GB2585000A - RF energy harvesting system - Google Patents

RF energy harvesting system Download PDF

Info

Publication number
GB2585000A
GB2585000A GB1908751.9A GB201908751A GB2585000A GB 2585000 A GB2585000 A GB 2585000A GB 201908751 A GB201908751 A GB 201908751A GB 2585000 A GB2585000 A GB 2585000A
Authority
GB
United Kingdom
Prior art keywords
rectifier
voltage signal
module
unit
rectifiers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB1908751.9A
Other versions
GB201908751D0 (en
GB2585000B (en
Inventor
Jiang Fangxin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiakai Ltd
Original Assignee
Jiakai Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiakai Ltd filed Critical Jiakai Ltd
Priority to GB1908751.9A priority Critical patent/GB2585000B/en
Publication of GB201908751D0 publication Critical patent/GB201908751D0/en
Publication of GB2585000A publication Critical patent/GB2585000A/en
Application granted granted Critical
Publication of GB2585000B publication Critical patent/GB2585000B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/001Energy harvesting or scavenging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • H02J50/27Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves characterised by the type of receiving antennas, e.g. rectennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/248Supports; Mounting means by structural association with other equipment or articles with receiving set provided with an AC/DC converting device, e.g. rectennas

Abstract

An RF energy harvesting system 100 includes an antenna, an impedance matching network 20, an RF rectifier module 30, an enhanced RF rectifier module 40, a power control module 60, an energy storage branch 70 and load branches 60. The antenna receives RF signals and converts the RF signals into electric energy. The impedance matching network produces an initial voltage signal (V0) according to the electric energy output by the antenna. The RF rectifier module converts the initial voltage signal into a first voltage signal (V1). The enhanced RF rectifier module converts the initial voltage signal into a second voltage signal (V2), the second voltage signal being greater than the voltage of the first voltage signal. The power control module is self-driven through the first voltage signal and the second voltage signal The RF rectifier module adjusts the internal electrical connection according to control signals of the power control module. The energy storage branch stores the electric energy output by the power control module. An additional embodiment of the first aspect includes a rectification control unit which switches number of rectifiers connected. The system may have a protection circuit 50 and may comprise a clock generating unit.

