using immunohistochemical procedures and an image analyzer. Angiogenesis is quantified using von Willebrand factor immunostaining on wound cryosections and image analysis to measure the area of positive staining within the wound site. As shown in Figure 4d, 7 days after wounding, NAB2-transfected wounds had fewer new blood vessels compared to controls (gold-treated wounds). Egr-1 promotes angiogenesis in vivo, supporting the in vitro findings of Example 3.

Zaključak Conclusion

NAB2 blokira aktivaciju angiogeneze in vivo koju stimulira Erb-1, čime potpomaže ulogu NAB2 kao represora aktivacije faktora rasta kada njime upravljaju akutni stimulansi, čiji je primjer Egr-1 aktivacija proizvodnje faktora rasta. NAB2 blocks Erb-1-stimulated activation of angiogenesis in vivo, thereby supporting NAB2's role as a repressor of growth factor activation when driven by acute stimuli, exemplified by Egr-1 activation of growth factor production.

Claims (22)

1. Upotreba molekule nukleinske kiseline, naznačena time, da uključuje sekvenciju koja kodira NAB1 ili NAB2 polipeptid, ili njihov biološki djelatan fragment, u proizvodnji lijeka za liječenje poremećaja stanične proliferacije povezanih sa zacjeljivanjem rana kod sisavaca, uključujući i čovjeka.1. Use of a nucleic acid molecule, characterized in that it includes a sequence encoding a NAB1 or NAB2 polypeptide, or a biologically active fragment thereof, in the manufacture of a medicament for the treatment of cell proliferation disorders associated with wound healing in mammals, including humans. 2. Upotreba, kao što je zahtijevano u zahtjevu 1, naznačena time, da su NAB1 ili NAB2 polipeptidi humani NAB1 ili NAB2 polipeptid.2. Use as claimed in claim 1, wherein the NAB1 or NAB2 polypeptide is a human NAB1 or NAB2 polypeptide. 3. Upotreba, kao što je zahtijevano u bilo kojem od zahtjeva 1-2, naznačena time, da poremećaji stanične proliferacije povezani sa zacjeljivanjem rana predstavljaju hipertrofno i keloidno nastajanje ožiljaka.3. Use as claimed in any one of claims 1-2, characterized in that the cell proliferation disorders associated with wound healing represent hypertrophic and keloid scarring. 4. Upotreba, kao što je zahtijevano u bilo kojem od zahtjeva 1-3, naznačena time, da je molekula nukleinske kiseline operativno povezana sa sekvencijom nukleinske kiseline koja kontrolira ekspresiju.4. Use as claimed in any of claims 1-3, wherein the nucleic acid molecule is operably linked to a nucleic acid sequence that controls expression. 5. Upotreba, kao što je zahtijevano u bilo kojem od zahtjeva 1-4, naznačena time, da je molekula nukleinske kiseline barem 70%, odnosno 80%, odnosno 90%, odnosno 95% identična u cijeloj svojoj dužini u odnosu na NAB1 ili NAB2 polinukleotidnu sekvenciju.5. Use as claimed in any one of claims 1-4, characterized in that the nucleic acid molecule is at least 70%, respectively 80%, respectively 90%, respectively 95% identical over its entire length to NAB1 or NAB2 polynucleotide sequence. 6. Upotreba prema bilo kojem od zahtjeva 1-5, naznačena time, da uključuje kombinaciju molekula nukleinske kiseline koje obuhvaćaju sekvenciju koja kodira i NAB1 i NAB2 polipeptid, ili njihove biološki djelatne fragmente.6. Use according to any one of claims 1-5, characterized in that it includes a combination of nucleic acid molecules comprising a sequence encoding both NAB1 and NAB2 polypeptides, or biologically active fragments thereof. 7. Upotreba kao što je zahtijevano u bilo kojem od zahtjeva 1-5, naznačena time, da molekula nukleinske kiseline uključuje sekvenciju koja kodira NAB2 polipeptid, ili njegov biološki djelatni fragment.7. Use as claimed in any one of claims 1-5, characterized in that the nucleic acid molecule includes a sequence encoding a NAB2 polypeptide, or a biologically active fragment thereof. 8. Upotreba kao što je zahtijevano u bilo kojem od zahtjeva 1-7, naznačena time, da molekula nukleinske kiseline je fizikalnim postupcima prilagođena za primjenu kod sisavaca.8. Use as claimed in any one of claims 1-7, characterized in that the nucleic acid molecule is physically adapted for use in mammals. 9. Upotreba kao što je zahtijevano u zahtjevu 8, naznačena time, da je molekula nukleinske kiseline bombardiranjem česticama prilagođena za primjenu kod sisavaca.9. Use as claimed in claim 8, characterized in that the nucleic acid molecule is adapted for use in mammals by particle bombardment. 10. Upotreba kao što je zahtijevano u zahtjevu 9, naznačena time, da je molekula nukleinske kiseline imobilizirana na česticama zlata.10. Use as claimed in claim 9, characterized in that the nucleic acid molecule is immobilized on gold particles. 11. Upotreba kao što je zahtijevano u zahtjevu 8, naznačena time, da je molekula nukleinske kiseline mikrocijepljenjem prilagođena za primjenu kod sisavaca.11. Use as claimed in claim 8, characterized in that the nucleic acid molecule is adapted for use in mammals by microinoculation. 