Description

RF ENERGY HARVESTING SYSTEM
Field of the Patent Application
The present patent application generally relates to electronic technologies and more specifically to an RF energy harvesting system.
Background
Converting energy harvested from the nature into electric energy without batteries or a wired power supply is one of the developmental directions of power supply technology. RF energy harvesting technology can provide flexible, portable and renewable energy resources and therefore has become a research hotspot of the public. Conventional RF energy harvesting systems typically include an antenna and an RF rectifier. The antenna is configured to receive RF signals and the rectifier is configured to convert the received RF energy into a DC power supply. However, the self-adaptability of such systems is not strong and the input energy is often not stable while the energy output of a system is often required to be as stable as possible and the output power is required to be high. Conventional RF energy harvesting systems often need to be equipped with an external power source and cannot be self-driven. At the same time, redundant energy harvested by conventional RF energy harvesting systems can only be stored outside the systems instead of being stored inside the systems, thus leading to inconvenience in operating and using such systems. On the other hand, the load of such systems often varies and the variation of load may influence the operation of such systems, and therefore does harm to the stability of such systems.
Summary
The present patent application is directed to an RF energy harvesting system. In one aspect, the present patent application provides an RF energy harvesting system. The RF energy harvesting system includes an antenna configured to receive RF signals and convert energy of the RE signals to electric energy; an impedance matching network configured to optimize conversion efficiency of the electric energy so as to produce an initial voltage signal; an RF rectifier module configured to convert the initial voltage signal to a first voltage signal; an enhanced RF rectifier module configured to convert the initial voltage signal to a second voltage signal and voltage of the second voltage signal is greater than voltage of the first voltage signal; a power control module configured to power the power control module itself through receiving the first voltage signal and the second voltage signal; an energy storage branch and multiple load branches. The power control module is configured to transmit a control signal to the RF rectifier module so that the RF rectifier module adjusts electrical connections between multiple rectifiers in the RF rectifier module, thus realizing maximum output of energy. The power control module is further configured to provide electric energy for the energy storage branch and the load branches. The energy storage branch is configured to store electric energy output by the power control module. The load branches are configured to be driven by the electric energy output by the power control module.
The multiple rectifiers in the RF rectifier module may be connected with one another through logic circuits so that multiple stages of rectifier units sequentially connected in series are formed. The RF rectifier module may vary the number of rectifiers connected in parallel in each rectifier unit according to the control signal.
When the initial voltage signal decreases, the RF rectifier module may reduce the number of rectifiers connected in parallel in each rectifier unit so that the number of stages of the rectifier units increases, thus ensuring that the first voltage signal remains constant. When the initial voltage signal increases, the RF rectifier module may increase the number of rectifiers connected in parallel in each rectifier unit, so that the number of stages of the rectifier units decreases, thus ensuring that the first voltage signal remains constant.
The rectifier unit may include one rectifier or at least two rectifiers connected in parallel with each other. The rectifier may include an input port, an output port and a control port. The input port of each rectifier may receive the initial voltage signal. Control ports of all rectifiers in a rectifier unit of a first stage may be connected to the ground. Control ports of all rectifiers in each rectifier unit except the rectifier unit of the first stage may be connected with output ports of all rectifiers in a neighboring rectifier unit of a previous stage. A total voltage output by output ports of all rectifiers in a rectifier unit of a last stage may be an output voltage of the RF rectifier module.
The power control module may include a rectification control unit and a load management unit. The rectification control unit may be configured to transmit the control signal to the RF rectifier module according to an estimate of the first voltage signal under an open circuit condition. The load management unit including a logic control circuit may be configured to provide electric energy for the load branches and the energy storage branch.
The load management unit may be further configured to adjust duty ratio in real time so that only when a voltage provided for the load branches meets requirements, the electric energy may be transmitted to the load branches so as to protect the load branches.
The load management unit may include a first electronic switch, a second electronic switch, a third electronic switch, a first capacitor, a second capacitor and a resistor. The input port of the first electronic switch may be connected with the RF rectifier module. The output port of the first electronic switch may be connected to the ground through the first capacitor and connected to the ground through the second electronic switch and the second capacitor. The input port of the third electronic switch may be connected with the RF rectifier module while the output port of the third electronic switch may be connected to the ground through the resistor.
The power control module may further include a clock generating unit and a reference voltage generating unit. The clock generating unit may be configured to produce clock signals for all digital circuits in the RF energy harvesting system. The reference voltage generating unit may be configured to produce reference voltage signals for all circuits in the RF energy harvesting system.
In another aspect, the present patent application provides an RF energy harvesting system. The RF energy harvesting system includes an antenna configured to receive RF signals and convert energy of the RF signals to electric energy; an impedance matching network configured to optimize conversion efficiency of the electric energy so as to produce an initial voltage signal; an RF rectifier module configured to convert the initial voltage signal to a first voltage signal; an enhanced RF rectifier module configured to convert the initial voltage signal to a second voltage signal and voltage of the second voltage signal is greater than voltage of the first voltage signal; a power control module configured to power the power control module itself through receiving the first voltage signal and the second voltage signal; an energy storage branch and multiple load branches. The power control module includes a rectification control unit and a load management unit. The rectification control unit is configured to transmit a control signal to the RF rectifier module according to an estimate of the first voltage signal under an open circuit condition so that the RF rectifier module adjusts electrical connections between multiple rectifiers in the RF rectifier module, thus varying the number of rectifiers connected in parallel in each rectifier unit and realizing maximum output of energy. The load management unit is configured to provide electric energy for the load branches and the energy storage branch and further configured to adjust duty ratio in real time so that only when a voltage provided for the load branches meets requirements, the electric energy is transmitted to the load branches so as to protect the load branches. The energy storage branch is configured to store electric energy output by the load management unit. The load branches are configured to be driven by the electric energy output by the load management unit.
The load management unit may include a first electronic switch, a second electronic switch, a third electronic switch, a first capacitor, a second capacitor and a resistor. The input port of the first electronic switch may be connected with the RF rectifier module. The output port of the first electronic switch may be connected to the ground through the first capacitor and connected to the ground through the second electronic switch and the second capacitor. The input port of the third electronic switch may be connected with the RF rectifier module and the output port of the third electronic switch may be connected to the ground through the resistor. The rectifier unit may include one rectifier or at least two rectifiers connected in parallel with each other. The rectifier may include an input port, an output port and a control port. The input port of each rectifier may receive the initial voltage signal. Control ports of all rectifiers in a rectifier unit of a first stage may be connected to the ground. Control ports of all rectifiers in each rectifier unit except the rectifier unit of the first stage may be connected with output ports of all rectifiers in a neighboring rectifier unit of a previous stage. A total voltage output by output ports of all rectifiers in a rectifier unit of a last stage may be an output voltage of the RF rectifier module.
The RF energy harvesting system may further include a protection circuit. The protection circuit may be connected with the RF rectifier module and the enhanced RF rectifier module and configured to prevent the second voltage signal from being too high so as to ensure stability of the RF energy harvesting system.
Brief Description of the Drawings
FIG. I is a block diagram of an RF energy harvesting system in accordance with an embodiment of the present patent application.
FIG. 2 is a schematic circuit diagram of one embodiment of an RF rectifier module of the RF energy harvesting system as depicted in FIG. 1.
FIG. 3 is a schematic circuit diagram of one embodiment of an RF rectifier module of the RF energy harvesting system as depicted in FIG. 1.
FIG. 4 is a block diagram of a power control module of the RF energy harvesting system as depicted in FIG. 1.
FIG. 5 is a block diagram of a load management unit of the power control module as depicted in FIG. 4.
Detailed Description
Reference will now be made in detail to a preferred embodiment of the RE energy harvesting system disclosed in the present patent application, examples of which are also provided in the following description. Exemplary embodiments of the RF energy harvesting system disclosed in the present patent application are described in detail, although it will be apparent to those skilled in the relevant art that some features that are not particularly important to an understanding of the RF energy harvesting system may not be shown for the sake of clarity.
Furthermore, it should be understood that the RF energy harvesting system disclosed in the present patent application is not limited to the precise embodiments described below and that various changes and modifications thereof may be effected by one skilled in the art without departing from the spirit or scope of the protection. For example, elements and/or features of different illustrative embodiments may be combined with each other and/or substituted for each other within the scope of this disclosure.