12. Upotreba kao što je zahtijevano u bilo kojem od zahtjeva 1-7, naznačena time, da je molekula nukleinske kiseline u vektoru.12. Use as claimed in any of claims 1-7, wherein the nucleic acid molecule is in a vector. 13. Upotreba kao što je zahtijevano u bilo kojem od zahtjeva 1-7, naznačena time, da je molekula nukleinske kiseline naznačena u stanici.Use as claimed in any of claims 1-7, wherein the nucleic acid molecule is expressed in a cell. 14. Molekula nukleinske kiseline koja uključuje sekvenciju koja kodira NAB1 ili NAB2 polipeptid ili njihov biološki djelatni fragment, naznačena time, da se upotrebljava u genskoj terapiji.14. A nucleic acid molecule that includes a sequence encoding a NAB1 or NAB2 polypeptide or a biologically active fragment thereof, indicated to be used in gene therapy. 15. Farmaceutski pripravak, naznačen time, da uključuje molekulu nukleinske kiseline koja uključuje sekvenciju koja kodira NAB1 ili NAB2 polipeptid ili njihov biološki djelatni fragment, zajedno s jednim ili više farmaceutski prihvatljivih nosača.15. A pharmaceutical preparation, characterized in that it includes a nucleic acid molecule that includes a sequence encoding a NAB1 or NAB2 polypeptide or a biologically active fragment thereof, together with one or more pharmaceutically acceptable carriers. 16. Postupak liječenja poremećaja stanične proliferacije povezanih sa zacjeljivanjem rana kod sisavaca uključujući čovjeka, naznačena time, da uključuje davanje sisavcima molekule nukleinske kiseline koja uključuje sekvenciju koja kodira NAB1 ili NAB2 polipeptid ili njihov biološki djelatni fragment.16. A method of treating a cell proliferation disorder associated with wound healing in a mammal, including a human, comprising administering to the mammal a nucleic acid molecule comprising a sequence encoding a NAB1 or NAB2 polypeptide or a biologically active fragment thereof. 17. Upotreba NAB1 ili NAB2 polipeptida ili njihovog biološki djelatnog fragmenta, naznačena time, da se navedeni upotrebljavaju u proizvodnji lijeka za liječenje poremećaja stanične proliferacije povezanih sa zacjeljivanjem rana kod sisavaca, uključujući čovjeka.17. Use of NAB1 or NAB2 polypeptides or their biologically active fragment, characterized in that said are used in the production of a drug for the treatment of cell proliferation disorders associated with wound healing in mammals, including humans. 18. Upotreba prema zahtjevu 17, naznačena time, da se NAB1 ili NAB2 polipeptid ili njegov biološki djelatni fragment proizvode prirodnim putem, sintetski ili rekombinantno.18. Use according to claim 17, characterized in that the NAB1 or NAB2 polypeptide or its biologically active fragment is produced naturally, synthetically or recombinantly. 19. Upotreba prema zahtjevu 17 ili zahtjevu 18, naznačena time, da su NAB1 ili NAB2 polipeptidi humani NAB1 ili NAB2 polipeptidi.19. Use according to claim 17 or claim 18, characterized in that the NAB1 or NAB2 polypeptides are human NAB1 or NAB2 polypeptides. 20. Upotreba, kao što je zahtijevano u bilo kojem od zahtjeva 17-19, naznačena time, da je polipeptid barem 70%, odnosno 80%, odnosno 90%, odnosno 95% identičan u cijeloj svojoj dužini u odnosu na NAB1 ili NAB2 polinukleotidnu sekvenciju.20. Use as claimed in any of claims 17-19, characterized in that the polypeptide is at least 70%, respectively 80%, respectively 90%, respectively 95% identical throughout its length to the NAB1 or NAB2 polynucleotide sequence. 21. Postupak liječenja poremećaja stanične proliferacije povezanih sa zacjeljivanjem rana kod sisavaca uključujući čovjeka, naznačen time, da uključuje davanje sisavcima terapeutski učinkovite količine NAB1 ili NAB2 polipeptida ili njihovog biološki djelatnog fragmenta.21. A method of treating a cell proliferation disorder associated with wound healing in a mammal, including a human, comprising administering to the mammal a therapeutically effective amount of a NAB1 or NAB2 polypeptide or a biologically active fragment thereof. 22. Farmaceutski pripravak, naznačena time, da uključuje NAB1 i/ili NAB2 polipeptid ili njihov biološki djelatni fragment zajedno s jednim ili više farmaceutski prihvatljivih nosača.22. Pharmaceutical preparation, characterized in that it includes NAB1 and/or NAB2 polypeptide or their biologically active fragment together with one or more pharmaceutically acceptable carriers.
HR20010025A 1998-07-11 2001-01-11 Pharmaceutical uses of nab1 and nab2 HRP20010025A2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GBGB9814989.1A GB9814989D0 (en) 1998-07-11 1998-07-11 Gene therapy method
GBGB9819826.0A GB9819826D0 (en) 1998-09-12 1998-09-12 Gene therapy method
PCT/GB1999/002199 WO2000003014A1 (en) 1998-07-11 1999-07-09 Pharmaceutical uses of nab1 and nab2