FIG. I is a block diagram of an RF energy harvesting system in accordance with an embodiment of the present patent application. Referring to FIG. 1, the RF energy harvesting system 100 includes an antenna 10, an impedance matching network 20, an RF rectifier module 30, an enhanced RF rectifier module 40, a protection circuit 50, a power control module 60, an energy storage branch 70 and load branches 80.
The antenna 10 is configured to receive RF signals and convert RF energy into electric energy. In this embodiment, the antenna 10 is configured to receive the RF signals with a frequency of 950 to 1050 MHZ.
The impedance matching network 20 is configured to optimize the conversion efficiency of the electric energy so as to produce an initial voltage signal 1"0.
The RF rectifier module 30 is configured to convert the initial voltage signal VO from an AC signal to a DC signal so as to produce a first voltage signal IT The RF rectifier module 30 is further configured to automatically adjust the electrical connections between multiple rectifiers 31 in the RF rectifier module 30 according to the input power (i.e. control signals transmitted by the power control module 60) so as to optimize the overall output efficiency of the RF energy harvesting system 100 and realize the maximum output of energy.
Referring to FIG. 2 and FIG. 3, the multiple rectifiers 31 in the RF rectifier module 30 are connected with one another through logic circuits (e.g. AND gate, NOT gate, OR gate, etc.) so that the electrical connections between the multiple rectifiers 31 is varied according to the real-time variation of the input energy. As a result, multiple stages of rectifier units 31a sequentially connected in series are formed and the number of rectifiers 31 connected in parallel in each rectifier unit 31a can be varied so as to realize the maximum output of energy and stabilize the output power.
The rectifier unit 31a includes one rectifier 31 or at least two rectifiers 31 connected in parallel with each other. The rectifier 31 includes an input port 311, an output port 312 and a control port 313. The input port 311 of each rectifier 31 receives the initial voltage signal VO. Control ports 313 of all rectifiers 31 in a rectifier unit 31a of a first stage are connected to the ground. Control ports 313 of all rectifiers 31 in each rectifier unit 31a except the rectifier unit 31a of the first stage are connected with output ports 312 of all rectifiers 31 in a neighboring rectifier unit 31a of a previous stage. A total voltage output by output ports 313 of all rectifiers 31 in a rectifier unit 31a of a last stage is an output voltage of the RF rectifier module 30. In this embodiment, the structures of the multiple rectifier units 31a are identical.
Of course, in other embodiments, the structures of the multiple rectifier units 31a may be different.
Referring to FIG. 2, when the initial voltage signal VO decreases, the RF rectifier module 30 reduces the number of rectifiers 31 connected in parallel in each rectifier unit 31a so that the number of stages of the rectifier units 31a increases, thus ensuring that the first voltage signal V/ may not decrease with the decrease of the initial voltage signal VO and remains constant all the time so as to increase the maximum output power. Specifically, for example, each rectifier unit 31a includes one rectifier 31. If the number of the rectifiers 31 is M, rectifier units 31a of M stages are formed. Each rectifier unit 31a is configured to convert the initial voltage signal VO to a voltage VO, then an output voltage of the rectifier unit 31a of the first stage is Vx-VO, an output voltage of the rectifier unit 31a of the second stage is 2Vx-110, and the like, an output voltage of the rectifier unit 31a of the Mth stage is MVx+110, and therefore the output voltage VI of the RF rectifier module 30 is Mfly-VO.
Referring to FIG. 3, when the initial voltage signal VO increases, the RF rectifier module 30 increases the number of rectifiers 31 connected in parallel in each rectifier unit 31a, so that the number of stages of the rectifier units 31a decreases, thus ensuring that the first voltage signal 17 remains constant and the output current increases so as to increase the maximum output power. Specifically, at this time, each rectifier unit 31a includes at least two rectifiers 31 connected in parallel with each other. In this embodiment, each rectifier unit 31a includes two rectifiers 31 connected in parallel with each other. If the number of the rectifiers 31 is M, rectifier units 31a of M/2 stages are formed. Of course, the number of rectifiers 31 in each rectifier unit 31a is not limited to this embodiment. Each rectifier unit 31a is configured to convert the initial voltage signal 10 to a voltage "x+ VO, then an output voltage of the rectifier unit 31a of the first stage is Irx+17), an output voltage of the rectifier unit 31a of the second stage is 213c+ TV and the like, an output voltage of the rectifier unit 31a of the M/2th stage is MIV2+V0, and therefore an output voltage V/ of the RF rectifier module 30 is M Vx/2+VO.
The enhanced RF rectifier module 40 is configured to convert the initial voltage signal TrO from an AC signal to a DC signal so as to produce a second voltage signal I2 and the voltage of the second voltage signal I2 is greater than the voltage of the first voltage signal V/.
The protection circuit 50 is connected with the RF rectifier module 30 and the enhanced RF rectifier module 40 and configured to prevent the second voltage signal I2 from being too high so as to ensure the stability of the RF energy harvesting system 100.
The power control module 60 is configured to power the power control module 60 itself through receiving the first voltage signal V/ and the second voltage signal T2 so as to realize self-driving of the RF energy harvesting system 100 without an external power supply.
The power control module 60 is further configured to provide clock signals and reference voltage signals for the RF energy harvesting system 100, provide control signals for the RF rectifier module 30 and provide electric energy for the energy storage branch 70 and the load branches 80. Referring to FIG. 4, the power control module 60 includes a clock generating unit 61, a reference voltage generating unit 62, a rectification control unit 63 and a load management unit 64.
The clock generating unit 61 is configured to produce the clock signals for all digital circuits in the RF energy harvesting system 100.
The reference voltage generating unit 62 is configured to produce the reference voltage signals for all circuits in the RF energy harvesting system 100. The reference voltage signals vary little with temperature and processing while remaining essentially constant.
The rectification control unit 63 is configured to transmit the control signals to the RF rectifier module 30 according to an estimate of the first voltage signal 17/ under an open circuit condition so that the RF rectifier module 30 can configure the electrical connections between the multiple rectifiers 31 in the RF rectifier module 30 according to the control signals.
The load management unit 64 including a logic control circuit is configured to provide electric energy for the energy storage branch 70 and the load branches 80. The load management unit 64 is further configured to adjust the duty ratio in real time so that the electric energy is transmitted to the load branches 80 only when the voltage provided for the load branches 80 meets requirements, thus realizing the protection of the load branches 80.
At the same time, the redundant energy is stored in a capacitor for energy storage. In addition, the load management unit 64 can adjust the energy output in real time according to the variation of the load branches 80 so as to realize real-time load management and improve the system's capability of adapting to different application scenarios. Referring to FIG. 5, the load management unit 64 includes a first electronic switch 641, a second electronic switch 642, a third electronic switch 643, a first capacitor 644, a second capacitor 645 and a resistor 646.
The input port of the first electronic switch 641 is connected with the RF rectifier module 30.
The output port of the first electronic switch 641 is connected to the ground through the first capacitor 644 and connected to the ground through the second electronic switch 642 and the second capacitor 645. The input port of the third electronic switch 643 is connected with the RF rectifier module 30 while the output port of the third electronic switch 643 is connected to the ground through the resistor 646. The internal resistance of the RF rectifier module 30 is RO and the resistance of the resistor 646 is RI.
The operating process of the load management unit 64 is as follows: when energy from the RF rectifier module 30 is less than the requirements of the load branches 80, RO>R1 and adjusting the third electronic switch 643 so as to lower the duty ratio; when energy from the RF rectifier module 30 is greater than the requirements of the load branches 80, R0<R1 and adjusting the third electronic switch 643 so as to increase the duty ratio, so that in the former half of a cycle, the first electronic switch 641 is closed, the second electronic switch 642 is open and the RF rectifier module 30 charges the first capacitor 644 while in the latter half of the cycle, the first electronic switch 641 is open, the second electronic switch 642 is closed and the first capacitor 644 charges the second capacitor 645.
The energy storage branch 70 is configured to store the electric energy output by the power control module 60.
The load branches 80 are configured to be driven by the electric energy output by the power control module 60.
Compared with the conventional RF energy harvesting systems, in the RF energy harvesting system 100 of the present patent application, the RF rectifier module 30 can vary the number of rectifiers 31 connected in parallel in each rectifier unit 31a according to the real-time variation of input energy so as to realize the maximum output of energy and stable output power and strong self-adaptability. Since the first voltage signal produced by the RF rectifier module 30 and the second voltage signal produced by the enhanced RF rectifier module 40 can power the power control module 60 directly, the RF energy harvesting system can be self-driven without an external power supply. Since the load management unit 64 can not only control and store the redundant energy, but also adjust the energy output in real time according to the variation of the load branches, the RF energy harvesting system is convenient to operate with strong stability and can be applied to a wide range of application scenarios. At the same time, since all modules in the RF energy harvesting system 100 are integrated on a chip, the integration of the RF energy harvesting system 100 is high and therefore the cost is further lowered.
While the present patent application has been shown and described with particular references to a number of embodiments thereof, it should be noted that various other changes or modifications may be made without departing from the scope of the present invention.