Publications (1)

Publication Number Publication Date
HRP20010025A2 true HRP20010025A2 (en) 2001-12-31

Family

ID=26314007

Family Applications (1)

Application Number Title Priority Date Filing Date
HR20010025A HRP20010025A2 (en) 1998-07-11 2001-01-11 Pharmaceutical uses of nab1 and nab2

Country Status (22)

Country Link
EP (1) EP1097200A1 (en)
JP (1) JP2002520020A (en)
KR (1) KR20010071832A (en)
CN (1) CN1317045A (en)
AP (1) AP2001002038A0 (en)
AU (1) AU763713B2 (en)
BR (1) BR9912018A (en)
CA (1) CA2336805A1 (en)
EA (1) EA200100028A1 (en)
EE (1) EE200100020A (en)
HR (1) HRP20010025A2 (en)
HU (1) HUP0102835A3 (en)
ID (1) ID27742A (en)
IL (1) IL140533A0 (en)
IS (1) IS5788A (en)
NO (1) NO20010166L (en)
NZ (1) NZ509174A (en)
PL (1) PL345507A1 (en)
SK (1) SK382001A3 (en)
TR (1) TR200100622T2 (en)
WO (1) WO2000003014A1 (en)
YU (1) YU1901A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9928430D0 (en) * 1999-12-01 2000-01-26 Glaxo Group Ltd Screening
AU2001291019A1 (en) 2000-09-15 2002-03-26 Genvec, Inc. Method of modulating neovascularization
WO2004083435A1 (en) * 2003-03-17 2004-09-30 Julius-Maximilians-Uni Versität Würzburg Nab proteins and their use in diagnostic and therapeutic applications in heart disease

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5036006A (en) * 1984-11-13 1991-07-30 Cornell Research Foundation, Inc. Method for transporting substances into living cells and tissues and apparatus therefor
US5697901A (en) * 1989-12-14 1997-12-16 Elof Eriksson Gene delivery by microneedle injection

Also Published As

Publication number Publication date
CN1317045A (en) 2001-10-10
YU1901A (en) 2005-06-10
IS5788A (en) 2000-12-22
AU763713B2 (en) 2003-07-31
IL140533A0 (en) 2002-02-10
KR20010071832A (en) 2001-07-31
AP2001002038A0 (en) 2001-03-31
NZ509174A (en) 2003-08-29
TR200100622T2 (en) 2001-10-22
SK382001A3 (en) 2001-09-11
EA200100028A1 (en) 2001-08-27
AU4791499A (en) 2000-02-01
NO20010166D0 (en) 2001-01-10
WO2000003014A1 (en) 2000-01-20
EE200100020A (en) 2002-06-17
HUP0102835A3 (en) 2003-09-29
CA2336805A1 (en) 2000-01-20
EP1097200A1 (en) 2001-05-09
NO20010166L (en) 2001-03-06
PL345507A1 (en) 2001-12-17
HUP0102835A2 (en) 2001-11-28
ID27742A (en) 2001-04-26
JP2002520020A (en) 2002-07-09
BR9912018A (en) 2006-01-31

Similar Documents

Publication Publication Date Title
EP1083934B1 (en) EGR-1 for the manufacture of a medicament for treating wounds
JPH09509846A (en) Transforming growth factor αH1
AU2006268091A1 (en) Promotion of epithelial regeneration
WO2007100357A2 (en) Stem cell factor-like protein scfa1 and uses thereof
US20030103956A1 (en) Use of HIF-1a variants to accelerate wound healing
CN108129553B (en) Polypeptide for preventing and treating diseases related to telomere dysfunction and medical application thereof
US8940868B2 (en) Elastin based growth factor delivery platform for wound healing and regeneration
HRP20010025A2 (en) Pharmaceutical uses of nab1 and nab2
CA2371241A1 (en) Tgf-.alpha. polypeptides, functional fragments and methods of use therefor
US11633456B2 (en) Compositions and methods for promoting hair growth
MXPA01000386A (en) Pharmaceutical uses of nab1 and nab2
CZ2001142A3 (en) Use of nucleic acid molecule
ZA200100193B (en) Pharmaceutical uses of NAB1 and NAB2.
KR20160010212A (en) Anti-aging and wound-healing peptide and composition comprising the same
WO2009116529A1 (en) Polypeptide and pharmaceutical composition containing the polypeptide
US8748568B2 (en) Isolated A-type FHF N-terminal domain peptides and methods of use
ZA200006963B (en) Gene therapy method.
MXPA00011726A (en) Gene therapy method
CZ20004509A3 (en) Method of executing gene therapy

Legal Events

Date Code Title Description
A1OB Publication of a patent application
ARAI Request for the grant of a patent on the basis of the submitted results of a substantive examination of a patent application
ODRP Renewal fee for the maintenance of a patent

Payment date: 20030701

Year of fee payment: 5

OBST Application withdrawn