Claims (10)

  1. What is claimed is: 1. An RF energy harvesting system comprising: an antenna configured to receive RF signals and convert energy of the RE signals to electric energy; an impedance matching network configured to optimize conversion efficiency of the electric energy so as to produce an initial voltage signal; an RF rectifier module configured to convert the initial voltage signal to a first voltage signal; an enhanced RF rectifier module configured to convert the initial voltage signal to a second voltage signal and voltage of the second voltage signal is greater than voltage of the first voltage signal; a power control module configured to power the power control module itself through receiving the first voltage signal and the second voltage signal; an energy storage branch; and a plurality of load branches; wherein: the power control module is configured to transmit a control signal to the RF rectifier module so that the RF rectifier module adjusts electrical connections between a plurality of rectifiers in the RF rectifier module, thus realizing maximum output of energy; the power control module is further configured to provide electric energy for the energy storage branch and the load branches; the energy storage branch is configured to store electric energy output by the power control module; and the load branches are configured to be driven by the electric energy output by the power control module.
  2. 2. The RF energy harvesting system of claim 1, wherein the plurality of rectifiers in the RF rectifier module are connected with one another through logic circuits so that multiple stages of rectifier units sequentially connected in series are formed; the RF rectifier module can vary the number of rectifiers connected in parallel in each rectifier unit according to the control signal.
  3. 3. The RF energy harvesting system of claim 2, wherein when the initial voltage signal decreases, the RF rectifier module reduces the number of rectifiers connected in parallel in each rectifier unit so that the number of stages of the rectifier units increases, thus ensuring that the first voltage signal remains constant; when the initial voltage signal increases, the RF rectifier module increases the number of rectifiers connected in parallel in each rectifier unit, so that the number of stages of the rectifier units decreases, thus ensuring that the first voltage signal remains constant.
  4. 4. The RE energy harvesting system of claim 3, wherein the rectifier unit comprises one rectifier or at least two rectifiers connected in parallel with each other; the rectifier comprises an input port, an output port and a control port; the input port of each rectifier receives the initial voltage signal; control ports of all rectifiers in a rectifier unit of a first stage are connected to the ground; control ports of all rectifiers in each rectifier unit except the rectifier unit of the first stage are connected with output ports of all rectifiers in a neighboring rectifier unit of a previous stage; a total voltage output by output ports of all rectifiers in a rectifier unit of a last stage is an output voltage of the RF rectifier module.
  5. 5. The RF energy harvesting system of claim 4, wherein the power control module comprises a rectification control unit and a load management unit; the rectification control unit is configured to transmit the control signal to the RF rectifier module according to an estimate of the first voltage signal under an open circuit condition; the load management unit comprising a logic control circuit is configured to provide electric energy for the load branches and the energy storage branch; the load management unit is further configured to adjust duty ratio in real time so that only when a voltage provided for the load branches meets requirements, the electric energy is transmitted to the load branches so as to protect the load branches.
  6. 6. The RF energy harvesting system of claim 5, wherein the load management unit comprises a first electronic switch, a second electronic switch, a third electronic switch, a first capacitor, a second capacitor and a resistor; the input port of the first electronic switch is connected with the RF rectifier module; the output port of the first electronic switch is connected to the ground through the first capacitor and connected to the ground through the second electronic switch and the second capacitor; the input port of the third electronic switch is connected with the RF rectifier module while the output port of the third electronic switch is connected to the ground through the resistor.
  7. 7. The RF energy harvesting system of claim 1, wherein the power control module further comprises a clock generating unit and a reference voltage generating unit; the clock generating unit is configured to produce clock signals for all digital circuits in the RF energy harvesting system; the reference voltage generating unit is configured to produce reference voltage signals for all circuits in the RF energy harvesting system.
  8. 8. An RF energy harvesting system comprising: an antenna configured to receive RF signals and convert energy of the RF signals to electric energy; an impedance matching network configured to optimize conversion efficiency of the electric energy so as to produce an initial voltage signal; an RF rectifier module configured to convert the initial voltage signal to a first voltage signal; an enhanced RF rectifier module configured to convert the initial voltage signal to a second voltage signal and voltage of the second voltage signal is greater than voltage of the first voltage signal; a power control module configured to power the power control module itself through receiving the first voltage signal and the second voltage signal; an energy storage branch; and a plurality of load branches; wherein: the power control module comprises a rectification control unit and a load management unit; the rectification control unit is configured to transmit a control signal to the RF rectifier module according to an estimate of the first voltage signal under an open circuit condition so that the RF rectifier module adjusts electrical connections between a plurality of rectifiers in the RF rectifier module, thus varying the number of rectifiers connected in parallel in each rectifier unit and realizing maximum output of energy; the load management unit is configured to provide electric energy for the load branches and the energy storage branch and further configured to adjust duty ratio in real time so that only when a voltage provided for the load branches meets requirements, the electric energy is transmitted to the load branches so as to protect the load branches; the energy storage branch is configured to store electric energy output by the load management unit; and the load branches are configured to be driven by the electric energy output by the load management unit.
  9. 9. The RF energy harvesting system of claim 8, wherein the load management unit comprises a first electronic switch, a second electronic switch, a third electronic switch, a first capacitor, a second capacitor and a resistor; the input port of the first electronic switch is connected with the RF rectifier module; the output port of the first electronic switch is connected to the ground through the first capacitor and connected to the ground through the second electronic switch and the second capacitor; the input port of the third electronic switch is connected with the RE rectifier module while the output port of the third electronic switch is connected to the ground through the resistor; the rectifier unit comprises one rectifier or at least two rectifiers connected in parallel with each other; the rectifier comprises an input port, an output port and a control port; the input port of each rectifier receives the initial voltage signal; control ports of all rectifiers in a rectifier unit of a first stage are connected to the ground; control ports of all rectifiers in each rectifier unit except the rectifier unit of the first stage are connected with output ports of all rectifiers in a neighboring rectifier unit of a previous stage; a total voltage output by output ports of all rectifiers in a rectifier unit of a last stage is an output voltage of the RF rectifier module.
  10. 10. The RF energy harvesting system of claim 9 further comprising a protection circuit, 5 wherein the protection circuit is connected with the RF rectifier module and the enhanced RF rectifier module and configured to prevent the second voltage signal from being too high so as to ensure stability of the RF energy harvesting system.15 20 25
GB1908751.9A 2019-06-19 2019-06-19 RF energy harvesting system Expired - Fee Related GB2585000B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB1908751.9A GB2585000B (en) 2019-06-19 2019-06-19 RF energy harvesting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB1908751.9A GB2585000B (en) 2019-06-19 2019-06-19 RF energy harvesting system

Publications (3)

Publication Number Publication Date
GB201908751D0 GB201908751D0 (en) 2019-07-31
GB2585000A true GB2585000A (en) 2020-12-30
GB2585000B GB2585000B (en) 2021-08-18

Family

ID=67432346

Family Applications (1)

Application Number Title Priority Date Filing Date
GB1908751.9A Expired - Fee Related GB2585000B (en) 2019-06-19 2019-06-19 RF energy harvesting system

Country Status (1)

Country Link
GB (1) GB2585000B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070087719A1 (en) * 2004-09-17 2007-04-19 Soumyajit Mandal Rf power extracting circuit and related techniques
GB2479792A (en) * 2010-04-23 2011-10-26 Innovision Res & Tech Plc Near Field RF Commuincator
US20180183274A1 (en) * 2016-12-23 2018-06-28 Stamina Energy, LLC Wireless energy harvesting
CN108306425A (en) * 2018-03-08 2018-07-20 中国科学院微电子研究所 Restructural CMOS RF energy acquisition systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070087719A1 (en) * 2004-09-17 2007-04-19 Soumyajit Mandal Rf power extracting circuit and related techniques
GB2479792A (en) * 2010-04-23 2011-10-26 Innovision Res & Tech Plc Near Field RF Commuincator
US20180183274A1 (en) * 2016-12-23 2018-06-28 Stamina Energy, LLC Wireless energy harvesting
CN108306425A (en) * 2018-03-08 2018-07-20 中国科学院微电子研究所 Restructural CMOS RF energy acquisition systems

Also Published As

Publication number Publication date
GB201908751D0 (en) 2019-07-31
GB2585000B (en) 2021-08-18

Similar Documents

Publication Publication Date Title
US11418117B2 (en) Single inductor multi-output buck-boost converter and control method thereof
US10965167B2 (en) RF energy harvesting system
US10230275B2 (en) Power supply device, and control method of power supply device
US20110241433A1 (en) Dc transmission system for remote solar farms
EP2195719A1 (en) Method and apparatus for providing power
US10027239B2 (en) Wind power converter device and converter device
US11545896B1 (en) Power supply conversion structure and electronic device including the same
US9379627B2 (en) Power conversion circuit arrangements utilizing resonant alternating current linkage
EP2747268B1 (en) Voltage source current controlled multilevel power converter
AU2020425507A1 (en) Photovoltaic system
GB2585000A (en) RF energy harvesting system
Wang et al. Design of a wide dynamic range rectifier array with an adaptive power distribution technique
US20110002150A1 (en) Rectifier Circuit with High Efficiency
SE2030203A1 (en) Rf energy harvesting system
Hamzi et al. Analysis of series and shunt rectifier circuits topologies
WO2016165100A1 (en) Rectification circuit
Sandeep et al. Switched-capacitor-based three-phase five-level inverter topology with reduced components
Chander et al. A Transformerless Photovoltaic Inverter with Dedicated MPPT for Grid Application
Vamsi et al. A 1V,− 26dBm sensitive auto configurable mixed converter mode RF energy harvesting with wide input range
US20230344270A1 (en) Energy harvesting system
CN109104179A (en) A kind of integrated circuit and electronic equipment
US20220181909A1 (en) Radio frequency-to-direct current rectifier and energy harvesting device including the same
CN113348615B (en) DC-DC power converter
KR20170053466A (en) Apparatus for combining power, apparatus for controlling power and electric/electronic apparatus
Hou et al. Wireless Power Transfer Using Longitudinally Asymmetrical Leaky-Wave Antenna

Legal Events

Date Code Title Description
732E Amendments to the register in respect of changes of name or changes affecting rights (sect. 32/1977)

Free format text: REGISTERED BETWEEN 20210701 AND 20210707

PCNP Patent ceased through non-payment of renewal fee

Effective date: 20230619